JP2007250618A - Electronic component packaging structure and manufacturing method thereof - Google Patents

Electronic component packaging structure and manufacturing method thereof Download PDF

Info

Publication number
JP2007250618A
JP2007250618A JP2006068801A JP2006068801A JP2007250618A JP 2007250618 A JP2007250618 A JP 2007250618A JP 2006068801 A JP2006068801 A JP 2006068801A JP 2006068801 A JP2006068801 A JP 2006068801A JP 2007250618 A JP2007250618 A JP 2007250618A
Authority
JP
Japan
Prior art keywords
electronic component
electrode
resin
protruding electrode
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006068801A
Other languages
Japanese (ja)
Other versions
JP4609350B2 (en
Inventor
Takahiko Yagi
能彦 八木
Daisuke Sakurai
大輔 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006068801A priority Critical patent/JP4609350B2/en
Priority to CN2007800072493A priority patent/CN101395975B/en
Priority to PCT/JP2007/054280 priority patent/WO2007105535A1/en
Priority to KR1020087021148A priority patent/KR101079979B1/en
Priority to US12/278,481 priority patent/US8119449B2/en
Publication of JP2007250618A publication Critical patent/JP2007250618A/en
Application granted granted Critical
Publication of JP4609350B2 publication Critical patent/JP4609350B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/06102Disposition the bonding areas being at different heights
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/115Manufacturing methods by chemical or physical modification of a pre-existing or pre-deposited material
    • H01L2224/1155Selective modification
    • H01L2224/11552Selective modification using a laser or a focussed ion beam [FIB]
    • H01L2224/11554Stereolithography, i.e. solidification of a pattern defined by a laser trace in a photosensitive resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1401Structure
    • H01L2224/1403Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01016Sulfur [S]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic component packaging structure that prevents packaging fail from occurring easily, can reduce press in packaging, and has improved connection reliability even in a semiconductor device having a narrow pitch and a multiple-pin electrode terminal. <P>SOLUTION: The electronic component packaging structure comprises: an electronic component 2 having a plurality of electrode terminals 3, a packaging substrate 5 in which a connection terminal 6 is provided at a position corresponding to the electrode terminals 3, and a salient electrode 7 for connecting the electrode terminal 3 to the connection terminal 6. The electrode terminal 3 of the electronic component 2 is connected to the connection terminal 6 of the packaging substrate 5 by the salient electrode 7, and the salient electrode 7 is made of a conductive resin containing a photosensitive resin exposed to visible light and a conductive filler. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体素子に代表される電子部品を実装基板等にフリップチップ実装した電子部品実装構造体およびその製造方法に関する。   The present invention relates to an electronic component mounting structure in which an electronic component typified by a semiconductor element is flip-chip mounted on a mounting substrate or the like, and a manufacturing method thereof.

近年、半導体素子の高密度化に伴って半導体素子の外部接続端子のピッチおよび面積が小さくなってきている。これに伴い、半導体素子を実装基板にフリップチップ実装する際に用いる突起電極に関しても厳しい要求がなされるようになってきた。   In recent years, the pitch and area of external connection terminals of a semiconductor element have been reduced with the increase in the density of the semiconductor element. Along with this, strict demands have been made for bump electrodes used when flip-chip mounting a semiconductor element on a mounting substrate.

その1つとして、外部接続端子の狭ピッチ化に伴い、実装基板の隣接電極端子間での短絡の発生、および半導体素子と実装基板との熱膨張係数の差により生じる応力で突起電極と電極端子間の接続不良が生じやすくなるという課題がある。特に、携帯電話等の携帯用電子機器では落下衝撃等も頻繁に受けるため、このような接続不良が使用中に生じると、携帯用電子機器の不良につながる。一方、狭ピッチ化を避けるために半導体素子の回路形成面全体を用いて突起電極を形成するエリアバンプ方式では、実装エリア全体に実装基板の高い平面度が要求される。   As one of them, with the narrowing of the pitch of the external connection terminals, a short circuit occurs between adjacent electrode terminals of the mounting substrate, and the protruding electrode and the electrode terminal due to stress caused by the difference in the thermal expansion coefficient between the semiconductor element and the mounting substrate There is a problem that poor connection is likely to occur. In particular, since portable electronic devices such as mobile phones are frequently subjected to drop impacts and the like, if such a connection failure occurs during use, it leads to a failure of the portable electronic device. On the other hand, in the area bump method in which the protruding electrodes are formed using the entire circuit formation surface of the semiconductor element in order to avoid a narrow pitch, a high flatness of the mounting substrate is required for the entire mounting area.

これらに対して、例えば断面が円錐状または角錐状の突起電極、あるいは導電性の樹脂を用いた突起電極を形成して、これらの課題を解決することが検討されている。例えば、先端が尖った導電性樹脂バンプを半導体チップ上に形成して、この導電性樹脂バンプを用いて実装した半導体装置が示されている(例えば、特許文献1参照)。導電性樹脂バンプを作る工程は、以下のようである。すなわち、先端が尖った凹部を平板の主面上に、半導体チップ上に形成された電極パッドに対応して形成する工程と、これらの凹部に導電性樹脂を充填する工程と、この工程の後、半導体チップ上に、平板の主面が半導体チップの電極パッドを担持する面と対面するとともに上記凹部が半導体チップ上の対応する電極パッドと整合するように位置合せする工程と、平板を半導体チップに位置合せした状態で重ね合わせる工程と、重ね合わせた状態で樹脂を硬化させて電極パッド上に、先端が尖った導電性樹脂バンプを形成する工程とよりなる方法である。   In order to solve these problems, for example, a projecting electrode having a conical or pyramidal cross section or a projecting electrode using a conductive resin has been studied. For example, a semiconductor device in which a conductive resin bump with a sharp tip is formed on a semiconductor chip and mounted using the conductive resin bump is shown (for example, see Patent Document 1). The process of making a conductive resin bump is as follows. That is, a step of forming recesses with sharp tips on the main surface of the flat plate corresponding to electrode pads formed on the semiconductor chip, a step of filling these recesses with conductive resin, and a step after this step A step of aligning the main surface of the flat plate on the semiconductor chip so that the principal surface of the flat plate faces the surface carrying the electrode pad of the semiconductor chip and the concave portion aligns with the corresponding electrode pad on the semiconductor chip; The method includes: a step of superposing in a state of being aligned with each other; and a step of curing the resin in the superposed state to form a conductive resin bump having a sharp tip on the electrode pad.

なお、凹部を形成する工程は、例えば(100)面を主面とする単結晶シリコン(Si)基板を平板として使い、(100)面上に凹部をウェットエッチング法により形成する方法が示されている。このような方法により、半導体素子の外部接続端子上にバリアメタルを形成することなく、例えば高さが60μmで、バラツキが標準偏差にして2.5μm以内の突起電極が形成でき、確実なコンタクトが得られ、しかも安価な半導体装置が得られるとしている。   For example, the step of forming the recess shows a method in which a single crystal silicon (Si) substrate having a (100) plane as a main surface is used as a flat plate and the recess is formed on the (100) plane by a wet etching method. Yes. By such a method, without forming a barrier metal on the external connection terminal of the semiconductor element, for example, a protruding electrode having a height of 60 μm and a variation within 2.5 μm with a standard deviation can be formed, and a reliable contact is achieved. An inexpensive and inexpensive semiconductor device is obtained.

また、接続信頼性が高く、しかもエリアバンプ方式であっても実装基板の反りが吸収できる突起電極も示されている(例えば、特許文献2参照)。これに開示されている突起電極は、下段バンプの上に、これより小さい上段バンプが形成された2段形状で、かつ上段バンプの弾性率が下段バンプの弾性率より小さいことが特徴である。   Further, there is also shown a protruding electrode that has high connection reliability and can absorb the warping of the mounting board even if it is an area bump method (see, for example, Patent Document 2). The protruding electrode disclosed therein has a two-stage shape in which a lower upper bump is formed on a lower bump, and the elastic modulus of the upper bump is smaller than the elastic modulus of the lower bump.

このように、突起電極の形状を2段形状とし、しかも上段バンプの弾性率を下段バンプの弾性率よりも小さくすることにより、半導体素子と実装基板との間で受ける応力を突起電極自身で充分に吸収できるようになる。また、導電性接着剤を用いる場合は、突起電極と導電性接着剤とで、さらに応力を充分に吸収できるようになる。このため、これを用いた半導体装置において、接続信頼性が良好になる。また、エリアバンプ方式の場合は、実装基板に反りがあっても、これを吸収できることが示されている。   As described above, the protruding electrode has a two-stage shape, and the elastic modulus of the upper bump is smaller than the elastic modulus of the lower bump, so that the protruding electrode itself has sufficient stress to be applied between the semiconductor element and the mounting substrate. Can be absorbed. In the case where a conductive adhesive is used, the stress can be sufficiently absorbed by the protruding electrode and the conductive adhesive. For this reason, in a semiconductor device using the same, connection reliability is improved. In the case of the area bump method, it is shown that even if the mounting substrate is warped, it can be absorbed.

さらに、この例においては、上段バンプを導電性樹脂、特に感光性導電性樹脂で形成し、この樹脂で形成されたバンプの表面に金属膜を形成することも示されている。   Further, in this example, it is also shown that the upper bump is formed of a conductive resin, particularly a photosensitive conductive resin, and a metal film is formed on the surface of the bump formed of this resin.

ところで、半導体素子を実装する実装基板を簡単なプロセスで作製することが検討されており、その方法の1つとして光造形法を用いて電気的絶縁層と配線層とを形成することが示されている(例えば、特許文献3参照)。この方法による配線基板の製造方法は、以下のようである。すなわち、光硬化樹脂として絶縁性液状樹脂を用いる光造形法により電気的絶縁層を形成する工程と、光硬化樹脂として導電性液状樹脂を用いる光造形法により導電性液状樹脂に光照射して配線パターンとなる部位を光硬化させ、光硬化した部位以外の導電性液状樹脂を除去して配線層の配線パターンを形成する工程とを備える方法からなる。   By the way, it is considered that a mounting substrate for mounting a semiconductor element is manufactured by a simple process, and as one of the methods, it is shown that an electrically insulating layer and a wiring layer are formed by using an optical modeling method. (For example, refer to Patent Document 3). The manufacturing method of the wiring board by this method is as follows. That is, a step of forming an electrical insulating layer by an optical modeling method using an insulating liquid resin as a photo-curing resin, and a wiring by irradiating the conductive liquid resin with light by an optical modeling method using an electro-conductive liquid resin as the photo-curing resin And a step of forming a wiring pattern of the wiring layer by photocuring a portion to be a pattern and removing the conductive liquid resin other than the photocured portion.

このような光造形法において、液晶マスクを用いて三次元構造物を形成する方法も示されている(例えば、特許文献4参照)。
特開平10−112474号公報 特開2001−189337号公報 特開2004−22623号公報 特開2001−252986号公報
In such an optical modeling method, a method of forming a three-dimensional structure using a liquid crystal mask is also shown (for example, see Patent Document 4).
JP-A-10-112474 JP 2001-189337 A JP 2004-22623 A JP 2001-252986 A

上記第1の例に示された突起電極は、単結晶Si基板等を用いて凹部を形成し、この凹部に導電性樹脂を埋め込み、その後これを半導体素子の電極端子上に転写する方法で形成するので、角錐状で、かつ厚みのバラツキの小さな形状を形成できる。この方法では、突起電極自体の厚みのバラツキを抑制することはできるが、例えば半導体素子に反りがある場合や半導体素子の突起電極を形成する面等に凹凸がある場合、半導体素子の表面に形成された突起電極面は一定の高さとならない。すなわち、半導体素子の裏面から突起電極の先端部までの高さのバラツキは解消されない。   The protruding electrode shown in the first example is formed by a method in which a concave portion is formed using a single crystal Si substrate or the like, a conductive resin is embedded in the concave portion, and then this is transferred onto the electrode terminal of the semiconductor element. Therefore, it is possible to form a pyramid shape with a small variation in thickness. Although this method can suppress variations in the thickness of the protruding electrode itself, it is formed on the surface of the semiconductor element when, for example, the semiconductor element is warped or the surface on which the protruding electrode of the semiconductor element is formed is uneven. The projected electrode surface thus formed does not have a certain height. That is, the variation in height from the back surface of the semiconductor element to the tip of the protruding electrode is not eliminated.

半導体素子の外部接続端子が狭ピッチで、かつ多ピン化する場合には、突起電極面の高さのバラツキは実装不良を生じやすくなるという課題を有する。また、実装不良を防ぐためには、半導体素子に対して大きな押圧力を加えることが必要となるが、このような大きな押圧力を印加する場合には半導体素子の回路形成面上に突起電極を形成することができないという課題もある。   When the external connection terminals of the semiconductor element have a narrow pitch and a large number of pins, there is a problem that the variation in the height of the protruding electrode surface tends to cause a mounting failure. Also, in order to prevent mounting defects, it is necessary to apply a large pressing force to the semiconductor element. When such a large pressing force is applied, a protruding electrode is formed on the circuit formation surface of the semiconductor element. There is also a problem that it cannot be done.

また、上記第2の例の2段突起電極においては、上段バンプの弾性率を下段バンプの弾性率より小さくしているので、実装時の接触のバラツキや衝撃を吸収することができる。しかしながら、上記と同様に、半導体素子の表面に形成された突起電極面は一定の高さとならない。すなわち、半導体素子の裏面から突起電極の先端部までの高さのバラツキは解消されず、上記第1の例と同様な課題を有する。   Further, in the two-stage protruding electrode of the second example, the elastic modulus of the upper bump is made smaller than the elastic modulus of the lower bump, so that it is possible to absorb contact variations and impact during mounting. However, as described above, the protruding electrode surface formed on the surface of the semiconductor element does not have a constant height. That is, the variation in height from the back surface of the semiconductor element to the tip of the protruding electrode is not eliminated, and has the same problem as in the first example.

本発明は上記の課題を解決するもので、狭ピッチで、かつ多ピンの電極端子を有する半導体素子であっても、実装不良が生じ難く、かつ実装時の押圧力を小さくでき、接続信頼性の高い電子部品実装構造体を提供することを目的とする。   The present invention solves the above-described problems. Even in a semiconductor element having a narrow pitch and a multi-pin electrode terminal, it is difficult to cause mounting failure, and the pressing force during mounting can be reduced. An object of the present invention is to provide an electronic component mounting structure having a high height.

上記の目的を達成するために本発明の電子部品実装構造体は、複数の電極端子を有する電子部品と、これらの電極端子に対応する位置に接続端子を設けた実装基板と、電極端子と接続端子とを接続する突起電極とを備え、電子部品の電極端子と実装基板の接続端子とが突起電極により接続され、突起電極は可視光に感光する感光性樹脂と導電性フィラーとを含む導電性樹脂からなる構成を有する。   In order to achieve the above object, an electronic component mounting structure according to the present invention includes an electronic component having a plurality of electrode terminals, a mounting substrate provided with connection terminals at positions corresponding to these electrode terminals, and connection with the electrode terminals. A protruding electrode for connecting the terminal, the electrode terminal of the electronic component and the connection terminal of the mounting substrate are connected by the protruding electrode, and the protruding electrode is a conductive material including a photosensitive resin sensitive to visible light and a conductive filler. It has the structure which consists of resin.

このような構成とすることにより、導電性樹脂からなる突起電極を一括して形成することができる。なお、可視光に感光する感光性樹脂を含む液状樹脂を用いることにより、複数の液晶セルを二次元的に配列したフォトマスクを用いて液状樹脂に可視光を選択的に露光して硬化させ、導電性樹脂からなる突起電極を容易に形成できる。   With such a configuration, protruding electrodes made of a conductive resin can be collectively formed. By using a liquid resin containing a photosensitive resin that is sensitive to visible light, a liquid resin is selectively exposed to visible light and cured using a photomask in which a plurality of liquid crystal cells are two-dimensionally arranged. A protruding electrode made of a conductive resin can be easily formed.

また、上記構成において、突起電極が円柱形状、角柱形状、円錐形状、角錐形状、円錐台形状、角錐台形状または筒状形状であってもよい。このような構成とすることにより、電子部品と実装基板との熱膨張係数の差による熱応力等が発生しても、接続不良が発生し難く、高信頼性の電子部品実装構造体を実現できる。   In the above configuration, the protruding electrode may have a cylindrical shape, a prism shape, a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, or a cylindrical shape. By adopting such a configuration, even if thermal stress or the like due to the difference in thermal expansion coefficient between the electronic component and the mounting substrate occurs, poor connection is unlikely to occur, and a highly reliable electronic component mounting structure can be realized. .

さらに、突起電極は厚み方向に複数の層から構成されていてもよい。この場合に、突起電極を構成する複数の層のうち、電極端子と接する第1層目の厚みが電極端子の配置位置により異なるものであってもよい。   Furthermore, the protruding electrode may be composed of a plurality of layers in the thickness direction. In this case, the thickness of the first layer in contact with the electrode terminal among the plurality of layers constituting the protruding electrode may be different depending on the arrangement position of the electrode terminal.

このような構成とすることにより、電子部品の電極端子の高さ位置がそれぞれ異なっていても、突起電極の最終的な表面高さを同じにすることができる。したがって、実装基板に対して比較的小さな加重で押圧することで、接続端子と電気的に接続させることが可能となる。この結果、例えば電子部品が半導体素子で、回路形成面上に電極端子を設けた場合であっても、実装時の押圧力で回路形成部の損傷等の不良を生じ難くできる。   By adopting such a configuration, even if the height positions of the electrode terminals of the electronic component are different, the final surface height of the protruding electrode can be made the same. Therefore, it can be electrically connected to the connection terminal by pressing against the mounting substrate with a relatively small load. As a result, for example, even when the electronic component is a semiconductor element and an electrode terminal is provided on the circuit formation surface, it is difficult to cause defects such as damage to the circuit formation portion due to the pressing force during mounting.

さらに、突起電極は、硬度、弾性率または導電率の少なくとも1つが異なる材料からなる複数の層により形成されていてもよい。このような構成とすることにより、電子部品と実装基板との熱膨張係数の差による熱応力等が作用しても、接続部の不良発生をさらに抑制することができ、高信頼性の電子部品実装構造体を得ることができる。   Furthermore, the protruding electrode may be formed of a plurality of layers made of materials different in at least one of hardness, elastic modulus, and electrical conductivity. By adopting such a configuration, even when thermal stress or the like due to the difference in thermal expansion coefficient between the electronic component and the mounting substrate acts, it is possible to further suppress the occurrence of defects in the connection portion, and to provide a highly reliable electronic component A mounting structure can be obtained.

さらに、突起電極は、その表面に導電性皮膜が形成されていてもよい。このような構成とすることにより、突起電極の抵抗をさらに小さくできるので、電子部品と実装基板との間の接続抵抗をより小さくすることができる。なお、導電性皮膜としては、例えば無電界メッキによる金メッキ皮膜等を形成することができる。   Further, the protruding electrode may have a conductive film formed on the surface thereof. With such a configuration, the resistance of the protruding electrode can be further reduced, so that the connection resistance between the electronic component and the mounting substrate can be further reduced. As the conductive film, for example, a gold plating film by electroless plating can be formed.

また、上記構成において、電子部品は半導体素子であり、突起電極は電極端子上に形成され、突起電極と接続端子とは接触により電気的接続がなされている構成としてもよい。   In the above configuration, the electronic component may be a semiconductor element, the protruding electrode may be formed on the electrode terminal, and the protruding electrode and the connection terminal may be electrically connected by contact.

この場合に、電子部品と実装基板との間に異方導電性樹脂層が充填され、突起電極と接続端子とが異方導電性樹脂層により接続されていてもよい。   In this case, the anisotropic conductive resin layer may be filled between the electronic component and the mounting substrate, and the protruding electrode and the connection terminal may be connected by the anisotropic conductive resin layer.

また、上記構成において、突起電極により接続された電子部品と実装基板との間に絶縁性接着樹脂が充填されていてもよい。   Further, in the above configuration, an insulating adhesive resin may be filled between the electronic component connected by the protruding electrode and the mounting substrate.

このような構成とすることにより、電子部品と実装基板との間をより強固に接着固定することができる。   With such a configuration, the electronic component and the mounting substrate can be bonded and fixed more firmly.

また、上記構成において、実装基板は樹脂基材、セラミック基材または単結晶Si基材を用いて形成された回路基板からなるものであってもよい。   In the above configuration, the mounting board may be a circuit board formed using a resin base material, a ceramic base material, or a single crystal Si base material.

また、上記構成において、実装基板は可視光を透過する透明基材と、透明基材表面上に形成され、少なくとも可視光を透過する透明導電性薄膜からなる接続端子を含むものであってもよい。   In the above configuration, the mounting substrate may include a transparent base material that transmits visible light, and a connection terminal that is formed on the surface of the transparent base material and includes at least a transparent conductive thin film that transmits visible light. .

また、本発明の電子部品実装構造体の製造方法は、可視光に感光する感光性樹脂と導電性フィラーとを含む導電性樹脂からなる突起電極を、電子部品の電極端子上または実装基板の接続端子上に形成する突起電極形成工程と、突起電極が形成された電子部品または実装基板を、突起電極を介して電極端子と接続端子とを位置合せする位置合せ工程と、電子部品を押圧して電極端子と接続端子とを突起電極を介して接続する工程とを備えた方法からなる。   In addition, in the method for manufacturing an electronic component mounting structure according to the present invention, a protruding electrode made of a conductive resin containing a photosensitive resin that is sensitive to visible light and a conductive filler is connected to an electrode terminal of an electronic component or a mounting substrate. A protruding electrode forming step formed on the terminals, an alignment step in which the electronic component or the mounting substrate on which the protruding electrodes are formed are aligned with the electrode terminals and the connection terminals via the protruding electrodes, and the electronic components are pressed. And a step of connecting the electrode terminal and the connection terminal via the protruding electrode.

このような方法とすることにより、導電性樹脂からなる突起電極を用いて接続した電子部品実装構造体を容易に作製することができる。   By setting it as such a method, the electronic component mounting structure connected using the protruding electrode which consists of conductive resin can be produced easily.

また、上記方法において、接続工程の後に、さらに電子部品と実装基板との間に絶縁性樹脂を充填する工程を備えてもよい。このような方法とすることにより、電子部品と実装基板との間の接着を確実に、かつより強固にできるので接続信頼性を向上できる。また、導電性樹脂からなる突起電極は接着性を特に要求されなくなるので、感光性樹脂の選択の自由度を大きくできる。   In the above method, a step of filling an insulating resin between the electronic component and the mounting substrate may be further provided after the connection step. By adopting such a method, the adhesion between the electronic component and the mounting substrate can be surely and strengthened, so that the connection reliability can be improved. In addition, since the protruding electrode made of a conductive resin is not particularly required to have adhesiveness, the degree of freedom in selecting the photosensitive resin can be increased.

また、上記方法において、位置合せ工程の前に、電極端子が形成された電子部品の面上または接続端子が形成された実装基板の面上に絶縁性樹脂または異方導電性樹脂を形成する工程と、接続工程の後に、絶縁性樹脂または異方導電性樹脂を硬化させ、電子部品と実装基板とを接着固定する工程をさらに備えてもよい。   Further, in the above method, before the alignment step, a step of forming an insulating resin or an anisotropic conductive resin on the surface of the electronic component on which the electrode terminals are formed or on the surface of the mounting substrate on which the connection terminals are formed. In addition, after the connecting step, an insulating resin or an anisotropic conductive resin may be cured to further include a step of bonding and fixing the electronic component and the mounting substrate.

このような方法とすることにより、電子部品と実装基板との間の接着を確実に、かつより強固にできるので接続信頼性を向上できる。また、導電性樹脂からなる突起電極は接着性を特に要求されなくなるので、感光性樹脂の選択の自由度を大きくできる。   By adopting such a method, the adhesion between the electronic component and the mounting substrate can be surely and strengthened, so that the connection reliability can be improved. In addition, since the protruding electrode made of a conductive resin is not particularly required to have adhesiveness, the degree of freedom in selecting the photosensitive resin can be increased.

また、上記方法における突起電極形成工程が、少なくとも底面が可視光を透過する容器に、可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂を供給する樹脂供給工程と、複数の電極端子が一方の面上に形成された電子部品を、電極端子が底面に対向する方向で、かつ底面に対してあらかじめ設定した間隔を有して液状樹脂中に浸漬する工程と、容器の底面からフォトマスクの第1の開口部を介して選択的に可視光を照射し、電極端子上の液状樹脂を硬化させて、複数の電極端子上に一括して第1層目を形成する第1層形成工程と、電子部品をあらかじめ設定した距離だけ底面から引き上げる引き上げ工程と、第1の開口部より少なくとも小さい第2の開口部を有するフォトマスクを用いて選択的に可視光を照射し、第1層上の液状樹脂を硬化させて、第1層上に第2層目を形成する第2層形成工程と、引き上げ工程と第2層形成工程と同様の工程を順次繰り返して、層状構造の突起電極を形成する方法であってもよい。   Further, the protruding electrode forming step in the above method includes a resin supplying step of supplying a liquid resin containing a photosensitive resin sensitive to visible light and a conductive filler to a container whose bottom surface transmits visible light, and a plurality of electrodes A step of immersing an electronic component having a terminal formed on one surface in a liquid resin in a direction in which the electrode terminal faces the bottom surface and having a predetermined interval with respect to the bottom surface; and from the bottom surface of the container A first layer that selectively irradiates visible light through the first opening of the photomask, cures the liquid resin on the electrode terminals, and collectively forms the first layer on the plurality of electrode terminals. A first step of irradiating visible light selectively using a photomask having a forming step, a pulling step of pulling up an electronic component from the bottom surface by a preset distance, and a second opening at least smaller than the first opening; On the layer The layered resin is cured, and the second layer forming step for forming the second layer on the first layer, and the same steps as the pulling step and the second layer forming step are sequentially repeated to form a protruding electrode having a layered structure. It may be a method to do.

このような方法とすることにより、層状構成で、かつ角錐形状や円錐形状あるいは円錐台形状等の形状を有する突起電極を容易に形成できる。なお、円柱形状や角柱形状であっても形成できることは説明するまでもない。   By adopting such a method, it is possible to easily form a protruding electrode having a layered structure and a shape such as a pyramid shape, a cone shape, or a truncated cone shape. Needless to say, even a cylindrical shape or a prismatic shape can be formed.

また、上記方法において、底面がフォトマスクからなるものであってもよい。このような方法とすることにより、液状樹脂に対する可視光による露光のパターン精度を改善することができ、より微細な形状の突起電極を形成することができる。   In the above method, the bottom surface may be a photomask. By setting it as such a method, the pattern accuracy of exposure by visible light with respect to liquid resin can be improved, and the protruding electrode of a finer shape can be formed.

また、上記方法における突起電極形成工程が、容器に可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂を供給する樹脂供給工程と、複数の電極端子が一方の面上に形成された電子部品を、電極端子が液状樹脂の表面に対してあらかじめ設定した間隔を有して液状樹脂中に浸漬する工程と、液状樹脂の表面からフォトマスクの第1の開口部を介して選択的に可視光を照射し、電極端子上の液状樹脂を硬化させて、複数の電極端子上に一括して第1層目を形成する第1層形成工程と、電子部品をあらかじめ設定した距離だけ液状樹脂中に沈降させる沈降工程と、第1の開口部より少なくとも小さい第2の開口部を有するフォトマスクを用いて選択的に可視光を照射し、第1層上の液状樹脂を硬化させて、第1層上に第2層目を形成する第2層形成工程と、沈降工程と第2層形成工程と同様の工程を順次繰り返して、層状構造の突起電極を形成する方法であってもよい。   Further, the protruding electrode forming step in the above method includes a resin supplying step of supplying a liquid resin containing a photosensitive resin sensitive to visible light and a conductive filler to the container, and a plurality of electrode terminals are formed on one surface. A step of immersing the electronic component in the liquid resin with the electrode terminal having a predetermined interval with respect to the surface of the liquid resin, and selectively from the surface of the liquid resin through the first opening of the photomask The first layer forming step of irradiating visible light on the electrode terminals, curing the liquid resin on the electrode terminals, and forming the first layer on the plurality of electrode terminals at once; Precipitating in the resin, and selectively irradiating visible light using a photomask having a second opening at least smaller than the first opening, and curing the liquid resin on the first layer, Form the second layer on the first layer That the second layer forming step, sequentially repeating the precipitation process and the second layer forming step similar to, or a method of forming a projection electrode of the layered structure.

このような方法とすることにより、層状構成で、かつ角錐形状や円錐形状あるいは円錐台形状等の形状を有する突起電極を容易に形成できる。なお、円柱形状や角柱形状であっても形成できることは説明するまでもない。   By adopting such a method, it is possible to easily form a protruding electrode having a layered structure and a shape such as a pyramid shape, a cone shape, or a truncated cone shape. Needless to say, even a cylindrical shape or a prismatic shape can be formed.

また、上記方法における突起電極を形成する工程が、電極端子が形成された電子部品上に、可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂を突起電極の厚みに相当する厚みに供給する樹脂供給工程と、この液状樹脂に対して、フォトマスクの開口部を介して選択的に、かつ光強度を順次増加しながら可視光を照射して、電極端子上の液状樹脂を硬化させ突起電極を成長させる工程とから方法であってもよい。   Further, the step of forming the protruding electrode in the above method is a method in which a liquid resin containing a photosensitive resin sensitive to visible light and a conductive filler on the electronic component on which the electrode terminal is formed has a thickness corresponding to the thickness of the protruding electrode. The resin supply process to supply to the resin, and the liquid resin on the electrode terminal is cured by irradiating visible light while selectively increasing the light intensity to the liquid resin through the photomask openings. And the method of growing the protruding electrode.

このような方法とすることにより、光強度を大きくしていくだけで所定の高さを有する突起電極を形成することができるので、突起電極の形成工程を簡略化できる。   By adopting such a method, a protruding electrode having a predetermined height can be formed only by increasing the light intensity, so that the process of forming the protruding electrode can be simplified.

また、本発明の電子部品実装構造体の製造方法は、可視光を透過する透明基材と、この透明基材表面上に形成され、少なくとも可視光を透過する透明導電性薄膜からなる接続端子を含む実装基板と、接続端子に対応する位置に電極端子を設けた電子部品とを、あらかじめ設定した間隔を有して配置する配置工程と、電子部品と実装基板との間に、可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂を供給する樹脂供給工程と、実装基板の電子部品に対向する面とは反対側の面からフォトマスクの開口部を介して選択的に、かつ光強度を順次増加しながら可視光を照射して接続端子上の液状樹脂を硬化させ突起電極を成長させて、複数の接続端子と複数の電極端子とを一括して接続する方法からなる。   Moreover, the manufacturing method of the electronic component mounting structure of the present invention includes a transparent base material that transmits visible light, and a connection terminal that is formed on the surface of the transparent base material and includes a transparent conductive thin film that transmits at least visible light. Including a mounting board and an electronic component provided with electrode terminals at positions corresponding to the connection terminals, with a predetermined interval, and being sensitive to visible light between the electronic component and the mounting board. A resin supplying step of supplying a liquid resin containing a photosensitive resin and a conductive filler, and a surface of the mounting substrate, which is opposite to the surface facing the electronic component, selectively from the opening of the photomask, and It consists of a method of connecting a plurality of connection terminals and a plurality of electrode terminals in a lump by irradiating visible light while gradually increasing the light intensity to cure the liquid resin on the connection terminals to grow a protruding electrode.

このような方法とすることにより、透明基材からなる実装基板において光照射するだけで、電子部品を実装することができるので実装工程を簡略化できる。なお、突起電極により接続した後、液状樹脂を除去して絶縁性樹脂を充填してもよい。   By setting it as such a method, since an electronic component can be mounted only by irradiating light in the mounting substrate which consists of a transparent base material, a mounting process can be simplified. In addition, after connecting by the protruding electrode, the liquid resin may be removed and the insulating resin may be filled.

また、上記の突起電極を形成する方法において、フォトマスクは液晶セルが二次元的に配置された透過式の液晶パネルを用い、開口部の大きさを液晶セルに印加する電圧により電気的に制御してもよい。この場合に、フォトマスクは上記液晶パネルを用い、かつこの液晶パネルを透過した光像を縮小投影して液状樹脂に照射する方法としてもよい。   In the method of forming the protruding electrode, the photomask uses a transmissive liquid crystal panel in which liquid crystal cells are two-dimensionally arranged, and the size of the opening is electrically controlled by the voltage applied to the liquid crystal cell. May be. In this case, the liquid crystal panel may be used as the photomask, and a light image transmitted through the liquid crystal panel may be reduced and projected to irradiate the liquid resin.

このような方法とすることにより、液晶パネルをマスクとして用いるので、開口部の異なるマスクを多数個用意することなく、それぞれの液晶セルの開口を電気的に制御することで必要な開口部形状を容易に実現でき、複雑な形状の突起電極を簡単な工程で作製することができる。なお、縮小投影露光することで、より微細で狭ピッチの突起電極を容易に形成することができる。   By adopting such a method, the liquid crystal panel is used as a mask, so that the necessary opening shape can be obtained by electrically controlling the opening of each liquid crystal cell without preparing a large number of masks having different opening portions. It can be easily realized, and a protruding electrode having a complicated shape can be manufactured by a simple process. Note that a finer and narrower pitch protruding electrode can be easily formed by reducing projection exposure.

本発明の電子部品実装構造体は、可視光に感光する感光性樹脂と導電性フィラーを含む導電性樹脂からなる突起電極により電子部品と実装基板とを接続する構造であり、突起電極の形状を円錐形状や角錐形状等の種々の形状を容易に、かつ一括して作製できるので、接続信頼性をより向上できるという大きな効果を奏する。   The electronic component mounting structure according to the present invention is a structure in which an electronic component and a mounting substrate are connected by a protruding electrode made of a photosensitive resin that is sensitive to visible light and a conductive resin containing a conductive filler. Since various shapes such as a conical shape and a pyramid shape can be easily and collectively produced, a great effect of improving the connection reliability can be obtained.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、同じ要素については、同じ符号を付しており説明を省略する場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, about the same element, the same code | symbol is attached | subjected and description may be abbreviate | omitted.

(第1の実施の形態)
図1は、本発明の第1の実施の形態にかかる電子部品実装構造体1の構成を示す断面図である。本実施の形態の電子部品実装構造体1は、複数の電極端子3を有する電子部品2と、電極端子3に対応する位置に接続端子6を設けた実装基板5と、電極端子3と接続端子6とを接続する突起電極7とを備えている。そして、電子部品2の電極端子3と実装基板5の接続端子6とが、突起電極7により接続されている。さらに、突起電極7は可視光に感光する感光性樹脂と導電性フィラーとを含む導電性樹脂からなる。
(First embodiment)
FIG. 1 is a cross-sectional view showing a configuration of an electronic component mounting structure 1 according to the first embodiment of the present invention. The electronic component mounting structure 1 according to the present embodiment includes an electronic component 2 having a plurality of electrode terminals 3, a mounting substrate 5 in which connection terminals 6 are provided at positions corresponding to the electrode terminals 3, and the electrode terminals 3 and the connection terminals. 6 is provided. The electrode terminal 3 of the electronic component 2 and the connection terminal 6 of the mounting substrate 5 are connected by the protruding electrode 7. Further, the protruding electrode 7 is made of a conductive resin containing a photosensitive resin sensitive to visible light and a conductive filler.

また、本実施の形態では、突起電極7が円錐台状で、かつ厚み方向に4層から構成されており、第1層7a、第2層7b、第3層7cおよび第4層7dは、同一の材料により形成されている。また、本実施の形態では、さらに電子部品2と実装基板5との間に絶縁性樹脂8が充填されており、この絶縁性樹脂8により電子部品2と実装基板5とが接着固定されている。また、電子部品2には、表面に保護膜4が形成されているが、この保護膜4は必ず設ける必要はない。   Further, in the present embodiment, the protruding electrode 7 has a truncated cone shape and is composed of four layers in the thickness direction. The first layer 7a, the second layer 7b, the third layer 7c, and the fourth layer 7d are: It is made of the same material. In the present embodiment, an insulating resin 8 is further filled between the electronic component 2 and the mounting substrate 5, and the electronic component 2 and the mounting substrate 5 are bonded and fixed by the insulating resin 8. . Moreover, although the protective film 4 is formed on the surface of the electronic component 2, the protective film 4 is not necessarily provided.

本実施の形態では、電子部品2としてベアチップの半導体素子を用いる場合を例として説明する。以下では、電子部品2または半導体素子2とよぶことがある。このような電子部品実装構造体1は、突起電極7が導電性樹脂からなり、かつ円錐台形状であり、しかも突起電極7と接続端子6とは接触により電気的に接続されているので、熱衝撃や機械的衝撃を受けても接続不良が生じ難く、信頼性に優れている。また、微小な径で、大きな高さを有する、すなわちアスペクト比の大きな突起電極を容易に形成できるので、狭ピッチであってもショート不良等を生じずに接続することが可能となる。   In the present embodiment, a case where a bare chip semiconductor element is used as the electronic component 2 will be described as an example. Hereinafter, the electronic component 2 or the semiconductor element 2 may be called. In such an electronic component mounting structure 1, the protruding electrode 7 is made of a conductive resin, has a truncated cone shape, and the protruding electrode 7 and the connection terminal 6 are electrically connected by contact. Even when subjected to shocks or mechanical shocks, poor connection is unlikely to occur and excellent reliability. Further, since a protruding electrode having a small diameter and a large height, that is, a large aspect ratio, can be easily formed, even if the pitch is narrow, it is possible to connect without causing a short circuit defect.

このような電子部品実装構造体1は、以下の工程により作製することができる。最初に、可視光に感光する感光性樹脂と導電性フィラーとを含む導電性樹脂からなる突起電極7を、電子部品2の電極端子3上または実装基板5の接続端子6上形成する。なお、本実施の形態の場合には、電子部品2の電極端子3上に形成している。   Such an electronic component mounting structure 1 can be manufactured by the following steps. First, the protruding electrode 7 made of a conductive resin containing a photosensitive resin sensitive to visible light and a conductive filler is formed on the electrode terminal 3 of the electronic component 2 or the connection terminal 6 of the mounting substrate 5. In the case of the present embodiment, it is formed on the electrode terminal 3 of the electronic component 2.

つぎに、突起電極7が形成された電子部品2を、突起電極7を介して電極端子3と接続端子6とを位置合せする。この位置合せ工程の前に、接続端子6が形成された実装基板5の面上に絶縁性樹脂8を形成しておく。   Next, the electrode terminal 3 and the connection terminal 6 are aligned through the protruding electrode 7 in the electronic component 2 on which the protruding electrode 7 is formed. Prior to this alignment step, an insulating resin 8 is formed on the surface of the mounting substrate 5 on which the connection terminals 6 are formed.

つぎに、電子部品2を押圧して、電極端子3と接続端子6とを突起電極7を介して接続する。この場合に、電子部品2の押圧により絶縁性樹脂8は接続端子6と突起電極7との間から排除され、最終的に突起電極7と接続端子6とが接触して電気的な接続が行われる。   Next, the electronic component 2 is pressed to connect the electrode terminal 3 and the connection terminal 6 via the protruding electrode 7. In this case, the insulating resin 8 is removed from between the connection terminal 6 and the projecting electrode 7 by the pressing of the electronic component 2, and finally the projecting electrode 7 and the connection terminal 6 come into contact with each other for electrical connection. Is called.

つぎに、上記接続工程の後に、絶縁性樹脂8を硬化させる。これにより、電子部品2と実装基板5とを接着固定する。   Next, the insulating resin 8 is cured after the connecting step. Thereby, the electronic component 2 and the mounting substrate 5 are bonded and fixed.

以上の工程により、電子部品実装構造体1を作製することができる。なお、上記方法では、あらかじめ絶縁性樹脂8を実装基板5上に形成したが、この方法に限定されない。例えば、位置合せして押圧し、突起電極7と接続端子6とを接続した後、さらに電子部品2と実装基板5との間に絶縁性樹脂8を充填するようにしてもよい。   Through the above steps, the electronic component mounting structure 1 can be manufactured. In the above method, the insulating resin 8 is formed on the mounting substrate 5 in advance, but the present invention is not limited to this method. For example, the insulating resin 8 may be filled between the electronic component 2 and the mounting substrate 5 after aligning and pressing to connect the protruding electrode 7 and the connection terminal 6.

電子部品実装構造体1は上記工程により作製されるが、本発明のポイントとなる突起電極7の製造方法について、以下に説明する。   The electronic component mounting structure 1 is manufactured by the above-described process. A method for manufacturing the protruding electrode 7 which is the point of the present invention will be described below.

図2は、突起電極7の製造方法を説明するための主要工程の断面図で、(a)は突起電極7の第1層7aの形成工程、(b)は突起電極7の第2層7bの形成工程を示す断面図である。   2A and 2B are cross-sectional views of the main process for explaining the method of manufacturing the bump electrode 7, wherein FIG. 2A is a process for forming the first layer 7a of the bump electrode 7, and FIG. 2B is a second layer 7b of the bump electrode 7. It is sectional drawing which shows these formation processes.

図2(a)に示すように、容器20の内部に可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂24を、少なくとも電子部品2の電極端子3が浸漬される程度以上の高さまで入れる。容器20の底部21は、液状樹脂24を硬化するための可視光を透過する透明部材で構成されている。容器20は、この底部21と一体的に形成された外周部22により形成されている。なお、液状樹脂24としては、例えばピーク感度が488nmに調節されたアクリレート系の感光性樹脂を用い、導電性フィラーとしては、例えば銀粒子、金粒子あるいはハンダ粒子等を用いることができる。   As shown in FIG. 2A, a liquid resin 24 containing a photosensitive resin that is sensitive to visible light and a conductive filler is contained in the container 20 so that at least the electrode terminal 3 of the electronic component 2 is immersed. Put it to the height. The bottom 21 of the container 20 is made of a transparent member that transmits visible light for curing the liquid resin 24. The container 20 is formed by an outer peripheral portion 22 formed integrally with the bottom portion 21. As the liquid resin 24, for example, an acrylate photosensitive resin whose peak sensitivity is adjusted to 488 nm can be used, and as the conductive filler, for example, silver particles, gold particles, solder particles, or the like can be used.

まず、図2(a)に示すように、電子部品2の主面に形成された電極端子3と底部21の間隔T1を突起電極7の第1層7aの厚みに設定する。底部21の下方には、フォトマスク23が設置されている。フォトマスク23には、突起電極7の第1層7aを形成するための形状を有する第1の開口部23aが開口されている。   First, as shown in FIG. 2A, the distance T <b> 1 between the electrode terminal 3 formed on the main surface of the electronic component 2 and the bottom 21 is set to the thickness of the first layer 7 a of the protruding electrode 7. A photomask 23 is installed below the bottom 21. The photomask 23 has a first opening 23 a having a shape for forming the first layer 7 a of the protruding electrode 7.

この状態で、フォトマスク23を介して可視光25を、底部21から液状樹脂24に照射する。第1の開口部23aを通過した可視光25は、電極端子3と底部21との間にある液状樹脂24を硬化させ、突起電極7の第1層7aが形成される。   In this state, visible light 25 is irradiated from the bottom 21 to the liquid resin 24 through the photomask 23. The visible light 25 that has passed through the first opening 23 a cures the liquid resin 24 between the electrode terminal 3 and the bottom 21, and the first layer 7 a of the protruding electrode 7 is formed.

つぎに、図2(b)に示すように、電子部品2を引き上げて、突起電極7の第1層7aと底部21との間隔T2を突起電極7の第2層7bの厚みに設定する。この状態で、図2(a)と同様にして、フォトマスク23を介して可視光25を、底部21から液状樹脂24に照射する。このときに、フォトマスク23には、第1の開口部23aより小さな開口形状を有する第2の開口部23bが設けられている。この第2の開口部23bを通過した可視光25は、第1層7aと底部21との間にある液状樹脂24を硬化させ、突起電極7の第2層7bが形成される。なお、本実施の形態で使用するフォトマスク23は、液晶セル(図示せず)が二次元的に配置された透過式の液晶パネルを用いており、第1の開口部23aおよび第2の開口部23b、さらに以下の工程で行うときの開口部の大きさ等は、液晶セルに印加する電圧により電気的に制御することができる。   Next, as shown in FIG. 2B, the electronic component 2 is pulled up, and the interval T <b> 2 between the first layer 7 a and the bottom portion 21 of the protruding electrode 7 is set to the thickness of the second layer 7 b of the protruding electrode 7. In this state, similarly to FIG. 2A, the visible light 25 is irradiated from the bottom 21 to the liquid resin 24 through the photomask 23. At this time, the photomask 23 is provided with a second opening 23b having an opening shape smaller than that of the first opening 23a. The visible light 25 that has passed through the second opening 23 b cures the liquid resin 24 between the first layer 7 a and the bottom 21, and the second layer 7 b of the protruding electrode 7 is formed. Note that the photomask 23 used in this embodiment mode uses a transmissive liquid crystal panel in which liquid crystal cells (not shown) are two-dimensionally arranged, and includes a first opening 23a and a second opening. The size of the opening when the part 23b and the following steps are performed can be electrically controlled by a voltage applied to the liquid crystal cell.

あるいは、フォトマスク23は液晶パネルを用い、かつこの液晶パネルを透過した光像を縮小投影して液状樹脂24に照射する縮小投影露光法としてもよい。   Alternatively, the photomask 23 may be a reduction projection exposure method in which a liquid crystal panel is used, and a light image transmitted through the liquid crystal panel is reduced and projected to irradiate the liquid resin 24.

このように、順次電子部品を設定した間隔だけ引き上げながら、徐々に開口形状を小さくしたフォトマスクを用いて可視光を照射することによって、円錐台形状を有する突起電極7を形成することができる。なお、本実施の形態では、突起電極7は4層からなり、間隔の設定と露光プロセスとが合計4回行われている。以上の工程を経た後、容器20から電子部品2を取り出し、洗浄して不要な液状樹脂を除去することで、突起電極7が形成された電子部品2である半導体素子が作製される。   In this way, the projection electrode 7 having a truncated cone shape can be formed by irradiating visible light using a photomask having a gradually reduced opening shape while sequentially raising the electronic components by a set interval. In the present embodiment, the protruding electrode 7 is composed of four layers, and the setting of the interval and the exposure process are performed four times in total. After passing through the above steps, the electronic component 2 is taken out from the container 20 and washed to remove unnecessary liquid resin, thereby producing a semiconductor element that is the electronic component 2 on which the protruding electrodes 7 are formed.

なお、本実施の形態では、容器20の底部21を透明部材としたが、フォトマスク自体を底部21としてもよい。このようにすれば、より微細なパターンを精度よく形成できる。   In the present embodiment, the bottom 21 of the container 20 is a transparent member, but the photomask itself may be the bottom 21. In this way, a finer pattern can be formed with high accuracy.

図3は、本発明の第1の実施の形態の電子部品実装構造体1において、突起電極7の別の製造方法を説明するための図で、(a)は突起電極7の第1層7aの形成方法、(b)は突起電極7の第2層7bの形成方法を説明する図である。   3A and 3B are diagrams for explaining another method for manufacturing the protruding electrode 7 in the electronic component mounting structure 1 according to the first embodiment of the present invention. FIG. 3A is a diagram illustrating the first layer 7a of the protruding electrode 7. (B) is a figure explaining the formation method of the 2nd layer 7b of the bump electrode 7. FIG.

基本的には図2に示す製造方法と同じであり、異なる点についてのみ説明する。図3に示す突起電極7の製造方法は、電子部品2を液状樹脂中に沈降させながら層状構造を形成する点が特徴である。なお、図3においては、電子部品2は電極端子3を2個のみとし、かつ保護膜4を形成していない構成として省略している。   This is basically the same as the manufacturing method shown in FIG. 2, and only different points will be described. The method for manufacturing the protruding electrode 7 shown in FIG. 3 is characterized in that a layered structure is formed while the electronic component 2 is allowed to settle in a liquid resin. In FIG. 3, the electronic component 2 is omitted from the configuration in which only two electrode terminals 3 are provided and the protective film 4 is not formed.

まず、図3(a)に示すように、容器10の内部に電子部品2の電極端子3が形成された面を上向きにして液状樹脂24中に沈める。この場合、電子部品2の面上に形成されている電極端子3と液状樹脂24の表面との間の間隔T1を突起電極7の第1層7aの厚みに設定する。この状態で、フォトマスク23を介して可視光25を液状樹脂24に照射する。第1の開口部23aを通過した可視光25は、電極端子3の表面上にある液状樹脂24を硬化させ、突起電極7の第1層7aが形成される。   First, as shown in FIG. 3A, the container 10 is submerged in the liquid resin 24 with the surface on which the electrode terminals 3 of the electronic component 2 are formed facing upward. In this case, the interval T1 between the electrode terminal 3 formed on the surface of the electronic component 2 and the surface of the liquid resin 24 is set to the thickness of the first layer 7a of the protruding electrode 7. In this state, the visible light 25 is irradiated to the liquid resin 24 through the photomask 23. The visible light 25 that has passed through the first opening 23 a cures the liquid resin 24 on the surface of the electrode terminal 3, and the first layer 7 a of the protruding electrode 7 is formed.

つぎに、図3(b)に示すように、電子部品2をさらに沈降させて、突起電極7の第1層7aと液状樹脂24の表面との間の間隔T2を突起電極7の第2層7bの厚みに設定する。この状態で、図3(a)と同様にして、フォトマスク23を介して可視光25を液状樹脂24に照射する。このときに、フォトマスク23には、第1の開口部23aより小さな開口形状を有する第2の開口部23bが設けられている。この第2の開口部23bを通過した可視光25は、第1層7aの表面上にある液状樹脂24を硬化させ、突起電極7の第2層7bが形成される。なお、本実施の形態で使用するフォトマスク23は、液晶セル(図示せず)が二次元的に配置された透過式の液晶パネルを用いており、第1の開口部23aおよび第2の開口部23b、さらに以下の工程で行うときの開口部の大きさ等は、液晶セルに印加する電圧により電気的に制御することができる。   Next, as shown in FIG. 3B, the electronic component 2 is further settled, and the interval T <b> 2 between the first layer 7 a of the protruding electrode 7 and the surface of the liquid resin 24 is set to the second layer of the protruding electrode 7. The thickness is set to 7b. In this state, the visible light 25 is irradiated to the liquid resin 24 through the photomask 23 in the same manner as in FIG. At this time, the photomask 23 is provided with a second opening 23b having an opening shape smaller than that of the first opening 23a. The visible light 25 that has passed through the second opening 23b cures the liquid resin 24 on the surface of the first layer 7a, and the second layer 7b of the protruding electrode 7 is formed. Note that the photomask 23 used in this embodiment mode uses a transmissive liquid crystal panel in which liquid crystal cells (not shown) are two-dimensionally arranged, and includes a first opening 23a and a second opening. The size of the opening when the part 23b and the following steps are performed can be electrically controlled by a voltage applied to the liquid crystal cell.

あるいは、フォトマスク23は液晶パネルを用い、かつこの液晶パネルを透過した光像を縮小投影して液状樹脂24に照射する縮小投影露光法としてもよい。   Alternatively, the photomask 23 may be a reduction projection exposure method in which a liquid crystal panel is used, and a light image transmitted through the liquid crystal panel is reduced and projected to irradiate the liquid resin 24.

このように、電子部品2を設定した間隔だけ順次沈降させながら、徐々に開口形状を小さくしたフォトマスク23を用いて可視光25を照射することによって、円錐台形状を有する突起電極7を形成することができる。なお、この別の製造方法においても、突起電極7は4層からなり、間隔の設定と露光プロセスとが合計4回行われている。以上の工程を経た後、容器10から電子部品2を取り出し、洗浄して不要な液状樹脂を除去することで、突起電極7が形成された電子部品2である半導体素子が作製される。   In this way, the projection electrode 7 having the truncated cone shape is formed by irradiating the visible light 25 using the photomask 23 having the opening shape gradually reduced while the electronic components 2 are sequentially settled by the set interval. be able to. In this alternative manufacturing method, the bump electrode 7 is composed of four layers, and the setting of the interval and the exposure process are performed four times in total. After passing through the above steps, the electronic component 2 is taken out from the container 10 and washed to remove unnecessary liquid resin, thereby producing a semiconductor element that is the electronic component 2 on which the protruding electrodes 7 are formed.

なお、本実施の形態では、個別の電子部品の状態で突起電極を形成する構成として説明したが、本発明はこれに限定されない。例えば、電子部品が半導体素子の場合、複数の半導体素子がシリコン基板上に形成されている半導体ウェハーの状態で形成してもよい。この場合には、さらに図4に示すような縮小投影露光方式を用いてもよい。図4は、縮小投影露光方式による突起電極を形成する方法を説明する図で、(a)は全体構成を示す概略図、(b)はこの方式に使用するフォトマスクの概略形状を示す平面図、(c)はフォトマスクの詳細を示す平面図である。   In the present embodiment, the protruding electrode is formed in the state of individual electronic components, but the present invention is not limited to this. For example, when the electronic component is a semiconductor element, it may be formed in the state of a semiconductor wafer in which a plurality of semiconductor elements are formed on a silicon substrate. In this case, a reduced projection exposure method as shown in FIG. 4 may be used. 4A and 4B are diagrams for explaining a method of forming a protruding electrode by a reduction projection exposure method, in which FIG. 4A is a schematic diagram showing an overall configuration, and FIG. 4B is a plan view showing a schematic shape of a photomask used in this method. (C) is a top view which shows the detail of a photomask.

図4(a)に示すように、容器10には液状樹脂24が満たされている。また、容器10の中には、半導体素子が多数個形成されている半導体ウェハー15が浸漬されている。容器10の上方には、光源140、光学系150、フォトマスクとして使用する液晶パネル160、縮小投影光学系180が設置されている。液晶パネル160の開口部は、液晶パネル制御装置170によって制御されるので比較的広い範囲でその形状を設定することができる。   As shown in FIG. 4A, the container 10 is filled with a liquid resin 24. Further, a semiconductor wafer 15 in which a large number of semiconductor elements are formed is immersed in the container 10. Above the container 10, a light source 140, an optical system 150, a liquid crystal panel 160 used as a photomask, and a reduction projection optical system 180 are installed. Since the opening of the liquid crystal panel 160 is controlled by the liquid crystal panel control device 170, its shape can be set in a relatively wide range.

この状態で、光源140から出射された可視光190は光学系150を通過し、液晶パネル160を透過し、液晶パネル160に形成されたパターンを縮小投影光学系180で縮小して半導体ウェハー15に投影される。4チップに相当する領域200内において、可視光190が照射された領域の液状樹脂24は硬化する。   In this state, the visible light 190 emitted from the light source 140 passes through the optical system 150, passes through the liquid crystal panel 160, and the pattern formed on the liquid crystal panel 160 is reduced by the reduction projection optical system 180 and applied to the semiconductor wafer 15. Projected. In the region 200 corresponding to 4 chips, the liquid resin 24 in the region irradiated with the visible light 190 is cured.

図4(b)には、液晶パネル160に形成されるフォトマスクの一例を示している。ここでは、4個の半導体素子の突起電極を一度に形成するためのマスクを示している。1個の半導体素子分のマスク領域160aの中に突起電極を形成するために設けられた開口部210が複数個設けられている。図4(b)においては、半導体素子の外周領域に電極端子が設けられており、これらの電極端子上に突起電極を形成するための開口部210である。   FIG. 4B shows an example of a photomask formed on the liquid crystal panel 160. Here, a mask for forming protruding electrodes of four semiconductor elements at a time is shown. A plurality of openings 210 are provided in the mask region 160a for one semiconductor element so as to form a protruding electrode. In FIG. 4B, electrode terminals are provided in the outer peripheral region of the semiconductor element, and are openings 210 for forming protruding electrodes on these electrode terminals.

このようなフォトマスクを用いた場合は、4チップごとにステップさせながら露光してそれぞれの領域の液状樹脂を硬化させることになる。すなわち、4チップごとにステップさせながら半導体ウェハーの全面に突起電極の第1層を形成し、この工程を順次繰り返して最終的に必要な高さの突起電極を形成する。あるいは、4チップごとに突起電極を完成させ、ステップしてつぎの4チップに突起電極を形成してもよい。   When such a photomask is used, exposure is performed while stepping every four chips to cure the liquid resin in each region. That is, the first layer of the protruding electrode is formed on the entire surface of the semiconductor wafer while being stepped every four chips, and this process is sequentially repeated to finally form the protruding electrode having a required height. Alternatively, the protruding electrode may be completed for every four chips, and stepped to form the protruding electrode on the next four chips.

図4(c)は、フォトマスクとして用いる液晶パネル160の一部を拡大した平面図である。説明を簡略化するために、図4(c)では液晶パネル160として突起電極を形成するための開口部210を36個の液晶セル220で構成する場合を例として示している。図示するように、36個の液晶セル220で1つの開口部210を形成し、この開口部を図4(b)に示すような配列として可視光190を照射する。この可視光190の照射により第1層が形成される。この後、つぎの4チップにステップして、上記と同様の露光を行う。この作業を半導体ウェハー15の全面にわたり行うことで、突起電極の第1層が半導体ウェハー15のそれぞれの電極端子上に形成される。   FIG. 4C is an enlarged plan view of a part of the liquid crystal panel 160 used as a photomask. In order to simplify the explanation, FIG. 4C shows an example in which the opening 210 for forming the protruding electrode as the liquid crystal panel 160 is constituted by 36 liquid crystal cells 220. As shown in the drawing, one opening 210 is formed by 36 liquid crystal cells 220, and the opening 190 is irradiated with visible light 190 in an arrangement as shown in FIG. 4B. The first layer is formed by irradiation with the visible light 190. Thereafter, the next four chips are stepped and exposure similar to the above is performed. By performing this operation over the entire surface of the semiconductor wafer 15, the first layer of the protruding electrode is formed on each electrode terminal of the semiconductor wafer 15.

つぎに、半導体ウェハー15を設定した間隔だけ液状樹脂24中にさらに沈降させる。この状態で、再び上記と同様に順次露光して第2層を形成していく。この場合に、液晶セル220を駆動して、第1層の開口部の形状より小さな形状として露光する。例えば、第1層の開口部の形状は、液晶セル220を36個用いていたが、第2層の場合には16個にすれば、角錐台形状の突起電極を形成することができる。   Next, the semiconductor wafer 15 is further settled in the liquid resin 24 by a set interval. In this state, the second layer is formed by sequentially exposing again in the same manner as described above. In this case, the liquid crystal cell 220 is driven and exposed as a shape smaller than the shape of the opening of the first layer. For example, although 36 liquid crystal cells 220 are used for the shape of the opening in the first layer, if the number of the liquid crystal cells 220 is 16 in the case of the second layer, a truncated pyramid shaped protruding electrode can be formed.

なお、本実施の形態では、円錐台形状や角錐台形状の突起電極を形成する場合について説明したが、本発明はこれに限定されない。例えば、角錐台形状、円柱形状、角柱形状、円錐形状、角錐形状あるいは筒状形状等であってもよい。これらの形状は、上記フォトマスクの開口部を制御することで容易に形成できる。   In the present embodiment, the case of forming a truncated cone-shaped or truncated pyramid-shaped protruding electrode has been described, but the present invention is not limited to this. For example, the shape may be a truncated pyramid shape, a cylindrical shape, a prism shape, a conical shape, a pyramid shape, or a cylindrical shape. These shapes can be easily formed by controlling the opening of the photomask.

なお、突起電極の表面に無電界メッキ等により導電性皮膜を形成してもよい。このような導電性皮膜を形成すれば、より接続抵抗を小さくすることができる。また、保護膜上にレジスト膜を形成しておき、蒸着やスパッタリング等により導電性薄膜を形成してからレジスト膜を除去することで、突起電極の表面に導電性皮膜を形成してもよい。   A conductive film may be formed on the surface of the protruding electrode by electroless plating or the like. If such a conductive film is formed, the connection resistance can be further reduced. Alternatively, a conductive film may be formed on the surface of the protruding electrode by forming a resist film on the protective film, forming a conductive thin film by vapor deposition, sputtering, or the like and then removing the resist film.

(第2の実施の形態)
図5は、本発明の第2の実施の形態にかかる電子部品実装構造体30の構成を示す断面図である。本実施の形態の電子部品実装構造体30は、複数の電極端子33を有する電子部品32と、電極端子33に対応する位置に接続端子36を設けた実装基板35と、電極端子33と接続端子36とを接続する突起電極37とを備えている。そして、電子部品32の電極端子33と実装基板35の接続端子36とが、突起電極37により接続されている。さらに、突起電極37は可視光に感光する感光性樹脂と導電性フィラーとを含む導電性樹脂からなる。
(Second Embodiment)
FIG. 5 is a cross-sectional view showing a configuration of an electronic component mounting structure 30 according to the second embodiment of the present invention. The electronic component mounting structure 30 according to the present embodiment includes an electronic component 32 having a plurality of electrode terminals 33, a mounting substrate 35 provided with connection terminals 36 at positions corresponding to the electrode terminals 33, the electrode terminals 33, and the connection terminals. And a projecting electrode 37 for connecting to 36. The electrode terminal 33 of the electronic component 32 and the connection terminal 36 of the mounting substrate 35 are connected by the protruding electrode 37. Further, the protruding electrode 37 is made of a conductive resin containing a photosensitive resin that is sensitive to visible light and a conductive filler.

また、本実施の形態では、突起電極37が円錐台状で、かつ厚み方向に3層から構成されており、しかも第1層37a、37d、第2層37bおよび第3層37cは、同一の材料により形成されている。また、本実施の形態では、さらに電子部品32と実装基板35との間に絶縁性樹脂39が充填されており、この絶縁性樹脂39により電子部品32と実装基板35とが接着固定されている。   Further, in the present embodiment, the protruding electrode 37 has a truncated cone shape and is composed of three layers in the thickness direction, and the first layer 37a, 37d, the second layer 37b, and the third layer 37c are the same. It is made of material. In the present embodiment, an insulating resin 39 is further filled between the electronic component 32 and the mounting substrate 35, and the electronic component 32 and the mounting substrate 35 are bonded and fixed by the insulating resin 39. .

本実施の形態では、電子部品32としてベアチップの半導体素子を用いる場合を例として説明する。以下では、電子部品32または半導体素子32とよぶことがある。電子部品32の電極端子33は、単結晶Si基材のパッド形成面(図示せず)上に直接形成されている下段側電極端子33aと、第1保護膜34上に形成されている上段側電極端子33bとの2種類があり、第1保護膜34の厚み分ほど高さの差異を有する。なお、下段側電極端子33aと上段側電極端子33bとを取り囲むように第2保護膜38が形成されている。ただし、この第2保護膜38は必ずしも形成する必要はない。なお、下段側電極端子33aと上段側電極端子33bとは、図示しない配線により回路形成面の回路と接続されている。   In the present embodiment, a case where a bare chip semiconductor element is used as the electronic component 32 will be described as an example. Hereinafter, the electronic component 32 or the semiconductor element 32 may be called. The electrode terminal 33 of the electronic component 32 includes a lower electrode terminal 33a formed directly on a pad forming surface (not shown) of a single crystal Si base material, and an upper stage formed on the first protective film 34. There are two types, the electrode terminal 33b, and the difference in height is as much as the thickness of the first protective film 34. Note that a second protective film 38 is formed so as to surround the lower electrode terminal 33a and the upper electrode terminal 33b. However, the second protective film 38 is not necessarily formed. In addition, the lower stage side electrode terminal 33a and the upper stage side electrode terminal 33b are connected to the circuit on the circuit forming surface by wiring (not shown).

したがって、図5からわかるように、突起電極37を構成する複数の層のうち、電極端子33と接する第1層目の厚みが電極端子33の配置位置により異なることが特徴である。すなわち、下段側電極端子33aに形成された第1層37aの厚みは、上段側電極端子33bに形成された第1層37dの厚みに比べて厚くなり、それぞれの表面の位置が同じ面上にあることが特徴である。   Accordingly, as can be seen from FIG. 5, the thickness of the first layer in contact with the electrode terminal 33 among the plurality of layers constituting the protruding electrode 37 is different depending on the arrangement position of the electrode terminal 33. That is, the thickness of the first layer 37a formed on the lower electrode terminal 33a is larger than the thickness of the first layer 37d formed on the upper electrode terminal 33b, and the positions of the respective surfaces are on the same surface. It is a feature.

第1層37a、37d上に形成された第2層37bおよび第3層37cの厚みは、すべて同じである。この結果、単結晶Si基材面上に形成される電極端子33の高さ位置がそれぞれ異なる場合であっても、最終的な表面位置はすべて同一とすることができる。   The second layer 37b and the third layer 37c formed on the first layers 37a and 37d have the same thickness. As a result, even if the height positions of the electrode terminals 33 formed on the surface of the single crystal Si base material are different, the final surface positions can all be the same.

このような突起電極37の構成を有する電子部品32を用いることで、実装基板35に実装するときに、小さな押圧力で実装基板35の接続端子36と接続することができる。したがって、例えば回路形成面上に電極端子を設けた場合であっても、押圧力による回路形成面の回路の損傷を防止できる。特に、高周波用途に対応するために低密度の誘電体材料を絶縁膜として用いる場合でも、この絶縁膜を損傷せずに実装できる。   By using the electronic component 32 having such a configuration of the protruding electrode 37, when mounting on the mounting substrate 35, it can be connected to the connection terminal 36 of the mounting substrate 35 with a small pressing force. Therefore, for example, even when the electrode terminal is provided on the circuit formation surface, the circuit on the circuit formation surface can be prevented from being damaged by the pressing force. In particular, even when a low-density dielectric material is used as an insulating film in order to cope with high frequency applications, the insulating film can be mounted without being damaged.

また、突起電極37が導電性樹脂からなり、かつ円錐台形状であり、しかも突起電極37と接続端子36とは接触により電気的に接続されているので、熱衝撃や機械的衝撃を受けても接続不良が生じ難く、信頼性にも優れている。また、微小な径で、大きな高さを有する、すなわちアスペクト比の大きな突起電極を容易に形成できるので、狭ピッチであってもショート不良等を生じずに接続することも可能となる。   Further, since the protruding electrode 37 is made of a conductive resin and has a truncated cone shape, and the protruding electrode 37 and the connection terminal 36 are electrically connected by contact, even if they are subjected to a thermal shock or a mechanical shock. Connection failure is unlikely to occur and reliability is excellent. Further, since a protruding electrode having a small diameter and a large height, that is, a large aspect ratio can be easily formed, even if the pitch is narrow, it is possible to connect without causing a short circuit defect or the like.

このような電子部品実装構造体30は、以下の工程により作製することができる。最初に、可視光に感光する感光性樹脂と導電性フィラーとを含む導電性樹脂からなる突起電極37を、電子部品32の電極端子33上または実装基板35の接続端子36上に形成する。なお、本実施の形態の場合には、電子部品32の電極端子33上に形成している。   Such an electronic component mounting structure 30 can be manufactured by the following steps. First, the protruding electrode 37 made of a conductive resin containing a photosensitive resin sensitive to visible light and a conductive filler is formed on the electrode terminal 33 of the electronic component 32 or the connection terminal 36 of the mounting substrate 35. In the present embodiment, it is formed on the electrode terminal 33 of the electronic component 32.

つぎに、突起電極37が形成された電子部品32を、突起電極37を介して電極端子33と接続端子36とを位置合せする。この位置合せ工程の前に、接続端子36が形成された実装基板35の面上に絶縁性樹脂39を形成しておく。   Next, the electrode terminal 33 and the connection terminal 36 are aligned through the protruding electrode 37 in the electronic component 32 on which the protruding electrode 37 is formed. Prior to this alignment step, an insulating resin 39 is formed on the surface of the mounting substrate 35 on which the connection terminals 36 are formed.

つぎに、電子部品32を押圧して、電極端子33と接続端子36とを突起電極37を介して接続する。この場合に、電子部品32の押圧により絶縁性樹脂39は接続端子36と突起電極37との間から排除され、最終的に突起電極37と接続端子36とが接触して電気的な接続が行われる。   Next, the electronic component 32 is pressed to connect the electrode terminal 33 and the connection terminal 36 via the protruding electrode 37. In this case, the insulating resin 39 is removed from between the connection terminal 36 and the projecting electrode 37 by the pressing of the electronic component 32, and finally the projecting electrode 37 and the connection terminal 36 come into contact with each other for electrical connection. Is called.

つぎに、上記接続工程の後に、絶縁性樹脂39を硬化させる。これにより、電子部品32と実装基板35とを接着固定する。   Next, the insulating resin 39 is cured after the connecting step. Thereby, the electronic component 32 and the mounting substrate 35 are bonded and fixed.

以上の工程により、電子部品実装構造体30を作製することができる。なお、上記方法では、あらかじめ絶縁性樹脂39を実装基板35上に形成したが、この方法に限定されない。例えば、位置合せして押圧し、突起電極37と接続端子36とを接続した後、さらに電子部品32と実装基板35との間に絶縁性樹脂39を充填するようにしてもよい。   Through the above steps, the electronic component mounting structure 30 can be manufactured. In the above method, the insulating resin 39 is formed on the mounting substrate 35 in advance, but the present invention is not limited to this method. For example, the insulating resin 39 may be filled between the electronic component 32 and the mounting substrate 35 after the projection electrode 37 and the connection terminal 36 are connected by aligning and pressing.

電子部品実装構造体30は、上記工程を経ることにより得られるが、つぎに本発明のポイントとなる突起電極37の製造方法について説明する。   The electronic component mounting structure 30 is obtained through the above-described steps. Next, a method for manufacturing the protruding electrode 37 which is a point of the present invention will be described.

図6および図7は、突起電極37の製造方法を説明するための主要工程の断面図である。図6(a)は突起電極37の第1層37a、37dの形成工程、図6(b)は突起電極37の第2層37bの形成工程を示す断面図である。また、図7(a)は突起電極37の第3層37cの形成工程を示す断面図、図7(b)は突起電極37を形成した状態の電子部品32の断面図である。   6 and 7 are cross-sectional views of main processes for explaining the method for manufacturing the protruding electrode 37. FIG. FIG. 6A is a cross-sectional view showing a process for forming the first layers 37a and 37d of the bump electrode 37, and FIG. 6B is a cross-sectional view showing a process for forming the second layer 37b of the bump electrode 37. FIG. 7A is a cross-sectional view showing a step of forming the third layer 37c of the protruding electrode 37, and FIG. 7B is a cross-sectional view of the electronic component 32 in a state where the protruding electrode 37 is formed.

図6(a)に示すように、容器20の内部に可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂24を、少なくとも電子部品32の電極端子33が浸漬される程度以上の高さまで入れる。容器20の底部21は、液状樹脂24を硬化するための可視光を透過する透明部材で構成されている。容器20は、この底部21と一体的に形成された外周部22により形成されている。   As shown in FIG. 6A, at least the electrode terminal 33 of the electronic component 32 is immersed in a liquid resin 24 containing a photosensitive resin sensitive to visible light and a conductive filler inside the container 20. Put it to the height. The bottom 21 of the container 20 is made of a transparent member that transmits visible light for curing the liquid resin 24. The container 20 is formed by an outer peripheral portion 22 formed integrally with the bottom portion 21.

まず、図6(a)に示すように、電子部品32の主面に形成された電極端子33のうち、上段側電極端子33bと底部21との間隔T4を突起電極37の第1層37dの厚みに設定する。このとき、下段側電極端子33aと底部21との間隔T3は、間隔T4よりも大きくなる。底部21の下方には、フォトマスク40が設置されている。フォトマスク40には、突起電極37の第1層37a、37dを形成するための形状を有する第1の開口部40aが開口されている。   First, as shown in FIG. 6A, among the electrode terminals 33 formed on the main surface of the electronic component 32, the distance T4 between the upper stage side electrode terminal 33 b and the bottom portion 21 is set to the first layer 37 d of the protruding electrode 37. Set to thickness. At this time, an interval T3 between the lower electrode terminal 33a and the bottom portion 21 is larger than the interval T4. A photomask 40 is installed below the bottom 21. The photomask 40 has a first opening 40 a having a shape for forming the first layers 37 a and 37 d of the protruding electrode 37.

この状態で、フォトマスク40を介して可視光41を、底部21から液状樹脂24に照射する。第1の開口部40aを通過した可視光41は、電極端子33と底部21との間にある液状樹脂24を硬化させ、突起電極37の第1層37a、37dが形成される。これにより、下段側電極端子33aでは、間隔T3に相当する厚みの第1層37aが形成され、上段側電極端子33bでは、間隔T4に相当する厚みの第1層37dが形成される。したがって、それぞれの第1層37a、37dの表面は同一面上に位置することになる。   In this state, visible light 41 is irradiated from the bottom 21 to the liquid resin 24 through the photomask 40. The visible light 41 that has passed through the first opening 40 a cures the liquid resin 24 between the electrode terminal 33 and the bottom 21, and the first layers 37 a and 37 d of the protruding electrode 37 are formed. As a result, a first layer 37a having a thickness corresponding to the interval T3 is formed at the lower stage electrode terminal 33a, and a first layer 37d having a thickness corresponding to the interval T4 is formed at the upper stage electrode terminal 33b. Accordingly, the surfaces of the first layers 37a and 37d are located on the same plane.

つぎに、図6(b)に示すように、電子部品32を引き上げて、突起電極37の第1層37a、37dと底部21との間隔T5を突起電極37の第2層37bの厚みに設定する。この状態で、図6(a)と同様にして、フォトマスク40を介して可視光41を、底部21から液状樹脂24に照射する。このときに、フォトマスク40には、第1の開口部40aより小さな開口形状を有する第2の開口部40bが設けられている。この第2の開口部40bを通過した可視光41は、第1層37a、37dと底部21との間にある液状樹脂24を硬化させ、突起電極37の第2層37bが形成される。   Next, as shown in FIG. 6B, the electronic component 32 is pulled up, and the distance T5 between the first layers 37a and 37d of the bump electrode 37 and the bottom 21 is set to the thickness of the second layer 37b of the bump electrode 37. To do. In this state, similarly to FIG. 6A, visible light 41 is irradiated from the bottom 21 to the liquid resin 24 through the photomask 40. At this time, the photomask 40 is provided with a second opening 40b having an opening shape smaller than that of the first opening 40a. The visible light 41 that has passed through the second opening 40b cures the liquid resin 24 between the first layers 37a and 37d and the bottom 21 to form the second layer 37b of the protruding electrode 37.

つぎに、図7(a)に示すように、電子部品32をさらに引き上げて、突起電極37の第2層37bと底部21との間隔T6を突起電極37の第3層37cの厚みに設定する。この状態で、図6(a)と同様にして、フォトマスク40を介して可視光41を、底部21から液状樹脂24に照射する。このときに、フォトマスク40には、第2の開口部40bより小さな開口形状を有する第3の開口部40cが設けられている。この第3の開口部40cを通過した可視光41は、第2層37bと底部21との間にある液状樹脂24を硬化させ、突起電極37の第3層37cが形成される。   Next, as shown in FIG. 7A, the electronic component 32 is further pulled up, and the interval T6 between the second layer 37b and the bottom portion 21 of the protruding electrode 37 is set to the thickness of the third layer 37c of the protruding electrode 37. . In this state, similarly to FIG. 6A, visible light 41 is irradiated from the bottom 21 to the liquid resin 24 through the photomask 40. At this time, the photomask 40 is provided with a third opening 40c having an opening shape smaller than that of the second opening 40b. The visible light 41 that has passed through the third opening 40 c cures the liquid resin 24 between the second layer 37 b and the bottom 21, and the third layer 37 c of the protruding electrode 37 is formed.

このように、順次電子部品を設定した間隔だけ引き上げながら、徐々に開口形状を小さくしたフォトマスクを用いて可視光を照射することによって、円錐台形状を有する突起電極7を形成することができる。以上の工程を経た後、容器20から電子部品32を取り出し、洗浄して不要な液状樹脂を除去する。これにより、図7(b)に示すように、すべての突起電極37の表面が同一面上に位置する形状からなる電子部品、すなわち半導体素子32が得られる。   In this way, the projection electrode 7 having a truncated cone shape can be formed by irradiating visible light using a photomask having a gradually reduced opening shape while sequentially raising the electronic components by a set interval. After the above steps, the electronic component 32 is taken out from the container 20 and washed to remove unnecessary liquid resin. As a result, as shown in FIG. 7B, an electronic component having a shape in which the surfaces of all the protruding electrodes 37 are located on the same plane, that is, the semiconductor element 32 is obtained.

なお、本実施の形態で使用するフォトマスク40は、液晶セル(図示せず)が二次元的に配置された透過式の液晶パネルを用いており、第1の開口部40a、第2の開口部40bおよび第3の開口部40cの大きさ等は、液晶セルに印加する電圧により電気的に制御することができる。あるいは、フォトマスク40は液晶パネルを用い、かつこの液晶パネルを透過した光像を縮小投影して液状樹脂24に照射する縮小投影露光法としてもよい。   Note that the photomask 40 used in this embodiment uses a transmissive liquid crystal panel in which liquid crystal cells (not shown) are two-dimensionally arranged, and includes a first opening 40 a and a second opening. The size and the like of the portion 40b and the third opening 40c can be electrically controlled by the voltage applied to the liquid crystal cell. Alternatively, the photomask 40 may be a reduced projection exposure method in which a liquid crystal panel is used and a light image transmitted through the liquid crystal panel is reduced and projected onto the liquid resin 24.

なお、本実施の形態では、円錐台形状の突起電極37を形成する場合について説明したが、本発明はこれに限定されない。例えば、角錐台形状、円柱形状、角柱形状、円錐形状、角錐形状あるいは筒状形状等であってもよい。これらの形状は、上記フォトマスクの開口部を制御することで容易に形成できる。   In the present embodiment, the case where the frustoconical protrusion electrode 37 is formed has been described, but the present invention is not limited to this. For example, the shape may be a truncated pyramid shape, a cylindrical shape, a prism shape, a conical shape, a pyramid shape, or a cylindrical shape. These shapes can be easily formed by controlling the opening of the photomask.

なお、突起電極37の表面に無電界メッキ等により導電性皮膜を形成してもよい。このような導電性皮膜を形成すれば、より接続抵抗を小さくすることができる。また、第2保護膜38上にレジスト膜を形成しておき、蒸着やスパッタリング等により導電性薄膜を形成してからレジスト膜を除去することで、突起電極37の表面に導電性皮膜を形成してもよい。   Note that a conductive film may be formed on the surface of the protruding electrode 37 by electroless plating or the like. If such a conductive film is formed, the connection resistance can be further reduced. In addition, a resist film is formed on the second protective film 38, and after forming a conductive thin film by vapor deposition or sputtering, the resist film is removed to form a conductive film on the surface of the protruding electrode 37. May be.

図8は、本実施の形態の変形例の電子部品実装構造体65の構成を示す断面図である。この変形例の電子部品実装構造体65は、複数の電極端子57を有する電子部品50と、電極端子57に対応する位置に接続端子63を設けた実装基板62と、電極端子57と接続端子63とを接続する突起電極60とを備えている。そして、電子部品50の電極端子57と実装基板62の接続端子63とが、突起電極60により接続されている。さらに、突起電極60は可視光に感光する感光性樹脂と導電性フィラーとを含む導電性樹脂からなる。   FIG. 8 is a cross-sectional view illustrating a configuration of an electronic component mounting structure 65 according to a modification of the present embodiment. An electronic component mounting structure 65 according to this modification includes an electronic component 50 having a plurality of electrode terminals 57, a mounting substrate 62 in which connection terminals 63 are provided at positions corresponding to the electrode terminals 57, and the electrode terminals 57 and connection terminals 63. And a protruding electrode 60 for connecting the two. The electrode terminal 57 of the electronic component 50 and the connection terminal 63 of the mounting substrate 62 are connected by the protruding electrode 60. Further, the protruding electrode 60 is made of a conductive resin containing a photosensitive resin that is sensitive to visible light and a conductive filler.

なお、この変形例の場合には、電子部品50は図示するように半導体チップ51が配線基板54に実装されたパッケージ構成であることが特徴である。すなわち、半導体チップ51はダイボンド材53によりダイボンディングされた後、半導体チップ51の電極端子52と配線基板54の接続端子55との間を金属細線58により接続し、封止樹脂59により封止されている。配線基板54は、半導体チップ51側の接続端子55と反対側に形成されている電極端子57とが貫通導体56により接続された多層配線構成からなる。さらに、この電極端子57は、配線基板54の全面に一定の配列ピッチで形成されている。   In the case of this modification, the electronic component 50 is characterized by a package configuration in which a semiconductor chip 51 is mounted on a wiring board 54 as shown in the figure. That is, after the semiconductor chip 51 is die-bonded by the die bonding material 53, the electrode terminal 52 of the semiconductor chip 51 and the connection terminal 55 of the wiring substrate 54 are connected by the metal thin wire 58 and sealed by the sealing resin 59. ing. The wiring board 54 has a multilayer wiring configuration in which a connection terminal 55 on the semiconductor chip 51 side and an electrode terminal 57 formed on the opposite side are connected by a through conductor 56. Further, the electrode terminals 57 are formed on the entire surface of the wiring board 54 at a constant arrangement pitch.

また、この変形例では、突起電極60は円錐台形状で、かつ厚み方向に3層から構成されている。なお、第1層60a、第2層60bおよび第3層60cは、同一の材料により形成されている。   In this modification, the protruding electrode 60 has a truncated cone shape and is composed of three layers in the thickness direction. The first layer 60a, the second layer 60b, and the third layer 60c are formed of the same material.

また、この変形例では、さらに電子部品50と実装基板62との間に絶縁性樹脂61が充填されており、この絶縁性樹脂61により電子部品50と実装基板62とが接着固定されている。   In this modified example, an insulating resin 61 is further filled between the electronic component 50 and the mounting substrate 62, and the electronic component 50 and the mounting substrate 62 are bonded and fixed by the insulating resin 61.

本変形例の電子部品実装構造体65に用いられる電子部品50は、パッケージした状態であることから、図8に示されるように配線基板54がやや湾曲した形状となっている。このように湾曲した形状であっても、本実施の形態の製造方法と同様な工程で突起電極60を形成すれば、すべての突起電極60の表面が同一面上に位置するようにすることができる。したがって、このような突起電極60の構成を有する電子部品50を用いることで、実装基板62に実装するときに、小さな押圧力で実装基板62の接続端子63と接続することができる。   Since the electronic component 50 used in the electronic component mounting structure 65 of this modification is in a packaged state, the wiring board 54 has a slightly curved shape as shown in FIG. Even in such a curved shape, if the protruding electrodes 60 are formed in the same process as the manufacturing method of the present embodiment, the surfaces of all the protruding electrodes 60 can be positioned on the same plane. it can. Therefore, by using the electronic component 50 having such a configuration of the protruding electrode 60, when mounting on the mounting substrate 62, it can be connected to the connection terminal 63 of the mounting substrate 62 with a small pressing force.

また、突起電極60が導電性樹脂からなり、かつ円錐台形状であり、しかも突起電極60と接続端子63とは接触により電気的に接続されているので、熱衝撃や機械的衝撃を受けても接続不良が生じ難く、信頼性にも優れている。アスペクト比の大きな突起電極を容易に形成できるので、狭ピッチにしてもショート不良等を生じずに接続することも可能となる。   Further, since the protruding electrode 60 is made of a conductive resin and has a truncated cone shape, and the protruding electrode 60 and the connection terminal 63 are electrically connected by contact, even if they are subjected to thermal shock or mechanical shock. Connection failure is unlikely to occur and reliability is excellent. Since a protruding electrode having a large aspect ratio can be easily formed, it is possible to connect without causing a short circuit defect even if the pitch is narrow.

このような電子部品実装構造体65および突起電極60については、本実施の形態と同様の工程で作製できるので説明を省略する。   Since such an electronic component mounting structure 65 and the protruding electrode 60 can be manufactured in the same process as the present embodiment, the description thereof is omitted.

なお、本実施の形態では、容器20の底部21を透明部材としたが、フォトマスク23そのものを底部21としてもよい。このようにすれば、より微細なパターンを精度よく形成できる。   In the present embodiment, the bottom 21 of the container 20 is a transparent member, but the photomask 23 itself may be the bottom 21. In this way, a finer pattern can be formed with high accuracy.

また、第1の実施の形態と第2の実施の形態では、電子部品と実装基板との間に絶縁性樹脂を充填して接着固定する構造について説明したが、異方導電性樹脂を用いて接続と接着固定を行ってもよい。この場合には、電子部品と実装基板とを位置合せする工程の前に、電極端子が形成された電子部品の面上または接続端子が形成された実装基板の面上に絶縁性樹脂または異方導電性樹脂を形成する工程と、接続工程の後に、絶縁性樹脂または異方導電性樹脂を硬化させ、電子部品と実装基板とを接着固定してもよい。このような方法とすることにより、電子部品と実装基板との間の接着を確実に、かつより強固にできるので接続信頼性を向上できる。また、導電性樹脂からなる突起電極は接着性を特に要求されなくなるので、感光性樹脂の選択の自由度を大きくできる。   In the first embodiment and the second embodiment, the structure in which the insulating resin is filled and bonded and fixed between the electronic component and the mounting substrate has been described. However, the anisotropic conductive resin is used. Connection and adhesive fixing may be performed. In this case, before the step of aligning the electronic component and the mounting substrate, an insulating resin or anisotropic material is formed on the surface of the electronic component on which the electrode terminals are formed or on the surface of the mounting substrate on which the connection terminals are formed. After the step of forming the conductive resin and the connecting step, the insulating resin or the anisotropic conductive resin may be cured, and the electronic component and the mounting substrate may be bonded and fixed. By adopting such a method, the adhesion between the electronic component and the mounting substrate can be surely and strengthened, so that the connection reliability can be improved. In addition, since the protruding electrode made of a conductive resin is not particularly required to have adhesiveness, the degree of freedom in selecting the photosensitive resin can be increased.

(第3の実施の形態)
図9は、本発明の第3の実施の形態にかかる電子部品実装構造体70の構成を示す断面図である。本実施の形態の電子部品実装構造体70は、複数の電極端子73を有する電子部品72と、電極端子73に対応する位置に接続端子76を設けた実装基板75と、電極端子73と接続端子76とを接続する突起電極77とを備えている。そして、電子部品72の電極端子73と実装基板75の接続端子76とが、突起電極77により接続されている。さらに、突起電極77は可視光に感光する感光性樹脂と導電性フィラーとを含む導電性樹脂からなる。
(Third embodiment)
FIG. 9 is a cross-sectional view showing a configuration of an electronic component mounting structure 70 according to the third embodiment of the present invention. The electronic component mounting structure 70 of the present embodiment includes an electronic component 72 having a plurality of electrode terminals 73, a mounting substrate 75 in which connection terminals 76 are provided at positions corresponding to the electrode terminals 73, and the electrode terminals 73 and connection terminals. And a projecting electrode 77 for connecting to 76. The electrode terminal 73 of the electronic component 72 and the connection terminal 76 of the mounting substrate 75 are connected by the protruding electrode 77. Further, the protruding electrode 77 is made of a conductive resin containing a photosensitive resin sensitive to visible light and a conductive filler.

また、本実施の形態では、突起電極77がほぼ円柱形状で、実質的に層状構成とはなっていない。また、さらに電子部品72と実装基板75との間に絶縁性樹脂78が充填されており、この絶縁性樹脂78により電子部品72と実装基板75とが接着固定されている。   Further, in the present embodiment, the protruding electrode 77 has a substantially cylindrical shape and is not substantially layered. Further, an insulating resin 78 is filled between the electronic component 72 and the mounting substrate 75, and the electronic component 72 and the mounting substrate 75 are bonded and fixed by the insulating resin 78.

本実施の形態では、電子部品72としてベアチップの半導体素子を用いる場合を例として説明する。以下では、電子部品72または半導体素子72とよぶことがある。この電子部品72は、第1の実施の形態で説明した電子部品2と基本的な構成は同じであり、電極端子73とそれらを取り囲むように保護膜74が形成されている。ただし、この保護膜74は必ずしも形成する必要はない。   In the present embodiment, a case where a bare chip semiconductor element is used as the electronic component 72 will be described as an example. Hereinafter, the electronic component 72 or the semiconductor element 72 may be called. The electronic component 72 has the same basic configuration as the electronic component 2 described in the first embodiment, and an electrode terminal 73 and a protective film 74 are formed so as to surround them. However, the protective film 74 is not necessarily formed.

また、実装基板75は、可視光を透過する透明基材と、この透明基材表面上に形成され、少なくとも可視光を透過する透明導電性薄膜からなる接続端子76を含む構成からなる。このような実装基板75を用いることで、実装基板75と電子部品72との間をある設定した間隔に保持して、この隙間中に可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂を充填し、フォトマスクにより露光するだけで電極端子73と接続端子76との接続を行うことができる。   The mounting substrate 75 includes a transparent base material that transmits visible light and a connection terminal 76 that is formed on the surface of the transparent base material and includes at least a transparent conductive thin film that transmits visible light. By using such a mounting substrate 75, the mounting substrate 75 and the electronic component 72 are held at a set interval, and a photosensitive resin that is sensitive to visible light and a conductive filler are included in the gap. The electrode terminal 73 and the connection terminal 76 can be connected simply by filling the liquid resin and exposing with a photomask.

しかも、突起電極77は導電性樹脂からなり柔らかいことから熱衝撃や衝撃力を受けても接続部の不良が生じ難い。なお、図9に示すように隙間に絶縁性樹脂78を注入することで、より信頼性の高い実装構造体を得ることができる。   In addition, since the protruding electrode 77 is made of a conductive resin and is soft, even if it receives a thermal shock or an impact force, it is difficult for a defective connection portion to occur. As shown in FIG. 9, a more reliable mounting structure can be obtained by injecting the insulating resin 78 into the gap.

以上説明したように、本実施の形態の電子部品実装構造体70は、電子部品72を実装基板75に実装するときに押圧力等をまったく加えずに接続することができる。したがって、例えば電子部品72である半導体素子の回路形成面上に電極端子73を設けた場合であっても、押圧力による回路形成面の回路の損傷を防止できる。特に、高周波用途に対応するために低密度の誘電体材料を絶縁膜として用いる場合でも、この絶縁膜を損傷せずに実装できる。さらに、液晶ディスプレイやELディスプレイ等のディスプレイ基板上へのドライバーIC等の実装においても有効である。   As described above, the electronic component mounting structure 70 of the present embodiment can be connected without applying any pressing force or the like when mounting the electronic component 72 on the mounting substrate 75. Therefore, for example, even when the electrode terminal 73 is provided on the circuit formation surface of the semiconductor element that is the electronic component 72, the circuit on the circuit formation surface can be prevented from being damaged by the pressing force. In particular, even when a low-density dielectric material is used as an insulating film in order to cope with high frequency applications, the insulating film can be mounted without being damaged. Furthermore, it is also effective in mounting a driver IC or the like on a display substrate such as a liquid crystal display or an EL display.

また、突起電極77が導電性樹脂からなり、かつ円錐台形状であり、しかも突起電極77と接続端子76とは接触により電気的に接続されているので、熱衝撃や機械的衝撃を受けても接続不良が生じ難く、信頼性にも優れている。また、微小な径で、大きな高さを有する、すなわちアスペクト比の大きな突起電極を容易に形成できるので、狭ピッチであってもショート不良等を生じずに接続することも可能となる。   Further, since the protruding electrode 77 is made of a conductive resin and has a truncated cone shape, and the protruding electrode 77 and the connection terminal 76 are electrically connected by contact, even if they are subjected to thermal shock or mechanical shock. Connection failure is unlikely to occur and reliability is excellent. Further, since a protruding electrode having a small diameter and a large height, that is, a large aspect ratio can be easily formed, even if the pitch is narrow, it is possible to connect without causing a short circuit defect or the like.

図10および図11は、本発明の第3の実施の形態の電子部品実装構造体70の製造方法を説明するための主要工程の図である。図10において、(a)は電子部品72と実装基板75とを可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂24中に浸漬した状態の断面図、(b)は第1の光強度を有する可視光80を照射して、突起電極77の第1層77aを形成した状態の断面図である。また、図11において、(a)は第2の光強度を有する可視光81を照射して、突起電極77の第2層77bを形成した状態の断面図、(b)は第3の光強度を有する可視光82を照射して、突起電極77の第3層77cを形成し、電極端子73と接続端子76とを接続した状態を示す断面図である。   FIG. 10 and FIG. 11 are diagrams of main steps for explaining the method for manufacturing the electronic component mounting structure 70 according to the third embodiment of the present invention. 10A is a cross-sectional view of a state in which the electronic component 72 and the mounting substrate 75 are immersed in a liquid resin 24 containing a photosensitive resin that is sensitive to visible light and a conductive filler, and FIG. It is sectional drawing of the state which irradiated the visible light 80 which has the light intensity of, and formed the 1st layer 77a of the protruding electrode 77. FIG. 11A is a cross-sectional view of a state in which the visible light 81 having the second light intensity is irradiated to form the second layer 77b of the protruding electrode 77, and FIG. 11B is a third light intensity. FIG. 6 is a cross-sectional view showing a state in which a third layer 77 c of the protruding electrode 77 is formed by irradiating visible light 82 having, and the electrode terminal 73 and the connection terminal 76 are connected.

最初に、図10(a)に示すように、底部21が透明部材からなり外周部22を有する容器20に、可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂24を充填する。つぎに、電子部品72の電極端子73と実装基板75の接続端子76とが対向するように位置合せし、かつ突起電極77として必要な高さ分だけの間隔T7を設けた状態で、両方を液状樹脂24中に浸漬する。本実施の形態では、この間隔T7は固定であるので電子部品72と実装基板75とは図示しない冶具により固定されている。   First, as shown in FIG. 10A, a container 20 having a bottom 21 made of a transparent member and having an outer peripheral portion 22 is filled with a liquid resin 24 containing a photosensitive resin sensitive to visible light and a conductive filler. . Next, both the electrode terminal 73 of the electronic component 72 and the connection terminal 76 of the mounting substrate 75 are aligned so as to face each other, and a distance T7 corresponding to the height required for the protruding electrode 77 is provided. Immerse in the liquid resin 24. In this embodiment, since this interval T7 is fixed, the electronic component 72 and the mounting board 75 are fixed by a jig (not shown).

図10(b)に示すように、容器20の底部21の下方には、フォトマスク79が設置されている。フォトマスク79には、突起電極77を形成するための形状を有する開口部79aが開口されている。なお、この開口部79aは、図示するように電極端子73の形状とほぼ同じ形状としている。   As shown in FIG. 10B, a photomask 79 is installed below the bottom 21 of the container 20. An opening 79 a having a shape for forming the protruding electrode 77 is opened in the photomask 79. The opening 79a has substantially the same shape as the electrode terminal 73 as shown.

この状態で、フォトマスク79を介して第1の光強度を有する可視光80を、底部21から液状樹脂24に照射する。開口部79aを通過した可視光80は、電極端子73と底部21との間にある液状樹脂24の一部を硬化させ、突起電極77の第1層77aが形成される。この第1層77aの厚みは、可視光80の第1の光強度に依存する。   In this state, the visible light 80 having the first light intensity is irradiated to the liquid resin 24 from the bottom portion 21 through the photomask 79. The visible light 80 that has passed through the opening 79 a hardens a part of the liquid resin 24 between the electrode terminal 73 and the bottom 21, and a first layer 77 a of the protruding electrode 77 is formed. The thickness of the first layer 77 a depends on the first light intensity of the visible light 80.

つぎに、図11(a)に示すように、電子部品72と実装基板75との位置関係およびフォトマスク79の位置関係も固定したまま、フォトマスク79を介して第2の光強度を有する可視光81を、底部21から液状樹脂24に照射する。このときの可視光81の第2の光強度は、第1の光強度より大きく設定しているので、開口部79aを通過した可視光81は、電極端子73と底部21との間で一部硬化した第1層77aを透過して、その上の液状樹脂24の一部を硬化させる。これにより、突起電極77の第2層77bが形成される。この第2層77bの厚みも、可視光81の第2の光強度に依存する。   Next, as shown in FIG. 11A, a visible light having a second light intensity through the photomask 79 while the positional relationship between the electronic component 72 and the mounting substrate 75 and the positional relationship of the photomask 79 are also fixed. Light 81 is applied to the liquid resin 24 from the bottom 21. At this time, the second light intensity of the visible light 81 is set to be larger than the first light intensity, so that the visible light 81 that has passed through the opening 79 a is partially between the electrode terminal 73 and the bottom 21. The cured first layer 77a is transmitted and a part of the liquid resin 24 thereon is cured. Thereby, the second layer 77b of the protruding electrode 77 is formed. The thickness of the second layer 77 b also depends on the second light intensity of the visible light 81.

つぎに、図11(b)に示すように、電子部品72と実装基板75との位置関係およびフォトマスク79の位置関係も固定したまま、フォトマスク79を介して第3の光強度を有する可視光82を、底部21から液状樹脂24に照射する。このときの可視光82の第3の光強度は、第2の光強度より大きく設定しているので、開口部79aを通過した可視光82は、電極端子73と底部21との間で一部硬化した第1層77aおよび第2層77bを透過して、その上の液状樹脂24の一部を硬化させる。これにより、突起電極77の第3層77cが形成されるとともに、電極端子73と接続端子76との接続も行われる。なお、この第3層77cの厚みは、第2層77b上に残存する液状樹脂24の厚みが小さい場合には、可視光82の第3の光強度にはほとんど依存しない。ただし、この領域に存在する液状樹脂24を確実に硬化させるためには充分大きな光強度の可視光を照射することが望ましい。   Next, as shown in FIG. 11B, a visible light having a third light intensity through the photomask 79 while the positional relationship between the electronic component 72 and the mounting substrate 75 and the positional relationship of the photomask 79 are also fixed. Light 82 is applied to the liquid resin 24 from the bottom 21. At this time, the third light intensity of the visible light 82 is set to be larger than the second light intensity, so that the visible light 82 that has passed through the opening 79 a is partially between the electrode terminal 73 and the bottom 21. A portion of the liquid resin 24 is transmitted through the cured first layer 77a and second layer 77b. Thereby, the third layer 77c of the protruding electrode 77 is formed, and the connection between the electrode terminal 73 and the connection terminal 76 is also performed. Note that the thickness of the third layer 77c hardly depends on the third light intensity of the visible light 82 when the thickness of the liquid resin 24 remaining on the second layer 77b is small. However, in order to cure the liquid resin 24 existing in this region with certainty, it is desirable to irradiate visible light having a sufficiently large light intensity.

なお、上記方法においては、光強度をステップ状に増加して層状に突起電極77を形成したが、開口部79aの大きさを一定にしており、かつ材料が同一であるので、図9に示したように明確な層構成となっていない場合がある。また、光強度を連続的に増加させながら照射してもよい。   In the above method, the light intensity is increased stepwise to form the protruding electrode 77 in a layered manner, but the size of the opening 79a is constant and the material is the same. In some cases, the layer structure is not clear. Moreover, you may irradiate, increasing light intensity continuously.

以上により、電子部品72の電極端子73と実装基板75の接続端子76との間が突起電極77により接続されるので、一体化した状態のまま容器20から取り出し、洗浄して不要な液状樹脂24を除去する。さらに、この後、突起電極77により形成される隙間領域に絶縁性樹脂78を注入して硬化させることで、電子部品72と実装基板75との間の接着固定を行う。この絶縁性樹脂78による接着固定により、より強力に一体化されるので熱衝撃や機械的衝撃力を受けても接続不良の発生をより抑制することができ、高信頼性の電子部品実装構造体70を実現できる。   As described above, the electrode terminal 73 of the electronic component 72 and the connection terminal 76 of the mounting substrate 75 are connected by the protruding electrode 77. Therefore, the unnecessary liquid resin 24 is taken out from the container 20 in an integrated state and washed. Remove. Further, after that, the insulating resin 78 is injected into the gap region formed by the protruding electrode 77 and cured, thereby fixing the electronic component 72 and the mounting substrate 75 to each other. By bonding and fixing with this insulating resin 78, it is integrated more strongly, so that it is possible to further suppress the occurrence of connection failure even when subjected to thermal shock or mechanical impact force, and a highly reliable electronic component mounting structure 70 can be realized.

なお、本実施の形態で使用するフォトマスク79は、液晶セル(図示せず)が二次元的に配置された透過式の液晶パネルを用いており、開口部79aの大きさ等は、液晶セルに印加する電圧により電気的に制御することができる。あるいは、フォトマスク79は液晶パネルを用い、かつこの液晶パネルを透過した光像を縮小投影して液状樹脂24に照射する縮小投影露光法としてもよい。あるいは、種々の薄膜デバイスの形成プロセスに用いられている一般的なフォトマスクを用いてもよい。   Note that the photomask 79 used in this embodiment mode uses a transmissive liquid crystal panel in which liquid crystal cells (not shown) are two-dimensionally arranged. It can be electrically controlled by the voltage applied to. Alternatively, the photomask 79 may be a reduced projection exposure method in which a liquid crystal panel is used and a light image transmitted through the liquid crystal panel is reduced and projected to irradiate the liquid resin 24. Or you may use the common photomask currently used for the formation process of various thin film devices.

なお、本実施の形態では、容器20の底部21を透明部材としたが、フォトマスク79自体を底部21としてもよい。このようにすれば、より微細なパターンを精度よく形成できる。   In the present embodiment, the bottom 21 of the container 20 is a transparent member, but the photomask 79 itself may be the bottom 21. In this way, a finer pattern can be formed with high accuracy.

第1の実施の形態から第3の実施の形態までにおいて、突起電極の形成のために用いたフォトマスクとしては、液晶セルが二次元的に配置された透過式の液晶パネルを用いて、開口部の形状を液晶セルに印加する電圧により電気的に制御する方式としたが、本発明はこれに限定されない。例えば、それぞれの開口部の形状に合わせたフォトマスクを複数用意しておき、開口部の形状に合わせてそれぞれ取り替えて露光する方式でもよい。   In the first to third embodiments, a transmissive liquid crystal panel in which liquid crystal cells are two-dimensionally arranged is used as a photomask used for forming the protruding electrode, and an opening is formed. Although the shape of the portion is electrically controlled by the voltage applied to the liquid crystal cell, the present invention is not limited to this. For example, a method may be used in which a plurality of photomasks are prepared according to the shape of each opening, and exposure is performed by replacing each photomask according to the shape of the opening.

なお、第1の実施の形態から第3の実施の形態までにおいては、可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂として1種類を用いて突起電極を作製する場合について説明したが、本発明はこれに限定されない。例えば、硬度、弾性率または導電率の少なくとも1つが異なる導電性フィラーを含む液状樹脂を複数種類準備して、突起電極の層を形成する場合にこれらの液状樹脂に電子部品を入れ替えて露光することで、異なる特性の層を有する突起電極を形成してもよい。このような構成とすることにより、電子部品と実装基板との熱膨張係数の差による熱応力等が作用しても、接続部の不良発生をさらに抑制することができ、高信頼性の電子部品実装構造体を得ることができる。   In the first embodiment to the third embodiment, a description will be given of a case where a protruding electrode is manufactured using one type of liquid resin containing a photosensitive resin sensitive to visible light and a conductive filler. However, the present invention is not limited to this. For example, when preparing a plurality of types of liquid resins containing conductive fillers having at least one of hardness, elastic modulus, or conductivity, and forming a layer of protruding electrodes, the electronic components are replaced with these liquid resins for exposure. Thus, a protruding electrode having layers with different characteristics may be formed. By adopting such a configuration, even when thermal stress or the like due to the difference in thermal expansion coefficient between the electronic component and the mounting substrate acts, it is possible to further suppress the occurrence of defects in the connection portion, and to provide a highly reliable electronic component A mounting structure can be obtained.

また、第1の実施の形態と第2の実施の形態においては、実装基板は樹脂基材、セラミック基材または単結晶Si基材を用いて形成された回路基板を用いてもよい。   In the first and second embodiments, the mounting substrate may be a circuit board formed using a resin base material, a ceramic base material, or a single crystal Si base material.

なお、第1の実施の形態から第3の実施の形態までにおいては、可視光で感光する感光性樹脂と導電性フィラーとを含む液状樹脂を用いて突起電極を形成しているが、可視光で感光する感光性樹脂の場合には紫外光でも感光させることが可能であるので、液晶セルを用いたフォトマスクではなく通常用いられているフォトマスクを用いる場合には紫外光を含む光を照射して硬化させてもよい。   In the first embodiment to the third embodiment, the protruding electrode is formed using a liquid resin containing a photosensitive resin that is sensitive to visible light and a conductive filler. In the case of a photosensitive resin that is exposed to UV light, it is possible to be exposed to ultraviolet light, so when using a photomask that is normally used instead of a photomask using a liquid crystal cell, light including ultraviolet light is irradiated. And may be cured.

本発明の電子部品実装構造体は、可視光で感光する感光性樹脂と導電性フィラーとを含む液状樹脂を用いて導電性樹脂からなる突起電極を形成するのでアスペクト比も大きくでき、熱衝撃や機械的衝撃力が作用しても接続不良が生じ難く、高信頼性とすることができるので、種々の電子機器、特に携帯用電子機器分野に有用である。   In the electronic component mounting structure of the present invention, the protruding electrode made of a conductive resin is formed using a liquid resin containing a photosensitive resin that is sensitive to visible light and a conductive filler. Connection failure hardly occurs even when a mechanical impact force is applied, and high reliability can be achieved. Therefore, the present invention is useful in various electronic devices, particularly portable electronic device fields.

本発明の第1の実施の形態にかかる電子部品実装構造体の構成を示す断面図Sectional drawing which shows the structure of the electronic component mounting structure concerning the 1st Embodiment of this invention (a)は同実施の形態の電子部品実装構造体の製造方法において、突起電極の製造方法を説明するための主要工程の断面図のうちの突起電極の第1層の形成工程を示す断面図、(b)は突起電極の第2層の形成工程を示す断面図(A) is sectional drawing which shows the formation process of the 1st layer of a protruding electrode in sectional drawing of the main process for demonstrating the manufacturing method of a protruding electrode in the manufacturing method of the electronic component mounting structure of the embodiment (B) is sectional drawing which shows the formation process of the 2nd layer of a protruding electrode (a)は同実施の形態の電子部品実装構造体において、突起電極の別の製造方法を説明するための図のうち、突起電極の第1層の形成方法を説明する図、(b)は突起電極の第2層の形成方法を説明する図(A) is a figure explaining the formation method of the 1st layer of a protruding electrode among the figures for demonstrating another manufacturing method of a protruding electrode in the electronic component mounting structure of the embodiment, (b) The figure explaining the formation method of the 2nd layer of a protruding electrode (a)は同実施の形態の電子部品実装構造体の製造方法において、縮小投影露光方式による突起電極を形成する方法を説明するための全体構成を示す概略図、(b)はこの方式に使用するフォトマスクの概略形状を示す平面図、(c)はフォトマスクの詳細を示す平面図(A) is the schematic which shows the whole structure for demonstrating the method of forming the projection electrode by the reduction projection exposure system in the manufacturing method of the electronic component mounting structure of the embodiment, (b) is used for this system The top view which shows schematic shape of the photomask to perform, (c) is a top view which shows the detail of a photomask 本発明の第2の実施の形態にかかる電子部品実装構造体の構成を示す断面図Sectional drawing which shows the structure of the electronic component mounting structure concerning the 2nd Embodiment of this invention (a)は同実施の形態の電子部品実装構造体の製造方法において、突起電極の製造方法を説明するための主要工程の断面図のうち、突起電極の第1層の形成工程を示す断面図、(b)は突起電極の第2層の形成工程を示す断面図(A) is sectional drawing which shows the formation process of the 1st layer of a protruding electrode among sectional drawing of the main processes for demonstrating the manufacturing method of a protruding electrode in the manufacturing method of the electronic component mounting structure of the embodiment. (B) is sectional drawing which shows the formation process of the 2nd layer of a protruding electrode (a)は同実施の形態の電子部品実装構造体の製造方法において、突起電極の第3層の形成工程を示す断面図、(b)は突起電極を形成した状態の電子部品の断面図(A) is sectional drawing which shows the formation process of the 3rd layer of a protruding electrode in the manufacturing method of the electronic component mounting structure of the embodiment, (b) is sectional drawing of the electronic component in the state which formed the protruding electrode 同実施の形態の変形例の電子部品実装構造体の構成を示す断面図Sectional drawing which shows the structure of the electronic component mounting structure of the modification of the embodiment 本発明の第3の実施の形態にかかる電子部品実装構造体の構成を示す断面図Sectional drawing which shows the structure of the electronic component mounting structure concerning the 3rd Embodiment of this invention (a)は同実施の形態の電子部品実装構造体の製造方法を説明するための主要工程の図で、電子部品と実装基板とを可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂中に浸漬した状態の断面図、(b)は第1の光強度を有する可視光を照射して突起電極の第1層を形成した状態の断面図(A) is a figure of the main process for demonstrating the manufacturing method of the electronic component mounting structure of the embodiment, The photosensitive resin and the conductive filler which sensitize an electronic component and a mounting board | substrate to visible light are included. Sectional drawing of the state immersed in liquid resin, (b) is sectional drawing of the state which irradiated the visible light which has 1st light intensity, and formed the 1st layer of the protruding electrode (a)は同実施の形態の電子部品実装構造体の製造方法を説明するための主要工程の図で、第2の光強度を有する可視光を照射して突起電極の第2層を形成した状態の断面図、(b)は第3の光強度を有する可視光を照射して突起電極の第3層を形成し、電極端子と接続端子とを接続した状態を示す断面図(A) is a figure of the main process for demonstrating the manufacturing method of the electronic component mounting structure of the embodiment, and formed the 2nd layer of the projection electrode by irradiating visible light which has the 2nd light intensity. Sectional drawing of a state, (b) is sectional drawing which shows the state which irradiated the visible light which has the 3rd light intensity, formed the 3rd layer of a protruding electrode, and connected the electrode terminal and the connecting terminal

符号の説明Explanation of symbols

1,30,65,70 電子部品実装構造体
2,32,50,72 電子部品(半導体素子)
3,33,52,57,73 電極端子
4,74 保護膜
5,35,62,75 実装基板
6,36,55,63,76 接続端子
7,37,60,77 突起電極
7a,37a,37d,60a,77a 第1層
7b,37b,60b,77b 第2層
7c,37c,60c,77c 第3層
7d 第4層
8,39,61,78 絶縁性樹脂
10,20 容器
15 半導体ウェハー
21 底部
22 外周部
23,40,79 フォトマスク
23a,40a 第1の開口部
23b,40b 第2の開口部
24 液状樹脂
25,41,80,81,82,190 可視光
33a 下段側電極端子
33b 上段側電極端子
34 第1保護膜
38 第2保護膜
40c 第3の開口部
51 半導体チップ
53 ダイボンド材
54 配線基板
56 貫通導体
58 金属細線
59 封止樹脂
79a,210 開口部
140 光源
150 光学系
160 液晶パネル(フォトマスク)
160a マスク領域
170 液晶パネル制御装置
180 縮小投影光学系
200 領域
220 液晶セル
1, 30, 65, 70 Electronic component mounting structure 2, 32, 50, 72 Electronic component (semiconductor element)
3, 33, 52, 57, 73 Electrode terminal 4, 74 Protective film 5, 35, 62, 75 Mounting substrate 6, 36, 55, 63, 76 Connection terminal 7, 37, 60, 77 Protruding electrode 7a, 37a, 37d , 60a, 77a First layer 7b, 37b, 60b, 77b Second layer 7c, 37c, 60c, 77c Third layer 7d Fourth layer 8, 39, 61, 78 Insulating resin 10, 20 Container 15 Semiconductor wafer 21 Bottom 22 Peripheral part 23, 40, 79 Photomask 23a, 40a 1st opening part 23b, 40b 2nd opening part 24 Liquid resin 25, 41, 80, 81, 82, 190 Visible light 33a Lower stage side electrode terminal 33b Upper stage side Electrode Terminal 34 First Protective Film 38 Second Protective Film 40c Third Opening 51 Semiconductor Chip 53 Die Bond Material 54 Wiring Board 56 Through Conductor 58 Metal Fine Wire 5 9 Sealing resin 79a, 210 Opening 140 Light source 150 Optical system 160 Liquid crystal panel (photomask)
160a Mask area 170 Liquid crystal panel control device 180 Reduction projection optical system 200 Area 220 Liquid crystal cell

Claims (21)

複数の電極端子を有する電子部品と、
前記電極端子に対応する位置に接続端子を設けた実装基板と、
前記電極端子と前記接続端子とを接続する突起電極とを備え、
前記電子部品の前記電極端子と前記実装基板の前記接続端子とが、前記突起電極により接続され、
前記突起電極は、可視光に感光する感光性樹脂と導電性フィラーとを含む導電性樹脂からなることを特徴とする電子部品実装構造体。
An electronic component having a plurality of electrode terminals;
A mounting board provided with a connection terminal at a position corresponding to the electrode terminal;
A protruding electrode for connecting the electrode terminal and the connection terminal;
The electrode terminal of the electronic component and the connection terminal of the mounting substrate are connected by the protruding electrode,
The projecting electrode is made of a conductive resin containing a photosensitive resin sensitive to visible light and a conductive filler.
前記突起電極が、円柱形状、角柱形状、円錐形状、角錐形状、円錐台形状、角錐台形状または筒状形状であることを特徴とする請求項1に記載の電子部品実装構造体。 2. The electronic component mounting structure according to claim 1, wherein the protruding electrode has a cylindrical shape, a prismatic shape, a conical shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, or a cylindrical shape. 前記突起電極は、厚み方向に複数の層から構成されていることを特徴とする請求項1または請求項2に記載の電子部品実装構造体。 The electronic component mounting structure according to claim 1, wherein the protruding electrode includes a plurality of layers in a thickness direction. 前記突起電極を構成する複数の層のうち、前記電極端子と接する第1層目の厚みが前記電極端子の配置位置により異なることを特徴とする請求項3に記載の電子部品実装構造体。 4. The electronic component mounting structure according to claim 3, wherein a thickness of a first layer in contact with the electrode terminal among a plurality of layers constituting the protruding electrode is different depending on an arrangement position of the electrode terminal. 前記突起電極は、硬度、弾性率または導電率の少なくとも1つが異なる材料からなる複数の層により形成されていることを特徴とする請求項3または請求項4に記載の電子部品実装構造体。 5. The electronic component mounting structure according to claim 3, wherein the protruding electrode is formed of a plurality of layers made of materials different in at least one of hardness, elastic modulus, and electrical conductivity. 前記突起電極は、その表面に導電性皮膜が形成されていることを特徴とする請求項1から請求項5までのいずれか1項に記載の電子部品実装構造体。 6. The electronic component mounting structure according to claim 1, wherein the protruding electrode has a conductive film formed on a surface thereof. 7. 前記電子部品は半導体素子であり、前記突起電極は前記電極端子上に形成され、前記突起電極と前記接続端子とは接触により電気的接続がなされていることを特徴とする請求項1から請求項6までのいずれか1項に記載の電子部品実装構造体。 The electronic component is a semiconductor element, the protruding electrode is formed on the electrode terminal, and the protruding electrode and the connection terminal are electrically connected by contact. The electronic component mounting structure according to any one of 6 to 6. 前記電子部品と前記実装基板との間に異方導電性樹脂層が充填され、前記突起電極と前記接続端子とが前記異方導電性樹脂層により接続されていることを特徴とする請求項7に記載の電子部品実装構造体。 8. The anisotropic conductive resin layer is filled between the electronic component and the mounting substrate, and the protruding electrode and the connection terminal are connected by the anisotropic conductive resin layer. The electronic component mounting structure described in 1. 前記突起電極により接続された前記電子部品と前記実装基板との間に絶縁性接着樹脂が充填されていることを特徴とする請求項1から請求項7までのいずれか1項に記載の電子部品実装構造体。 The electronic component according to claim 1, wherein an insulating adhesive resin is filled between the electronic component connected by the protruding electrode and the mounting substrate. Mounting structure. 前記実装基板は、樹脂基材、セラミック基材または単結晶シリコン基材を用いて形成された回路基板からなることを特徴とする請求項1から請求項9までのいずれか1項に記載の電子部品実装構造体。 The electronic device according to any one of claims 1 to 9, wherein the mounting substrate is made of a circuit substrate formed using a resin base material, a ceramic base material, or a single crystal silicon base material. Component mounting structure. 前記実装基板は、可視光を透過する透明基材と、前記透明基材表面上に形成され、少なくとも可視光を透過する透明導電性薄膜からなる接続端子を含むことを特徴とする請求項1から請求項4までのいずれか1項に記載の電子部品実装構造体。 The mounting board includes a transparent base material that transmits visible light, and a connection terminal that is formed on the surface of the transparent base material and includes at least a transparent conductive thin film that transmits visible light. The electronic component mounting structure according to any one of claims 4 to 5. 可視光に感光する感光性樹脂と導電性フィラーとを含む導電性樹脂からなる突起電極を、電子部品の電極端子上または実装基板の接続端子上に形成する突起電極形成工程と、
前記突起電極が形成された前記電子部品または前記実装基板を、前記突起電極を介して前記電極端子と前記接続端子とを位置合せする位置合せ工程と、
前記電子部品を押圧して、前記電極端子と前記接続端子とを前記突起電極を介して接続する接続工程とを備えたことを特徴とする電子部品実装構造体の製造方法。
A protruding electrode forming step of forming a protruding electrode made of a conductive resin containing a photosensitive resin sensitive to visible light and a conductive filler on an electrode terminal of an electronic component or a connection terminal of a mounting substrate;
An alignment step of aligning the electrode terminal and the connection terminal via the protruding electrode with respect to the electronic component or the mounting substrate on which the protruding electrode is formed;
A method of manufacturing an electronic component mounting structure, comprising: a connection step of pressing the electronic component to connect the electrode terminal and the connection terminal via the protruding electrode.
前記接続工程の後に、さらに前記電子部品と前記実装基板との間に絶縁性樹脂を充填する工程を備えたことを特徴とする請求項12に記載の電子部品実装構造体の製造方法。 The method of manufacturing an electronic component mounting structure according to claim 12, further comprising a step of filling an insulating resin between the electronic component and the mounting substrate after the connecting step. 前記位置合せ工程の前に、前記電極端子が形成された前記電子部品の面上または前記接続端子が形成された前記実装基板の面上に絶縁性樹脂または異方導電性樹脂を形成する工程と、
前記接続工程の後に、前記絶縁性樹脂または前記異方導電性樹脂を硬化させ、前記電子部品と前記実装基板とを接着固定する工程をさらに備えたことを特徴とする請求項12に記載の電子部品実装構造体の製造方法。
Forming an insulating resin or an anisotropic conductive resin on the surface of the electronic component on which the electrode terminals are formed or on the surface of the mounting substrate on which the connection terminals are formed before the alignment step; ,
The electronic device according to claim 12, further comprising a step of curing the insulating resin or the anisotropic conductive resin after the connecting step, and bonding and fixing the electronic component and the mounting substrate. Manufacturing method of component mounting structure.
前記突起電極形成工程が、
少なくとも底面が可視光を透過する容器に、可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂を供給する樹脂供給工程と、
複数の電極端子が一方の面上に形成された電子部品を、前記電極端子が前記底面に対向する方向で、かつ前記底面に対してあらかじめ設定した間隔を有して前記液状樹脂中に浸漬する工程と、
前記容器の底面からフォトマスクの第1の開口部を介して選択的に可視光を照射し、前記電極端子上の前記液状樹脂を硬化させて、複数の前記電極端子上に一括して第1層目を形成する第1層形成工程と、
前記電子部品をあらかじめ設定した距離だけ前記底面から引き上げる引き上げ工程と、
前記第1の開口部より少なくとも小さい第2の開口部を有するフォトマスクを用いて選択的に可視光を照射し、前記第1層上の前記液状樹脂を硬化させて、前記第1層上に第2層目を形成する第2層形成工程と、
前記引き上げ工程と前記第2層形成工程と同様の工程を順次繰り返して、層状構造の前記突起電極を形成することを特徴とする請求項12から請求項14までのいずれか1項に記載の電子部品実装構造体の製造方法。
The protruding electrode forming step includes:
A resin supply step of supplying a liquid resin containing a photosensitive resin sensitive to visible light and a conductive filler to a container having at least a bottom surface transmitting visible light;
An electronic component having a plurality of electrode terminals formed on one surface is immersed in the liquid resin in a direction in which the electrode terminals face the bottom surface and with a predetermined interval with respect to the bottom surface. Process,
The visible light is selectively irradiated from the bottom surface of the container through the first opening of the photomask to cure the liquid resin on the electrode terminals, and the first is collectively applied to the plurality of electrode terminals. A first layer forming step of forming a layer;
A lifting step of lifting the electronic component from the bottom surface by a preset distance;
Using a photomask having a second opening that is at least smaller than the first opening, selectively irradiates visible light to cure the liquid resin on the first layer, and on the first layer. A second layer forming step of forming a second layer;
15. The electron according to any one of claims 12 to 14, wherein the protruding electrode having a layered structure is formed by sequentially repeating the same step as the pulling step and the second layer forming step. Manufacturing method of component mounting structure.
前記底面が前記フォトマスクからなることを特徴とする請求項15に記載の電子部品実装構造体の製造方法。 The method of manufacturing an electronic component mounting structure according to claim 15, wherein the bottom surface is made of the photomask. 前記突起電極形成工程が、
容器に可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂を供給する樹脂供給工程と、
複数の電極端子が一方の面上に形成された電子部品を、前記電極端子が前記液状樹脂の表面に対してあらかじめ設定した間隔を有して前記液状樹脂中に浸漬する工程と、
前記液状樹脂の表面からフォトマスクの第1の開口部を介して選択的に可視光を照射し、前記電極端子上の前記液状樹脂を硬化させて、複数の前記電極端子上に一括して第1層目を形成する第1層形成工程と、
前記電子部品をあらかじめ設定した距離だけ前記液状樹脂中に沈降させる沈降工程と、
前記第1の開口部より少なくとも小さい第2の開口部を有するフォトマスクを用いて選択的に可視光を照射し、前記第1層上の前記液状樹脂を硬化させて、前記第1層上に第2層目を形成する第2層形成工程と、
前記沈降工程と前記第2層形成工程と同様の工程を順次繰り返して、層状構造の前記突起電極を形成することを特徴とする請求項12から請求項14までのいずれか1項に記載の電子部品実装構造体の製造方法。
The protruding electrode forming step includes:
A resin supplying step of supplying a liquid resin containing a photosensitive resin sensitive to visible light and a conductive filler to the container;
A step of immersing the electronic component having a plurality of electrode terminals formed on one surface thereof in the liquid resin with a predetermined interval with respect to the surface of the liquid resin;
The liquid resin is selectively irradiated with visible light from the surface of the liquid resin through the first opening of the photomask to cure the liquid resin on the electrode terminals, and then collectively onto the plurality of electrode terminals. A first layer forming step of forming a first layer;
A sedimentation step of allowing the electronic component to settle in the liquid resin by a predetermined distance;
Using a photomask having a second opening that is at least smaller than the first opening, selectively irradiates visible light to cure the liquid resin on the first layer, and on the first layer. A second layer forming step of forming a second layer;
The electron according to any one of claims 12 to 14, wherein the protruding electrode having a layered structure is formed by sequentially repeating the steps of the sedimentation step and the second layer formation step. Manufacturing method of component mounting structure.
前記突起電極形成工程が、
電極端子が形成された電子部品上に、可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂を前記突起電極の厚みに相当する厚みに供給する樹脂供給工程と、
前記液状樹脂に対して、フォトマスクの開口部を介して選択的に、かつ光強度を順次増加しながら可視光を照射して、前記電極端子上の前記液状樹脂を硬化させ突起電極を成長させる工程とからなることを特徴とする請求項12から請求項14までのいずれか1項に記載の電子部品実装構造体の製造方法。
The protruding electrode forming step includes:
A resin supplying step of supplying a liquid resin containing a photosensitive resin sensitive to visible light and a conductive filler on the electronic component on which the electrode terminal is formed, to a thickness corresponding to the thickness of the protruding electrode;
The liquid resin is irradiated with visible light selectively through the opening of the photomask while sequentially increasing the light intensity, thereby curing the liquid resin on the electrode terminal and growing a protruding electrode. The method for manufacturing an electronic component mounting structure according to any one of claims 12 to 14, wherein the method comprises a process.
可視光を透過する透明基材と、前記透明基材表面上に形成され、少なくとも可視光を透過する透明導電性薄膜からなる接続端子を含む実装基板と、前記接続端子に対応する位置に電極端子を設けた電子部品とを、あらかじめ設定した間隔を有して配置する配置工程と、
前記電子部品と前記実装基板との間に、可視光に感光する感光性樹脂と導電性フィラーとを含む液状樹脂を供給する樹脂供給工程と、
前記実装基板の前記電子部品に対向する面とは反対側の面からフォトマスクの開口部を介して選択的に、かつ光強度を順次増加しながら可視光を照射して前記接続端子上の前記液状樹脂を硬化させ突起電極を成長させて、複数の前記接続端子と複数の前記電極端子とを一括して接続することを特徴とする電子部品実装構造体の製造方法。
A transparent substrate that transmits visible light, a mounting substrate that is formed on the surface of the transparent substrate and includes a connection terminal made of a transparent conductive thin film that transmits at least visible light, and an electrode terminal at a position corresponding to the connection terminal An electronic component provided with an arrangement step of arranging the electronic component with a preset interval;
A resin supplying step of supplying a liquid resin containing a photosensitive resin sensitive to visible light and a conductive filler between the electronic component and the mounting substrate;
The surface on the connection terminal is irradiated with visible light selectively from the surface opposite to the surface facing the electronic component of the mounting substrate through a photomask opening and sequentially increasing the light intensity. A method of manufacturing an electronic component mounting structure, comprising: curing a liquid resin to grow a protruding electrode, and connecting the plurality of connection terminals and the plurality of electrode terminals together.
前記フォトマスクは、液晶セルが二次元的に配置された透過式の液晶パネルを用い、前記開口部の大きさを前記液晶セルに印加する電圧により電気的に制御することを特徴とする請求項16から請求項19までのいずれか1項に記載の電子部品実装構造体の製造方法。 The transmissive liquid crystal panel in which liquid crystal cells are two-dimensionally arranged is used as the photomask, and the size of the opening is electrically controlled by a voltage applied to the liquid crystal cell. The method for manufacturing an electronic component mounting structure according to any one of claims 16 to 19. 前記フォトマスクは前記液晶パネルを用い、かつ前記液晶パネルを透過した光像を縮小投影して前記液状樹脂に照射することを特徴とする請求項20に記載の電子部品実装構造体の製造方法。 21. The method of manufacturing an electronic component mounting structure according to claim 20, wherein the photomask uses the liquid crystal panel, and projects an optical image transmitted through the liquid crystal panel in a reduced scale and irradiates the liquid resin.
JP2006068801A 2006-03-14 2006-03-14 Manufacturing method of electronic component mounting structure Expired - Fee Related JP4609350B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006068801A JP4609350B2 (en) 2006-03-14 2006-03-14 Manufacturing method of electronic component mounting structure
CN2007800072493A CN101395975B (en) 2006-03-14 2007-03-06 Electronic part mounting structure and its manufacturing method
PCT/JP2007/054280 WO2007105535A1 (en) 2006-03-14 2007-03-06 Electronic part mounting structure and its manufacturing method
KR1020087021148A KR101079979B1 (en) 2006-03-14 2007-03-06 Electronic part mounting structure and its manufacturing method
US12/278,481 US8119449B2 (en) 2006-03-14 2007-03-06 Method of manufacturing an electronic part mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006068801A JP4609350B2 (en) 2006-03-14 2006-03-14 Manufacturing method of electronic component mounting structure

Publications (2)

Publication Number Publication Date
JP2007250618A true JP2007250618A (en) 2007-09-27
JP4609350B2 JP4609350B2 (en) 2011-01-12

Family

ID=38594627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006068801A Expired - Fee Related JP4609350B2 (en) 2006-03-14 2006-03-14 Manufacturing method of electronic component mounting structure

Country Status (1)

Country Link
JP (1) JP4609350B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117513A1 (en) * 2007-03-23 2008-10-02 Panasonic Corporation Conductive bump, method for producing the same, and electronic component mounted structure
JP2012253282A (en) * 2011-06-06 2012-12-20 Sony Chemical & Information Device Corp Connection method, connected-body production method and connected body
JP2020167316A (en) * 2019-03-29 2020-10-08 大日本印刷株式会社 Wiring board and wiring board with component
WO2022125166A1 (en) * 2020-12-08 2022-06-16 Intel Corporation Hybrid manufacturing for integrated circuit devices and assemblies
US11756886B2 (en) 2020-12-08 2023-09-12 Intel Corporation Hybrid manufacturing of microeletronic assemblies with first and second integrated circuit structures
US11817442B2 (en) 2020-12-08 2023-11-14 Intel Corporation Hybrid manufacturing for integrated circuit devices and assemblies

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06301190A (en) * 1993-04-13 1994-10-28 Sharp Corp Liquid crystal photo-mask, its manufacture, and exposing device
JPH11233669A (en) * 1998-02-10 1999-08-27 Mitsui High Tec Inc Manufacture of semiconductor device
JP2000022305A (en) * 1998-06-30 2000-01-21 Kyocera Corp Manufacture of chip mounting wiring board
JP2000357710A (en) * 1999-04-16 2000-12-26 Citizen Watch Co Ltd Mounting structure and mounting method of semiconductor device
JP2001189337A (en) * 1999-12-28 2001-07-10 Matsushita Electric Ind Co Ltd Electrode bump, semiconductor element using the same, and semiconductor device
JP2003023231A (en) * 2001-07-05 2003-01-24 Noda Screen:Kk Method for forming electric circuit
JP2004253544A (en) * 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2005072262A (en) * 2003-08-25 2005-03-17 Seiko Epson Corp Circuit board, its manufacturing method, electrooptic device, and electronic equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06301190A (en) * 1993-04-13 1994-10-28 Sharp Corp Liquid crystal photo-mask, its manufacture, and exposing device
JPH11233669A (en) * 1998-02-10 1999-08-27 Mitsui High Tec Inc Manufacture of semiconductor device
JP2000022305A (en) * 1998-06-30 2000-01-21 Kyocera Corp Manufacture of chip mounting wiring board
JP2000357710A (en) * 1999-04-16 2000-12-26 Citizen Watch Co Ltd Mounting structure and mounting method of semiconductor device
JP2001189337A (en) * 1999-12-28 2001-07-10 Matsushita Electric Ind Co Ltd Electrode bump, semiconductor element using the same, and semiconductor device
JP2003023231A (en) * 2001-07-05 2003-01-24 Noda Screen:Kk Method for forming electric circuit
JP2004253544A (en) * 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2005072262A (en) * 2003-08-25 2005-03-17 Seiko Epson Corp Circuit board, its manufacturing method, electrooptic device, and electronic equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117513A1 (en) * 2007-03-23 2008-10-02 Panasonic Corporation Conductive bump, method for producing the same, and electronic component mounted structure
KR101087344B1 (en) 2007-03-23 2011-11-25 파나소닉 주식회사 Conductive bump, method for producing the same, and electronic component mounted structure
JP5152177B2 (en) * 2007-03-23 2013-02-27 パナソニック株式会社 Conductive bump, manufacturing method thereof, and electronic component mounting structure
US8575751B2 (en) 2007-03-23 2013-11-05 Panasonic Corporation Conductive bump, method for producing the same, and electronic component mounted structure
JP2012253282A (en) * 2011-06-06 2012-12-20 Sony Chemical & Information Device Corp Connection method, connected-body production method and connected body
JP2020167316A (en) * 2019-03-29 2020-10-08 大日本印刷株式会社 Wiring board and wiring board with component
JP7234744B2 (en) 2019-03-29 2023-03-08 大日本印刷株式会社 Wiring board and wiring board with elements
WO2022125166A1 (en) * 2020-12-08 2022-06-16 Intel Corporation Hybrid manufacturing for integrated circuit devices and assemblies
US11756886B2 (en) 2020-12-08 2023-09-12 Intel Corporation Hybrid manufacturing of microeletronic assemblies with first and second integrated circuit structures
US11817442B2 (en) 2020-12-08 2023-11-14 Intel Corporation Hybrid manufacturing for integrated circuit devices and assemblies

Also Published As

Publication number Publication date
JP4609350B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP5152177B2 (en) Conductive bump, manufacturing method thereof, and electronic component mounting structure
KR101079979B1 (en) Electronic part mounting structure and its manufacturing method
KR100194130B1 (en) Semiconductor package
US7911050B2 (en) Semiconductor device and method for manufacturing the same
TWI533412B (en) Semiconductor device package structure and forming method of the same
TW451368B (en) Flip chip assembly of semiconductor IC chips
TWI364101B (en) Semiconductor package and a manufacturing method thereof
JP5728423B2 (en) Semiconductor device manufacturing method, semiconductor integrated device, and manufacturing method thereof
JP4609350B2 (en) Manufacturing method of electronic component mounting structure
TWI450315B (en) Method for implementing semiconductor device
JP2005167191A (en) Fanout wafer-level-package structure and method of manufacturing same
TWI529824B (en) Method of manufacturing semiconductor device and method of manufacturing electronic assembly
EP1589570A1 (en) Semiconductor device and process for producing the same
JP2010276541A (en) Thin-film probe sheet, method of manufacturing the same, probe card, and semiconductor chip inspecting apparatus
TWI299572B (en) Inspection device and method for manufacturing the same, method for manufacturing electro-optic device and method for manufacturing semiconductor device
JP2020004926A (en) Wiring board and manufacturing method thereof
KR100608185B1 (en) Semiconductor device and method for manufacturing the same
JP2008288481A (en) Semiconductor device and method for manufacturing the same
JP2009111336A (en) Electronic component mounting structure and manufacturing method thereof
CN111834240A (en) Semiconductor device and method for manufacturing the same
JP2005129756A (en) Method of joining semiconductor element
JP2006237412A (en) Method for manufacturing semiconductor device and for electronic apparatus
KR101540972B1 (en) Manufacturing method of probe block for inspecting display panel
WO2000021135A1 (en) Semiconductor device and method for manufacturing the same
JP2010010319A (en) Conductive bump, method of forming the same, and electronic component mounting structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees