JP2007247675A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2007247675A
JP2007247675A JP2006068173A JP2006068173A JP2007247675A JP 2007247675 A JP2007247675 A JP 2007247675A JP 2006068173 A JP2006068173 A JP 2006068173A JP 2006068173 A JP2006068173 A JP 2006068173A JP 2007247675 A JP2007247675 A JP 2007247675A
Authority
JP
Japan
Prior art keywords
bearing
housing
seal
bearing device
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006068173A
Other languages
Japanese (ja)
Other versions
JP4708228B2 (en
Inventor
Seiji Hori
政治 堀
Isao Komori
功 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006068173A priority Critical patent/JP4708228B2/en
Publication of JP2007247675A publication Critical patent/JP2007247675A/en
Application granted granted Critical
Publication of JP4708228B2 publication Critical patent/JP4708228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To compact the axial direction of a fluid bearing device. <P>SOLUTION: Sealing members 9, 10 are arranged at the inner periphery of an opening part of a housing 7. A first tapered face 11 whose diameter is gradually contracted toward the direction of the outside of the bearing device is formed on outer peripheral faces 9a, 10a of the sealing members 9, 10, and a second tapered face 12 whose diameter is gradually extended toward the direction of the outside is formed on second and third inner peripheral faces 7b, 7c of the housing 7. Sealing spaces S1, S2 are formed between the first tapered face 11 and the second tapered face 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、流体軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device.

流体軸受装置は、軸受隙間に生じる流体の潤滑膜で支持すべき軸を回転自在に支持する軸受装置である。この流体軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等に搭載するスピンドルモータ用、また、パーソナルコンピュータ(PC)などに搭載され、発熱源の冷却を行うファンモータ用、レーザービームプリンタ(LBP)のポリゴンスキャナモータ用等の軸受として広く用いられている。   The hydrodynamic bearing device is a bearing device that rotatably supports a shaft to be supported by a fluid lubricating film generated in a bearing gap. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. In recent years, by utilizing the characteristics, information devices such as magnetic disk devices such as HDD and FDD, CD-ROM, CD -For spindle motors mounted on optical disk devices such as R / RW and DVD-ROM / RAM, magneto-optical disk devices such as MD and MO, etc., and mounted on personal computers (PCs), etc., to cool the heat source. Widely used as a bearing for a fan motor, a polygon scanner motor of a laser beam printer (LBP), or the like.

例えば、HDD等のディスク装置のスピンドルモータに組み込まれる流体軸受装置では、図8に示すように、軸部材20をラジアル方向に回転自在に支持するラジアル軸受部Rと、軸部材20をスラスト方向に回転自在に支持するスラスト軸受部Tとが設けられる。ラジアル軸受部Rの軸受としては、軸部材20を構成する軸部21の外周面または軸受スリーブ80の内周面に動圧溝等の動圧発生部を設けた動圧軸受が用いられる場合が多い。スラスト軸受部Tとしては、例えば、軸部材20のフランジ部22の両端面、または、これに対向する面(例えば、軸受スリーブの端面81や、ハウジング70に固定されるスラスト部材71の端面71a等)に動圧溝等を設けた動圧軸受が用いられる場合と、軸部材の一端を接触支持する、いわゆるピボット軸受が用いられる場合(図示省略)とがある。   For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk device such as an HDD, as shown in FIG. 8, a radial bearing portion R that rotatably supports the shaft member 20 in the radial direction, and the shaft member 20 in the thrust direction. A thrust bearing portion T that is rotatably supported is provided. As the bearing of the radial bearing portion R, a dynamic pressure bearing in which a dynamic pressure generating portion such as a dynamic pressure groove is provided on the outer peripheral surface of the shaft portion 21 constituting the shaft member 20 or the inner peripheral surface of the bearing sleeve 80 may be used. Many. As the thrust bearing portion T, for example, both end surfaces of the flange portion 22 of the shaft member 20, or surfaces facing the flange portion 22 (for example, the end surface 81 of the bearing sleeve, the end surface 71a of the thrust member 71 fixed to the housing 70, etc.) ) And a case where a so-called pivot bearing that supports and supports one end of the shaft member is used (not shown).

通常、軸受スリーブ80はハウジング70の所定箇所に固定され、また、軸受スリーブ80よりもハウジング70の開口部側には、軸受装置内部を満たす潤滑流体(例えば、潤滑油)の外部への漏れ出しを防止するためのシール空間Sが設けられる。シール空間Sは、例えば、ハウジング70の開口部に固定されたシール部材100の内周面と軸部21の外周面との間に設けられ、このシール空間Sは、対向する二面の何れか一方を傾斜させるのが一般的で、例えば回転側となる軸部21の外周面が軸端に向けて漸次縮径したテーパ面に形成される。このシール空間Sの容積は、軸受の内部空間に充満された潤滑油が使用温度範囲内での熱膨張・収縮によって容積変化する量よりも大きくなるように設定される。従って、温度変化に伴う潤滑油の容積変化があった場合でも、潤滑油の油面は常にシール空間S内に維持される(以上、例えば、特許文献1参照)。
特開2003−336636号公報
Usually, the bearing sleeve 80 is fixed at a predetermined position of the housing 70, and the lubricating fluid (for example, lubricating oil) that fills the inside of the bearing device leaks to the outside at the opening side of the housing 70 from the bearing sleeve 80. A seal space S is provided to prevent this. The seal space S is provided, for example, between the inner peripheral surface of the seal member 100 fixed to the opening of the housing 70 and the outer peripheral surface of the shaft portion 21, and the seal space S is one of two opposing surfaces. In general, one side is inclined. For example, the outer peripheral surface of the shaft portion 21 on the rotation side is formed into a tapered surface that is gradually reduced in diameter toward the shaft end. The volume of the seal space S is set so that the lubricating oil filled in the internal space of the bearing becomes larger than the amount of change in volume due to thermal expansion / contraction within the operating temperature range. Therefore, even when there is a change in the volume of the lubricating oil accompanying a change in temperature, the oil level of the lubricating oil is always maintained in the seal space S (see, for example, Patent Document 1).
JP 2003-336636 A

上述のように、従来の流体軸受装置では、ハウジングの開口部に固定されたシール部材の内周面と軸部材の外周面との間にシール空間を形成しているが、このシール空間に、温度変化に伴う潤滑油の容積変化量を吸収する機能(バッファ機能)を持たせようとすると、シール空間の軸方向寸法を比較的大きく確保する必要がある。そのために、設計上、ハウジングの内部において、軸受スリーブの軸方向中心位置を相対的にハウジングの底部側に下げる必要があり、これにより、ラジアル軸受部の軸受中心と回転体重心との離間距離が大きくなり、使用条件等によっては、モーメント剛性が不足する場合が起こり得る。   As described above, in the conventional hydrodynamic bearing device, the seal space is formed between the inner peripheral surface of the seal member fixed to the opening of the housing and the outer peripheral surface of the shaft member. In order to provide a function (buffer function) for absorbing the volume change amount of the lubricating oil accompanying a temperature change, it is necessary to ensure a relatively large axial dimension of the seal space. Therefore, it is necessary to lower the axial center position of the bearing sleeve relative to the bottom side of the housing in the interior of the housing by design, so that the separation distance between the bearing center of the radial bearing portion and the center of gravity of the rotating body is reduced. Depending on the use conditions, etc., the moment stiffness may be insufficient.

本発明の課題は、この種の流体軸受装置におけるシール空間の軸方向寸法を一層小さくすることを可能にし、これにより、流体軸受装置のコンパクト化を図ること、あるいはモーメント剛性を高めることにある。   An object of the present invention is to make it possible to further reduce the axial dimension of the seal space in this type of hydrodynamic bearing device, thereby reducing the size of the hydrodynamic bearing device or increasing the moment rigidity.

前記課題を解決するため、本発明にかかる流体軸受装置は、ハウジングと、該ハウジングの内周に配置された軸受スリーブと、前記ハウジングおよび前記軸受スリーブに対して相対回転する軸部材と、大気に開放されたシール空間と、前記軸受スリーブと前記軸部材の間のラジアル軸受隙間を満たす流体の潤滑膜で前記軸部材をラジアル方向に支持するラジアル軸受部とを備え、前記シール空間が、開口部に向けて、漸次縮径する第1テーパ面と漸次拡径する第2テーパ面との間に形成されたことを特徴とするものである。   In order to solve the above problems, a hydrodynamic bearing device according to the present invention includes a housing, a bearing sleeve disposed on an inner periphery of the housing, a shaft member that rotates relative to the housing and the bearing sleeve, and an atmosphere. An open seal space, and a radial bearing portion that supports the shaft member in a radial direction with a fluid lubricating film that fills a radial bearing gap between the bearing sleeve and the shaft member, and the seal space has an opening portion Toward the first taper surface, the first taper surface gradually decreases in diameter and the second taper surface gradually increases in diameter.

上記のように本発明では、シール空間が、開口部に向けて、漸次縮径する第1テーパ面と漸次拡径する第2テーパ面との間に形成される。これにより、シール空間を形成する二面の何れか一方をテーパ面とした従来構成と比べ、シール空間の軸方向寸法を長大化することなくその容積を拡大させることができる。したがって、シール空間の軸方向寸法を縮小して、流体軸受装置を軸方向にコンパクト化することができ、あるいは軸受スリーブの軸方向寸法を大きくし、ラジアル軸受部間の離間距離を大きくしてモーメント剛性を高めることができる。   As described above, in the present invention, the seal space is formed between the first tapered surface that gradually decreases in diameter and the second tapered surface that gradually increases in diameter toward the opening. As a result, the volume of the seal space can be increased without increasing the axial dimension of the seal space as compared with the conventional configuration in which one of the two surfaces forming the seal space is a tapered surface. Therefore, the axial dimension of the seal space can be reduced, and the hydrodynamic bearing device can be made compact in the axial direction. Alternatively, the axial dimension of the bearing sleeve can be increased, and the separation distance between the radial bearing portions can be increased. Stiffness can be increased.

上記の具体的な構成として、軸部材に、その外径側に突出させてシール部材を設け、該シール部材に前記第1テーパ面を設けると共に第2テーパ面をハウジングに設けた構成を挙げることができる。この構成であれば、シール空間を軸部材の外周面とハウジングに固定されたシール部材の内周面との間に設けた構成(例えば、図8参照)に比べ、シール空間を外径側に設けることができる分、シール空間の軸方向寸法を一層縮小しても、シール空間の必要容積を確保することが可能となる。これにより、流体軸受装置を一層コンパクト化することができ、あるいは一層モーメント剛性を高めることができる。   Specific examples of the configuration include a configuration in which a shaft member is provided with a seal member that protrudes to the outer diameter side, the first taper surface is provided on the seal member, and a second taper surface is provided on the housing. Can do. With this configuration, the seal space is placed on the outer diameter side as compared with the configuration in which the seal space is provided between the outer peripheral surface of the shaft member and the inner peripheral surface of the seal member fixed to the housing (see, for example, FIG. 8). The required volume of the seal space can be secured even if the axial dimension of the seal space is further reduced by the amount that can be provided. Thereby, the hydrodynamic bearing device can be made more compact, or the moment rigidity can be further increased.

ところで、上記のようなシール空間形状の場合、衝撃荷重が付加された場合等にシール空間から潤滑流体が漏出し易くなるおそれがある。そこで、本発明では、前記ハウジングの端面とこれに対向する前記シール部材の端面との間に外径側でシール空間に接続したスラスト軸受隙間を設け、該スラスト軸受隙間を介して対向する二面の何れか一方に、潤滑流体を内径側に引き込む動圧発生部を設けた。この構成とすることにより、シール空間を満たす潤滑油には、毛細管力による引き込み力に加え、動圧発生部(スラスト動圧発生部)による引き込み力が作用するので、シール空間からの潤滑流体の漏れ出しを効果的に防止することができる。   By the way, in the case of the seal space shape as described above, there is a possibility that the lubricating fluid is likely to leak from the seal space when an impact load is applied. Therefore, in the present invention, a thrust bearing gap connected to the seal space on the outer diameter side is provided between the end face of the housing and the end face of the seal member facing the housing, and the two faces facing each other through the thrust bearing gap. One of these was provided with a dynamic pressure generating portion for drawing the lubricating fluid toward the inner diameter side. With this configuration, in addition to the pulling force due to the capillary force, the pulling force due to the dynamic pressure generating portion (thrust dynamic pressure generating portion) acts on the lubricating oil that fills the sealing space. Leakage can be effectively prevented.

スラスト動圧発生部の形状は、外径側から内径側に潤滑油を流動させる機能(ポンプイン機能)を有するものであれば特に問わず、代表例としてスパイラル形状に配列した動圧溝を挙げることができる。この他、例えばへリングボーン形状の動圧溝のようにポンプイン機能とポンプアウト機能とを併有するものであっても、ポンプアウト機能による外径側への流れよりもポンプイン機能による内径側への流れが支配的となるのであれば、スラスト軸受隙間の全体では外径側から内径側へ潤滑油が流動するので、この種の動圧発生部を採用することも可能となる。   The shape of the thrust dynamic pressure generating portion is not particularly limited as long as it has a function (pump-in function) for flowing lubricating oil from the outer diameter side to the inner diameter side, and a representative example is a dynamic pressure groove arranged in a spiral shape. be able to. In addition to this, even if the pump-in function and the pump-out function are combined, such as a herringbone-shaped dynamic pressure groove, the inner diameter side by the pump-in function is more than the flow to the outer diameter side by the pump-out function. If the flow to the flow is dominant, since the lubricating oil flows from the outer diameter side to the inner diameter side in the entire thrust bearing gap, it is possible to employ this type of dynamic pressure generating portion.

シール空間は、ハウジングの両端を開口させ、その両端開口部に設けることも可能である。このようにシール空間を軸方向の両端に設ければ、ハウジングの一端側開口部にのみシール空間を設けた構成に比べ、軸受装置全体でのバッファ機能を高めることができるので、一層シール空間の軸方向寸法を縮小することが可能となり、流体軸受装置を一層コンパクト化することが、あるいは軸受スリーブを長大化させてモーメント剛性を高めることが可能となる。   The seal space can be provided at both end openings by opening both ends of the housing. If the seal spaces are provided at both ends in the axial direction in this way, the buffer function of the entire bearing device can be enhanced as compared with the configuration in which the seal space is provided only at the opening on the one end side of the housing. The axial dimension can be reduced, and the hydrodynamic bearing device can be made more compact, or the bearing sleeve can be lengthened to increase the moment rigidity.

上記構成の流体軸受装置は、該流体軸受装置と、ステータコイルと、ロータマグネットとを有するモータに好ましく用いることができる。   The hydrodynamic bearing device having the above configuration can be preferably used for a motor having the hydrodynamic bearing device, a stator coil, and a rotor magnet.

以上より、本発明によれば、シール空間の軸方向寸法を一層小さくすることができ、これにより、流体軸受装置の一層のコンパクト化を図ること、あるいはモーメント剛性を高めることが可能となる。   As described above, according to the present invention, it is possible to further reduce the axial dimension of the seal space, thereby further reducing the size of the hydrodynamic bearing device or increasing the moment rigidity.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る流体軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2に装着されたロータ(ディスクハブ)3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5を備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられる。流体軸受装置1のハウジング7は、ブラケット6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 according to the present invention. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a rotor (disk hub) 3 mounted on the shaft member 2, and a radial direction, for example. The stator coil 4 and the rotor magnet 5 are provided to face each other through the gap. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is attached to the inner periphery of the bracket 6. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the shaft member 2 are rotated together.

図2は、上記スピンドルモータで使用される流体軸受装置1の一例を示すものである。この流体軸受装置1は、回転側の軸部材2、および軸部材2に固定されたシール部材9、10と、固定側のハウジング7、およびハウジング7の内周に固定される軸受スリーブ8とを主要な構成部材として備える。なお、以下説明の便宜上、ハウジング7の開口部から軸部材2が突出している側を上側、その軸方向反対側を下側として説明を進める。   FIG. 2 shows an example of the hydrodynamic bearing device 1 used in the spindle motor. The hydrodynamic bearing device 1 includes a rotation-side shaft member 2, seal members 9 and 10 fixed to the shaft member 2, a fixed-side housing 7, and a bearing sleeve 8 fixed to the inner periphery of the housing 7. It is provided as a main component. For convenience of explanation, the description will be given with the side from which the shaft member 2 protrudes from the opening of the housing 7 as the upper side and the opposite side in the axial direction as the lower side.

軸部材2は、ステンレス鋼等の金属材料で形成される。軸部材2は全体として概ね同径の軸状をなし、その中間部分には、他所よりも僅かに小径に形成した逃げ部2bが形成されている。軸部材2の外周面2aのうち、第1および第2シール部材9、10の固定位置には、凹部、例えば円周溝2cが形成されている。   The shaft member 2 is formed of a metal material such as stainless steel. The shaft member 2 as a whole has a shaft shape with substantially the same diameter, and an intermediate portion is formed with a relief portion 2b formed to have a slightly smaller diameter than other portions. In the outer peripheral surface 2a of the shaft member 2, a recessed portion, for example, a circumferential groove 2c is formed at a fixing position of the first and second seal members 9, 10.

軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の所定位置に接着、圧入、あるいは圧入接着等の手段で固定される。なお、軸受スリーブ8は、焼結金属以外にも黄銅等の軟質金属材料で形成することもできる。   The bearing sleeve 8 is formed in a cylindrical shape, for example, a porous body made of sintered metal, particularly a sintered metal porous body mainly composed of copper, and is bonded, press-fitted, or press-fitted to a predetermined position of the housing 7. It is fixed by such means. The bearing sleeve 8 can be formed of a soft metal material such as brass in addition to the sintered metal.

軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面Aとなる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には動圧発生部(ラジアル動圧発生部)として例えば図3に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。なお、例えば上側の動圧溝8a1における上側領域の溝の軸方向幅を下側領域の溝よりも長大化させた形状とすることにより、軸部材2の回転時、潤滑流体に軸方向下方への押し込み力(ポンピング力)を付与することもできる。動圧溝8a1、8a2は、公知のその他の形状、例えばスパイラル形状等に形成することもできる。   The inner peripheral surface 8a of the bearing sleeve 8 is provided with two upper and lower regions which are the radial bearing surfaces A of the first radial bearing portion R1 and the second radial bearing portion R2 and are separated from each other in the axial direction. For example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. 3 are formed as dynamic pressure generating portions (radial dynamic pressure generating portions). For example, by making the axial width of the upper region groove of the upper dynamic pressure groove 8a1 longer than that of the lower region groove, the lubricating fluid is moved downward in the axial direction when the shaft member 2 rotates. The pushing force (pumping force) can be applied. The dynamic pressure grooves 8a1 and 8a2 can be formed in other known shapes such as a spiral shape.

第1シール部材9および第2シール部材10は、何れも黄銅等の軟質金属材料やその他の金属材料、あるいは樹脂材料でリング状に形成され、軸受スリーブ8の両端側で軸部材2の外周面2aに例えば接着固定される。接着固定時には、軸部材2に塗布した接着剤が、接着剤溜りとしての円周溝2cに充填されて固化することにより、シール部材9、10の軸部材2に対する接着強度が向上する。   The first seal member 9 and the second seal member 10 are each formed in a ring shape from a soft metal material such as brass, other metal materials, or a resin material, and the outer peripheral surface of the shaft member 2 at both ends of the bearing sleeve 8. For example, it is bonded and fixed to 2a. At the time of bonding and fixing, the adhesive applied to the shaft member 2 is filled in the circumferential groove 2c as an adhesive reservoir and solidified, whereby the adhesive strength of the seal members 9 and 10 to the shaft member 2 is improved.

ハウジング7は、例えば、アルミニウム合金や黄銅等の軟質金属で、両端を開口させた略円筒状に形成され、その内周面は、軸受スリーブ8との固定面を有する第1内周面7aと、第1内周面7aの軸方向上側に設けられ、第1内周面7aよりも大径の第2内周面7bと、第1内周面7aの軸方向下側に設けられ、第1内周面7aよりも大径の第3内周面7cとに区画される。ハウジング7は、図1に示すブラケット6の内周面に圧入、接着、圧入接着、溶着等適宜の手段で固定される。   The housing 7 is made of a soft metal such as an aluminum alloy or brass, and is formed in a substantially cylindrical shape with both ends opened. The inner peripheral surface of the housing 7 is a first inner peripheral surface 7 a having a fixed surface with the bearing sleeve 8. Provided on the upper side in the axial direction of the first inner peripheral surface 7a, provided on the second inner peripheral surface 7b having a larger diameter than the first inner peripheral surface 7a, and on the lower side in the axial direction of the first inner peripheral surface 7a, 1 is divided into a third inner peripheral surface 7c having a larger diameter than the inner peripheral surface 7a. The housing 7 is fixed to the inner peripheral surface of the bracket 6 shown in FIG.

ハウジング7は、金属材料の他、例えば樹脂で形成することもでき、この場合、例えば液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等の結晶性樹脂、あるいはポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)等の非晶性樹脂をベース樹脂とする樹脂組成物を用いて射出成形することができる。前記ベース樹脂には、要求特性に応じて、強化材や導電材、および潤滑材等の各種充填材が一種又は二種以上配合される。   The housing 7 can be formed of a resin other than a metal material. In this case, for example, a crystalline resin such as a liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), or polysulfone ( PSU), polyethersulfone (PES), polyphenylsulfone (PPSU) and the like can be injection-molded using a resin composition containing an amorphous resin as a base resin. One or more kinds of various fillers such as a reinforcing material, a conductive material, and a lubricant are blended in the base resin according to required characteristics.

ハウジング7の第1内周面7aと第2内周面7bを繋ぐ上側端面7dの一部または全部環状領域には、第1スラスト軸受部T1のスラスト軸受面が形成され、該スラスト軸受面には動圧発生部(スラスト動圧発生部)として、スパイラル形状に配列した複数の動圧溝がポンプイン機能を奏するように形成される。また、ハウジング7の第1内周面7aと第3内周面7cを繋ぐ下側端面7eの一部または全部環状領域には、第2スラスト軸受部T2のスラスト軸受面が形成され、該スラスト軸受面にはスラスト動圧発生部として、スパイラル形状に配列した複数の動圧溝がポンプイン機能を奏するように形成される。なお、スラスト動圧発生部は軸方向に対向する第1シール部材9の下側端面9b、および第2シール部材10の上側端面10bに形成することもできる。   A thrust bearing surface of the first thrust bearing portion T1 is formed in a part or all of the annular region of the upper end surface 7d connecting the first inner peripheral surface 7a and the second inner peripheral surface 7b of the housing 7, and the thrust bearing surface is formed on the thrust bearing surface. As a dynamic pressure generating portion (thrust dynamic pressure generating portion), a plurality of dynamic pressure grooves arranged in a spiral shape are formed so as to perform a pump-in function. A thrust bearing surface of the second thrust bearing portion T2 is formed in a part or all of the annular region of the lower end surface 7e that connects the first inner peripheral surface 7a and the third inner peripheral surface 7c of the housing 7, and the thrust A plurality of dynamic pressure grooves arranged in a spiral shape are formed on the bearing surface as a thrust dynamic pressure generating portion so as to perform a pump-in function. The thrust dynamic pressure generating portion can also be formed on the lower end surface 9 b of the first seal member 9 and the upper end surface 10 b of the second seal member 10 that face each other in the axial direction.

スラスト動圧発生部としては、上記のスパイラル形状の動圧溝のようにポンプイン機能を有する他の形状を採用することもでき、この種の形状として例えばヘリングボーン形状を挙げることができる。ヘリングボーン形状の動圧溝は、ポンプイン機能とポンプアウト機能を併有するものであるが、ポンプイン機能による内径側への潤滑油の流れがポンプアウト機能による外径側への潤滑油の流れよりも支配的になるのであれば、スラスト軸受隙間の全体で外径側から内径側へ潤滑油が流動するので、この種の形状のスラスト動圧発生部を採用することもできる。   As the thrust dynamic pressure generating portion, other shapes having a pump-in function such as the above-described spiral-shaped dynamic pressure grooves can be adopted, and examples of this type of shape include a herringbone shape. The herringbone-shaped dynamic pressure groove has both a pump-in function and a pump-out function, but the flow of lubricant to the inner diameter side by the pump-in function is the flow of lubricant to the outer diameter side by the pump-out function. If it becomes more dominant, since the lubricating oil flows from the outer diameter side to the inner diameter side in the entire thrust bearing gap, this type of thrust dynamic pressure generating portion can also be adopted.

ハウジング7の第2内周面7bは、軸部材2に固定された第1シール部材9の外周面9aとの間に所定容積の第1シール空間S1を形成し、ハウジング7の第3内周面7cは、第2シール部材10の外周面10aとの間に所定容積の第2シール空間S2を形成する。本実施形態において、第1シール部材9の外周面9aおよび第2シール部材10の外周面10aは、それぞれ軸受装置の外部側(開口部)に向かって漸次縮径した第1テーパ面11を構成し、ハウジング7の第2内周面7bおよび第3内周面7cは、それぞれ軸受装置の外部側(開口部)に向かって漸次拡径した第2テーパ面12を構成する。そのため、両シール空間S1、S2は、互いに接近する方向に漸次縮小したテーパ形状をなし、軸部材2の回転時には、両シール空間S1、S2内の潤滑油は毛細管力による引き込み作用によってシール空間が狭くなる方向(ハウジング7の内部方向)に引き込まれる。なお、潤滑油の漏れ出しを防止するため、ハウジング7の上下端面、第1シール部材9の上側端面9c、および第2シール部材10の下側端面10cにそれぞれ撥油剤からなる被膜を形成することもできる(図示省略)。   The second inner peripheral surface 7 b of the housing 7 forms a first seal space S 1 having a predetermined volume with the outer peripheral surface 9 a of the first seal member 9 fixed to the shaft member 2. The surface 7c forms a second seal space S2 having a predetermined volume with the outer peripheral surface 10a of the second seal member 10. In the present embodiment, the outer peripheral surface 9a of the first seal member 9 and the outer peripheral surface 10a of the second seal member 10 constitute a first tapered surface 11 that is gradually reduced in diameter toward the outside (opening) of the bearing device. The second inner peripheral surface 7b and the third inner peripheral surface 7c of the housing 7 constitute a second tapered surface 12 that gradually increases in diameter toward the outer side (opening) of the bearing device. Therefore, both the seal spaces S1 and S2 have a tapered shape that is gradually reduced in the direction of approaching each other. When the shaft member 2 rotates, the lubricating oil in both the seal spaces S1 and S2 is pulled by the capillary force so that the seal space is reduced. It is drawn in the direction of narrowing (inner direction of the housing 7). In order to prevent leakage of the lubricating oil, a film made of an oil repellent agent is formed on the upper and lower end surfaces of the housing 7, the upper end surface 9c of the first seal member 9, and the lower end surface 10c of the second seal member 10, respectively. (Not shown).

第1および第2シール空間S1、S2は、ハウジング7の内部空間に充満される潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有する。想定される温度変化の範囲内で、油面は常時両シール空間S1、S2内にある。これを実現するために、両シール空間S1、S2の容積の総和は、少なくとも内部空間に充満される潤滑油の温度変化に伴う容積変化量よりも大きく設定される。   The first and second seal spaces S <b> 1 and S <b> 2 have a buffer function that absorbs a volume change amount associated with a temperature change of the lubricating oil filled in the internal space of the housing 7. The oil level is always in both the seal spaces S1 and S2 within the assumed temperature change range. In order to realize this, the sum of the volumes of the seal spaces S1, S2 is set to be larger than at least the volume change amount associated with the temperature change of the lubricating oil filled in the internal space.

上記構成において、軸受スリーブ8の両端面との間に所定幅のスラスト軸受隙間を形成できるように第1シール部材9および第2シール部材10を軸受スリーブ8の両端に配置した状態で、第1、第2シール部材9、10を軸部材2の所定箇所に接着固定する。このようにして流体軸受装置1の組立が完了すると、両シール部材9、10で密閉されたハウジング7の内部空間に、軸受スリーブ8の内部気孔も含め、潤滑流体として例えば潤滑油を充満させる。   In the above configuration, the first seal member 9 and the second seal member 10 are disposed at both ends of the bearing sleeve 8 so that a thrust bearing gap having a predetermined width can be formed between both end surfaces of the bearing sleeve 8. The second seal members 9 and 10 are bonded and fixed to predetermined portions of the shaft member 2. When the assembly of the hydrodynamic bearing device 1 is completed in this way, the internal space of the housing 7 sealed with the seal members 9 and 10 is filled with, for example, lubricating oil as a lubricating fluid including the internal pores of the bearing sleeve 8.

潤滑油の注油は、例えば未注油状態の流体軸受装置を潤滑油中に浸漬した後、大気圧に開放することにより行われる。このとき、本実施形態の流体軸受装置1ではハウジング7の両端が開放されているので、ハウジング7の一端を閉じた構成(例えば、図8参照)に比べ、内部空間のエアを確実に潤滑油で置換することができ、残存エアによる弊害、例えば高温時の油漏れを確実に回避することができる。また、このような減圧を利用した注油方法だけでなく、常圧下で注油(例えば潤滑油の加圧注油)も可能となり、注油装置および工程の簡略化を通じて製造コストの低廉化を図ることもできる。   Lubricating oil is injected, for example, by immersing an unlubricated hydrodynamic bearing device in lubricating oil and then releasing it to atmospheric pressure. At this time, since both ends of the housing 7 are open in the hydrodynamic bearing device 1 of the present embodiment, the air in the internal space can be reliably lubricated as compared with a configuration in which one end of the housing 7 is closed (see, for example, FIG. 8). Thus, adverse effects caused by residual air, for example, oil leakage at high temperatures can be reliably avoided. In addition to such an oil supply method using reduced pressure, oil supply (for example, pressurized oil supply of lubricating oil) can be performed under normal pressure, and the manufacturing cost can be reduced through simplification of the oil supply device and process. .

上記構成の流体軸受装置1において、軸部材2が回転すると、軸受スリーブ8の上下二箇所に離隔形成されたラジアル軸受面Aとなる領域が、それぞれ軸部材2の外周面2aとラジアル軸受隙間を介して対向する。そして軸部材2の回転に伴って、前記ラジアル軸受隙間に生じる油膜は、両ラジアル軸受面にそれぞれ形成された動圧溝8a1、8a2の動圧作用によってその油膜剛性が高められ、軸部材2がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the regions that become the radial bearing surfaces A that are spaced apart at the upper and lower portions of the bearing sleeve 8 respectively serve as the outer peripheral surface 2a of the shaft member 2 and the radial bearing gap. Opposite through. As the shaft member 2 rotates, the oil film generated in the radial bearing gap is enhanced in its oil film rigidity by the dynamic pressure action of the dynamic pressure grooves 8a1 and 8a2 formed on both radial bearing surfaces. Non-contact supported so as to be rotatable in the radial direction. As a result, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are spaced apart in the axial direction.

また、軸部材2が回転すると、ハウジング7の上側端面7dのスラスト軸受面となる領域が、第1フランジ部9の下側端面9bと所定のスラスト軸受隙間を介して対向し、またハウジング7の下側端面7eのスラスト軸受面となる領域が、第2フランジ部10の上側端面10bと所定のスラスト軸受隙間を介して対向する。そして軸部材2の回転に伴い、各スラスト軸受隙間に生じる油膜は、スラスト軸受面にそれぞれ形成された動圧溝の動圧作用によってその油膜剛性が高められ、軸部材2が両スラスト方向に回転自在に非接触支持される。これにより、軸部材2を両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。なお、両スラスト軸受隙間は、その外径側でそれぞれ第1シール空間S1および第2シール空間に連通している。   Further, when the shaft member 2 rotates, a region serving as a thrust bearing surface of the upper end surface 7d of the housing 7 faces the lower end surface 9b of the first flange portion 9 via a predetermined thrust bearing gap. A region serving as a thrust bearing surface of the lower end surface 7e faces the upper end surface 10b of the second flange portion 10 via a predetermined thrust bearing gap. As the shaft member 2 rotates, the oil film generated in the thrust bearing gaps has its oil film rigidity increased by the dynamic pressure action of the dynamic pressure grooves formed on the thrust bearing surfaces, and the shaft member 2 rotates in both thrust directions. It is supported non-contact freely. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which non-contact-support the shaft member 2 rotatably in both thrust directions are formed. Both thrust bearing gaps communicate with the first seal space S1 and the second seal space, respectively, on the outer diameter side.

上記のように、本発明では、シール空間S1、S2が、ハウジング7の開口部に向けて漸次縮径する第1テーパ面11と漸次拡径する第2テーパ面12との間に形成される。このように、本発明ではシール空間が、その径方向寸法を開口部に向かって漸次拡大させる方向に傾斜した第1、第2テーパ面11、12間に形成されるので、シール空間を形成する何れか一方の面をテーパ面とした従来構成に比べ、シール空間の軸方向寸法を縮小しつつシール空間の必要容積を確保することができる。特に本実施形態では、第1テーパ面11を軸部材2から外径側に張り出した第1シール部材9の外周面9aおよび第2シール部材10の外周面10aに、第2テーパ面12をハウジング7の第2および第3内周面7b、7cに形成したので、軸部材の外周面とハウジングに固定されたシール部材との間にシール空間を形成する場合(図8参照)に比べ、シール部材9、10の軸方向寸法を一層縮小しつつもシール空間の必要容積を確保することができる。   As described above, in the present invention, the seal spaces S <b> 1 and S <b> 2 are formed between the first tapered surface 11 that gradually decreases in diameter toward the opening of the housing 7 and the second tapered surface 12 that gradually increases in diameter. . As described above, in the present invention, the seal space is formed between the first and second tapered surfaces 11 and 12 inclined in the direction of gradually expanding the radial dimension toward the opening, so that the seal space is formed. Compared to the conventional configuration in which one of the surfaces is a tapered surface, the required volume of the seal space can be secured while reducing the axial dimension of the seal space. In particular, in the present embodiment, the second taper surface 12 is housed on the outer peripheral surface 9a of the first seal member 9 and the outer peripheral surface 10a of the second seal member 10 in which the first taper surface 11 projects from the shaft member 2 to the outer diameter side. 7 is formed on the second and third inner peripheral surfaces 7b and 7c, so that a seal space is formed between the outer peripheral surface of the shaft member and the seal member fixed to the housing (see FIG. 8). The required volume of the seal space can be ensured while the axial dimensions of the members 9 and 10 are further reduced.

さらに本実施形態では、ハウジング7の両端を開口させ、この両端開口部にシール空間S1、S2を設けているので、ハウジングの一端開口部にのみシール空間を形成する構成に比べ、軸受装置全体でシール空間による潤滑油のバッファ機能を高めることができ、これによりシール空間S1、S2の容積をシール空間Sの容積よりも減じることができる。以上のことから、本発明によればシール空間S1、S2(シール部材9,10)の軸方向寸法を縮小して、流体軸受装置1を軸方向にコンパクト化することができ、あるいは軸受スリーブ8を軸方向に大きくして第1ラジアル軸受部R1と第2ラジアル軸受部R2の軸方向離間距離を大きくして流体軸受装置1のモーメント剛性を高めることが可能になる。   Further, in the present embodiment, both ends of the housing 7 are opened, and the seal spaces S1 and S2 are provided at the opening portions at both ends, so that the entire bearing device is compared with the configuration in which the seal space is formed only at one end opening of the housing. The buffer function of the lubricating oil by the seal space can be enhanced, and thereby the volume of the seal spaces S1 and S2 can be reduced from the volume of the seal space S. From the above, according to the present invention, the axial dimensions of the seal spaces S1, S2 (seal members 9, 10) can be reduced, and the hydrodynamic bearing device 1 can be made compact in the axial direction, or the bearing sleeve 8 can be made compact. It is possible to increase the moment rigidity of the hydrodynamic bearing device 1 by increasing the axial direction to increase the axial separation distance between the first radial bearing portion R1 and the second radial bearing portion R2.

なお、上記のようにシール空間S1、S2の径方向寸法をハウジング開口部に向かって漸次拡大させる方向に傾斜した2つのテーパ面11、12でシール空間を形成した場合、衝撃荷重が付加された場合等に潤滑油が漏出し易くなるおそれがある。これに対し本発明では、内径側へ潤滑油の流動力が生じているスラスト軸受隙間の外径側をシール空間S1、S2に繋げているので、シール空間S1、S2の潤滑油には、毛細管力による引き込み力に加え、スラスト動圧発生部による引き込み力が作用するので、シール空間S1、S2からの潤滑油の漏れ出しを効果的に防止することができる。   In addition, when the seal space is formed by the two tapered surfaces 11 and 12 inclined in the direction in which the radial dimensions of the seal spaces S1 and S2 are gradually enlarged toward the housing opening as described above, an impact load is applied. In some cases, the lubricating oil may easily leak. On the other hand, in the present invention, since the outer diameter side of the thrust bearing gap in which the fluid force of the lubricating oil is generated on the inner diameter side is connected to the seal spaces S1 and S2, the lubricating oil in the seal spaces S1 and S2 is used as a capillary tube. In addition to the pull-in force due to the force, the pull-in force due to the thrust dynamic pressure generator acts, so that leakage of the lubricating oil from the seal spaces S1, S2 can be effectively prevented.

ところで、スラスト軸受隙間は、軸受スリーブの端面とこれに対向する部材端面間に形成される場合があるが、本実施形態の流体軸受装置1のようにシール部材の外周面とハウジングの内周面との間にシール空間を設けた場合にその構成を採用すると、ハウジング7に対する軸受スリーブ8の軸方向の位置決めを高精度に行いつつ、両シール部材9、10をハウジング7および軸受スリーブ8の双方に配慮しながら位置決めしなければならず、組立工程が煩雑化して製造コストの高騰を招く。これに対し、上記のようにスラスト軸受隙間を両シール部材9、10とハウジング7との間に形成すれば、ハウジング7に対する軸受スリーブ8の位置決めをラフに行うことができ、またシール部材9、10の位置決めを、ハウジング7との位置関係にのみ配慮して行えば足りるので、かかる組立工程の煩雑化を回避して、製造コストの低廉化を図ることができる。   By the way, the thrust bearing gap may be formed between the end surface of the bearing sleeve and the end surface of the member facing the bearing sleeve. However, like the hydrodynamic bearing device 1 of the present embodiment, the outer peripheral surface of the seal member and the inner peripheral surface of the housing. If a seal space is provided between the seal member 9 and the housing 7, both the seal members 9 and 10 can be positioned on both the housing 7 and the bearing sleeve 8 while positioning the bearing sleeve 8 in the axial direction with respect to the housing 7 with high accuracy. Therefore, the assembly process becomes complicated and the manufacturing cost increases. On the other hand, if the thrust bearing gap is formed between the seal members 9, 10 and the housing 7 as described above, the bearing sleeve 8 can be roughly positioned with respect to the housing 7, and the seal member 9, Since it is sufficient to perform the positioning of 10 only in consideration of the positional relationship with the housing 7, the complexity of the assembly process can be avoided and the manufacturing cost can be reduced.

なお、かかる組立工程の煩雑化を回避するため、図示は省略するが、ハウジング7と軸受スリーブ8を一体に形成することも可能である。この場合、この一体品を樹脂等で射出成形すれば、ラジアル軸受面A、および両スラスト軸受面の動圧発生部も成形と同時に形成可能であり、低コスト化を図ることができる。   In order to avoid complication of the assembly process, the housing 7 and the bearing sleeve 8 can be integrally formed although illustration is omitted. In this case, if this integral product is injection-molded with resin or the like, the radial bearing surface A and the dynamic pressure generating portions of both thrust bearing surfaces can be formed simultaneously with the molding, and the cost can be reduced.

以上、本発明の一実施形態について説明を行ったが、本発明は上記形態の流体軸受装置1のみならず、他の構成の流体軸受装置にも好ましく適用することができる。以下、流体軸受装置の他の構成例を図面に基づいて説明するが、図2に示すものと同一の機能・作用を有する構成部材・要素には同一の参照番号を付与して重複説明を省略する。   As mentioned above, although one Embodiment of this invention was described, this invention can be preferably applied not only to the fluid bearing apparatus 1 of the said form but to the fluid bearing apparatus of another structure. Hereinafter, other configuration examples of the hydrodynamic bearing device will be described with reference to the drawings, but the same reference numerals are assigned to the components and elements having the same functions and operations as those shown in FIG. To do.

図4は、本発明にかかる流体軸受装置1の第2実施形態を示している。この形態は、成形上の問題等から、一つの軸受スリーブだけでは必要とされるモーメント剛性を確保し得る軸方向寸法が得にくい場合に用いられる構成で、主に、ハウジング7の内周に2つの軸受スリーブ81、82を軸方向に並べて配置した点で図2に示す流体軸受装置1と構成を異にしている。同図に示す流体軸受装置1では、第1ラジアル軸受部R1が上側の軸受スリーブ81の内周面81aと軸部材2の外周面2aとの間に形成され、第2ラジアル軸受部R2が下側の軸受スリーブ82の内周面82aと軸部材2の外周面2aとの間に形成されている。   FIG. 4 shows a second embodiment of the hydrodynamic bearing device 1 according to the present invention. This configuration is used when it is difficult to obtain an axial dimension capable of securing the required moment rigidity with only one bearing sleeve due to molding problems and the like. The configuration differs from that of the hydrodynamic bearing device 1 shown in FIG. 2 in that two bearing sleeves 81 and 82 are arranged side by side in the axial direction. In the hydrodynamic bearing device 1 shown in the figure, the first radial bearing portion R1 is formed between the inner peripheral surface 81a of the upper bearing sleeve 81 and the outer peripheral surface 2a of the shaft member 2, and the second radial bearing portion R2 is the lower portion. It is formed between the inner peripheral surface 82 a of the side bearing sleeve 82 and the outer peripheral surface 2 a of the shaft member 2.

この構成の流体軸受装置1では、内部空間が大きくなる分、油量も多くなるためシール空間の軸方向寸法が長大化する傾向にあるが、上述した本発明の構成を適用することにより、シール空間の軸方向寸法を縮小して、高いモーメント剛性を有しつつ比較的コンパクトな流体軸受装置1を得ることが、あるいは軸受スリーブ81、82の軸方向寸法を長大化させて一層高いモーメント剛性を有する流体軸受装置1を得ることができる。   In the hydrodynamic bearing device 1 having this configuration, since the amount of oil increases as the internal space increases, the axial dimension of the seal space tends to increase. However, by applying the configuration of the present invention described above, the seal By reducing the axial dimension of the space to obtain a relatively compact hydrodynamic bearing device 1 having high moment rigidity, or by increasing the axial dimension of the bearing sleeves 81 and 82, higher moment rigidity can be obtained. The hydrodynamic bearing device 1 can be obtained.

なお、この形態の流体軸受装置1では、モーメント剛性を確保する観点から、第1軸受スリーブ81のラジアル軸受面は第2軸受スリーブ82から離反する側(上側)の端部に、また第2軸受スリーブ82のラジアル軸受面は第1軸受スリーブ81から離反する側(下側)の端部に形成した形態とするのが通例である。しかしながらこの場合、軸受スリーブの内径寸法が上側領域と下側領域とで異なるため、個々の軸受スリーブの上下端面間、および両軸受スリーブ間での同軸度確保が困難な場合がある。この場合、図示は省略するが、ラジアル軸受面の動圧溝を区画する丘部と略同径の凸部を、それぞれラジアル軸受面から軸方向に離隔した領域に設けることにより、上記の問題を解消することができる。この場合の凸部は、トルクアップを回避する観点から、動圧発生機能を有さない帯状等に形成するのが望ましい。   In the hydrodynamic bearing device 1 of this embodiment, from the viewpoint of securing moment rigidity, the radial bearing surface of the first bearing sleeve 81 is located at the end (upper side) away from the second bearing sleeve 82 and the second bearing. In general, the radial bearing surface of the sleeve 82 is formed at an end portion (lower side) away from the first bearing sleeve 81. However, in this case, since the inner diameter dimension of the bearing sleeve is different between the upper region and the lower region, it may be difficult to ensure the coaxiality between the upper and lower end surfaces of the individual bearing sleeves and between the bearing sleeves. In this case, although not shown in the figure, the above-mentioned problem can be solved by providing convex portions having substantially the same diameter as the hills that define the dynamic pressure grooves on the radial bearing surface in regions separated from the radial bearing surface in the axial direction. Can be resolved. In this case, it is desirable to form the convex portion in a belt shape or the like that does not have a dynamic pressure generating function from the viewpoint of avoiding torque increase.

また、この形態の流体軸受装置1のように複数の軸受スリーブを軸方向に並べる構成で、軸受スリーブの端面とこれに対向する部材端面間にスラスト軸受隙間を設ける場合には、部材点数が増加し、組み付け精度の要管理部位が増加する分、各部材の組み付けが図2に示す構成の流体軸受装置1に比べて一層煩雑化する。これに対し、スラスト軸受隙間をハウジング7とシール部材9、10との間に設ければ、組み付け工程の簡略化によるコストメリットが一層顕著に得られる。   Further, in the configuration in which a plurality of bearing sleeves are arranged in the axial direction as in the hydrodynamic bearing device 1 of this embodiment, the number of members increases when a thrust bearing gap is provided between the end surface of the bearing sleeve and the end surface of the member facing it. However, as the number of parts requiring management of assembly accuracy increases, the assembly of each member becomes more complicated as compared with the hydrodynamic bearing device 1 having the configuration shown in FIG. On the other hand, if the thrust bearing gap is provided between the housing 7 and the seal members 9, 10, the cost merit due to the simplification of the assembly process can be obtained more remarkably.

図示例のように第1および第2軸受スリーブ81、82の軸方向長さを同じにした場合、両者の外観上の差異が少ないため、組立時に両スリーブの上下位置を取り違えて組み込むおそれがある。そこで、図示は省略するが、この種の人為的なミスを防止するため、第1軸受スリーブ81と第2軸受スリーブ82の軸方向長さを異ならせることもできる。   When the axial lengths of the first and second bearing sleeves 81 and 82 are the same as in the illustrated example, there is little difference in the appearance of the two, so there is a possibility that the upper and lower positions of both sleeves are mistaken and assembled during assembly. . Therefore, although not shown, the axial lengths of the first bearing sleeve 81 and the second bearing sleeve 82 may be different in order to prevent this kind of human error.

図5は、本発明に係る流体軸受装置1の第3の実施形態を示している。この実施形態の流体軸受装置1では、ハウジング7の内周に固定される第1および第2の軸受スリーブ81、82の間にリング状のスペーサ部材83を介装させている。この場合、スペーサ部材83を、黄銅等の軟質金属材料やその他の金属材料、あるいは樹脂材料等、焼結金属(多孔質体)とは異なる非孔質体で形成すれば、スペーサ部材83に潤滑油を含浸させなくてよい分だけ油量を減少させることができるので、シール空間S1、S2の軸方向幅を縮小して、流体軸受装置1を軸方向にコンパクト化することができる。   FIG. 5 shows a third embodiment of the hydrodynamic bearing device 1 according to the present invention. In the hydrodynamic bearing device 1 of this embodiment, a ring-shaped spacer member 83 is interposed between the first and second bearing sleeves 81 and 82 fixed to the inner periphery of the housing 7. In this case, if the spacer member 83 is formed of a non-porous material different from a sintered metal (porous material) such as a soft metal material such as brass, other metal materials, or a resin material, the spacer member 83 is lubricated. Since the amount of oil can be reduced by an amount that does not require impregnation, the hydrodynamic bearing device 1 can be made compact in the axial direction by reducing the axial width of the seal spaces S1, S2.

なお、図示は省略するが、以上で説明を行った実施形態において、第1シール部材9または第2シール部材10の何れか一方を、軸部材2と一体に形成することもでき、これにより、部材点数および組立工数を低減して、流体軸受装置1の更なる低コスト化を図ることができる。   In addition, although illustration is abbreviate | omitted, in embodiment described above, either the 1st seal member 9 or the 2nd seal member 10 can also be integrally formed with the shaft member 2, Thereby, The number of members and assembly man-hours can be reduced, and the cost of the hydrodynamic bearing device 1 can be further reduced.

以上の説明では、シール空間をハウジング7の両端開口部に設けた構成を示したが、本発明の構成は、図6に示すような、シール空間をハウジング7の一端開口部に設けた構成の流体軸受装置1にも好ましく適用することができる。同図に示す流体軸受装置1は、軸部材2が、軸部21および軸部21と一体または別体のフランジ部22とで構成され、フランジ部22の上側端面22aとハウジング7の下側端面7eとの間に第2スラスト軸受部T2が設けられる。この構成であっても、図8に示す従来構成と比べ、シール空間Sの軸方向寸法を小さくして、流体軸受装置1を軸方向にコンパクト化することができ、あるいは軸受スリーブ8の軸方向寸法を大きくし、ラジアル軸受部間の離間距離を大きくしてモーメント剛性を高めることができる。なお、本実施形態の場合、図2に流体軸受装置1と同様、ハウジング7と軸受スリーブ8を一体に形成することもできる。   In the above description, the configuration in which the seal space is provided in the opening at both ends of the housing 7 is shown. However, the configuration of the present invention has a configuration in which the seal space is provided in the one end opening of the housing 7 as shown in FIG. The present invention can also be preferably applied to the hydrodynamic bearing device 1. In the hydrodynamic bearing device 1 shown in the figure, the shaft member 2 is composed of a shaft portion 21 and a flange portion 22 that is integral with or separate from the shaft portion 21, and the upper end surface 22 a of the flange portion 22 and the lower end surface of the housing 7. A second thrust bearing portion T2 is provided between 7e. Even in this configuration, the axial dimension of the seal space S can be reduced and the hydrodynamic bearing device 1 can be made compact in the axial direction as compared with the conventional configuration shown in FIG. The moment rigidity can be increased by increasing the size and increasing the separation distance between the radial bearing portions. In the case of this embodiment, the housing 7 and the bearing sleeve 8 can be integrally formed as in the fluid bearing device 1 in FIG.

以上の説明では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、ヘリングボーン形状やスパイラル形状等の動圧溝によって潤滑油の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。   In the above description, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the dynamic pressure grooves having a herringbone shape or a spiral shape. The invention is not limited to this.

例えば、図示は省略するが、ラジアル軸受部R1、R2の一方又は双方は、例えば、ラジアル軸受面Aとなる領域に複数の軸方向溝を円周方向等間隔に設けた、いわゆるステップ軸受や、ラジアル軸受面Aとなる領域に複数の円弧面を設けた、いわゆる多円弧軸受を採用しても良い。また、スラスト軸受部T1、T2の一方又は双方は、例えば、スラスト軸受面となる領域に、複数の半径方向溝を円周方向所定間隔に設けた、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等を採用しても良い。   For example, although illustration is omitted, one or both of the radial bearing portions R1 and R2 are, for example, so-called step bearings in which a plurality of axial grooves are provided at equal intervals in the circumferential direction in the region to be the radial bearing surface A, You may employ | adopt what is called a multi-arc bearing which provided the some circular arc surface in the area | region used as the radial bearing surface A. FIG. In addition, one or both of the thrust bearing portions T1 and T2 are, for example, so-called step bearings, so-called wave bearings (step-type bearings) in which a plurality of radial grooves are provided at predetermined intervals in the circumferential direction in a region serving as a thrust bearing surface. May also be used.

また、以上の説明では、第1ラジアル軸受部R1および第2ラジアル軸受部R2の双方を動圧軸受で構成する形態を例示したが、第1のラジアル軸受部R1および第2のラジアル軸受部R2の一方又は双方を真円軸受で構成することもできる。   Moreover, although the form which comprises both the 1st radial bearing part R1 and the 2nd radial bearing part R2 by the dynamic pressure bearing was illustrated in the above description, the 1st radial bearing part R1 and the 2nd radial bearing part R2 were illustrated. One or both of them can be constituted by a perfect circle bearing.

また、以上の説明では、軸受スリーブを、軸方向の一又は二箇所に配置した形態について説明を行ったが、軸受スリーブを軸方向の三箇所以上に配置することもできる。   In the above description, the bearing sleeve has been described with respect to one or two axial positions. However, the bearing sleeve may be disposed at three or more axial positions.

また、以上の説明では、流体軸受装置1の内部に充満する流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧を発生させることができる流体、例えば空気等の気体や、磁性流体等を使用することもできる。   In the above description, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1. However, other fluids that can generate dynamic pressure in the bearing gaps, such as a gas such as air, A magnetic fluid or the like can also be used.

以上では、流体軸受装置をディスク装置用のスピンドルモータに組み込んで使用する形態を例示したが、本発明の構成を有する流体軸受装置は、情報機器用のスピンドルモータ以外にも、高速回転し、高いモーメント剛性が要求されるモータ、例えばファンモータにも好ましく用いることができる。   In the above, the form in which the hydrodynamic bearing device is used by being incorporated in the spindle motor for the disk device has been exemplified. However, the hydrodynamic bearing device having the configuration of the present invention rotates at a high speed and is high in addition to the spindle motor for information equipment. It can also be preferably used for a motor that requires moment rigidity, for example, a fan motor.

図7は、本発明に係る流体軸受装置1を組み込んだファンモータ、その中でも半径方向(ラジアル方向)のギャップを介してステータコイル4およびロータマグネット5を対向させた、いわゆるラジアルギャップ型ファンモータの一例を概念的に示すものである。図示例のモータは、主に、軸部材2の上端外周に固定されるロータ33が外周面に羽根を有する点、およびブラケット36がモータの各構成部品を収容するケーシングとしての機能を果たす点で、図1に示すスピンドルモータと構成を異にする。なお、その他の構成部材は、図1に示すモータの各構成部材と機能・作用を同一にするため、共通の参照番号を付して重複説明を省略する。   FIG. 7 shows a fan motor incorporating the hydrodynamic bearing device 1 according to the present invention, and in particular, a so-called radial gap type fan motor in which the stator coil 4 and the rotor magnet 5 are opposed to each other through a gap in the radial direction (radial direction). An example is shown conceptually. In the illustrated motor, the rotor 33 fixed to the outer periphery of the upper end of the shaft member 2 has blades on the outer peripheral surface, and the bracket 36 serves as a casing for housing each component of the motor. The configuration is different from that of the spindle motor shown in FIG. The other constituent members have the same functions and functions as the constituent members of the motor shown in FIG.

流体軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information devices incorporating the hydrodynamic bearing apparatus. 本発明の構成を有する流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which has a structure of this invention. 軸受スリーブの縦断面図である。It is a longitudinal cross-sectional view of a bearing sleeve. 流体軸受装置の他の形態を示す断面図である。It is sectional drawing which shows the other form of a hydrodynamic bearing apparatus. 流体軸受装置の他の形態を示す断面図である。It is sectional drawing which shows the other form of a hydrodynamic bearing apparatus. 流体軸受装置の他の形態を示す断面図である。It is sectional drawing which shows the other form of a hydrodynamic bearing apparatus. 流体軸受装置を組み込んだファンモータの断面図である。It is sectional drawing of the fan motor incorporating the hydrodynamic bearing apparatus. 従来の流体軸受装置を示す断面図である。It is sectional drawing which shows the conventional hydrodynamic bearing apparatus.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 ハウジング
8 軸受スリーブ
9 第1シール部材
10 第2シール部材
11 第1テーパ面
12 第2テーパ面
8a1、8a2 動圧溝
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S1、S2 シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 3 Disc hub 4 Stator coil 5 Rotor magnet 6 Bracket 7 Housing 8 Bearing sleeve 9 1st seal member 10 2nd seal member 11 1st taper surface 12 2nd taper surface 8a1, 8a2 Dynamic pressure groove R1 , R2 Radial bearing part T1, T2 Thrust bearing part S1, S2 Seal space

Claims (5)

ハウジングと、該ハウジングの内周に配置された軸受スリーブと、前記ハウジングおよび前記軸受スリーブに対して相対回転する軸部材と、大気に開放されたシール空間と、前記軸受スリーブと前記軸部材の間のラジアル軸受隙間に形成される流体の潤滑膜で前記軸部材をラジアル方向に支持するラジアル軸受部とを備えた流体軸受装置において、
前記シール空間が、開口部に向けて、漸次縮径する第1テーパ面と漸次拡径する第2テーパ面との間に形成されたことを特徴とする流体軸受装置。
A housing, a bearing sleeve disposed on the inner periphery of the housing, a shaft member that rotates relative to the housing and the bearing sleeve, a seal space that is open to the atmosphere, and a space between the bearing sleeve and the shaft member; In a hydrodynamic bearing device comprising a radial bearing portion for supporting the shaft member in a radial direction with a fluid lubricating film formed in a radial bearing gap of
The hydrodynamic bearing device, wherein the seal space is formed between a first tapered surface that gradually decreases in diameter and a second tapered surface that gradually increases in diameter toward the opening.
さらに、前記軸部材の外径側に突出させて設けられたシール部材を備え、
前記第1テーパ面を前記シール部材に設け、前記第2テーパ面を前記ハウジングに設けた請求項1記載の流体軸受装置。
Furthermore, a seal member provided to protrude to the outer diameter side of the shaft member is provided,
The hydrodynamic bearing device according to claim 1, wherein the first tapered surface is provided on the seal member, and the second tapered surface is provided on the housing.
前記ハウジングの端面と前記シール部材の端面との間に外径側で前記シール空間に接続したスラスト軸受隙間を設け、該スラスト軸受隙間を介して対向する二面の何れか一方に、潤滑流体を内径側に引き込む動圧発生部を設けた請求項2記載の流体軸受装置。   A thrust bearing gap connected to the seal space on the outer diameter side is provided between the end face of the housing and the end face of the seal member, and lubricating fluid is applied to either one of the two faces facing through the thrust bearing gap. The hydrodynamic bearing device according to claim 2, further comprising a dynamic pressure generating portion that is drawn to the inner diameter side. 前記シール空間を、軸方向の両端に設けた請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the seal spaces are provided at both ends in the axial direction. 請求項1〜4の何れかに記載の流体軸受装置と、ステータコイルと、ロータマグネットとを有するモータ。   A motor comprising the hydrodynamic bearing device according to claim 1, a stator coil, and a rotor magnet.
JP2006068173A 2006-03-13 2006-03-13 Hydrodynamic bearing device Expired - Fee Related JP4708228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006068173A JP4708228B2 (en) 2006-03-13 2006-03-13 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006068173A JP4708228B2 (en) 2006-03-13 2006-03-13 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2007247675A true JP2007247675A (en) 2007-09-27
JP4708228B2 JP4708228B2 (en) 2011-06-22

Family

ID=38592200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006068173A Expired - Fee Related JP4708228B2 (en) 2006-03-13 2006-03-13 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4708228B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033154A (en) * 2009-08-04 2011-02-17 Alphana Technology Co Ltd Disk drive device
WO2019155917A1 (en) * 2018-02-07 2019-08-15 日本電産株式会社 Motor and electric power steering device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354349A (en) * 1999-04-09 2000-12-19 Nippon Densan Corp Motor
JP2003074543A (en) * 2001-08-30 2003-03-12 Nippon Densan Corp Hydrodynamic fluid bearing unit and motor with the same
JP2003307212A (en) * 2001-11-13 2003-10-31 Ntn Corp Fluid lubricated bearing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354349A (en) * 1999-04-09 2000-12-19 Nippon Densan Corp Motor
JP2003074543A (en) * 2001-08-30 2003-03-12 Nippon Densan Corp Hydrodynamic fluid bearing unit and motor with the same
JP2003307212A (en) * 2001-11-13 2003-10-31 Ntn Corp Fluid lubricated bearing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033154A (en) * 2009-08-04 2011-02-17 Alphana Technology Co Ltd Disk drive device
WO2019155917A1 (en) * 2018-02-07 2019-08-15 日本電産株式会社 Motor and electric power steering device
JPWO2019155917A1 (en) * 2018-02-07 2021-01-28 日本電産株式会社 Motor and electric power steering device
US11515747B2 (en) 2018-02-07 2022-11-29 Nidec Corporation Motor and electric power steering device

Also Published As

Publication number Publication date
JP4708228B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP5274820B2 (en) Hydrodynamic bearing device
JP2005321089A (en) Dynamic pressure bearing device
CN101600892A (en) Hydrodynamic bearing device
JP4738868B2 (en) Hydrodynamic bearing device
KR20080079242A (en) Fluid bearing device
JP4874004B2 (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP4937619B2 (en) Hydrodynamic bearing device
JP4762757B2 (en) Hydrodynamic bearing device
JP4708228B2 (en) Hydrodynamic bearing device
JP2007071274A (en) Dynamic pressure bearing device
JP4948908B2 (en) Hydrodynamic bearing device
JP5005235B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2006325329A (en) Spindle motor and recording disk driving device using same
JP4828908B2 (en) Hydrodynamic bearing device
JP5247987B2 (en) Hydrodynamic bearing device
JP5133156B2 (en) Fluid dynamic bearing device
JP4949216B2 (en) Hydrodynamic bearing device
JP5231095B2 (en) Hydrodynamic bearing device
JP2009103179A (en) Fluid bearing device
JP5188942B2 (en) Fluid dynamic bearing device
JP5214401B2 (en) Hydrodynamic bearing device
JP2006200584A (en) Dynamic pressure bearing device
JP2007327546A (en) Fluid bearing device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

R150 Certificate of patent or registration of utility model

Ref document number: 4708228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees