JP2009111336A - Electronic component mounting structure and manufacturing method thereof - Google Patents

Electronic component mounting structure and manufacturing method thereof Download PDF

Info

Publication number
JP2009111336A
JP2009111336A JP2008172975A JP2008172975A JP2009111336A JP 2009111336 A JP2009111336 A JP 2009111336A JP 2008172975 A JP2008172975 A JP 2008172975A JP 2008172975 A JP2008172975 A JP 2008172975A JP 2009111336 A JP2009111336 A JP 2009111336A
Authority
JP
Japan
Prior art keywords
electronic component
protruding electrode
mounting structure
shape
component mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008172975A
Other languages
Japanese (ja)
Inventor
Shozo Ochi
正三 越智
Kazuya Atokawa
和也 後川
Daisuke Sakurai
大輔 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008172975A priority Critical patent/JP2009111336A/en
Publication of JP2009111336A publication Critical patent/JP2009111336A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1405Shape
    • H01L2224/14051Bump connectors having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic component mounting structure which hardly causes mounting defects even when a semiconductor element having narrow pitch and multi-pin electrode terminals is used, also can suppress characteristic fluctuation, breakage or the like caused by thrust in mounting, and is high in connection reliability. <P>SOLUTION: In the electronic component mounting structure 1 on which a plurality of electrode terminals 3 of an electronic component 2 and a plurality of connection terminals 6 formed on a substrate 5 corresponding to the electrode terminals 3 are joined by a projection electrode 7 constituted at least of a conductive filler and a resin material, the electronic component 2 has structure by providing a plurality of functional areas and being connected via the projection electrodes 7 having at least two or more kinds of different functions, provided corresponding to the functional areas. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体素子に代表される電子部品を実装基板などにフリップチップ実装した電子部品実装構造体およびその製造方法に関する。   The present invention relates to an electronic component mounting structure in which an electronic component typified by a semiconductor element is flip-chip mounted on a mounting substrate or the like, and a manufacturing method thereof.

近年、半導体素子の高密度化に伴って、半導体素子の電極端子のピッチおよび面積が小さくなっている。これに伴い、半導体素子を実装基板にフリップチップ実装する際に用いる突起電極に関しても要求が厳しくなっている。   In recent years, as the density of semiconductor elements increases, the pitch and area of the electrode terminals of the semiconductor elements have decreased. Along with this, there is a strict requirement for the protruding electrode used when flip-chip mounting the semiconductor element on the mounting substrate.

そして、電極端子の狭ピッチ化に伴い、実装基板の隣接する接続端子間での短絡の発生や、半導体素子と実装基板との熱膨張係数の差に起因する応力により突起電極と電極端子間の接続不良が生じやすいという課題がある。特に、携帯電話などの携帯用電子機器では落下衝撃なども頻繁に受けるため、このような接続不良が使用中に生じると、携帯用電子機器の不良につながる。   As the pitch of the electrode terminals is narrowed, a short circuit occurs between adjacent connection terminals of the mounting board, and stress caused by a difference in thermal expansion coefficient between the semiconductor element and the mounting board causes a gap between the protruding electrode and the electrode terminal. There is a problem that poor connection is likely to occur. In particular, since portable electronic devices such as mobile phones are frequently subjected to drop impacts and the like, if such a connection failure occurs during use, it leads to a failure of the portable electronic device.

一方、狭ピッチ化を避けるために、半導体素子の回路形成面全体を用いて、突起電極を形成するエリアバンプ方式では、実装エリア全体に実装基板の高い平面度が要求される。   On the other hand, in order to avoid a narrow pitch, in the area bump method in which the protruding electrode is formed using the entire circuit formation surface of the semiconductor element, a high flatness of the mounting substrate is required for the entire mounting area.

これらに対して、例えば断面が円錐状または角錐状の突起電極、あるいは導電性の樹脂を用いた突起電極を形成して、これらの課題を解決することが検討されている。例えば、先端が尖った導電性樹脂バンプを半導体チップ上に形成して、この導電性樹脂バンプを用いて実装した半導体装置が開示されている(例えば、特許文献1参照)。   In order to solve these problems, for example, a projecting electrode having a conical or pyramidal cross section or a projecting electrode using a conductive resin has been studied. For example, a semiconductor device in which a conductive resin bump with a sharp tip is formed on a semiconductor chip and mounted using the conductive resin bump is disclosed (for example, see Patent Document 1).

特許文献1による導電性樹脂バンプは、以下に示す形成工程からなる。まず、先端が尖った凹部を平板の主面上に半導体チップ上に形成された電極パッドに対応して形成する工程と、これらの凹部に導電性樹脂を充填する工程とを有する。その後、半導体チップ上に平板の主面が半導体チップの電極パッドを担持する面と対面するとともに、上記凹部が半導体チップ上の対応する電極パッドと整合するように位置合わせする工程と、平板を半導体チップに位置合わせした状態で重ね合わせる工程を有する。そして、重ね合わせた状態で樹脂を硬化させて電極パッド上に、先端が尖った導電性樹脂バンプを転写形成する工程とからなる。   The conductive resin bump according to Patent Document 1 includes the following forming steps. First, there are a step of forming recesses with sharp tips on the main surface of the flat plate corresponding to electrode pads formed on the semiconductor chip, and a step of filling these recesses with a conductive resin. Thereafter, a step of aligning the main surface of the flat plate on the semiconductor chip with the surface carrying the electrode pad of the semiconductor chip and aligning the concave portion with the corresponding electrode pad on the semiconductor chip; A step of superposing the chips in a state of being aligned with the chip. Then, the resin is cured in a superposed state and a conductive resin bump having a sharp tip is transferred and formed on the electrode pad.

このとき、凹部を形成する工程として、例えば(100)面を主面とする単結晶シリコン(Si)基板を用いて、(100)面上に凹部をウェットエッチング法により形成する方法が開示されている。この方法により、半導体素子の電極端子上にバリアメタルを形成することなく、例えば高さが60μmで、ばらつきが標準偏差にして2.5μm以内の突起電極を形成できる。その結果、確実な接続とともに、安価な半導体装置が得られるとしている。   At this time, as a step of forming the concave portion, for example, a method of forming a concave portion on the (100) plane by wet etching using a single crystal silicon (Si) substrate having the (100) plane as a main surface is disclosed. Yes. By this method, without forming a barrier metal on the electrode terminal of the semiconductor element, it is possible to form a protruding electrode having a height of, for example, 60 μm and a standard deviation of 2.5 μm or less. As a result, an inexpensive semiconductor device can be obtained with reliable connection.

また、別の例として、接続信頼性が高く、しかもエリアバンプ方式であっても実装基板の反りを吸収できる突起電極が開示されている(例えば、特許文献2参照)。特許文献2に示されている突起電極は、下段バンプの上に、これより小さい上段バンプが形成された2段形状からなり、上段バンプの弾性率を下段バンプの弾性率より小さくしている。これにより、半導体素子と実装基板との間で生じる応力を突起電極で吸収する構造である。このとき、導電性接着剤を用いる場合、突起電極と導電性接着剤により、さらに応力を吸収できるような構造とすることができる。このため、これを用いた半導体装置において、接続信頼性が良好になる。また、エリアバンプ方式の場合は、実装基板に反りがある場合でも、この反りを突起電極で吸収できるとしている。   As another example, there is disclosed a protruding electrode that has high connection reliability and can absorb the warping of the mounting substrate even if it is an area bump method (see, for example, Patent Document 2). The protruding electrode disclosed in Patent Document 2 has a two-stage shape in which an upper bump smaller than the upper bump is formed on the lower bump, and the elastic modulus of the upper bump is smaller than the elastic modulus of the lower bump. Thereby, the stress generated between the semiconductor element and the mounting substrate is absorbed by the protruding electrode. At this time, when a conductive adhesive is used, a structure capable of further absorbing stress can be obtained by the protruding electrode and the conductive adhesive. For this reason, in a semiconductor device using the same, connection reliability is improved. In the case of the area bump method, even when the mounting substrate has a warp, the warp can be absorbed by the protruding electrode.

また、上段バンプを導電性樹脂、特に感光性導電性樹脂で形成し、この樹脂で形成されたバンプの表面に金属膜を形成する例も開示されている。
特開平10−112474号公報 特開2001−189337号公報
Also disclosed is an example in which the upper bump is formed of a conductive resin, particularly a photosensitive conductive resin, and a metal film is formed on the surface of the bump formed of this resin.
JP-A-10-112474 JP 2001-189337 A

特許文献1に示された突起電極は、単結晶Si基板などを用いて凹部を形成して、凹部に導電性樹脂を埋め込み、その後、これを半導体素子の電極端子上に転写する方法を用いて、角錐状で、かつ厚みのばらつきの小さな形状で形成するものである。しかし、上記方法では、突起電極自体の厚みのばらつきを抑制することはできるが、例えば半導体素子に反りがある場合や半導体素子の突起電極を形成する面などに凹凸がある場合、結果として、半導体素子の表面に形成された突起電極面は一定の高さとならない。すなわち、半導体素子の裏面から突起電極の先端部までの高さのばらつきは解消されない。そのため、半導体素子の電極端子が狭ピッチで、かつ多ピン化する場合、突起電極面の高さのばらつきは、接続安定性を低下させ、実装不良が生じやすくなるという課題を有する。   The protruding electrode disclosed in Patent Document 1 uses a method in which a concave portion is formed using a single crystal Si substrate or the like, a conductive resin is embedded in the concave portion, and then transferred onto an electrode terminal of a semiconductor element. It is formed in a pyramid shape with a small variation in thickness. However, in the above method, the variation in the thickness of the protruding electrode itself can be suppressed. However, for example, when the semiconductor element is warped or the surface on which the protruding electrode of the semiconductor element is formed is uneven, as a result, the semiconductor The protruding electrode surface formed on the surface of the element does not have a constant height. That is, the variation in height from the back surface of the semiconductor element to the tip of the protruding electrode is not eliminated. Therefore, when the electrode terminals of the semiconductor element have a narrow pitch and a large number of pins, variations in the height of the protruding electrode surface have a problem that connection stability is lowered and mounting defects are likely to occur.

そこで、実装不良を防ぐために、半導体素子に対して大きな押圧力を加えることが必要となる。しかし、大きな押圧力を加えると、半導体素子中の回路が破損しやすくなるため、半導体素子の回路形成面上に突起電極を形成することが困難になるという課題もある。   Therefore, in order to prevent mounting defects, it is necessary to apply a large pressing force to the semiconductor element. However, when a large pressing force is applied, the circuit in the semiconductor element is likely to be damaged, which makes it difficult to form the protruding electrode on the circuit formation surface of the semiconductor element.

また、特許文献2の2段形状を有する突起電極においては、上段バンプの弾性率を下段バンプの弾性率より小さくすることにより、実装時の接触のばらつきや衝撃を吸収することができる。しかし、上記と同様に、半導体素子の表面に形成された突起電極面は一定の高さとならない。すなわち、半導体素子の裏面から突起電極の先端部までの高さのばらつきは解消されず、特許文献1と同様な課題を有する。   Further, in the protruding electrode having a two-stage shape disclosed in Patent Document 2, by making the elastic modulus of the upper bump smaller than that of the lower bump, it is possible to absorb variations in contact and impact during mounting. However, similar to the above, the protruding electrode surface formed on the surface of the semiconductor element does not have a constant height. That is, the variation in height from the back surface of the semiconductor element to the tip end portion of the protruding electrode is not eliminated, and there is a problem similar to that of Patent Document 1.

また、特許文献1と特許文献2の突起電極においては、一般的に、図7に示すように、1つの半導体素子302内の電極端子303上に形成される突起電極307の形状は、一様で同じ構成となっている。しかし、実際には、1つの半導体素子302の中に複数の機能領域からなる回路ブロックが配置され、これにより、様々な機能を有している。そのため、半導体素子302とキャリア基板305との間での設計の不整合(ミスマッチ)、例えば位置ずれ、配置不良などが生じた場合、接合部で補正することが困難になる。その結果、半導体素子302もしくはキャリア基板305の再設計が必要となり、生産効率が低下する。   In the protruding electrodes of Patent Document 1 and Patent Document 2, generally, the shape of the protruding electrode 307 formed on the electrode terminal 303 in one semiconductor element 302 is uniform as shown in FIG. It has the same configuration. However, actually, a circuit block composed of a plurality of functional regions is arranged in one semiconductor element 302, and thus has various functions. For this reason, when a design mismatch (mismatch) between the semiconductor element 302 and the carrier substrate 305 occurs, for example, misalignment or poor placement, it is difficult to correct at the joint. As a result, the semiconductor element 302 or the carrier substrate 305 needs to be redesigned, and the production efficiency is lowered.

本発明は、上記課題を解決するためになされたもので、狭ピッチで、かつ多ピンの電極端子を有する半導体素子を用いても、実装不良が生じにくく、かつ実装時の押圧力による特性変動や破損などを抑制できる、接続信頼性の高い電子部品実装構造体およびその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems. Even when a semiconductor element having a narrow pitch and a multi-pin electrode terminal is used, a mounting failure is hardly caused, and a characteristic variation due to a pressing force at the time of mounting is achieved. An object of the present invention is to provide an electronic component mounting structure with high connection reliability that can suppress damage and damage, and a method for manufacturing the same.

上述したような目的を達成するために、本発明は、電子部品の複数の電極端子と、電極端子に対応して基板上に形成された複数の接続端子とが、少なくとも導電フィラーと樹脂材料からなる突起電極により接合された電子部品実装構造体において、電子部品は、複数の機能領域を有し、機能領域に対応して設けた、少なくとも2種類以上の異なる機能を有する突起電極を介して接続した構成を有する。   In order to achieve the above-described object, the present invention provides a plurality of electrode terminals of an electronic component and a plurality of connection terminals formed on the substrate corresponding to the electrode terminals, at least from a conductive filler and a resin material. In the electronic component mounting structure bonded by the protruding electrode, the electronic component has a plurality of functional areas and is connected via protruding electrodes having at least two different functions provided corresponding to the functional areas. The configuration is as follows.

さらに、電子部品の機能領域に対応して、突起電極の外形形状を異ならせてもよい。   Furthermore, the outer shape of the protruding electrode may be varied in accordance with the functional area of the electronic component.

さらに、電子部品の機能領域に対応して、突起電極の機械的強度を異ならせてもよい。   Furthermore, the mechanical strength of the protruding electrode may be varied in accordance with the functional area of the electronic component.

さらに、電子部品の機能領域が、少なくとも第1機能領域と、第1機能領域より機械的強度の低い第2機能領域を有し、第1機能領域に設けた第1突起電極よりも、第2機能領域に設けた第2突起電極の弾性変形量を大きくしてもよい。   Furthermore, the functional area of the electronic component has at least a first functional area and a second functional area having a mechanical strength lower than that of the first functional area, and is second than the first protruding electrode provided in the first functional area. The amount of elastic deformation of the second protruding electrode provided in the functional region may be increased.

さらに、第1突起電極が太鼓状で、第2の突起電極が斜め円柱状またはコイルバネ状からなってもよい。   Further, the first protruding electrode may be a drum shape, and the second protruding electrode may be an oblique columnar shape or a coil spring shape.

さらに、電子部品の機能領域に対応して、突起電極の導電率を変化させてもよい。   Furthermore, the conductivity of the protruding electrode may be changed corresponding to the functional area of the electronic component.

さらに、電子部品の導電率が、少なくとも導電フィラーの密度、粒径、または樹脂材料により調整されてもよい。   Furthermore, the electrical conductivity of the electronic component may be adjusted by at least the density, particle size, or resin material of the conductive filler.

さらに、突起電極において、電子部品の電極端子と基板の接続端子との接続部の断面形状を等しくしてもよい。   Furthermore, in the protruding electrode, the cross-sectional shape of the connection portion between the electrode terminal of the electronic component and the connection terminal of the substrate may be made equal.

さらに、突起電極の断面形状が、円柱形状、角柱形状、円錐形状、角錐形状、円錐台形状、角錐台形状、斜め円柱形状、太鼓形状または筒状形状であってもよい。   Furthermore, the cross-sectional shape of the protruding electrode may be a cylindrical shape, a prism shape, a conical shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, an oblique cylindrical shape, a drum shape, or a cylindrical shape.

さらに、電子部品が、突起電極が設けられた半導体素子であり、基板の接続端子と半導体素子の突起電極とが、接触により電気的に接続されていてもよい。   Further, the electronic component may be a semiconductor element provided with a protruding electrode, and the connection terminal of the substrate and the protruding electrode of the semiconductor element may be electrically connected by contact.

これらの構成により、電子部品の機能領域の構造や特性に応じて、形状、構造または電気的特性の最適な突起電極を介して接続できる。その結果、特性変動が小さく信頼性に優れた電子部品実装構造体を実現できる。   With these configurations, the connection can be made via the protruding electrode having the optimum shape, structure, or electrical characteristics in accordance with the structure and characteristics of the functional region of the electronic component. As a result, it is possible to realize an electronic component mounting structure with small characteristic variation and excellent reliability.

また、本発明の電子部品実装構造体の製造方法は、電子部品の機能領域に対応させて、異なる機能を有する突起電極を形成する工程と、基板の接続端子上に絶縁性樹脂を形成する工程と、電子部品の突起電極と、基板の接続端子と位置合わせして接合する工程と、絶縁性樹脂を硬化する工程と、を含む。   Further, the method for manufacturing an electronic component mounting structure according to the present invention includes a step of forming a protruding electrode having a different function corresponding to a functional region of the electronic component, and a step of forming an insulating resin on the connection terminal of the substrate. And a step of aligning and joining the protruding electrode of the electronic component, the connection terminal of the substrate, and a step of curing the insulating resin.

この方法により、電子部品の機能領域の構造や特性に応じて、形状、構造または電気的特性の最適な突起電極を形成できる。その結果、特性変動が小さく信頼性に優れた電子部品実装構造体を高い生産効率で作製できる。   By this method, it is possible to form a protruding electrode having an optimum shape, structure, or electrical characteristic according to the structure and characteristics of the functional region of the electronic component. As a result, it is possible to manufacture an electronic component mounting structure with small characteristics variation and excellent reliability with high production efficiency.

本発明によれば、電子部品の機能領域の構造や特性に応じて、形状、構造または電気的特性の最適な突起電極を介して接続した、特性変動が小さく信頼性に優れた電子部品実装構造体およびその製造方法を実現できる。   According to the present invention, an electronic component mounting structure with small characteristic variation and excellent reliability connected via a protruding electrode having an optimum shape, structure, or electrical characteristic according to the structure and characteristics of the functional area of the electronic component. Body and its manufacturing method can be realized.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、同じ要素については、同じ符号を付して説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, about the same element, the same code | symbol is attached | subjected and description is abbreviate | omitted.

(実施の形態)
以下、本発明の実施の形態における電子部品実装構造体について、図面を用いて説明する。
(Embodiment)
Hereinafter, an electronic component mounting structure according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態における電子部品実装構造体1の構成を示す断面図である。   FIG. 1 is a cross-sectional view showing a configuration of an electronic component mounting structure 1 according to an embodiment of the present invention.

図1に示すように、本実施の形態の電子部品実装構造体1は、複数の電極端子3を有する電子部品2と、電極端子3に対応する位置に接続端子6を設けた基板5と、電極端子3と接続端子6とを接続する突起電極7とを備えている。このとき、電子部品2の電極端子3と基板5の接続端子6とは、異なる機能を有する突起電極7により接続されている。ここで、突起電極7は、少なくとも感光性樹脂と導電フィラーとを含む導電性樹脂から構成されている。   As shown in FIG. 1, the electronic component mounting structure 1 according to the present embodiment includes an electronic component 2 having a plurality of electrode terminals 3, a substrate 5 having connection terminals 6 provided at positions corresponding to the electrode terminals 3, A protruding electrode 7 for connecting the electrode terminal 3 and the connection terminal 6 is provided. At this time, the electrode terminal 3 of the electronic component 2 and the connection terminal 6 of the substrate 5 are connected by the protruding electrode 7 having different functions. Here, the protruding electrode 7 is made of a conductive resin including at least a photosensitive resin and a conductive filler.

なお、異なる機能とは、以下で詳細に説明するように、例えば形状などの構造や導電率などの電気的な特性が異なることを意味している。   The different functions mean that the structure such as the shape and the electrical characteristics such as the conductivity are different, as will be described in detail below.

以下では、電子部品として、回路形成面側に複数の機能領域を有する半導体素子を例に説明する。ここで、機能領域とは、例えば電源部、アナログ回路部、デジタル回路部およびメモリー素子部などの回路ブロックである。また、基板として、例えばガラスエポキシ基板などの実装基板を例に説明する。   Hereinafter, as an electronic component, a semiconductor element having a plurality of functional regions on the circuit formation surface side will be described as an example. Here, the functional area is a circuit block such as a power supply unit, an analog circuit unit, a digital circuit unit, and a memory element unit. Further, as a substrate, a mounting substrate such as a glass epoxy substrate will be described as an example.

そして、電子部品2を構成する半導体素子の、以下で図面を用いて具体的に説明するように複数の機能領域に応じて、突起電極7は、円錐台形状、斜め円柱形状、太鼓形状といった複数の異なる外形形状や異なる導電率(抵抗値)などの機能を備えて構成されている。このとき、図1に示すように、例えば突起電極7は厚み方向に5層から構成され、第1層7a、第2層7b、第3層7c、第4層7dおよび第5層7eは、同一の材料により形成されている。   Then, as will be described in detail below with reference to the drawings of the semiconductor element constituting the electronic component 2, the protruding electrode 7 has a plurality of shapes such as a truncated cone shape, an oblique cylinder shape, and a drum shape. Are provided with functions such as different outer shapes and different electrical conductivities (resistance values). At this time, as shown in FIG. 1, for example, the protruding electrode 7 is composed of five layers in the thickness direction, and the first layer 7a, the second layer 7b, the third layer 7c, the fourth layer 7d, and the fifth layer 7e are: It is made of the same material.

さらに、本実施の形態では、電子部品2と実装基板5との間に絶縁性樹脂8を充填して、電子部品2と実装基板5とを接着固定している。そして、電子部品2の電極端子3以外の表面には保護膜4が形成されている。しかし、保護膜4は必ずしも設ける必要はない。   Further, in the present embodiment, an insulating resin 8 is filled between the electronic component 2 and the mounting substrate 5, and the electronic component 2 and the mounting substrate 5 are bonded and fixed. A protective film 4 is formed on the surface of the electronic component 2 other than the electrode terminals 3. However, the protective film 4 is not necessarily provided.

本実施の形態によれば、電子部品の機能領域の構造や特性に応じて、形状、構造または電気的特性の最適な突起電極を介して、特性変動の小さい、信頼性に優れた電子部品実装構造体を実現できる。   According to the present embodiment, the electronic component mounting with small characteristic variation and excellent reliability is provided through the protruding electrode having the optimum shape, structure, or electrical characteristic according to the structure and characteristic of the functional region of the electronic component. A structure can be realized.

なお、本実施の形態では、電子部品2としてベアチップなど半導体素子を用いた例で説明するが、これに限られない。例えば、パッケージ化された半導体素子を用いてもよい。   In the present embodiment, an example in which a semiconductor element such as a bare chip is used as the electronic component 2 will be described. However, the present invention is not limited to this. For example, a packaged semiconductor element may be used.

また、本実施の形態では、5層からなる突起電極を例に説明したが、これに限られず、形状の異なる突起電極を形成できれば、層数は特に制限されない。   In the present embodiment, the protruding electrode having five layers has been described as an example. However, the number of layers is not particularly limited as long as protruding electrodes having different shapes can be formed.

以下に、本発明の実施の形態における電子部品実装構造体1の製造方法の概略について、図2を用いて説明する。   Below, the outline of the manufacturing method of the electronic component mounting structure 1 in embodiment of this invention is demonstrated using FIG.

図2は、本発明の実施の形態における電子部品実装構造体の製造方法の概略を説明するフローチャートである。   FIG. 2 is a flowchart for explaining the outline of the method for manufacturing the electronic component mounting structure according to the embodiment of the present invention.

まず、感光性樹脂と導電フィラーとを含む導電性樹脂からなる突起電極7を、電子部品2である半導体素子の電極端子3上または実装基板5の接続端子6上に形成する(ステップS01)。   First, the protruding electrode 7 made of a conductive resin containing a photosensitive resin and a conductive filler is formed on the electrode terminal 3 of the semiconductor element that is the electronic component 2 or on the connection terminal 6 of the mounting substrate 5 (step S01).

つぎに、接続端子6が形成された実装基板5の面上に絶縁性樹脂8を形成する(ステップS02)。   Next, the insulating resin 8 is formed on the surface of the mounting substrate 5 on which the connection terminals 6 are formed (step S02).

つぎに、突起電極7が形成された電子部品2を、突起電極7を介して電極端子3と接続端子6とを位置合わせする(ステップS03)。   Next, the electronic component 2 on which the protruding electrode 7 is formed is aligned with the electrode terminal 3 and the connection terminal 6 via the protruding electrode 7 (step S03).

つぎに、少なくとも電子部品2を押圧して、電極端子3と接続端子6とを突起電極7を介して接続する(ステップS04)。このとき、電子部品2の押圧により絶縁性樹脂8は接続端子6と突起電極7との間から排除されて、最終的に突起電極7と接続端子6とが圧接されて接触し、電気的な接続が行われる。   Next, at least the electronic component 2 is pressed to connect the electrode terminal 3 and the connection terminal 6 via the protruding electrode 7 (step S04). At this time, the insulating resin 8 is removed from between the connection terminal 6 and the projecting electrode 7 by the pressing of the electronic component 2, and finally the projecting electrode 7 and the connection terminal 6 are brought into pressure contact with each other to be electrically A connection is made.

つぎに、上記接続工程の後に、絶縁性樹脂8を硬化させる(ステップS05)。これにより、電子部品2と実装基板5とが接着固定され、電子部品実装構造体1が作製される。   Next, the insulating resin 8 is cured after the connection step (step S05). Thereby, the electronic component 2 and the mounting substrate 5 are bonded and fixed, and the electronic component mounting structure 1 is manufactured.

なお、上記方法では、予め絶縁性樹脂8を実装基板5上に設けた例で説明したが、これに限られない。例えば、位置合わせして押圧し、突起電極7と接続端子6とを接続した後に、電子部品2と実装基板5との間に絶縁性樹脂8を注入して充填してもよい。   In the above method, the example in which the insulating resin 8 is provided on the mounting substrate 5 in advance has been described. However, the present invention is not limited to this. For example, the insulating resin 8 may be injected and filled between the electronic component 2 and the mounting substrate 5 after positioning and pressing to connect the protruding electrode 7 and the connection terminal 6.

以下では、本実施の形態の電子部品実装構造体1の特徴である、半導体素子の機能領域に対応して設けられる異なる形状の突起電極7の製造方法について、図3を用いて説明する。   Below, the manufacturing method of the projection electrode 7 of a different shape provided corresponding to the functional area | region of a semiconductor element which is the characteristics of the electronic component mounting structure 1 of this Embodiment is demonstrated using FIG.

図3は、本発明の実施の形態の電子部品実装構造体1における突起電極7の製造方法を説明する主要工程の断面図である。そして、図3(a)は突起電極7の第1層7aの製造方法、図3(b)は突起電極7の第2層7bの製造方法を説明する断面図である。   FIG. 3 is a cross-sectional view of main processes for explaining a method of manufacturing the protruding electrode 7 in the electronic component mounting structure 1 according to the embodiment of the present invention. 3A is a cross-sectional view illustrating a method for manufacturing the first layer 7a of the protruding electrode 7, and FIG. 3B is a cross-sectional view illustrating a method for manufacturing the second layer 7b of the protruding electrode 7.

まず、図3(a)に示すように、底部21と一体的に形成された外周部22とから構成された容器20の内部に感光性樹脂と導電フィラーとを含む液状樹脂24を、少なくとも電子部品2の電極端子3が浸漬される程度以上の高さまで入れる。このとき、容器20の底部21は、液状樹脂24を硬化するための可視光や紫外線を透過する、例えば石英ガラスなどの透明部材で構成されている。   First, as shown in FIG. 3A, a liquid resin 24 containing a photosensitive resin and a conductive filler in a container 20 composed of a bottom portion 21 and an outer peripheral portion 22 formed integrally with at least an electron. The height is higher than the level where the electrode terminal 3 of the component 2 is immersed. At this time, the bottom portion 21 of the container 20 is made of a transparent member such as quartz glass that transmits visible light or ultraviolet light for curing the liquid resin 24.

そして、電子部品2の主面に形成された電極端子3と底部21との間隔T1を突起電極7の第1層7aの厚みに設定する。このとき、底部21の下方に設置した、例えば液晶パネルなどからなるフォトマスク23には、突起電極7の第1層7aを形成するための形状に相当する第1の開口部23aで開口されている。この場合、フォトマスク23である液晶パネルに、第1の開口部23aの形状に対応する制御信号を印加することにより、複数の第1の開口部23aを一括に開口することができる。   The distance T1 between the electrode terminal 3 formed on the main surface of the electronic component 2 and the bottom 21 is set to the thickness of the first layer 7a of the protruding electrode 7. At this time, the photomask 23 made of, for example, a liquid crystal panel or the like installed below the bottom 21 is opened with a first opening 23a corresponding to the shape for forming the first layer 7a of the protruding electrode 7. Yes. In this case, by applying a control signal corresponding to the shape of the first opening 23a to the liquid crystal panel which is the photomask 23, the plurality of first openings 23a can be opened at once.

上記の状態で、フォトマスク23を介して、例えば可視光や紫外線などの光25を、底部21から液状樹脂24に照射する。これにより、第1の開口部23aを通過した光25は、電極端子3と底部21との間にある液状樹脂24を硬化させ、突起電極7の第1層7aが形成される。   In the state described above, the liquid resin 24 is irradiated from the bottom 21 with light 25 such as visible light or ultraviolet light through the photomask 23. Thereby, the light 25 that has passed through the first opening 23 a cures the liquid resin 24 between the electrode terminal 3 and the bottom portion 21, and the first layer 7 a of the protruding electrode 7 is formed.

つぎに、図3(b)に示すように、電子部品2を引き上げて、突起電極7の第1層7aと底部21との間隔T2を突起電極7の第2層7bの厚みに設定する。そして、図3(a)と同様の方法により、フォトマスク23を介して光25を、底部21から液状樹脂24に照射する。このとき、フォトマスク23には、第1の開口部23aに対して、半導体素子の複数の機能領域に対応する、例えば異なる形状の突起電極を形成するために、第2の開口部23bが、例えば配置、開口形状、位置をずらして設けられている。これにより、第2の開口部23bを通過した光25は、第1層7aと底部21との間にある液状樹脂24を硬化させ、突起電極7の第2層7bが、第1層7a上に形成される。   Next, as shown in FIG. 3B, the electronic component 2 is pulled up, and the distance T <b> 2 between the first layer 7 a and the bottom portion 21 of the protruding electrode 7 is set to the thickness of the second layer 7 b of the protruding electrode 7. Then, light 25 is irradiated from the bottom 21 to the liquid resin 24 through the photomask 23 by the same method as in FIG. At this time, the second opening 23b is formed on the photomask 23 in order to form, for example, projecting electrodes having different shapes corresponding to the plurality of functional regions of the semiconductor element with respect to the first opening 23a. For example, the arrangement, opening shape, and position are shifted. As a result, the light 25 that has passed through the second opening 23b cures the liquid resin 24 between the first layer 7a and the bottom 21, and the second layer 7b of the protruding electrode 7 is placed on the first layer 7a. Formed.

つぎに、電子部品2を所定の間隔だけ引き上げながら、図3(a)と図3(b)の工程を順次繰り返し、異なる開口形状の配置と形状を変えたフォトマスクの開口部を介して光を照射することによって、第2層7b上に、第3層7cから第5層7eを形成する。これにより、円錐台形状、斜め円柱形状、太鼓形状といった複数の異なる形状を有する突起電極7が、異なる複数の機能領域に対応して半導体素子2の電極端子3上に形成される。上記の場合、5層からなる突起電極7を形成するため、間隔の設定と露光プロセスとを5回繰り返すことになる。このとき、突起電極7を構成する各層の厚みは、アスペクト比や要求される性能に応じて自由に設定できるが、上記では、1層の厚みを10μmで形成している。   Next, while pulling up the electronic component 2 by a predetermined interval, the steps of FIG. 3A and FIG. 3B are sequentially repeated, and light is transmitted through the openings of the photomask having different arrangements and shapes of openings. To form the fifth layer 7e from the third layer 7c on the second layer 7b. Thereby, the protruding electrodes 7 having a plurality of different shapes such as a truncated cone shape, an oblique cylindrical shape, and a drum shape are formed on the electrode terminals 3 of the semiconductor element 2 corresponding to the plurality of different functional regions. In the above case, in order to form the protruding electrode 7 having five layers, the interval setting and the exposure process are repeated five times. At this time, the thickness of each layer constituting the protruding electrode 7 can be freely set according to the aspect ratio and the required performance, but in the above, the thickness of one layer is 10 μm.

つぎに、容器20から電子部品2を取り出し、洗浄して不要な液状樹脂を除去する。これにより、機能領域に対応して、形状などが異なる突起電極7が形成された電子部品2が作製される。   Next, the electronic component 2 is taken out from the container 20 and washed to remove unnecessary liquid resin. Thereby, the electronic component 2 in which the protruding electrodes 7 having different shapes and the like are formed corresponding to the functional region is manufactured.

なお、本実施の形態では、容器20の底部21が透明部材からなる場合を例に説明したがこれに限られず、フォトマスク自体を底部21としてもよい。これにより、より微細なパターンを精度よく形成できる。   In the present embodiment, the case where the bottom portion 21 of the container 20 is made of a transparent member has been described as an example. However, the present invention is not limited to this, and the photomask itself may be the bottom portion 21. Thereby, a finer pattern can be formed with high accuracy.

また、上記では、容器に底部側から突起電極を形成した例で説明したが、これに限られない。例えば、図4の別の例で示すように、液状樹脂の液面側から露光して突起電極を形成してもよい。   Moreover, although the above demonstrated in the example which formed the protruding electrode in the container from the bottom part side, it is not restricted to this. For example, as shown in another example of FIG. 4, the protruding electrode may be formed by exposing from the liquid surface side of the liquid resin.

図4は、本発明の実施の形態の電子部品実装構造体1において、突起電極7の製造方法の別の例を説明する断面図である。そして、図4(a)は突起電極7の第1層7aの製造方法、図4(b)は突起電極7の第2層7bの製造方法を説明する断面図である。   FIG. 4 is a cross-sectional view for explaining another example of the method for manufacturing the protruding electrode 7 in the electronic component mounting structure 1 according to the embodiment of the present invention. 4A is a cross-sectional view illustrating a method for manufacturing the first layer 7a of the protruding electrode 7, and FIG. 4B is a cross-sectional view illustrating a method for manufacturing the second layer 7b of the protruding electrode 7.

基本的には、図3に示す製造方法と同じであるが、電子部品2を液状樹脂中に沈降させながら層状の突起電極を形成する点で異なる。なお、図4においては、電子部品2は電極端子3を2個のみとし、かつ保護膜4を形成していない構成を例に示している。   Basically, it is the same as the manufacturing method shown in FIG. 3 except that the layered protruding electrode is formed while the electronic component 2 is settled in the liquid resin. 4 shows an example in which the electronic component 2 has only two electrode terminals 3 and no protective film 4 is formed.

まず、図4(a)に示すように、容器10の内部に電子部品2の電極端子3が形成された面を上向きにして液状樹脂24中に沈める。このとき、電子部品2の面上に形成されている電極端子3と液状樹脂24の液表面との間の間隔T1を突起電極7の第1層7aの厚みに設定する。そして、フォトマスク23を介して光25を液状樹脂24に照射する。これにより、第1の開口部23aを通過した光25は、電極端子3の表面上にある液状樹脂24を硬化させ、突起電極7の第1層7aが形成される。   First, as shown in FIG. 4A, the container 10 is submerged in the liquid resin 24 with the surface on which the electrode terminals 3 of the electronic component 2 are formed facing upward. At this time, the interval T1 between the electrode terminal 3 formed on the surface of the electronic component 2 and the liquid surface of the liquid resin 24 is set to the thickness of the first layer 7 a of the protruding electrode 7. Then, the liquid resin 24 is irradiated with light 25 through the photomask 23. Thereby, the light 25 that has passed through the first opening 23 a cures the liquid resin 24 on the surface of the electrode terminal 3, and the first layer 7 a of the protruding electrode 7 is formed.

つぎに、図4(b)に示すように、電子部品2をさらに沈降させて、突起電極7の第1層7aと液状樹脂24の液表面との間の間隔T2を突起電極7の第2層7bの厚みに設定する。そして、図4(a)と同様に、フォトマスク23を介して光25を液状樹脂24に照射する。このとき、フォトマスク23には、第1の開口部23aに対して、半導体素子2の複数の機能領域に対応する異なる形状の突起電極7を形成するために、第2の開口部23bが、例えば配置、開口形状、位置をずらして設けられている。これにより、第2の開口部23bを通過した光25は、第1層7aの表面上にある液状樹脂24を硬化させ、突起電極7の第2層7bが、第1層7a上に形成される。   Next, as shown in FIG. 4B, the electronic component 2 is further settled, and the interval T <b> 2 between the first layer 7 a of the protruding electrode 7 and the liquid surface of the liquid resin 24 is set to the second of the protruding electrode 7. Set to the thickness of layer 7b. Then, similarly to FIG. 4A, the liquid resin 24 is irradiated with light 25 through the photomask 23. At this time, in order to form the protruding electrodes 7 having different shapes corresponding to the plurality of functional regions of the semiconductor element 2 with respect to the first opening 23a, the second opening 23b is formed on the photomask 23. For example, the arrangement, opening shape, and position are shifted. Thereby, the light 25 that has passed through the second opening 23b cures the liquid resin 24 on the surface of the first layer 7a, and the second layer 7b of the protruding electrode 7 is formed on the first layer 7a. The

つぎに、電子部品2を設定した間隔だけ沈降させながら、図4(a)と図4(b)の工程を順次繰り返し、異なる開口形状の配置と形状を変えたフォトマスク23の開口部を介して光を照射することによって、第2層7b上に、第3層7cから第5層7eを形成する。これにより、円錐台形状、斜め円柱形状、太鼓形状といった複数の異なる形状を有する突起電極7が、異なる複数の機能領域に対応して半導体素子の電極端子3上に形成される。上記の場合、5層からなる突起電極7を形成するため、間隔の設定と露光プロセスとを5回繰り返すことになる。   Next, while the electronic component 2 is allowed to settle for a set interval, the steps of FIG. 4A and FIG. 4B are sequentially repeated through the openings of the photomask 23 having different opening shapes and shapes. By irradiating light, the third layer 7c to the fifth layer 7e are formed on the second layer 7b. Thereby, the protruding electrodes 7 having a plurality of different shapes such as a truncated cone shape, an oblique cylindrical shape, and a drum shape are formed on the electrode terminals 3 of the semiconductor element corresponding to the plurality of different functional regions. In the above case, in order to form the protruding electrode 7 having five layers, the interval setting and the exposure process are repeated five times.

つぎに、容器10から電子部品2を取り出し、洗浄して不要な液状樹脂を除去する。これにより、機能領域に対応して、形状などが異なる突起電極7が形成された電子部品2が作製される。なお、突起電極7の層数などは適時、必要な形状に応じて変更することができる。   Next, the electronic component 2 is taken out from the container 10 and washed to remove unnecessary liquid resin. Thereby, the electronic component 2 in which the protruding electrodes 7 having different shapes and the like are formed corresponding to the functional region is manufactured. It should be noted that the number of layers of the protruding electrode 7 can be changed according to the required shape at an appropriate time.

ここで、電子部品2としては、例えば外形サイズ8mm角のROMやRAMなどの半導体メモリーからなるLSIチップなどの高密度集積回路素子やメモリーなど大容量記憶素子を含む機能素子を含む半導体素子が用いられる。このとき、半導体素子は、例えば150μmピッチ、900ピンでエリア上に配置された100μm角の、例えばエリアバンプ配置が可能にパターン形成された配線(図示せず)の一部を露出させた開口部からなる電極端子3上を有している。   Here, as the electronic component 2, for example, a semiconductor element including a high-density integrated circuit element such as an LSI chip made of a semiconductor memory such as a ROM or RAM having an outer size of 8 mm square, or a functional element including a mass storage element such as a memory is used. It is done. At this time, the semiconductor element has an opening in which a part of a wiring (not shown) patterned so as to be able to arrange, for example, an area bump of 100 μm square disposed on the area with a pitch of 150 μm and 900 pins, for example, is exposed. It has on the electrode terminal 3 which consists of.

また、液状樹脂24としては、例えば感光・熱可塑性アクリルオリゴマー、アクリルモノマー、開始剤、カップリング剤、密着性付与剤、反応性希釈剤、溶剤などからなる感光性樹脂に50重量%以上80重量%未満の3μmの球状のAg粒子を導電フィラーとして含む構成で突起電極7が形成される。このとき、液状樹脂24の中に、平均粒径が5μm以下の鱗片状、または数nm〜数100nmの球状のAu、Cu、PtまたはAgなどの金属粒子を含んでいてもよい。これにより、固有抵抗率の小さい微細な金属粒子による接触面積が拡大し、電極端子3と突起電極7との接続抵抗または突起電極7の固有抵抗をさらに下げることができる。また、導電フィラーとしては、Ag、Au、Cu、Ni、Pt、Pdあるいはこれらの合金などの金属粒子やはんだ合金などが用いられる。   Further, as the liquid resin 24, for example, a photosensitive resin composed of a photosensitive / thermoplastic acrylic oligomer, an acrylic monomer, an initiator, a coupling agent, an adhesion imparting agent, a reactive diluent, a solvent, and the like is 50% by weight to 80% by weight. The protruding electrode 7 is formed with a structure containing less than 3% spherical Ag particles of 3 μm as a conductive filler. At this time, the liquid resin 24 may contain metal particles such as scale-like particles having an average particle diameter of 5 μm or less, or spherical Au, Cu, Pt, or Ag having a size of several nm to several hundred nm. Thereby, the contact area by the fine metal particles having a small specific resistivity is expanded, and the connection resistance between the electrode terminal 3 and the protruding electrode 7 or the specific resistance of the protruding electrode 7 can be further reduced. As the conductive filler, metal particles such as Ag, Au, Cu, Ni, Pt, Pd, or alloys thereof, solder alloys, or the like are used.

なお、本実施の形態では、突起電極7を電子部品2の電極端子3上に設ける例で説明したが、これに限られない。例えば、突起電極7を、ガラスエポキシ基板、アラミド基板、ポリイミド基板やセラミック基板などの実装基板や回路基板の接続端子上に設けてもよく、同様の目的および効果が得られる。   In this embodiment, the example in which the protruding electrode 7 is provided on the electrode terminal 3 of the electronic component 2 has been described. However, the present invention is not limited to this. For example, the protruding electrode 7 may be provided on a mounting substrate such as a glass epoxy substrate, an aramid substrate, a polyimide substrate or a ceramic substrate, or a connection terminal of a circuit substrate, and the same purpose and effect can be obtained.

なお、本実施の形態では、個別の電子部品2の状態で突起電極7を形成する例で説明したが、これに限られない。例えば、電子部品2が半導体素子の場合、複数の半導体素子がシリコン基板上に形成されている半導体ウェハーの状態で形成してもよい。これにより、生産効率を向上できる。   In the present embodiment, the example in which the protruding electrode 7 is formed in the state of the individual electronic component 2 has been described. However, the present invention is not limited to this. For example, when the electronic component 2 is a semiconductor element, it may be formed in the state of a semiconductor wafer in which a plurality of semiconductor elements are formed on a silicon substrate. Thereby, production efficiency can be improved.

また、本実施の形態では、フォトマスク23の開口部の形状を層ごとに変えて突起電極を形成する例で説明したが、これに限られない。例えば、フォトマスクの開口部の形状を、液状樹脂中から連続的に引き上げ、または液状樹脂中に連続的に沈降させる電子部品の移動と同期させて連続的に変更することにより、任意の形状の突起電極7を作製できる。   In the present embodiment, the example in which the protruding electrode is formed by changing the shape of the opening of the photomask 23 for each layer is described, but the present invention is not limited thereto. For example, the shape of the opening of the photomask is continuously changed in synchronization with the movement of the electronic component that is continuously pulled up from the liquid resin or continuously settled in the liquid resin. The protruding electrode 7 can be produced.

また、本実施の形態では、円錐台形状、斜め円柱形状、太鼓形状の突起電極を形成した例で説明したが、これに限られない。例えば、円柱形状、角柱形状、円錐形状、角錐形状、角錐台形状、筒状形状、バネ状形状、コの字型形状で形成してもよい。そして、これらの形状は、液晶パネルなどのフォトマスクの開口部を制御することで容易に形成できる。   Further, in the present embodiment, an example in which a truncated cone shape, an oblique columnar shape, and a drum-shaped protruding electrode are described is described, but the present invention is not limited thereto. For example, it may be formed in a cylindrical shape, a prismatic shape, a conical shape, a pyramid shape, a truncated pyramid shape, a cylindrical shape, a spring shape, or a U-shape. These shapes can be easily formed by controlling the opening of a photomask such as a liquid crystal panel.

また、本実施の形態では、導電フィラーと感光性樹脂からなる突起電極を例に説明したが、これに限られない。例えば、形成した突起電極7の表面に無電界めっきなどにより導電性皮膜を形成してもよい。これにより、実装基板の接続端子6との接続抵抗を小さくできる。この場合、まず、例えば突起電極(電極端子)の領域以外に設けた保護膜上にレジスト膜を形成する。そして、蒸着法やスパッタリング法などを用いて、半導体素子の全面に導電性薄膜を形成した後、レジスト膜を除去することにより、表面に導電性皮膜を有する突起電極7を形成することができる。   In the present embodiment, the protruding electrode made of the conductive filler and the photosensitive resin has been described as an example. However, the present invention is not limited to this. For example, a conductive film may be formed on the surface of the formed protruding electrode 7 by electroless plating or the like. Thereby, connection resistance with the connection terminal 6 of a mounting board | substrate can be made small. In this case, first, for example, a resist film is formed on a protective film provided outside the region of the protruding electrode (electrode terminal). Then, after forming a conductive thin film on the entire surface of the semiconductor element by using a vapor deposition method, a sputtering method, or the like, the protruding electrode 7 having a conductive film on the surface can be formed by removing the resist film.

また、本実施の形態では、電子部品2と実装基板との間に絶縁性樹脂を充填して接着固定した構造を例に説明したが、これに限られない。例えば、異方導電性樹脂を用いて接続と接着固定を行ってもよい。この場合、まず、電子部品2と実装基板とを位置合わせする工程の前に、電極端子3が形成された電子部品2の面上または接続端子が形成された実装基板の面上に絶縁性樹脂または異方導電性樹脂を形成する。その後、絶縁性樹脂または異方導電性樹脂を硬化させることにより、電子部品2と実装基板とを接着固定する。この方法により、電子部品2と実装基板との間の接着を確実に、かつより強固に固定できるので接続信頼性が向上する。また、導電フィラーと感光性樹脂からなる突起電極には、特に接着性が要求されなくなるので、感光性樹脂の選択の自由度が大きくなる。   In the present embodiment, the structure in which an insulating resin is filled between the electronic component 2 and the mounting substrate and bonded and fixed is described as an example. However, the present invention is not limited to this. For example, connection and adhesive fixing may be performed using an anisotropic conductive resin. In this case, first, before the step of aligning the electronic component 2 and the mounting substrate, an insulating resin is formed on the surface of the electronic component 2 on which the electrode terminals 3 are formed or on the surface of the mounting substrate on which the connection terminals are formed. Alternatively, an anisotropic conductive resin is formed. Thereafter, the electronic component 2 and the mounting substrate are bonded and fixed by curing the insulating resin or the anisotropic conductive resin. By this method, since the adhesion between the electronic component 2 and the mounting substrate can be reliably and more firmly fixed, the connection reliability is improved. In addition, the adhesive electrode is not particularly required for the protruding electrode made of the conductive filler and the photosensitive resin, so that the degree of freedom in selecting the photosensitive resin is increased.

本実施の形態の電子部品実装構造体1によれば、半導体素子などの電子部品の複数の機能領域に対応して、電極端子と接続端子6とを異なる形状の突起電極7を介して、例えば圧接などの接触により電気的に接続する。そのため、熱衝撃や機械的な衝撃を受けても接続不良が生じにくく信頼性を向上できる。また、微小な径でも、大きな高さを有する、すなわちアスペクト比の大きな突起電極を容易に形成できるので、狭ピッチであっても短絡などの不良の生じずに接続することが可能となる。その結果、機能領域の特性に対応した最適な形状や特性を備えた突起電極を介して電子部品と実装基板とを接続した信頼性に優れた電子部品実装構造体1を実現できる。   According to the electronic component mounting structure 1 of the present embodiment, the electrode terminal and the connection terminal 6 are connected to the plurality of functional regions of the electronic component such as a semiconductor element via the protruding electrodes 7 having different shapes, for example, Electrically connected by contact such as pressure welding. Therefore, even when subjected to thermal shock or mechanical shock, poor connection hardly occurs and reliability can be improved. In addition, even with a small diameter, a protruding electrode having a large height, that is, a large aspect ratio can be easily formed, so that even a narrow pitch can be connected without causing a defect such as a short circuit. As a result, it is possible to realize the electronic component mounting structure 1 having excellent reliability in which the electronic component and the mounting substrate are connected via the protruding electrode having the optimum shape and characteristics corresponding to the characteristics of the functional region.

以下に、本発明の実施の形態の電子部品実装構造体において、複数の機能領域ごとに異なる形状の突起電極を形成した実施例1について、図5を用いて具体的に示す。   Hereinafter, Example 1 in which protruding electrodes having different shapes are formed for each of a plurality of functional regions in the electronic component mounting structure according to the embodiment of the present invention will be specifically described with reference to FIG.

図5(a)は、本発明の実施の形態の実施例1における電子部品実装構造体の機能領域を説明する平面図である。そして、図5(b)から図5(e)は、電子部品の機能領域ごとに対応して形成した突起電極の形状を説明する断面図である。なお、図5(a)には、図示しないが、各機能領域に多くの突起電極が形成されている。   Fig.5 (a) is a top view explaining the functional area | region of the electronic component mounting structure in Example 1 of embodiment of this invention. FIG. 5B to FIG. 5E are cross-sectional views for explaining the shape of the protruding electrode formed corresponding to each functional region of the electronic component. In addition, although not shown in FIG. 5A, many protruding electrodes are formed in each functional region.

図5(a)に示すように、電子部品実装構造体100を構成する電子部品2である半導体素子は、例えば電源部101、グランド部104、デジタル部102およびアナログ部103などの複数の機能領域を有する回路ブロックから構成されている。ここで、電源部101は半導体素子への電源供給部からなる機能領域で、グランド部104は半導体素子の接地(アース)のための機能領域を構成している。また、デジタル部102はデジタル信号を扱う機能領域で、アナログ部103はアナログ信号を扱う機能領域をそれぞれ構成している。   As shown in FIG. 5A, the semiconductor element which is the electronic component 2 constituting the electronic component mounting structure 100 includes a plurality of functional regions such as a power supply unit 101, a ground unit 104, a digital unit 102, and an analog unit 103, for example. It is comprised from the circuit block which has. Here, the power supply unit 101 is a functional region including a power supply unit to the semiconductor element, and the ground unit 104 constitutes a functional region for grounding the semiconductor element. The digital unit 102 is a functional region that handles digital signals, and the analog unit 103 is a functional region that handles analog signals.

そして、上記回路ブロックからなる複数の機能領域は、例えば実装基板5に実装するときの押圧力に対する耐力や半導体特性の変動などに差を有する場合が一般的である。そのため、実施例1では、以下で説明するように、各機能領域に対応して突起電極の外形形状を変えて、電子部品実装構造体100を実現するものである。   In general, the plurality of functional regions including the circuit blocks have a difference in, for example, resistance to pressing force when mounted on the mounting substrate 5 or variation in semiconductor characteristics. Therefore, in the first embodiment, as described below, the electronic component mounting structure 100 is realized by changing the outer shape of the protruding electrode corresponding to each functional region.

まず、図5(b)に示すように、電源部101およびグランド部104の機能領域においては、断面形状が太鼓状の突起電極71を介して接続することにより、実装基板5と電子部品2間の応力に対して高い耐力を有する突起電極71を介して実装できる。これは、太鼓状の形状によって、突起電極71と電子部品2、実装基板5との間で発生する応力を緩和する効果によるものである。   First, as shown in FIG. 5B, in the functional region of the power supply unit 101 and the ground unit 104, the connection between the mounting substrate 5 and the electronic component 2 is achieved by connecting via a protruding electrode 71 having a drum-shaped cross section. It can be mounted via the protruding electrode 71 having a high proof strength against the stress. This is due to the effect of relieving the stress generated between the bump electrode 71, the electronic component 2, and the mounting substrate 5 by the drum-like shape.

また、図5(c)および図5(d)に示すように、デジタル部102の機能領域においては、電子部品2上の電極端子3と実装基板5上の接続端子6のそれぞれの断面形状の大きさが等しい、例えば円柱状の形状または円錐台状の突起電極72、73を介して接続する。これにより、インピーダンスの不整合(ミスマッチ)の抑制や調整をすることができる。   Further, as shown in FIGS. 5C and 5D, in the functional area of the digital unit 102, the cross-sectional shapes of the electrode terminals 3 on the electronic component 2 and the connection terminals 6 on the mounting substrate 5 are respectively shown. The connection is made via protruding electrodes 72 and 73 having the same size, for example, a columnar shape or a truncated cone shape. Thereby, impedance mismatch (mismatch) can be suppressed or adjusted.

また、図5(e)に示すように、アナログ部103の機能領域においては、断面形状が、例えば斜め円柱状またはコイルバネ形状の突起電極74で接続することにより、等価回路定数(インダクタンス)の微調整が可能となる。これにより、電子部品2または実装基板5の再設計が必要なくなり、生産効率が向上する。この場合、突起電極74の長さ、断面積や経路形状を調整することで、インダクタンスを調整できる。   Further, as shown in FIG. 5 (e), in the functional region of the analog unit 103, the cross-sectional shape is connected by a protruding electrode 74 having, for example, an oblique cylindrical shape or a coil spring shape, so that the equivalent circuit constant (inductance) is reduced. Adjustment is possible. This eliminates the need for redesign of the electronic component 2 or the mounting substrate 5 and improves production efficiency. In this case, the inductance can be adjusted by adjusting the length, cross-sectional area, and path shape of the protruding electrode 74.

すなわち、上述したように、電源部101およびグランド部104の機能領域に対しては、物理的または機械的な強度の高い突起電極71を設けることができる。   That is, as described above, the protruding electrodes 71 having high physical or mechanical strength can be provided in the functional regions of the power supply unit 101 and the ground unit 104.

しかし、アナログ部103の機能領域に対しては、物理的または機械的強度が弱いため、電源部101およびグランド部104の機能領域のような強固な突起電極71を形成できない。そのため、斜め円柱状またはコイルバネ形状などの弾性変形しやすい突起電極74とする。   However, since the physical or mechanical strength of the functional region of the analog unit 103 is weak, it is impossible to form the strong protruding electrode 71 as in the functional region of the power supply unit 101 and the ground unit 104. Therefore, the projecting electrode 74 that is easily elastically deformed, such as an oblique cylindrical shape or a coil spring shape, is used.

また、デジタル部102の機能領域に対しては、実装基板5の接続端子6と電子部品2の電極端子3の大きさに対応して接続できる形状の突起電極72、73を形成し、インピーダンスなどの電気的特性を合わせることを可能にしている。   In addition, for the functional area of the digital unit 102, protruding electrodes 72 and 73 having a shape that can be connected in accordance with the size of the connection terminal 6 of the mounting substrate 5 and the electrode terminal 3 of the electronic component 2 are formed, and impedance, etc. It is possible to match the electrical characteristics of.

実施例1の電子部品実装構造体100によれば、異なる機能領域に対応して、異なる形状の突起電極71、72、73、74を介して電子部品2と実装基板5とを実装することができる。この結果、電子部品2である半導体素子の各機能領域の特性や物理的な強度に合わせた突起電極71、72、73、74により、安定した信頼性に優れた電子部品実装構造体100を実現できる。また、半導体素子の各機能領域の、設計品と製造品との特性などの不一致を、機能領域に対応して突起電極の外形形状を変えることで対応できる。その結果、再設計などにかかる時間を削減して、短期間での製品の出荷が可能となる。   According to the electronic component mounting structure 100 of the first embodiment, the electronic component 2 and the mounting substrate 5 can be mounted via the protruding electrodes 71, 72, 73, 74 having different shapes corresponding to different functional regions. it can. As a result, a stable and reliable electronic component mounting structure 100 is realized by the projecting electrodes 71, 72, 73, and 74 that match the characteristics and physical strength of each functional region of the semiconductor element that is the electronic component 2. it can. In addition, inconsistencies in the characteristics of each functional region of the semiconductor element between the designed product and the manufactured product can be dealt with by changing the outer shape of the protruding electrode corresponding to the functional region. As a result, it is possible to reduce the time required for redesign and to ship products in a short period of time.

なお、上記実施例1では、電子部品2の機能領域が4つの場合を例に説明したが、これに限られない。例えば、少なくとも2つの機能領域以上を有する電子部品に対して、少なくとも外形形状の異なる2種類以上の突起電極を用いればよい。具体的には、電子部品が2つの機械的強度の高い第1機能領域と、機械的強度の低い第2機能領域からなる場合、第1機能領域に形成する第1突起電極を、図4(b)に示す、例えば太鼓状の形状で形成し、第2突起電極を、図4(e)に示す、例えば弾性変形量の大きな斜め円柱状またはコイルバネ形状で形成してもよい。これにより、第2突起電極は押圧力により容易に変形するため、機械的強度の弱い第2機能領域の応力による破損や特性変動などを効果的に抑制できる。   In the first embodiment, the case where the electronic component 2 has four functional regions has been described as an example. However, the present invention is not limited to this. For example, at least two types of protruding electrodes having different outer shapes may be used for an electronic component having at least two functional regions. Specifically, when the electronic component is composed of two first functional regions having high mechanical strength and second functional regions having low mechanical strength, the first protruding electrode formed in the first functional region is shown in FIG. For example, it may be formed in a drum-like shape shown in b), and the second protruding electrode may be formed in, for example, an oblique cylindrical shape or a coil spring shape having a large elastic deformation amount shown in FIG. Thereby, since the second protruding electrode is easily deformed by the pressing force, it is possible to effectively suppress the damage or the characteristic variation caused by the stress in the second functional region having a low mechanical strength.

以下に、本発明の実施の形態の電子部品実装構造体において、複数のこの機能領域ごとに異なる特性(機能)の突起電極を形成した実施例2について、図6を用いて具体的に示す。ここで、異なる特性(機能)とは、導電率や抵抗率(抵抗値)などの電気的な特性が異なることを意味している。   Hereinafter, Example 2 in which protruding electrodes having different characteristics (functions) are formed for each of the plurality of functional regions in the electronic component mounting structure according to the embodiment of the present invention will be specifically described with reference to FIG. Here, different characteristics (functions) mean that electrical characteristics such as conductivity and resistivity (resistance value) are different.

図6(a)は本発明の実施の形態の実施例2における電子部品実装構造体の機能領域を説明する平面図である。そして、図6(b)は図6(a)のA−A線断面模式図、図6(c)は図6(a)のB−B線断面模式図、図6(d)は図6(a)のC−C線断面模式図である。なお、図6(a)にも、図示しないが、図5(a)と同様に各機能領域に多くの突起電極が形成されている。   Fig.6 (a) is a top view explaining the functional area | region of the electronic component mounting structure in Example 2 of embodiment of this invention. 6B is a schematic cross-sectional view taken along the line AA in FIG. 6A, FIG. 6C is a schematic cross-sectional view taken along the line BB in FIG. 6A, and FIG. It is CC sectional view schematic diagram of (a). Although not shown in FIG. 6A, many protruding electrodes are formed in each functional region as in FIG. 5A.

そして、図6(a)に示すように、電子部品実装構造体200を構成する電子部品220である半導体素子は、例えば電源配線部201、グランド配線部203および信号配線部202などの複数の機能領域を有している。   6A, the semiconductor element that is the electronic component 220 constituting the electronic component mounting structure 200 includes a plurality of functions such as a power supply wiring portion 201, a ground wiring portion 203, and a signal wiring portion 202, for example. Has an area.

そして、図6(b)(c)に示すように、電源配線部201やグランド配線部203では、導電フィラーの含有率を、例えば85重量%から95重量%に高めて導電率を大きくした突起電極205を介して、電子部品220と実装基板250を電気的に接続している。   Then, as shown in FIGS. 6B and 6C, in the power supply wiring portion 201 and the ground wiring portion 203, protrusions whose conductivity is increased by increasing the content of the conductive filler from 85% by weight to 95% by weight, for example. The electronic component 220 and the mounting substrate 250 are electrically connected via the electrode 205.

また、図6(b)(d)に示すように、信号配線部202では、導電フィラーの含有率を、例えば65重量%から80重量%で導電率を調整した突起電極207を介して、電子部品220と実装基板250を電気的に接続している。   Further, as shown in FIGS. 6B and 6D, in the signal wiring portion 202, the content of the conductive filler is changed to an electron via a protruding electrode 207 whose conductivity is adjusted, for example, from 65 wt% to 80 wt%. The component 220 and the mounting board 250 are electrically connected.

なお、実施例2の突起電極205、207の製造方法は、基本的には図3または図4で説明したのと同様の方法で作製できるが、以下の点で異なる。   The manufacturing method of the protruding electrodes 205 and 207 of Example 2 can be basically manufactured by the same method as described with reference to FIG. 3 or FIG. 4, but is different in the following points.

すなわち、突起電極205と突起電極207を、導電フィラーと感光性樹脂との配合比が異なる、少なくとも2種類の液状樹脂中で形成する点である。このとき、同じ容器を用いて、液状樹脂を入れ替えにより形成してもよく、また異なる容器を準備して、例えば電子部品を移し変えることにより異なる特性(機能)を有する突起電極を形成してもよい。   That is, the protruding electrode 205 and the protruding electrode 207 are formed in at least two types of liquid resins having different blending ratios of the conductive filler and the photosensitive resin. At this time, using the same container, the liquid resin may be formed by exchanging. Alternatively, different containers may be prepared, and for example, protruding electrodes having different characteristics (functions) may be formed by transferring electronic components. Good.

実施例2によれば、大きな電流が流れる電源配線部201とグランド配線部203を導電率の大きい突起電極205で電子部品220と実装基板250とを接続できるため、突起電極205による電圧の低下や、消費電力の増加を抑制できる。   According to the second embodiment, the power supply wiring portion 201 and the ground wiring portion 203 through which a large current flows can be connected to the electronic component 220 and the mounting substrate 250 by the protruding electrode 205 having a high conductivity. , Increase in power consumption can be suppressed.

また、実施例2によれば、信号配線部202を導電率の小さい突起電極207で電子部品220と実装基板250とを接続できるため、例えばフィルタ、増幅器の負荷として用いられる共振回路を有する信号配線部202において、帯域幅や位相特性などを改善する、例えばダンピング抵抗として突起電極207を機能させることができる。さらに、共振回路に過渡信号が流入する場合に発生する高電圧やオーバーシュートなどの電圧振動を抑制し、他の回路素子の破損を未然に防止できる。   Further, according to the second embodiment, the signal wiring portion 202 can be connected to the mounting component 250 with the protruding electrode 207 having a low conductivity, so that the signal wiring having a resonance circuit used as a load for a filter or an amplifier, for example. In the section 202, the protruding electrode 207 can be made to function as a damping resistor, for example, to improve the bandwidth, phase characteristics, and the like. Furthermore, voltage oscillations such as high voltage and overshoot that occur when a transient signal flows into the resonance circuit can be suppressed, and damage to other circuit elements can be prevented.

なお、実施例2では、突起電極の導電率を、導電フィラーの含有率(密度)で調整する例で説明したが、これに限られない。例えば、導電フィラーの粒径、形状または感光性樹脂の樹脂材料を変更することにより、突起電極の導電率を調整してもよい。これにより、突起電極の導電率の調整範囲を容易に拡大でき、設計自由度の高い電子部品実装構造体200を実現できる。   In addition, although Example 2 demonstrated the example which adjusts the electrical conductivity of a protruding electrode with the content rate (density) of an electroconductive filler, it is not restricted to this. For example, the conductivity of the protruding electrode may be adjusted by changing the particle size or shape of the conductive filler or the resin material of the photosensitive resin. Thereby, the adjustment range of the conductivity of the protruding electrode can be easily expanded, and the electronic component mounting structure 200 with high design freedom can be realized.

なお、本実施の形態では、液晶パネルなどのフォトマスクを例に説明した、これに限られない。例えば、突起電極を構成する各層に対応する開口部の形状を備えた金属マスクなどからなるフォトマスクを複数用意し、開口部の形状に合わせて、フォトマスク取り替えて露光して突起電極を形成してもよい。   In the present embodiment, a photomask such as a liquid crystal panel has been described as an example, but the present invention is not limited to this. For example, prepare a plurality of photomasks consisting of a metal mask or the like having an opening shape corresponding to each layer constituting the protruding electrode, replace the photomask according to the shape of the opening, and expose to form the protruding electrode. May be.

また、本実施の形態では、実装基板としてガラスエポキシ基板を例に説明したが、これに限られない。例えば、樹脂基材、セラミック基材または単結晶シリコン基材を用いて形成された回路基板を用いてもよい。   In the present embodiment, the glass epoxy substrate is described as an example of the mounting substrate, but the present invention is not limited to this. For example, a circuit board formed using a resin base material, a ceramic base material, or a single crystal silicon base material may be used.

また、本実施の形態では、各層が、同じ種類の感光性樹脂と導電フィラーとを含む液状樹脂を用いて形成した突起電極を例に説明したが、これに限られない。例えば、硬度、弾性率または導電率などの少なくとも1つが異なる導電フィラーを含む複数種の液状樹脂を準備して、突起電極の各層を形成してもよい。この場合、複数種の液状樹脂を充填した各容器に電子部品を移し替えて露光することにより、異なる特性の層を有する突起電極を形成できる。これにより、電子部品と実装基板との熱膨張係数の差による熱応力などが作用しても、接続部の不良発生をさらに抑制することができ、高信頼性の電子部品実装構造体を得ることができる。さらに、突起電極の硬度、弾性率または導電率の調整範囲を大幅に拡大できるため、半導体素子などからなる電子部品の作製時の特性ばらつきを有していても、突起電極により特性ばらつきの少ない電子部品実装構造体を実現できる。   In the present embodiment, the description has been given of the bump electrode formed using a liquid resin in which each layer includes the same type of photosensitive resin and conductive filler. However, the present invention is not limited to this. For example, a plurality of types of liquid resins including conductive fillers that differ in at least one of hardness, elastic modulus, electrical conductivity, and the like may be prepared to form each layer of the protruding electrode. In this case, projecting electrodes having layers with different characteristics can be formed by transferring and exposing the electronic components to the respective containers filled with a plurality of types of liquid resins. As a result, even if thermal stress due to the difference in thermal expansion coefficient between the electronic component and the mounting substrate acts, it is possible to further suppress the occurrence of defects in the connection portion, and to obtain a highly reliable electronic component mounting structure Can do. Furthermore, since the adjustment range of the hardness, elastic modulus, or conductivity of the protruding electrode can be greatly expanded, even if there is a variation in characteristics when manufacturing an electronic component made of a semiconductor element, etc., A component mounting structure can be realized.

本発明の電子部品実装構造体は、小型・薄型化で多機能化が進む携帯電話、携帯型デジタル機器やデジタル家電機器などの技術分野において有用である。   The electronic component mounting structure according to the present invention is useful in technical fields such as mobile phones, portable digital devices, digital home appliances, and the like that are becoming more and more multifunctional in size and thickness.

本発明の実施の形態における電子部品実装構造体の構成を示す断面図Sectional drawing which shows the structure of the electronic component mounting structure in embodiment of this invention 本発明の実施の形態における電子部品実装構造体の製造方法の概略を説明するフローチャートThe flowchart explaining the outline of the manufacturing method of the electronic component mounting structure in embodiment of this invention (a)本発明の実施の形態の電子部品実装構造体における突起電極の第1層の製造方法を説明する断面図(b)本発明の実施の形態の電子部品実装構造体における突起電極の第2層の製造方法を説明する断面図(A) Sectional drawing explaining the manufacturing method of the 1st layer of the protrusion electrode in the electronic component mounting structure of embodiment of this invention (b) The protrusion electrode in the electronic component mounting structure of embodiment of this invention Sectional drawing explaining the manufacturing method of two layers (a)本発明の実施の形態の電子部品実装構造体における突起電極の第1層の製造方法の別の例を説明する断面図(b)本発明の実施の形態の電子部品実装構造体における突起電極の第2層の製造方法の別の例を説明する断面図(A) Sectional drawing explaining another example of the manufacturing method of the 1st layer of the protruding electrode in the electronic component mounting structure of embodiment of this invention (b) In the electronic component mounting structure of embodiment of this invention Sectional drawing explaining another example of the manufacturing method of the 2nd layer of a protruding electrode (a)は本発明の実施の形態の実施例1における電子部品実装構造体の機能領域を説明する平面図(b)本発明の実施の形態の電子部品実装構造体の機能領域ごとに対応して形成した突起電極の形状を説明する断面図(c)本発明の実施の形態の電子部品実装構造体の機能領域ごとに対応して形成した突起電極の形状を説明する断面図(d)本発明の実施の形態の電子部品実装構造体の機能領域ごとに対応して形成した突起電極の形状を説明する断面図(e)本発明の実施の形態の電子部品実装構造体の機能領域ごとに対応して形成した突起電極の形状を説明する断面図(A) is a top view explaining the functional area | region of the electronic component mounting structure in Example 1 of embodiment of this invention (b) It respond | corresponds for every functional area | region of the electronic component mounting structure of embodiment of this invention. (C) Cross-sectional view for explaining the shape of the protruding electrode formed in correspondence with each functional region of the electronic component mounting structure according to the embodiment of the present invention (d) Sectional drawing explaining the shape of the protruding electrode formed corresponding to every functional area of the electronic component mounting structure of embodiment of invention (e) For every functional area of the electronic component mounting structure of embodiment of this invention Sectional drawing explaining the shape of the corresponding protruding electrode (a)本発明の実施の形態の実施例2における電子部品実装構造体の機能領域を説明する平面図(b)図6(a)のA−A線断面模式図(c)図6(a)のB−B線断面模式図(d)図6(a)のC−C線断面模式図(A) Plan view for explaining the functional area of the electronic component mounting structure in Example 2 of the embodiment of the present invention (b) AA cross-sectional schematic diagram of FIG. 6 (a) (c) FIG. 6 (a) ) B-B cross-sectional schematic diagram (d) Fig. 6 (a) CC cross-sectional schematic diagram 従来の電子部品実装構造体の構成を示す断面図Sectional drawing which shows the structure of the conventional electronic component mounting structure

符号の説明Explanation of symbols

1,100,200 電子部品実装構造体
2,220,302 電子部品(半導体素子)
3,303 電極端子
4 保護膜
5,250 基板(実装基板)
6 接続端子
7,71,72,73,74,205,207,307 突起電極
7a 第1層
7b 第2層
7c 第3層
7d 第4層
7e 第5層
8 絶縁性樹脂
10,20 容器
21 底部
22 外周部
23 フォトマスク
23a 第1の開口部
23b 第2の開口部
24 液状樹脂
25 光
101 電源部
102 デジタル部
103 アナログ部
104 グランド部
201 電源配線部
202 信号配線部
203 グランド配線部
305 キャリア基板
1,100,200 Electronic component mounting structure 2,220,302 Electronic component (semiconductor element)
3,303 Electrode terminal 4 Protective film 5,250 Substrate (mounting substrate)
6 Connection terminal 7, 71, 72, 73, 74, 205, 207, 307 Projection electrode 7a 1st layer 7b 2nd layer 7c 3rd layer 7d 4th layer 7e 5th layer 8 Insulating resin 10, 20 Container 21 Bottom 22 peripheral portion 23 photomask 23a first opening portion 23b second opening portion 24 liquid resin 25 light 101 power supply portion 102 digital portion 103 analog portion 104 ground portion 201 power supply wiring portion 202 signal wiring portion 203 ground wiring portion 305 carrier substrate

Claims (11)

電子部品の複数の電極端子と、前記電極端子に対応して基板上に形成された複数の接続端子とが、少なくとも導電フィラーと樹脂材料からなる突起電極により接合された電子部品実装構造体において、
前記電子部品は、複数の機能領域を有し、
前記機能領域に対応して設けた、少なくとも2種類以上の異なる機能を有する前記突起電極を介して接続したことを特徴とする電子部品実装構造体。
In the electronic component mounting structure in which the plurality of electrode terminals of the electronic component and the plurality of connection terminals formed on the substrate corresponding to the electrode terminal are joined by the protruding electrode made of at least a conductive filler and a resin material,
The electronic component has a plurality of functional areas,
An electronic component mounting structure, wherein the electronic component mounting structure is connected via the protruding electrodes provided corresponding to the functional regions and having at least two different types of functions.
前記電子部品の前記機能領域に対応して、前記突起電極の外形形状を異ならせたことを特徴とする請求項1に記載の電子部品実装構造体。 2. The electronic component mounting structure according to claim 1, wherein an outer shape of the protruding electrode is made different in accordance with the functional region of the electronic component. 前記電子部品の前記機能領域に対応して、前記突起電極の機械的強度を異ならせたことを特徴とする請求項1または請求項2に記載の電子部品実装構造体。 3. The electronic component mounting structure according to claim 1, wherein a mechanical strength of the protruding electrode is varied in accordance with the functional region of the electronic component. 前記電子部品の前記機能領域が、少なくとも第1機能領域と、前記第1機能領域より機械的強度の低い第2機能領域を有し、
第1機能領域に設けた第1突起電極よりも、第2機能領域に設けた第2突起電極の弾性変形量を大きくしたことを特徴とする請求項3に記載の電子部品実装構造体。
The functional area of the electronic component has at least a first functional area and a second functional area having lower mechanical strength than the first functional area,
4. The electronic component mounting structure according to claim 3, wherein the amount of elastic deformation of the second protruding electrode provided in the second functional region is larger than that of the first protruding electrode provided in the first functional region.
第1突起電極が太鼓状で、
第2突起電極が斜め円柱状またはコイルバネ状からなることを特徴とする請求項4に記載の電子部品実装構造体。
The first protruding electrode is drum-shaped,
5. The electronic component mounting structure according to claim 4, wherein the second protruding electrode has an oblique cylindrical shape or a coil spring shape.
前記電子部品の前記機能領域に対応して、前記突起電極の導電率を変化させたことを特徴とする請求項1から請求項3のいずれか1項に記載の電子部品実装構造体。 The electronic component mounting structure according to any one of claims 1 to 3, wherein the conductivity of the protruding electrode is changed corresponding to the functional region of the electronic component. 前記電子部品の前記導電率が、少なくとも前記導電フィラーの密度、粒径、または前記樹脂材料により調整されることを特徴とする請求項6に記載の電子部品実装構造体。 The electronic component mounting structure according to claim 6, wherein the electrical conductivity of the electronic component is adjusted by at least a density, a particle size, or the resin material of the conductive filler. 前記突起電極において、前記電子部品の前記電極端子と前記基板の前記接続端子との接続部の断面形状を等しくしたことを特徴とする請求項1に記載の電子部品実装構造体。 2. The electronic component mounting structure according to claim 1, wherein, in the protruding electrode, a cross-sectional shape of a connection portion between the electrode terminal of the electronic component and the connection terminal of the substrate is made equal. 前記突起電極の断面形状が、円柱形状、角柱形状、円錐形状、角錐形状、円錐台形状、角錐台形状、斜め円柱形状、太鼓形状または筒状形状であることを特徴とする請求項1に記載の電子部品実装構造体。 2. The cross-sectional shape of the protruding electrode is a cylindrical shape, a prismatic shape, a conical shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, an oblique cylindrical shape, a drum shape, or a cylindrical shape. Electronic component mounting structure. 前記電子部品が、前記突起電極が設けられた半導体素子であり、
前記基板の前記接続端子と前記半導体素子の前記突起電極とが、接触により電気的に接続されていることを特徴とする請求項1に記載の電子部品実装構造体。
The electronic component is a semiconductor element provided with the protruding electrode;
The electronic component mounting structure according to claim 1, wherein the connection terminal of the substrate and the protruding electrode of the semiconductor element are electrically connected by contact.
電子部品の機能領域に対応させて、異なる機能を有する突起電極を形成する工程と、
基板の接続端子上に絶縁性樹脂を形成する工程と、
前記電子部品の前記突起電極と、前記基板の前記接続端子と位置合わせして接合する工程と、
前記絶縁性樹脂を硬化する工程と、
を含むことを特徴とする電子部品実装構造体の製造方法。
Forming bump electrodes having different functions corresponding to the functional area of the electronic component;
Forming an insulating resin on the connection terminals of the substrate;
A step of aligning and bonding the protruding electrode of the electronic component and the connection terminal of the substrate;
Curing the insulating resin;
The manufacturing method of the electronic component mounting structure characterized by including this.
JP2008172975A 2007-10-09 2008-07-02 Electronic component mounting structure and manufacturing method thereof Pending JP2009111336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172975A JP2009111336A (en) 2007-10-09 2008-07-02 Electronic component mounting structure and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007263078 2007-10-09
JP2008172975A JP2009111336A (en) 2007-10-09 2008-07-02 Electronic component mounting structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2009111336A true JP2009111336A (en) 2009-05-21

Family

ID=40779471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172975A Pending JP2009111336A (en) 2007-10-09 2008-07-02 Electronic component mounting structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2009111336A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022640A (en) * 2012-07-20 2014-02-03 Fujitsu Ltd Wiring board, method of manufacturing the same, electronic apparatus, and method of manufacturing the same
JP2014164813A (en) * 2013-02-21 2014-09-08 Hamamatsu Photonics Kk Photo-detection unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022640A (en) * 2012-07-20 2014-02-03 Fujitsu Ltd Wiring board, method of manufacturing the same, electronic apparatus, and method of manufacturing the same
US9754830B2 (en) 2012-07-20 2017-09-05 Fujitsu Limited Wiring substrate, method for manufacturing wiring substrate, electronic device and method for manufacturing electronic device
JP2014164813A (en) * 2013-02-21 2014-09-08 Hamamatsu Photonics Kk Photo-detection unit

Similar Documents

Publication Publication Date Title
JP5306224B2 (en) Compliance microelectronic assembly and method therefor
JP5152177B2 (en) Conductive bump, manufacturing method thereof, and electronic component mounting structure
US7049837B2 (en) Probe sheet, probe card, semiconductor test equipment and semiconductor device fabrication method
US7131848B2 (en) Helical microelectronic contact and method for fabricating same
JP2006189430A (en) Thin-film circuit carrying micro machine probe and its manufacturing method and application therefor
US20110003472A1 (en) Wiring substrate for mounting semiconductors, method of manufacturing the same, and semiconductor package
US20090301771A1 (en) Conductive bump, method for forming the same, and electronic component mounting structure using the same
JP5593018B2 (en) Compliant microelectronic assembly
JP2008311584A (en) Mounting structure of semiconductor package
TW201624654A (en) Substrate and assembly thereof with dielectric removal for increased post height
JP4609350B2 (en) Manufacturing method of electronic component mounting structure
US7994638B2 (en) Semiconductor chip and semiconductor device
US7190073B2 (en) Circuit film with bump, film package using the same, and related fabrication methods
US8274150B2 (en) Chip bump structure and method for forming the same
JP2009111336A (en) Electronic component mounting structure and manufacturing method thereof
JP2010010319A (en) Conductive bump, method of forming the same, and electronic component mounting structure using the same
JP2009295704A (en) Conductive bump, method for forming the same, and electronic component mounting structure using the same
KR20080081530A (en) Fabrication method for flip chip assembly
KR100325466B1 (en) Chip size package and method for fabricating the same
JPH1116950A (en) Structure of mounting chip
JP2009266975A (en) Semiconductor device and method for manufacturing the same