JP2003307212A - Fluid lubricated bearing device - Google Patents
Fluid lubricated bearing deviceInfo
- Publication number
- JP2003307212A JP2003307212A JP2002281599A JP2002281599A JP2003307212A JP 2003307212 A JP2003307212 A JP 2003307212A JP 2002281599 A JP2002281599 A JP 2002281599A JP 2002281599 A JP2002281599 A JP 2002281599A JP 2003307212 A JP2003307212 A JP 2003307212A
- Authority
- JP
- Japan
- Prior art keywords
- housing
- bearing
- shaft member
- lubricating oil
- peripheral surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Sliding-Contact Bearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ラジアル軸受隙間
に生じる潤滑油の油膜によって回転部材を非接触支持す
る流体軸受装置に関する。この軸受装置は、情報機器、
例えばHDD、FDD等の磁気ディスク装置、CD−R
OM、CD−R/RW、DVD−ROM/RAM等の光
ディスク装置、MD、MO等の光磁気ディスク装置など
のスピンドルモータ、複写機、レーザビームプリンタ
(LBP)、バーコードリーダー等のスキャナモータ、
あるいは電気機器、例えば軸流ファンなどの小型モータ
用として好適である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrodynamic bearing device for supporting a rotating member in a non-contact manner by an oil film of lubricating oil generated in a radial bearing gap. This bearing device is used for information equipment,
For example, magnetic disk devices such as HDD and FDD, CD-R
Optical disk devices such as OM, CD-R / RW and DVD-ROM / RAM, spindle motors such as magneto-optical disk devices such as MD and MO, copiers, laser beam printers (LBP), scanner motors such as bar code readers,
Alternatively, it is suitable for electric appliances, for example, small motors such as axial fans.
【0002】[0002]
【従来の技術】上記各種モータには、高回転精度の他、
高速化、低コスト化、低騒音化などが求められている。
これらの要求性能を決定づける構成要素の一つに当該モ
ータのスピンドルを支持する軸受があり、近年では、上
記要求性能に優れた特性を有する流体軸受の使用が検討
され、あるいは実際に使用されている。この種の流体軸
受は、軸受隙間内の潤滑油に動圧を発生させる動圧発生
手段を備えたいわゆる流体動圧軸受と、動圧発生手段を
備えていないいわゆる流体真円軸受(軸受面が真円形状
である軸受)とに大別される。2. Description of the Related Art In addition to high rotation accuracy,
Higher speed, lower cost and lower noise are required.
One of the components that determines the required performance is a bearing that supports the spindle of the motor, and in recent years, the use of a fluid bearing having the characteristics excellent in the required performance has been studied or actually used. . This type of fluid dynamic bearing includes a so-called fluid dynamic pressure bearing having dynamic pressure generating means for generating dynamic pressure in the lubricating oil in the bearing gap, and a so-called fluid perfect circular bearing having no dynamic pressure generating means (bearing surface is Bearings that have a perfect circular shape).
【0003】図7は、流体動圧軸受装置11を組み込ん
だ情報機器用スピンドルモータの一構成例を示してい
る。このスピンドルモータは、DVD−ROM等のディ
スク駆動装置に用いられるもので、軸部材12を回転自
在に支持する流体軸受装置11と、軸部材12に装着さ
れ、駆動対象である例えば光ディスク13を支持する支
持部材14(図示例ではターンテーブル)と、半径方向
のギャップを介して対向するモータステータ15および
モータロータ16とを備えている。FIG. 7 shows an example of the configuration of a spindle motor for information equipment in which a fluid dynamic bearing device 11 is incorporated. This spindle motor is used in a disk drive device such as a DVD-ROM, and is mounted on the shaft member 12 and a fluid bearing device 11 that rotatably supports the shaft member 12, and supports, for example, an optical disk 13 that is a drive target. And a supporting member 14 (a turntable in the illustrated example), and a motor stator 15 and a motor rotor 16 that are opposed to each other via a radial gap.
【0004】流体軸受装置11は、一端側に開口部、他
端側に底部を有するハウジング21と、ハウジング21
の内周面に固定された円筒状の軸受部材22と、軸受部
材22の内周面に挿通された軸部材12と、ハウジング
21の底部に設けられたスラストプレート23と、ハウ
ジング21の開口部に装着されたシール部材24とを主
要な部材として構成される。軸受部材22の内周面また
は軸部材12の外周面には動圧発生用の溝(動圧溝)が
設けられる。また、ハウジング21の内部空間には潤滑
油が注油される。The hydrodynamic bearing device 11 includes a housing 21 having an opening at one end and a bottom at the other end, and the housing 21.
The cylindrical bearing member 22 fixed to the inner peripheral surface of the shaft 21, the shaft member 12 inserted through the inner peripheral surface of the bearing member 22, the thrust plate 23 provided at the bottom of the housing 21, and the opening of the housing 21. And a seal member 24 attached to the main component. A groove (dynamic pressure groove) for generating dynamic pressure is provided on the inner peripheral surface of the bearing member 22 or the outer peripheral surface of the shaft member 12. Lubricating oil is injected into the internal space of the housing 21.
【0005】ステータ15は流体軸受装置11のハウジ
ング21の外周に取付けられ、ロータ16は支持部材1
4に取付けられる。ステータ15に通電すると、ステー
タ15とロータ16との間の励磁力でロータ16が回転
し、それによって、支持部材14および軸部材12が一
体となって回転する。The stator 15 is attached to the outer periphery of the housing 21 of the hydrodynamic bearing device 11, and the rotor 16 is attached to the support member 1.
It is attached to 4. When the stator 15 is energized, the rotor 16 is rotated by the exciting force between the stator 15 and the rotor 16, whereby the support member 14 and the shaft member 12 are integrally rotated.
【0006】軸部材12の回転により、軸受部材22の
内周面と軸部材12の外周面との間のラジアル軸受隙間
に動圧溝による潤滑油の動圧作用が生じて、軸部材12
の外周面がラジアル方向に非接触支持される。また、軸
部材12の他端側(図7で下側)の端面がスラストプレ
ート23によってスラスト方向に支持される。The rotation of the shaft member 12 causes a dynamic pressure action of the lubricating oil by the dynamic pressure groove in the radial bearing gap between the inner peripheral surface of the bearing member 22 and the outer peripheral surface of the shaft member 12, so that the shaft member 12 is rotated.
The outer peripheral surface of the is supported in a non-contact manner in the radial direction. Further, the other end side (lower side in FIG. 7) of the shaft member 12 is supported by the thrust plate 23 in the thrust direction.
【0007】[0007]
【特許文献1】特開平11−191943号公報[Patent Document 1] Japanese Patent Laid-Open No. 11-191943
【0008】[0008]
【発明が解決しようとする課題】ハウジング21の内部
空間への潤滑油の注油は、通常、スピンドルモータの組
立時に軸部材12を装着していない状態で行い、注油後
に軸部材12を装着している。そのため、ハウジング2
1の内部空間に空気が混入することが避けられず、周囲
温度の変化やモータの発熱、あるいは高地での使用や空
輸時等における気圧の変化に伴うハウジング内部空間の
空気の熱膨張・収縮等によって、潤滑油がシール部材2
4の内周面と軸部材12の外周面との間のシール空間か
ら押し出されて外部に漏れる可能性がある。特に、モー
タ姿勢が倒立姿勢(ハウジング21の開口部の側を下向
きした姿勢)や横向き姿勢(ハウジング21の開口部の
側を水平方向に向けた姿勢)で使用した場合、潤滑油が
流動して開口部の側に溜まり易いため、潤滑油の漏れが
起こり易い。Lubrication of the lubricating oil into the internal space of the housing 21 is usually performed with the shaft member 12 not mounted when the spindle motor is assembled, and the shaft member 12 is mounted after the lubrication. There is. Therefore, the housing 2
It is unavoidable that air mixes into the internal space of No. 1 and the thermal expansion and contraction of the air in the internal space of the housing due to changes in the ambient temperature, heat generation of the motor, and changes in atmospheric pressure during use at high altitude or during air transportation The lubricating oil causes the sealing member 2
4 may be pushed out of the seal space between the inner peripheral surface of the shaft member 4 and the outer peripheral surface of the shaft member 12 and leak to the outside. In particular, when the motor is used in an upright position (a position in which the opening side of the housing 21 faces downward) or a horizontal position (a position in which the opening side of the housing 21 faces in the horizontal direction), the lubricating oil flows. Since the oil easily collects on the side of the opening, the lubricating oil easily leaks.
【0009】上記の事情から、従来の流体軸受装置11
を組み込んだモータは、倒立姿勢や横向き姿勢等での使
用に不安があり、使用姿勢に制約があった。From the above circumstances, the conventional hydrodynamic bearing device 11
The motor with the built-in was worried about its use in an inverted posture or a sideways posture, and there were restrictions on its posture.
【0010】また、上記構成の流体軸受装置11におい
て、スラスト軸受部は、軸部材12の他端側の端面をス
ラストプレート23で支持するものであり、軸部材12
はステータ15とロータ16との間の磁力によってスラ
ストプレート23に押し付けられることで、一端側(図
7で上側)への軸方向移動が規制されている。しかしな
がら、上記の磁力を上回るような衝撃荷重等がモータに
加わった場合や、モータを倒立姿勢や横向き姿勢で使用
した場合、軸部材12がハウジング21に対して一端側
に軸方向移動して、ハウジング21から抜けてしまう可
能性がある。In the hydrodynamic bearing device 11 having the above-mentioned structure, the thrust bearing portion supports the end surface of the shaft member 12 on the other end side by the thrust plate 23.
By being pressed against the thrust plate 23 by the magnetic force between the stator 15 and the rotor 16, axial movement to one end side (upper side in FIG. 7) is restricted. However, when a shock load or the like that exceeds the above magnetic force is applied to the motor, or when the motor is used in an inverted posture or a sideways posture, the shaft member 12 moves axially toward one end side with respect to the housing 21, The housing 21 may come off.
【0011】本発明の課題は、高温・低温環境、高地で
の使用や空輸時の減圧環境下において、ハウジングの内
部空間に残存する空気の膨張・収縮によって潤滑油が外
部に漏れ出すことがなく、任意の姿勢での安定した運
転、運搬が可能な流体軸受装置、及びこれを組み込んだ
モータを提供することにある。The object of the present invention is to prevent the lubricating oil from leaking to the outside due to the expansion and contraction of the air remaining in the internal space of the housing under a high temperature / low temperature environment, a high altitude use, and a reduced pressure environment during air transportation. Another object of the present invention is to provide a hydrodynamic bearing device capable of stable operation and transportation in any posture, and a motor incorporating the hydrodynamic bearing device.
【0012】本発明の他の課題は、軸部材のハウジング
に対する一端側への軸方向相対移動を規制して、軸部材
のハウジングからの抜けを防止することにある。Another object of the present invention is to prevent the shaft member from coming off the housing by restricting the axial relative movement of the shaft member toward the one end side with respect to the housing.
【0013】[0013]
【課題を解決するための手段】上記課題を解決するた
め、本発明は、一端側に開口部、他端側に底部を有する
ハウジングと、ハウジングに収容される軸部材および軸
受部材と、軸受部材の内周面と軸部材の外周面との間に
設けられ、ラジアル軸受隙間に生じる潤滑油の油膜で軸
部材をラジアル方向に非接触支持するラジアル軸受部
と、ハウジングの開口部に配置されたシール部材とを備
えた流体軸受装置において、減圧環境下におけるハウジ
ングの内部空間に残存する空気の膨張・収縮によって
も、潤滑油が外部に漏れ出さないレベルに、ハウジング
の内部空間が潤滑油で充満されている構成を提供する。
ここで、減圧環境下の気圧は、例えば大気圧から100
Torrである。In order to solve the above problems, the present invention provides a housing having an opening at one end and a bottom at the other end, a shaft member and a bearing member housed in the housing, and a bearing member. Is provided between the inner peripheral surface of the shaft member and the outer peripheral surface of the shaft member, and is disposed at the opening of the housing and the radial bearing portion that supports the shaft member in the radial direction in a non-contact manner with the oil film of the lubricating oil generated in the radial bearing gap. In a hydrodynamic bearing device equipped with a seal member, the internal space of the housing is filled with lubricating oil to a level where the lubricating oil does not leak outside even if the air remaining in the internal space of the housing expands or contracts under a depressurized environment. Provided configuration.
Here, the atmospheric pressure in the reduced pressure environment is, for example, from atmospheric pressure to 100.
Torr.
【0014】上記構成の流体軸受装置は、例えば、ハウ
ジングの内部空間を真空状態にした後、大気圧に開放し
て、ハウジングの内部空間を潤滑油で置換することによ
って得ることができる(真空含浸)。具体的には、流体
軸受装置を未注油の状態(例えば図1〜図4に示す形
態)で組立てた後、流体軸受装置の全体又は一部(少な
くとも流体軸受装置における外部との開口部分)を真空
槽内で潤滑油中に浸漬し、その状態でハウジングの内部
空間の空気を真空引きした後、大気圧に開放して、ハウ
ジングの内部空間に潤滑油を充満させることにより得る
ことができる。The hydrodynamic bearing device having the above structure can be obtained, for example, by evacuating the inner space of the housing to atmospheric pressure and then replacing the inner space of the housing with lubricating oil (vacuum impregnation). ). Specifically, after assembling the hydrodynamic bearing device in an unlubricated state (for example, the form shown in FIGS. 1 to 4), the hydrodynamic bearing device is entirely or partially (at least an opening portion with respect to the outside of the hydrodynamic bearing device). It can be obtained by immersing in a lubricating oil in a vacuum tank, evacuating the air in the internal space of the housing in that state, and then opening it to atmospheric pressure to fill the internal space of the housing with the lubricating oil.
【0015】ただし、真空槽内の真空度によっては、大
気圧解放後にハウジング内部に僅かながら空気が残存す
ることになる。残存空気が多ければ、周囲温度の変化に
伴う残存空気の膨張・収縮によって、潤滑油がハウジン
グ外部へ押し出されて、潤滑油漏れを起こす可能性があ
る。特に、モータを倒立姿勢や横向き姿勢で使用した場
合は、ハウジング内部空間で潤滑油が流動して開口部の
側に溜まり易いため、上記の潤滑油漏れが起こり易い。
たとえ残存空気が僅かでも、高地での使用や空輸による
減圧環境下において、残存空気が膨張し、潤滑油をハウ
ジング外部へ押し出して、潤滑油漏れを起こす可能性が
ある。However, depending on the degree of vacuum in the vacuum chamber, a small amount of air remains inside the housing after the atmospheric pressure is released. If there is a large amount of residual air, the lubricating oil may be pushed out of the housing due to the expansion and contraction of the residual air that accompanies changes in the ambient temperature, and the lubricating oil may leak. In particular, when the motor is used in an inverted posture or a sideways posture, the lubricating oil flows in the internal space of the housing and tends to collect on the side of the opening, so that the above-mentioned lubricating oil leakage easily occurs.
Even if the residual air is small, the residual air may expand and push the lubricating oil to the outside of the housing under a depressurized environment due to use at high altitude or by air transportation, causing a lubricating oil leak.
【0016】空気の熱膨張の要因としては、温度と気圧
が挙げられるが、使用環境として想定される温度と気圧
の範囲で空気の膨張収縮量を計算すると、気圧の影響の
方が大きいことがわかる。The factors of the thermal expansion of air include temperature and atmospheric pressure. However, when the expansion and contraction amount of air is calculated within the range of temperature and atmospheric pressure assumed as the use environment, the effect of atmospheric pressure is greater. Recognize.
【0017】本発明の流体軸受装置が組み込まれる小型
スピンドルモータの使用・保管環境は、一般に以下のよ
うなものであることが多い。
温度:使用温度0〜60°C 保管温度−40〜90°
C
気圧:輸送時 大気圧〜0.3atm(高度約1000
0m)
気体の状態方程式から膨張割合を計算すると、
PV=nRT
P:圧力
V:体積
n,R:気体によって定まる定数
T:絶対温度
であるから、
圧力一定で温度が−40〜90°Cに変化した場合、
V90/V-40=363/233=1.56倍
温度一定で圧力を大気圧から0.3atmに変化させ
た場合、
V90/V-40=1/0.3=3.33倍
となり、空気の膨張による潤滑油漏れを抑制するために
は、上記規格の範囲での環境下で、より影響が大きい気
圧の変化を考慮し、潤滑油の漏れがないような構造にす
るのが望ましい。The use and storage environment of a small spindle motor incorporating the hydrodynamic bearing device of the present invention is generally as follows. Temperature: Operating temperature 0 to 60 ° C Storage temperature -40 to 90 °
C atmospheric pressure: atmospheric pressure during transportation ~ 0.3 atm (altitude about 1000
0m) When the expansion ratio is calculated from the equation of state of gas, PV = nRT P: Pressure V: Volume n, R: Constant determined by gas T: Absolute temperature, so that the temperature is -40 to 90 ° C at a constant pressure. When changed, V 90 / V -40 = 363/233 = 1.56 times When the pressure is changed from atmospheric pressure to 0.3 atm at a constant temperature, V 90 / V -40 = 1 / 0.3 = 3 .33 times, in order to suppress the leakage of lubricating oil due to the expansion of air, consider a change in atmospheric pressure that has a greater effect under the environment of the above standard, and design a structure that does not cause leakage of lubricating oil. It is desirable to do.
【0018】例えば、空輸における高度を10000m
と仮定すると、その場合の気圧は約230Torr
(0.3atm)であることから、230Torrの減
圧環境下で潤滑油漏れがないように潤滑油を注油する必
要がある。軸受装置の製造時の検査では、余裕をみて1
00Torrにて潤滑油漏れがないことを確認すること
が望ましい。For example, the altitude in air transportation is 10,000 m.
Assuming that, the atmospheric pressure in that case is about 230 Torr
Since it is (0.3 atm), it is necessary to inject the lubricating oil under the reduced pressure environment of 230 Torr so that the lubricating oil does not leak. In the inspection at the time of manufacturing the bearing device, allow 1
It is desirable to confirm that there is no lubricating oil leak at 00 Torr.
【0019】以上より、本発明の流体軸受装置及びこれ
を備えたモータは、高温・低温環境、高地での使用や空
輸時等の減圧環境下において、ハウジング内部空間に残
存する空気の膨張・収縮によっても潤滑油が外部に漏れ
出すことがなく、モータの姿勢にかかわらず、安定した
運転、運搬が可能である。As described above, the hydrodynamic bearing device of the present invention and the motor equipped with the hydrodynamic bearing device are capable of expanding and contracting the air remaining in the inner space of the housing under high temperature and low temperature environments, under high pressure environment and under reduced pressure environment such as air transportation. Also, the lubricating oil does not leak to the outside, and stable operation and transportation are possible regardless of the posture of the motor.
【0020】上記のようにしてハウジングの内部空間を
潤滑油によって満たした流体軸受装置は、先端に栓をし
た注射器のような構造であるため、運搬中の振動などに
よって軸部材が軸方向へ移動すること、さらには軸部材
がハウジングから抜けることをある程度抑制する効果も
ある。Since the hydrodynamic bearing device in which the inner space of the housing is filled with the lubricating oil as described above has a structure like a syringe with a plug at the tip, the shaft member moves in the axial direction due to vibration during transportation. This also has the effect of suppressing the shaft member from coming off the housing to some extent.
【0021】また、本発明は、上記課題を解決するた
め、一端側に開口部、他端側に底部を有するハウジング
と、ハウジングに収容される軸部材および軸受部材と、
軸受部材の内周面と軸部材の外周面との間に設けられ、
ラジアル軸受隙間に生じる潤滑油の油膜で軸部材をラジ
アル方向に非接触支持するラジアル軸受部と、ハウジン
グの底部に設けられ、軸部材の他端側の端面をスラスト
方向に支持するスラスト軸受部と、ハウジングの開口部
に配置されたシール部材とを備えた流体軸受装置におい
て、シール部材と接触して、軸部材のハウジングに対す
る一端側への軸方向相対移動を規制する突出部を軸部材
に設けた構成を提供する。In order to solve the above problems, the present invention provides a housing having an opening at one end and a bottom at the other end, a shaft member and a bearing member housed in the housing,
Provided between the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member,
A radial bearing part that supports the shaft member in the radial direction in a non-contact manner with an oil film of lubricating oil generated in the radial bearing gap, and a thrust bearing part that is provided at the bottom of the housing and supports the end face of the other end side of the shaft member in the thrust direction. A hydrodynamic bearing device including a seal member arranged in an opening of the housing, the shaft member having a protrusion that comes into contact with the seal member and restricts relative axial movement of the shaft member toward one end of the housing. Provide a configuration.
【0022】ここで、「突出部」は、軸部材に一体に設
けることにより、あるいは、軸部材とは別体の部材を軸
部材に固定することにより構成することができる。ま
た、「突出部」の形状は特に限定されず、環状、部分環
状、点状又はピン状など、任意の形状を採用することが
できる。軸部材が外力や重力を受けて、ハウジングに対
して一端側に軸方向相対移動すると、突出部がシール部
材と接触して、軸部材のそれ以上の軸方向相対移動を規
制する。これにより、軸部材がハウジング内に保持さ
れ、ハウジングに対する抜けが防止される。Here, the "protruding portion" can be formed integrally with the shaft member, or by fixing a member separate from the shaft member to the shaft member. Further, the shape of the “protruding portion” is not particularly limited, and any shape such as a ring shape, a partial ring shape, a dot shape, or a pin shape can be adopted. When the shaft member receives an external force or gravity and moves relative to the housing in the one end side in the axial direction, the protruding portion comes into contact with the seal member to restrict further relative movement of the shaft member in the axial direction. As a result, the shaft member is held in the housing and is prevented from coming off the housing.
【0023】上記構成に加え、ハウジングの内部空間が
潤滑油で充満され、かつ、大気圧から100Torrの
減圧環境下におけるハウジングの内部空間に残存する空
気の膨張・収縮によっても、ハウジングの内部から潤滑
油の漏れがない構成とすることができる。In addition to the above construction, the interior space of the housing is filled with lubricating oil, and the expansion and contraction of the air remaining in the interior space of the housing under a reduced pressure environment from atmospheric pressure to 100 Torr lubricates the interior of the housing. It is possible to have a configuration in which there is no oil leakage.
【0024】上記構成において、突出部とシール部材と
の間に0.05mm〜0.5mmの軸方向隙間を設ける
ことができる。この軸方向隙間の値は、軸部材の他端側
の端面がスラスト軸受部に接触している時の値である。In the above structure, an axial gap of 0.05 mm to 0.5 mm can be provided between the protrusion and the seal member. The value of the axial gap is a value when the end surface on the other end side of the shaft member is in contact with the thrust bearing portion.
【0025】定常運転時(軸部材の他端側の端面がスラ
スト軸受部に接触支持された状態で回転している時)に
おける突出部とシール部材との接触を回避するため、両
者の間には一定の軸方向隙間を設ける必要がある。この
軸方向隙間は、各部品の寸法公差や組立誤差などを考量
すると、0.05mm以上必要である。In order to avoid contact between the protruding portion and the seal member during steady operation (when the end surface on the other end side of the shaft member is rotating in a state where the end surface of the shaft member is in contact with and supported by the thrust bearing portion), a contact between the protruding portion and the seal member is avoided. Must have a constant axial clearance. This axial clearance needs to be 0.05 mm or more in consideration of the dimensional tolerance of each component and the assembly error.
【0026】一方、上記軸方向隙間の存在により、運転
中あるいは運搬中に軸受装置に振動や衝撃荷重等が繰り
返し加わると、軸部材は上記軸方向隙間の範囲内でハウ
ジングに対して軸方向に相対移動可能となる。そのた
め、上記軸方向隙間が過大であると、軸部材の軸方向相
対移動によって、外部の空気がシール空間(シール部材
の内周面と軸部材の外周面との間の空間)を通ってハウ
ジング内部に流入したり、あるいは、ハウジング内部の
潤滑油が上記シール空間から押し出されて外部に漏れる
可能性がある。また、上記軸方向隙間の値が大きくなる
ほど、ハウジングの内部空間に充満される潤滑油量が多
くなり、熱膨張・収縮による潤滑油の体積変化量が大き
くなるので、その体積変化量を吸収して潤滑油が外部に
漏れないようにするために、上記シール空間の容積を大
きくする必要が生じる。しかしながら、シール部材の軸
方向寸法を大きくすることはスペース上の制約から困難
な場合が多く、またシール部材の内径寸法を大きくする
ことはシール機能の低下(毛細管力の低下)につながる
可能性があるので、好ましくない。On the other hand, when the bearing device is repeatedly subjected to vibration, impact load, or the like during operation or transportation due to the existence of the axial gap, the shaft member is axially moved with respect to the housing within the axial gap. Relative movement is possible. Therefore, if the axial gap is too large, the relative movement of the shaft member in the axial direction allows the external air to pass through the seal space (the space between the inner peripheral surface of the seal member and the outer peripheral surface of the shaft member). There is a possibility that the oil may flow into the inside or the lubricating oil inside the housing may be pushed out of the seal space and leak to the outside. In addition, as the value of the axial clearance increases, the amount of lubricating oil that fills the internal space of the housing increases, and the amount of change in volume of lubricating oil due to thermal expansion / contraction increases, so the amount of change in volume is absorbed. In order to prevent the lubricating oil from leaking to the outside, it is necessary to increase the volume of the seal space. However, it is often difficult to increase the axial dimension of the seal member due to space constraints, and increasing the inner diameter dimension of the seal member may lead to deterioration of the sealing function (decrease in capillary force). Therefore, it is not preferable.
【0027】後述する試験の結果、上記軸方向隙間が
0.5mm以下であれば、ハウジング内部から外部への
潤滑油漏れを防止できることが確認されており、上記軸
方向隙間の適正な範囲は0.05mm〜0.5mm、好
ましくは0.05mm〜0.3mmである。As a result of a test described later, it has been confirmed that if the axial gap is 0.5 mm or less, it is possible to prevent the lubricating oil from leaking from the inside of the housing to the outside, and the appropriate range of the axial gap is 0. It is 0.05 mm to 0.5 mm, preferably 0.05 mm to 0.3 mm.
【0028】以上の構成において、シール部材の内周面
とこれに対向する軸部材の外周面との間に、一端側に向
かって漸次拡大するテーパ形状のシール空間を設けるこ
とができる。シール空間を上記テーパ形状とすることに
より、シール空間内の潤滑油はシール空間が狭くなる方
向(ハウジングの内部方向)に向けて毛細管力によって
引き込まれる。そのため、ハウジング内部から外部への
潤滑油漏れが防止される。In the above structure, a tapered seal space that gradually expands toward the one end can be provided between the inner peripheral surface of the seal member and the outer peripheral surface of the shaft member facing the seal member. By forming the seal space in the tapered shape, the lubricating oil in the seal space is drawn in by the capillary force in the direction in which the seal space becomes narrower (inward direction of the housing). Therefore, leakage of lubricating oil from the inside of the housing to the outside is prevented.
【0029】上記テーパ形状のシール空間は、シール部
材の内周面および軸部材の外周面のうち少なくとも一方
にテーパ面を設けることによって構成することができ
る。軸部材の外周面にテーパ面を設けた構成では、軸部
材の回転時、シール空間内の潤滑油が遠心力を受け、軸
部材のテーパ面に沿ってシール空間が狭くなる方向(ハ
ウジングの内部方向)に向けて引き込まれる。従って、
上記の毛細管力による引き込み作用に加え、遠心力によ
る引き込み作用もあるので、潤滑油漏れの防止効果が一
層高くなる。The tapered seal space can be formed by providing a tapered surface on at least one of the inner peripheral surface of the seal member and the outer peripheral surface of the shaft member. In the configuration in which the tapered surface is provided on the outer peripheral surface of the shaft member, the lubricating oil in the seal space receives a centrifugal force when the shaft member rotates, and the seal space narrows along the tapered surface of the shaft member (inside the housing). Direction). Therefore,
In addition to the pulling action by the above-mentioned capillary force, there is also the pulling action by the centrifugal force, so that the effect of preventing leakage of lubricating oil is further enhanced.
【0030】ハウジングの底部に設けたスラスト軸受部
で軸部材の軸端部をスラスト方向に接触支持する構成の
流体軸受装置では、スラスト軸受部周辺の空間において
潤滑油の圧力が高まり、シール部材の内周面と軸部材の
外周面との間のシール空間における潤滑油と圧力差が生
じる場合がある。この圧力差は、ラジアル軸受部で動圧
溝の幅を軸方向で非対称に形成した場合の他、設計上は
対称にしてあっても加工誤差(軸部材や軸受部材内周面
のテーパ形状、動圧溝幅の寸法精度等)が大きい場合等
にも同様に生じ得る。In the hydrodynamic bearing device in which the shaft end portion of the shaft member is contacted and supported in the thrust direction by the thrust bearing portion provided at the bottom of the housing, the pressure of the lubricating oil increases in the space around the thrust bearing portion, and the sealing member A pressure difference may occur with the lubricating oil in the seal space between the inner peripheral surface and the outer peripheral surface of the shaft member. This pressure difference is due to a machining error (taper shape of the shaft member or the inner peripheral surface of the bearing member, even if the width of the dynamic pressure groove is formed asymmetrically in the axial direction in the radial bearing portion, or even if it is symmetrical in design. The same may occur when the dimensional accuracy of the dynamic pressure groove width is large).
【0031】このような圧力差が生じると、ハウジング
の内部空間内の潤滑油に局部的な負圧が生じ、潤滑油中
での気泡の生成、これに起因する潤滑油の漏れや振動の
発生等の原因になることがある。また、スラスト軸受部
周辺の潤滑油の圧力が高まることにより、軸部材の浮き
上がりを生じたり、逆にスラスト軸受部側の圧力が低く
なって軸部材がスラストプレート等の受け部材に押し付
けられ、受け部材の異常摩耗を招く場合もある。When such a pressure difference is generated, a local negative pressure is generated in the lubricating oil in the internal space of the housing, and bubbles are generated in the lubricating oil, which causes leakage of the lubricating oil and vibration. It may cause such as. In addition, the pressure of the lubricating oil around the thrust bearing increases, causing the shaft member to rise, or conversely, the pressure on the thrust bearing side decreases and the shaft member is pressed against the receiving member such as the thrust plate. In some cases, abnormal wear of the member may be caused.
【0032】このような問題は、スラスト軸受部とシー
ル空間とを連通させる連通溝を設けることにより、解消
することができる。すなわち、スラスト軸受部周辺の空
間とシール空間との間で潤滑油の圧力差が生じた場合、
連通溝を通じて両空間の間に潤滑油の流動が生じ、これ
により両空間の油圧が等圧に保たれる。Such a problem can be solved by providing a communicating groove for communicating the thrust bearing portion and the seal space. That is, when a pressure difference of the lubricating oil occurs between the space around the thrust bearing portion and the seal space,
A flow of lubricating oil occurs between the two spaces through the communication groove, so that the hydraulic pressure in both spaces is kept constant.
【0033】上記の連通溝は、例えば、ハウジングの底
部側で軸受部材の一方の端面とこれに対向するハウジン
グの面との間に形成された第一半径方向溝と、ハウジン
グの開口部側で軸受部材の他方の端面とこれに対向する
シール部材の面との間に形成された第二半径方向溝と、
軸受部材の外周面とハウジングの内周面との間に形成さ
れた軸方向溝とを有するもので構成することができる。The above-mentioned communication groove is, for example, a first radial groove formed between one end surface of the bearing member on the bottom side of the housing and the surface of the housing opposed thereto, and on the opening side of the housing. A second radial groove formed between the other end surface of the bearing member and the surface of the seal member facing the other end surface;
The bearing member may have an axial groove formed between the outer peripheral surface of the bearing member and the inner peripheral surface of the housing.
【0034】本発明の「流体軸受装置」には、軸受隙間
内の潤滑油に動圧を発生させる動圧発生手段を備えたい
わゆる流体動圧軸受装置と、動圧発生手段を備えていな
いいわゆる流体真円軸受装置(軸受面が真円形状である
軸受装置)とが含まれるが、より軸支持機能に優れた流
体動圧軸受装置とするのが好ましい。流体動圧軸受装置
とする場合、上記の「動圧発生手段」として、ラジアル
軸受隙間を介して相対向する軸受部材の内周面および軸
部材の外周面のうち一方の周面に動圧溝を設けた構成、
上記一方の周面を非円形、例えば2円弧、3円弧、4円
弧等の複数の円弧で描いた構成とすることができる(ラ
ジアル軸受面を複数の円弧で描いた軸受は「円弧軸受」
とも呼ばれる。)。前者の場合、動圧溝の形状として、
ヘリングボーン形状、スパイラル形状、複数の軸方向溝
形状(ラジアル軸受面に複数の軸方向溝を設けた軸受は
「ステップ軸受」とも呼ばれる。)など、種々の公知の
動圧溝形状を採用することができる。さらに、スラスト
軸受隙間を介して相対向する面の一方にヘリングボーン
形状やスパイラル形状等の動圧溝を形成してスラスト動
圧軸受部を構成しても良い。また、軸受部材の材質とし
て、多孔質の焼結金属の他、銅合金、ステンレス鋼、真
ちゅう、アルミ合金等を用いることができる。The "fluid bearing device" of the present invention includes a so-called fluid dynamic pressure bearing device provided with a dynamic pressure generating device for producing a dynamic pressure in the lubricating oil in the bearing gap, and a so-called fluid dynamic bearing device having no dynamic pressure generating device. A fluid perfect circular bearing device (a bearing device having a perfect circular bearing surface) is included, but a fluid dynamic bearing device having a more excellent shaft supporting function is preferable. In the case of a fluid dynamic bearing device, the above-mentioned “dynamic pressure generating means” may be a dynamic pressure groove on one of the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member that face each other with a radial bearing gap therebetween. With the configuration,
The above-mentioned one circumferential surface can be configured to have a non-circular shape, for example, a plurality of circular arcs such as two circular arcs, three circular arcs, and four circular arcs.
Also called. ). In the former case, as the shape of the dynamic pressure groove,
Adopting various known dynamic pressure groove shapes such as herringbone shape, spiral shape, plural axial groove shapes (a bearing having plural axial grooves on a radial bearing surface is also called a "step bearing"). You can Further, the thrust dynamic pressure bearing portion may be formed by forming a dynamic pressure groove having a herringbone shape or a spiral shape on one of the surfaces facing each other through the thrust bearing gap. Further, as the material of the bearing member, copper alloy, stainless steel, brass, aluminum alloy or the like can be used in addition to porous sintered metal.
【0035】[0035]
【発明の実施の形態】以下、本発明の実施形態について
説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.
【0036】図1は、第1の実施形態に係る流体動圧軸
受装置1を示している。この流体軸受装置1は、例えば
図7に示すような情報機器用スピンドルモータに組み込
まれるもので、一端側(図1で上側)に開口部2a、他
端側(図1で下側)に底部2cを有する有底円筒状のハ
ウジング2と、ハウジング2の内周面に固定された円筒
状の軸受部材3と、軸部材4と、ハウジング2の開口部
2aに固定されたシール部材5とを主要な部材として構
成される。後述するように、軸受部材3の内周面3aと
軸部材4の外周面4aとの間に第1ラジアル軸受部R1
と第2動圧軸受部R2とが軸方向に離隔して設けられ
る。また、ハウジング2の底部2cと軸部材4の下側端
面4bとの間にスラスト軸受部Tが設けられる。FIG. 1 shows a fluid dynamic bearing device 1 according to the first embodiment. This hydrodynamic bearing device 1 is incorporated in a spindle motor for information equipment as shown in FIG. 7, for example, and has an opening 2a at one end (upper side in FIG. 1) and a bottom part at the other end (lower side in FIG. 1). A bottomed cylindrical housing 2 having 2c, a cylindrical bearing member 3 fixed to the inner peripheral surface of the housing 2, a shaft member 4, and a seal member 5 fixed to the opening 2a of the housing 2. It is configured as a main component. As described later, the first radial bearing portion R1 is provided between the inner peripheral surface 3a of the bearing member 3 and the outer peripheral surface 4a of the shaft member 4.
And the second dynamic pressure bearing portion R2 are provided separately from each other in the axial direction. Further, a thrust bearing portion T is provided between the bottom portion 2c of the housing 2 and the lower end surface 4b of the shaft member 4.
【0037】ハウジング2は、例えば真ちゅう等の軟質
金属材で形成され、円筒状の側部2bと底部2cとを備
えている。底部2cの内底面の、スラスト軸受面となる
領域には、例えば樹脂製のスラストプレート6が配置さ
れている。この実施形態において、ハウジング2は、側
部2bと底部2cとが一体構造になっているが、側部2
bと底部2cとを別体構造とし、底部2cとなる金属製
の蓋状部材を側部2bの他端側開口部に加締め、接着等
の手段で固定・封止しても良い。この場合、スラストプ
レート6は上記蓋状部材の上面に配置する。The housing 2 is made of a soft metal material such as brass and has a cylindrical side portion 2b and a bottom portion 2c. A thrust plate 6 made of resin, for example, is arranged in a region that serves as a thrust bearing surface on the inner bottom surface of the bottom portion 2c. In this embodiment, the housing 2 has a side portion 2b and a bottom portion 2c that are integrally formed.
It is also possible that the b and the bottom portion 2c have a separate structure, and a lid-like member made of metal that serves as the bottom portion 2c is caulked to the opening on the other end side of the side portion 2b, and fixed and sealed by means such as adhesion. In this case, the thrust plate 6 is arranged on the upper surface of the lid-shaped member.
【0038】軸部材4は、例えば、ステンレス鋼(SU
S420J2)等の金属材で形成され、その下側端面4
bは凸球状に形成される。The shaft member 4 is made of, for example, stainless steel (SU
S420J2) or other metallic material, and the lower end surface 4 thereof
b is formed into a convex sphere.
【0039】軸受部材3は、例えば焼結金属からなる多
孔質体、特に銅を主成分とする燒結金属の多孔質体で形
成される。また、軸受部材3の内周面3aには、ラジア
ル軸受面(第1ラジアル軸受部R1と第2ラジアル軸受
部R2のラジアル軸受面)となる上下2つの領域が軸方
向に離隔して設けられている。これら領域には、それぞ
れ動圧溝、例えばヘリングボーン形状の動圧溝3a1、
3a2が形成される。The bearing member 3 is formed of, for example, a porous body made of a sintered metal, particularly a sintered metal porous body containing copper as a main component. Further, on the inner peripheral surface 3a of the bearing member 3, two upper and lower regions serving as radial bearing surfaces (radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2) are provided axially separated from each other. ing. In these regions, dynamic pressure grooves, for example, herringbone dynamic pressure grooves 3a1,
3a2 is formed.
【0040】軸部材4の外周面4aは軸受部材3の内周
面3aに挿入され、軸受部材3の内周面3aのラジアル
軸受面となる領域(上下2箇所の領域)と、それぞれ、
ラジアル軸受隙間を介して対向する。また、軸部材4の
下側端面4bはスラストプレート6の上面と接触する。The outer peripheral surface 4a of the shaft member 4 is inserted into the inner peripheral surface 3a of the bearing member 3, and an area (two upper and lower areas) serving as a radial bearing surface of the inner peripheral surface 3a of the bearing member 3, respectively.
Opposing via a radial bearing gap. Further, the lower end surface 4 b of the shaft member 4 contacts the upper surface of the thrust plate 6.
【0041】シール部材5は環状のもので、ハウジング
2の開口部2aの内周面に圧入、接着等の手段で固定さ
れる。この実施形態において、シール部材5の内周面5
aは円筒状に形成され、シール部材5の下側端面5bは
軸受部材3の上側端面3bと接触する。The seal member 5 is an annular member and is fixed to the inner peripheral surface of the opening 2a of the housing 2 by means such as press fitting or adhesion. In this embodiment, the inner peripheral surface 5 of the seal member 5 is
a is formed in a cylindrical shape, and the lower end surface 5b of the seal member 5 contacts the upper end surface 3b of the bearing member 3.
【0042】シール部材5の内周面5aは軸部材4の外
周面4aと所定の隙間を介して対向し、これにより、両
者の間に円筒形状のシール空間S1が形成される。シー
ル部材5で密封されたハウジング2の内部空間は、軸受
部材3の内部気孔(多孔質組織の気孔)を含め、空気を
介在させることなく潤滑油で充満され、その潤滑油の油
面はシール空間S1内にある。シール空間S1の容積
は、ハウジング2の内部空間に充満された潤滑油の、使
用温度範囲内の温度変化に伴う容積変化量よりも大きく
なるように設定される。これにより、温度変化に伴う潤
滑油の容積変化があった場合でも、潤滑油の油面を、常
に、シール空間S1内に維持することができる。The inner peripheral surface 5a of the seal member 5 opposes the outer peripheral surface 4a of the shaft member 4 with a predetermined gap therebetween, thereby forming a cylindrical seal space S1 therebetween. The internal space of the housing 2 sealed by the seal member 5, including the internal pores of the bearing member 3 (pores of porous tissue), is filled with lubricating oil without interposing air, and the lubricating oil surface is sealed. It is in the space S1. The volume of the seal space S1 is set to be larger than the volume change amount of the lubricating oil with which the internal space of the housing 2 is filled due to the temperature change within the operating temperature range. As a result, even if the volume of the lubricating oil changes due to the temperature change, the oil surface of the lubricating oil can be constantly maintained in the seal space S1.
【0043】ハウジング2の内部空間へは、例えば次の
ような態様で潤滑油を注油する。まず、各部品(ハウジ
ング2、軸受部材3、軸部材4、スラストプレート6、
シール部材5)を組み付けて、未注油の流体軸受装置1
を組み立て、この未注油の流体軸受装置1を真空槽内で
潤滑油中に浸漬する。ハウジング2の内部空間の空気は
真空槽内の真空圧で引かれて排出され、該内部空間に空
気が介在しない状態となる。その後、大気圧に開放する
と、ハウジング2の内部空間が潤滑油で充満される。潤
滑油の注油が終わると、流体軸受装置1を真空槽から取
出して、流体軸受装置1の動作上限温度まで加温する。
この加温に伴い、ハウジング2の内部空間に充満された
潤滑油が熱膨張して、余分な潤滑油がシール空間S1か
ら外部に排出される。これにより、流体軸受装置1が動
作上限温度で運転された場合でも、潤滑油の油面はシー
ル空間S1内に維持される。その後、加温を止めると、
温度低下に伴い潤滑油の油面は低下して、シール空間S
1内の適正レベルに落ち着く。Lubricating oil is injected into the internal space of the housing 2 in the following manner, for example. First, each component (housing 2, bearing member 3, shaft member 4, thrust plate 6,
Unlubricated hydrodynamic bearing device 1 by assembling the seal member 5)
And the unlubricated hydrodynamic bearing device 1 is immersed in lubricating oil in a vacuum chamber. The air in the internal space of the housing 2 is drawn and exhausted by the vacuum pressure in the vacuum chamber, and the air is not present in the internal space. After that, when it is opened to the atmospheric pressure, the internal space of the housing 2 is filled with the lubricating oil. After the lubrication is finished, the hydrodynamic bearing device 1 is taken out of the vacuum chamber and heated to the operating upper limit temperature of the hydrodynamic bearing device 1.
With this heating, the lubricating oil filled in the internal space of the housing 2 thermally expands, and the excess lubricating oil is discharged to the outside from the seal space S1. Thereby, even when the hydrodynamic bearing device 1 is operated at the operation upper limit temperature, the oil level of the lubricating oil is maintained in the seal space S1. After that, when heating is stopped,
The oil level of the lubricating oil decreases as the temperature decreases, and the seal space S
Settle to a proper level within 1.
【0044】上記の注油工程において、真空槽内の真空
度によっては、ハウジング2の内部空間に僅かながら空
気が残存する場合もあるが、その空気量が所定のレベ
ル、すなわち、流体軸受装置1及びこれを組み込んだモ
ータの使用・運搬環境として想定される環境条件におい
て、ハウジング2の内部空間に残存した空気の膨張によ
って潤滑油がシール空間S1から押し出されてハウジン
グ2の外部に漏れないようなレベルに規制されていれば
良い。この実施形態では、100Torrでの減圧下に
おいて、流体軸受装置1を正置姿勢(ハウジング2の開
口部2aの側を上向きした姿勢)、倒立姿勢(ハウジン
グ2の開口部2aの側を下向きした姿勢)、横向き姿勢
(ハウジング2の開口部2aの側を水平方向に向けた姿
勢)、傾斜姿勢(ハウジング2の開口部2aの側を傾斜
方向に向けた姿勢)にした場合でも、潤滑油がハウジン
グ2の外部に漏れないようにしている。In the above-mentioned lubrication process, air may remain slightly in the internal space of the housing 2 depending on the degree of vacuum in the vacuum chamber. However, the amount of air remains at a predetermined level, that is, the hydrodynamic bearing device 1 and Under the environmental conditions expected to be the use / transportation environment of the motor incorporating this, the lubricating oil is pushed out of the seal space S1 due to the expansion of the air remaining in the inner space of the housing 2 and does not leak to the outside of the housing 2. If it is regulated by. In this embodiment, under reduced pressure at 100 Torr, the hydrodynamic bearing device 1 is in a normal posture (a posture in which the side of the opening 2a of the housing 2 faces upward) and an inverted posture (a posture in which the side of the opening 2a of the housing 2 faces downward. ), A horizontal posture (a posture in which the opening 2a side of the housing 2 is oriented in the horizontal direction) and an inclined posture (a posture in which the opening 2a side of the housing 2 is oriented in the inclination direction) 2 so that it does not leak outside.
【0045】上記構成の流体軸受装置1において、軸部
材4が回転すると、上記ラジアル軸受隙間に潤滑油の動
圧が発生し、軸部材4の外周面4aが上記ラジアル軸受
隙間内に形成される潤滑油の油膜によってラジアル方向
に回転自在に非接触支持される。これにより、軸部材4
をラジアル方向に回転自在に非接触支持する第1ラジア
ル軸受部R1と第2ラジアル軸受部R2とが構成され
る。同時に、軸部材4の下側端面4bがスラストプレー
ト6によって接触支持され、これにより、軸部材4をス
ラスト方向に回転自在に支持するスラスト軸受部Tが構
成される。In the hydrodynamic bearing device 1 having the above structure, when the shaft member 4 rotates, dynamic pressure of lubricating oil is generated in the radial bearing gap, and the outer peripheral surface 4a of the shaft member 4 is formed in the radial bearing gap. An oil film of lubricating oil is supported in a non-contact manner so as to be rotatable in the radial direction. Thereby, the shaft member 4
A first radial bearing portion R1 and a second radial bearing portion R2 that rotatably support in a radial direction in a non-contact manner are configured. At the same time, the lower end surface 4b of the shaft member 4 is contact-supported by the thrust plate 6, thereby forming a thrust bearing portion T that rotatably supports the shaft member 4 in the thrust direction.
【0046】この実施形態の流体軸受装置1は、周囲温
度の変化やモータの発熱、あるいは高地での使用や空輸
時等の減圧環境下における、ハウジング内部空間の残存
空気の膨張・収縮によっても、モータの姿勢にかかわら
ず、ハウジング2の内部から外部への潤滑油漏れがな
く、安定した運転、運搬が可能である。The hydrodynamic bearing device 1 of this embodiment is also capable of expanding or contracting the residual air in the internal space of the housing due to changes in ambient temperature, heat generation of the motor, or decompression environment such as high altitude use or air transportation. Lubricating oil does not leak from the inside of the housing 2 to the outside regardless of the posture of the motor, and stable operation and transportation are possible.
【0047】図2は、第2の実施形態に係る流体動圧軸
受装置1’を示している。この実施形態の流体軸受装置
1’が上述した第1の実施形態と異なる点は、シール部
材5’の内周面とこれに対向する軸部材4’の外周面と
の間に形成されるシール空間S2を、ハウジング2の一
端側(外部方向)に漸次拡大するテーパ形状にした点に
ある。この実施形態では、テーパ形状のシール空間S2
を形成するために、シール部材5’の内周面を一端側に
向かって漸次拡径する形状のテーパ面5a’とし、か
つ、テーパ面5a’と対向する軸部材4’の外周面に、
一端側に向かって漸次縮径する形状のテーパ面4a1’
を設けている。尚、テーパ面5a’とテーパ面4a1’
のうち一方は円筒面とすることもできる。FIG. 2 shows a fluid dynamic bearing device 1'according to the second embodiment. The hydrodynamic bearing device 1 ′ of this embodiment is different from the above-described first embodiment in that a seal formed between the inner peripheral surface of the seal member 5 ′ and the outer peripheral surface of the shaft member 4 ′ facing the seal member 5 ′. The point is that the space S2 has a tapered shape that gradually expands to one end side (outward direction) of the housing 2. In this embodiment, the tapered seal space S2
In order to form the above, the inner peripheral surface of the seal member 5 ′ is a tapered surface 5a ′ having a shape in which the diameter is gradually increased toward one end side, and the outer peripheral surface of the shaft member 4 ′ facing the tapered surface 5a ′ is
Tapered surface 4a1 'having a shape in which the diameter gradually decreases toward one end side
Is provided. The tapered surface 5a 'and the tapered surface 4a1'
One of them may be a cylindrical surface.
【0048】図2の鎖線円内に拡大して示すように、シ
ール空間S2内に潤滑油Lの油面があることにより、シ
ール空間S2内の潤滑油Lが、毛細管力によってシール
空間S2が狭くなる方向(他端側:ハウジング2の内部
方向)に向けて引き込まれる。そのため、ハウジング2
の内部から外部への潤滑油Lの漏れ出しが効果的に防止
される。さらに、軸部材4’の外周面にテーパ面4a
1’を設けていることにより、軸部材4’の回転時、シ
ール空間S2内の潤滑油Lが遠心力を受けて、テーパ面
4a1’に沿ってシール空間S2が狭くなる方向(ハウ
ジング2の内部方向)に向けて引き込まれる。従って、
上記の毛細管力による引き込み作用に加え、遠心力によ
る引き込み作用もあるので、上述した第1の実施形態の
流体軸受装置1’に比べて、潤滑油Lの漏れ出し防止効
果が一層高くなる。As shown enlarged in the chain line circle in FIG. 2, the lubricating oil L in the seal space S2 has the oil level in the seal space S2, and the seal space S2 is separated by the capillary force. It is drawn in the narrowing direction (the other end side: the inner direction of the housing 2). Therefore, the housing 2
The leakage of the lubricating oil L from the inside to the outside is effectively prevented. Further, the tapered surface 4a is formed on the outer peripheral surface of the shaft member 4 '.
By providing 1 ', when the shaft member 4'rotates, the lubricating oil L in the seal space S2 receives a centrifugal force, and the seal space S2 narrows along the tapered surface 4a1' (in the housing 2). (Inward). Therefore,
In addition to the pulling action by the above-mentioned capillary force, there is also the pulling action by the centrifugal force. Therefore, the effect of preventing the lubricating oil L from leaking out is further enhanced as compared with the hydrodynamic bearing device 1'of the first embodiment described above.
【0049】図3は、第3の実施形態に係る流体動圧軸
受装置1を示している。この流体軸受装置1は、例えば
図7に示すような情報機器用スピンドルモータに組み込
まれるもので、一端側(図3で上側)に開口部2a、他
端側(図3で下側)に底部2cを有する有底円筒状のハ
ウジング2と、ハウジング2の内周面に固定された円筒
状の軸受部材3と、軸部材4と、ハウジング2の開口部
2aに固定されたシール部材5とを主要な部材として構
成される。後述するように、軸受部材3の内周面3aと
軸部材4の外周面4aとの間に第1ラジアル軸受部R1
と第2動圧軸受部R2とが軸方向に離隔して設けられ
る。また、ハウジング2の底部2cと軸部材4の下側端
面4bとの間にスラスト軸受部Tが設けられる。FIG. 3 shows a fluid dynamic bearing device 1 according to the third embodiment. The hydrodynamic bearing device 1 is incorporated in a spindle motor for information equipment as shown in FIG. 7, for example, and has an opening 2a at one end (upper side in FIG. 3) and a bottom part at the other end (lower side in FIG. 3). A bottomed cylindrical housing 2 having 2c, a cylindrical bearing member 3 fixed to the inner peripheral surface of the housing 2, a shaft member 4, and a seal member 5 fixed to the opening 2a of the housing 2. It is configured as a main component. As described later, the first radial bearing portion R1 is provided between the inner peripheral surface 3a of the bearing member 3 and the outer peripheral surface 4a of the shaft member 4.
And the second dynamic pressure bearing portion R2 are provided separately from each other in the axial direction. Further, a thrust bearing portion T is provided between the bottom portion 2c of the housing 2 and the lower end surface 4b of the shaft member 4.
【0050】ハウジング2は、例えば真ちゅう等の軟質
金属材で形成され、円筒状の側部2bと底部2cとを備
えている。底部2cの内底面の、スラスト軸受面となる
領域には、例えば樹脂製のスラストプレート6が配置さ
れている。この実施形態において、ハウジング2は、側
部2bと底部2cとが一体構造になっているが、側部2
bと底部2cとを別体構造とし、底部2cとなる金属製
の蓋状部材を側部2bの他端側開口部に加締め、接着等
の手段で固定・封止しても良い。この場合、スラストプ
レート6は上記蓋状部材の上面に配置する。The housing 2 is made of a soft metal material such as brass and has a cylindrical side portion 2b and a bottom portion 2c. A thrust plate 6 made of resin, for example, is arranged in a region that serves as a thrust bearing surface on the inner bottom surface of the bottom portion 2c. In this embodiment, the housing 2 has a side portion 2b and a bottom portion 2c that are integrally formed.
It is also possible that the b and the bottom portion 2c have a separate structure, and a lid-like member made of metal that serves as the bottom portion 2c is caulked to the opening on the other end side of the side portion 2b and fixed and sealed by means such as adhesion. In this case, the thrust plate 6 is arranged on the upper surface of the lid-shaped member.
【0051】軸部材4は、例えば、ステンレス鋼(SU
S420J2)等の金属材で形成され、その下側端面4
bは凸球状に形成される。また、軸部材4の外周面4a
には突出部としての円板状のワッシャ7が圧入、接着等
の適宜の手段で固定される。The shaft member 4 is made of, for example, stainless steel (SU
S420J2) or other metallic material, and the lower end surface 4 thereof
b is formed into a convex sphere. In addition, the outer peripheral surface 4a of the shaft member 4
A disk-shaped washer 7 as a projecting portion is fixed to this by an appropriate means such as press fitting or adhesion.
【0052】軸受部材3は、例えば焼結金属からなる多
孔質体、特に銅を主成分とする燒結金属の多孔質体で形
成される。また、軸受部材3の内周面3aには、ラジア
ル軸受面(第1ラジアル軸受部R1と第2ラジアル軸受
部R2のラジアル軸受面)となる上下2つの領域が軸方
向に離隔して設けられている。これら領域には、それぞ
れ動圧溝、例えばヘリングボーン形状の動圧溝3a1、
3a2が形成される。The bearing member 3 is formed of, for example, a porous body made of a sintered metal, particularly a sintered metal porous body containing copper as a main component. Further, on the inner peripheral surface 3a of the bearing member 3, two upper and lower regions serving as radial bearing surfaces (radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2) are provided axially separated from each other. ing. In these regions, dynamic pressure grooves, for example, herringbone dynamic pressure grooves 3a1,
3a2 is formed.
【0053】軸部材4の外周面4aは軸受部材3の内周
面3aに挿入され、軸受部材3の内周面3aのラジアル
軸受面となる領域(上下2箇所の領域)と、それぞれ、
ラジアル軸受隙間を介して対向する。また、軸部材4の
下側端面4bはスラストプレート6の上面と接触する。The outer peripheral surface 4a of the shaft member 4 is inserted into the inner peripheral surface 3a of the bearing member 3, and an area (two upper and lower areas) serving as a radial bearing surface of the inner peripheral surface 3a of the bearing member 3, respectively.
Opposing via a radial bearing gap. Further, the lower end surface 4 b of the shaft member 4 contacts the upper surface of the thrust plate 6.
【0054】シール部材5は環状のもので、ハウジング
2の開口部2aの内周面に圧入、接着等の手段で固定さ
れる。この実施形態において、シール部材5の内周面5
aは円筒状に形成され、シール部材5の下側端面5bは
軸受部材3の上側端面3bと所定の軸方向間隔部Xを隔
てて対向する。The seal member 5 is an annular member, and is fixed to the inner peripheral surface of the opening 2a of the housing 2 by means such as press fitting or adhesion. In this embodiment, the inner peripheral surface 5 of the seal member 5 is
a is formed in a cylindrical shape, and the lower end surface 5b of the seal member 5 faces the upper end surface 3b of the bearing member 3 with a predetermined axial gap X therebetween.
【0055】軸部材4に設けられたワッシャ7は軸方向
間隔部X内に配置され、軸部材4の下側端面4bがスラ
ストプレート6の上面と接触した状態において、ワッシ
ャ7の上側端面7aとシール部材5の下側端面5bとの
間に軸方向隙間X1が設けられ、ワッシャ7の下側端面
7bと軸受部材3の上側端面3bとの間に軸方向隙間X
2が設けられる。軸方向隙間X1の大きさは0.05m
m〜0.5mm、好ましくは0.05mm〜0.3mm
である。軸方向隙間X2は、軸部材4の回転時に、ワッ
シャ7の下側端面7bが軸受部材3の上側端面3bと接
触しないような大きさに設定すれば良いが、各部品の寸
法公差や組立誤差などを考量して0.05mm以上とす
るのが好ましい。この軸方向隙間X2の大きさは、軸方
向隙間X1と同じにしても良いし、軸方向隙間X1より
も大きく又は小さくしても良い。The washer 7 provided on the shaft member 4 is arranged in the axial interval X, and when the lower end surface 4b of the shaft member 4 is in contact with the upper surface of the thrust plate 6, the washer 7 and the upper end surface 7a of the washer 7 are provided. An axial gap X1 is provided between the lower end surface 5b of the seal member 5 and an axial gap X between the lower end surface 7b of the washer 7 and the upper end surface 3b of the bearing member 3.
Two are provided. The size of the axial gap X1 is 0.05 m
m to 0.5 mm, preferably 0.05 mm to 0.3 mm
Is. The axial gap X2 may be set to a size such that the lower end surface 7b of the washer 7 does not come into contact with the upper end surface 3b of the bearing member 3 when the shaft member 4 rotates. It is preferable that the thickness is 0.05 mm or more in consideration of the above. The size of the axial gap X2 may be the same as the axial gap X1 or may be larger or smaller than the axial gap X1.
【0056】シール部材5の内周面5aは軸部材4の外
周面4aと所定の隙間を介して対向し、これにより、両
者の間に円筒形状のシール空間S1が形成される。シー
ル部材5で密封されたハウジング2の内部空間は、軸受
部材3の内部気孔(多孔質組織の気孔)を含め、空気を
介在させることなく潤滑油で充満され、その潤滑油の油
面はシール空間S1内にある。シール空間S1の容積
は、ハウジング2の内部空間に充満された潤滑油の、使
用温度範囲内の温度変化に伴う容積変化量よりも大きく
なるように設定される。これにより、温度変化に伴う潤
滑油の容積変化があった場合でも、潤滑油の油面を、常
に、シール空間S1内に維持することができる。The inner peripheral surface 5a of the seal member 5 opposes the outer peripheral surface 4a of the shaft member 4 with a predetermined gap therebetween, thereby forming a cylindrical seal space S1 therebetween. The internal space of the housing 2 sealed by the seal member 5, including the internal pores of the bearing member 3 (pores of porous tissue), is filled with lubricating oil without interposing air, and the lubricating oil surface is sealed. It is in the space S1. The volume of the seal space S1 is set to be larger than the volume change amount of the lubricating oil with which the internal space of the housing 2 is filled due to the temperature change within the operating temperature range. As a result, even if the volume of the lubricating oil changes due to the temperature change, the oil surface of the lubricating oil can be constantly maintained in the seal space S1.
【0057】ハウジング2の内部空間へは、例えば第1
の実施形態と同様の態様で潤滑油が注油され、大気圧か
ら100Torrの減圧環境下におけるハウジング内部
空間に残存する空気の膨張・収縮によっても、モータの
姿勢にかかわらず、ハウジング2の内部から潤滑油の漏
れがない構成になっている。To the inner space of the housing 2, for example, the first
Lubricating oil is injected in the same manner as in the embodiment of the present invention, and even if the air remaining in the housing internal space expands and contracts in a depressurized environment from atmospheric pressure to 100 Torr, it is lubricated from the inside of the housing 2 regardless of the posture of the motor. It has a structure that does not leak oil.
【0058】この実施形態において、軸部材4が外力や
重力を受けて、ハウジング2に対して一端側に軸方向相
対移動すると、軸部材4に設けられたワッシャ7がシー
ル部材5と接触して、軸部材4のそれ以上の軸方向相対
移動を規制する。これにより、軸部材4が常にハウジン
グ2内に保持され、ハウジング2からの抜けが防止され
る。In this embodiment, when the shaft member 4 receives an external force or gravity and moves axially relative to the housing 2, the washer 7 provided on the shaft member 4 comes into contact with the seal member 5. , Further restricts the axial relative movement of the shaft member 4. Thereby, the shaft member 4 is always held in the housing 2 and prevented from coming off from the housing 2.
【0059】さらに、ワッシャ7とシール部材5との間
の軸方向隙間X1が0.05mm〜0.5mmの範囲内
に設定されているので、定常運転時(軸部材4の下側端
面4bがスラストプレート6に接触支持された状態で回
転している時)において、ワッシャ7とシール部材5と
の接触がなく、安定した運転状態が得られる。また、軸
部材4が軸方向隙間X1の範囲内で軸方向相対移動した
場合でも、ハウジング2の内部に空気が流入したり、あ
るいは、ハウジング2の内部に充満された潤滑油がシー
ル空間S1から押し出されて外部に漏れる現象も起こら
ない。Furthermore, since the axial clearance X1 between the washer 7 and the seal member 5 is set within the range of 0.05 mm to 0.5 mm, during steady operation (the lower end surface 4b of the shaft member 4 is When rotating while being supported by the thrust plate 6 in contact therewith, there is no contact between the washer 7 and the seal member 5, and a stable operating state can be obtained. Even when the shaft member 4 moves in the axial gap X1 relative to each other in the axial direction, air may flow into the housing 2 or the lubricating oil filled in the housing 2 may flow from the seal space S1. There is no phenomenon of being pushed out and leaking to the outside.
【0060】その他の事項は第1の実施形態に準じるの
で、重複する説明を省略する。Since other matters are the same as those in the first embodiment, duplicate description will be omitted.
【0061】図4は、第4の実施形態に係る流体軸受装
置1’を示している。この実施形態の流体軸受装置1’
が上述した第3の実施形態と異なる点は、シール部材
5’の内周面とこれに対向する軸部材4’の外周面との
間に形成されるシール空間S2を、ハウジング2の一端
側(外部方向)に漸次拡大するテーパ形状にした点にあ
る。この実施形態では、テーパ形状のシール空間S2を
形成するために、シール部材5’の内周面を一端側に向
かって漸次拡径する形状のテーパ面5a’とし、かつ、
テーパ面5a’と対向する軸部材4’の外周面に、一端
側に向かって漸次縮径する形状のテーパ面4a1’を設
けている。尚、テーパ面5a’とテーパ面4a1’のう
ち一方は円筒面とすることもできる。FIG. 4 shows a hydrodynamic bearing device 1'according to the fourth embodiment. Hydrodynamic bearing device 1'of this embodiment
Is different from the above-described third embodiment in that the seal space S2 formed between the inner peripheral surface of the seal member 5 ′ and the outer peripheral surface of the shaft member 4 ′ facing the seal space S2 is disposed at one end side of the housing 2. The point is that the taper shape is gradually expanded in the (outward direction). In this embodiment, in order to form the taper-shaped seal space S2, the inner peripheral surface of the seal member 5'is formed into a taper surface 5a 'having a diameter gradually increasing toward one end, and
On the outer peripheral surface of the shaft member 4'which faces the tapered surface 5a ', a tapered surface 4a1' having a shape in which the diameter is gradually reduced toward one end side is provided. It should be noted that one of the tapered surface 5a 'and the tapered surface 4a1' may be a cylindrical surface.
【0062】図4の鎖線円内に拡大して示すように、シ
ール空間S2内に潤滑油Lの油面があることにより、シ
ール空間S2内の潤滑油Lが、毛細管力によってシール
空間S2が狭くなる方向(他端側:ハウジング2の内部
方向)に向けて引き込まれる。そのため、ハウジング2
の内部から外部への潤滑油Lの漏れ出しが効果的に防止
される。さらに、軸部材4’の外周面にテーパ面4a
1’を設けていることにより、軸部材4’の回転時、シ
ール空間S2内の潤滑油Lが遠心力を受けて、テーパ面
4a1’に沿ってシール空間S2が狭くなる方向(ハウ
ジング2の内部方向)に向けて引き込まれる。従って、
上記の毛細管力による引き込み作用に加え、遠心力によ
る引き込み作用もあるので、上述した第3の実施形態の
流体軸受装置1’に比べて、潤滑油Lの漏れ出し防止効
果が一層高くなる。As shown enlarged in the chain line circle in FIG. 4, the lubricating oil L in the seal space S2 has a surface of the lubricating oil L, so that the lubricating oil L in the seal space S2 is separated by the capillary force. It is drawn in the narrowing direction (the other end side: the inner direction of the housing 2). Therefore, the housing 2
The leakage of the lubricating oil L from the inside to the outside is effectively prevented. Further, the tapered surface 4a is formed on the outer peripheral surface of the shaft member 4 '.
By providing 1 ', when the shaft member 4'rotates, the lubricating oil L in the seal space S2 receives a centrifugal force, and the seal space S2 narrows along the tapered surface 4a1' (in the housing 2). (Inward). Therefore,
In addition to the pulling action by the above-mentioned capillary force, there is also the pulling action by the centrifugal force, so that the effect of preventing the leakage of the lubricating oil L is further enhanced as compared with the hydrodynamic bearing device 1 ′ of the third embodiment described above.
【0063】以上に説明した実施形態では、ラジアル軸
受面(第1ラジアル軸受部R1と第2ラジアル軸受部R
2のラジアル軸受面)となる軸受部材3の内周面3aに
動圧発生手段としてヘリングボーン形状の動圧溝3a
1、3a2を形成したが、ヘリングボーン形状に代え
て、スパイラル形状の動圧溝を形成しても良い。あるい
は、図8に示すように、ラジアル軸受面となる軸受部材
3の内周面3aに動圧発生手段として複数の軸方向溝形
状の動圧溝3a3を形成しても良い(いわゆる「ステッ
プ軸受」)。In the embodiment described above, the radial bearing surface (the first radial bearing portion R1 and the second radial bearing portion R) is used.
Herringbone shaped dynamic pressure groove 3a as a dynamic pressure generating means on the inner peripheral surface 3a of the bearing member 3 which is the radial bearing surface 2).
Although 1 and 3a2 are formed, a spiral dynamic pressure groove may be formed instead of the herringbone shape. Alternatively, as shown in FIG. 8, a plurality of axial groove-shaped dynamic pressure grooves 3a3 may be formed as the dynamic pressure generating means on the inner peripheral surface 3a of the bearing member 3 serving as a radial bearing surface (so-called "step bearing"). )).
【0064】あるいは、図9〜図11に示すように、動
圧発生手段として、ラジアル軸受面(第1ラジアル軸受
部R1と第2ラジアル軸受部R2のラジアル軸受面)と
なる軸受部材3の内周面3aを非円形、例えば複数の円
弧で構成しても良い(いわゆる「円弧軸受」)。図9に
示す例は、軸受部材3の内周面3aを2つの円弧面(3
a4、3a5)で構成したものである。円弧面3a4の
曲率中心O1と円弧面3a5の曲率中心O2は、それぞ
れ、軸部材4の外周面4a(真円形状)から等距離オフ
セットされている。図10に示す例は、軸受部材3の内
周面3aを3つの円弧面(3a6、3a7、3a8)で
構成したものである。円弧面3a6の曲率中心O3、円
弧面3a7の曲率中心O4、円弧面3a8の曲率中心O
5は、それぞれ、軸部材4の外周面4a(真円形状)か
ら等距離オフセットされている。図11に示す例は、軸
受部材3の内周面3aを4つの円弧面(3a9、3a1
0、3a11、3a12)で構成したものである。円弧
面3a9の曲率中心O6、円弧面3a10の曲率中心O
7、円弧面3a11の曲率中心O8、円弧面3a12の
曲率中心O9は、それぞれ、軸部材4の外周面4a(真
円形状)から等距離オフセットされている。Alternatively, as shown in FIGS. 9 to 11, inside the bearing member 3 serving as the dynamic pressure generating means, which is the radial bearing surface (the radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2). The peripheral surface 3a may be formed in a non-circular shape, for example, a plurality of arcs (so-called "arc bearing"). In the example shown in FIG. 9, the inner peripheral surface 3a of the bearing member 3 has two circular arc surfaces (3
a4, 3a5). The center of curvature O1 of the arcuate surface 3a4 and the center of curvature O2 of the arcuate surface 3a5 are offset from the outer peripheral surface 4a (round shape) of the shaft member 4 by the same distance. In the example shown in FIG. 10, the inner peripheral surface 3a of the bearing member 3 is composed of three arc surfaces (3a6, 3a7, 3a8). Center of curvature O3 of arc surface 3a6, center of curvature O4 of arc surface 3a7, center of curvature O of arc surface 3a8
Reference numerals 5 are offset from the outer peripheral surface 4a (perfect circle shape) of the shaft member 4 by an equal distance. In the example shown in FIG. 11, the inner peripheral surface 3a of the bearing member 3 is formed into four circular arc surfaces (3a9, 3a1).
0, 3a11, 3a12). Center of curvature O6 of arc surface 3a9, center of curvature O of arc surface 3a10
7, the center of curvature O8 of the circular arc surface 3a11, and the center of curvature O9 of the circular arc surface 3a12 are equidistantly offset from the outer peripheral surface 4a (round shape) of the shaft member 4.
【0065】尚、以上の動圧発生手段は軸部材4の外周
面4aに設けても良い。The above dynamic pressure generating means may be provided on the outer peripheral surface 4a of the shaft member 4.
【0066】あるいは、図12に示すように、第1ラジ
アル軸受部R1(第2ラジアル軸受部R2)は動圧発生
手段を備えていない「真円軸受」としても良い。Alternatively, as shown in FIG. 12, the first radial bearing portion R1 (second radial bearing portion R2) may be a "true circular bearing" that does not have a dynamic pressure generating means.
【0067】図13に示す実施形態は、スラスト軸受部
Tと、シール部材5の内周面5aと軸部材4の外周面4
aとの間のシール空間S1とを、円周方向の一箇所もし
くは複数箇所(図示例では二箇所)に配した連通溝10
で連通させたものである。In the embodiment shown in FIG. 13, the thrust bearing portion T, the inner peripheral surface 5a of the seal member 5 and the outer peripheral surface 4 of the shaft member 4 are used.
The communication groove 10 in which the seal space S1 between the a and the a is arranged at one location or a plurality of locations (two locations in the illustrated example) in the circumferential direction.
It was communicated with.
【0068】この連通溝10は、第一および第二の半径
方向溝10a,10cと軸方向溝10bとからなり、軸
方向溝10bの両端に両半径方向溝10a,10cを接
続した構造を有する。第一の半径方向溝は10aは、軸
受部材3の一方(ハウジング底部2c側)の端面3cと
これに対向するハウジング2の面、具体的にはハウジン
グ底部2cの内側面2c1との間に形成される。また、
第二の半径方向溝10cは、軸受部材3の他方(ハウジ
ング開口部2a側)の端面3bと、これに対向するシー
ル部材5の面、具体的にはシール部材5の内側面5bと
の間に形成される。軸方向溝10bは、軸受部材3の外
周面とハウジング2の側部2bの内周面との間に形成さ
れる。The communication groove 10 is composed of first and second radial grooves 10a and 10c and an axial groove 10b, and has a structure in which both radial grooves 10a and 10c are connected to both ends of the axial groove 10b. . The first radial groove 10a is formed between the one end surface 3c (on the housing bottom 2c side) of the bearing member 3 and the surface of the housing 2 facing this, specifically, the inner surface 2c1 of the housing bottom 2c. To be done. Also,
The second radial groove 10c is provided between the other end surface 3b (on the housing opening 2a side) of the bearing member 3 and the surface of the seal member 5 that faces the end surface 3b, specifically, the inner surface 5b of the seal member 5. Is formed. The axial groove 10b is formed between the outer peripheral surface of the bearing member 3 and the inner peripheral surface of the side portion 2b of the housing 2.
【0069】図13に示す実施形態では、第一および第
二の半径方向溝10a、10cは何れも軸受部材3の両
端面3c、3bに形成され、軸方向溝10bは軸受部材
3の外周面に形成されている。軸部材4の回転時、例え
ばスラスト軸受部Tの空間(軸部材4の軸端部周辺の空
間)において潤滑油の圧力が高まると、連通溝10を通
じて、スラスト軸受部Tの周辺からシール空間S1に向
かう潤滑油の流動が生じ、これにより、スラスト軸受部
Tの周辺とシール空間S1の周辺における潤滑油の圧力
が等圧に保たれる。そのため、潤滑油に局部的な負圧が
生じることに伴う気泡の生成、これに起因する潤滑流体
の漏れや振動の発生等が防止される。また、スラスト軸
受部Tの周辺において潤滑油の圧力が高まることによ
る、軸部材4の浮き上がりも防止される。上記とは逆に
シール空間S1の圧力が高まった場合も場合も同様に、
連通溝10によってスラスト軸受部Tの周辺とシール空
間S1とが等圧に保たれ、気泡の生成による潤滑油の漏
れ等や軸部材4がハウジング底部2cに押し付けられる
ことによるスラストプレート6の異常摩耗といった弊害
も回避することができる。In the embodiment shown in FIG. 13, both the first and second radial grooves 10a and 10c are formed on both end surfaces 3c and 3b of the bearing member 3, and the axial groove 10b is an outer peripheral surface of the bearing member 3. Is formed in. During rotation of the shaft member 4, for example, when the pressure of the lubricating oil increases in the space of the thrust bearing portion T (the space around the shaft end portion of the shaft member 4), the sealing space S1 is generated from the periphery of the thrust bearing portion T through the communication groove 10. A flow of the lubricating oil toward is generated, and the pressure of the lubricating oil around the thrust bearing portion T and around the seal space S1 is kept equal. Therefore, it is possible to prevent the generation of bubbles due to the local negative pressure generated in the lubricating oil, the leakage of the lubricating fluid, the generation of vibrations, and the like caused by the bubbles. In addition, the lifting of the shaft member 4 due to the increased pressure of the lubricating oil around the thrust bearing portion T is also prevented. On the contrary to the above, in the case where the pressure in the seal space S1 is increased, similarly,
By the communication groove 10, the periphery of the thrust bearing portion T and the seal space S1 are kept at an equal pressure, and the leakage of lubricating oil due to the generation of bubbles and the abnormal wear of the thrust plate 6 due to the shaft member 4 being pressed against the housing bottom portion 2c. Such an adverse effect can be avoided.
【0070】図14は、連通路10’を、軸受部材3と
対向する部材(ハウジング2およびシール部材5)に形
成した実施形態である。すなわち、第一半径方向溝10
a’はハウジング底部2cの内側面2c1に、第二半径
方向溝10c’はシール部材5の内側面5b’に、軸方
向溝10b’はハウジング側部2bの内周面に形成され
ている。この連通溝10’によっても図13に示す実施
形態と同様の効果を得ることができる。FIG. 14 shows an embodiment in which the communication passage 10 'is formed in a member (housing 2 and seal member 5) facing the bearing member 3. That is, the first radial groove 10
a 'is formed on the inner side surface 2c1 of the housing bottom portion 2c, the second radial groove 10c' is formed on the inner side surface 5b 'of the seal member 5, and the axial groove 10b' is formed on the inner peripheral surface of the housing side portion 2b. With this communication groove 10 ', the same effect as that of the embodiment shown in FIG. 13 can be obtained.
【0071】なお、図13では円筒状のシール空間S1
を表し、図14ではテーパ状のシール空間S2を表して
いるが、シール空間の形状は特に限定されるものではな
く、これらとは逆に図13の実施形態でテーパ状のシー
ル空間S2を、図14の実施形態で円筒状のシール空間
S1を使用することもできる。In FIG. 13, the cylindrical seal space S1
14 shows the tapered seal space S2, the shape of the seal space is not particularly limited, and conversely, the tapered seal space S2 in the embodiment of FIG. It is also possible to use a cylindrical seal space S1 in the embodiment of FIG.
【0072】[0072]
【実施例】図1に示す形態の流体軸受装置1に上述した
態様(真空含浸)で潤滑油を注油し、その際の真空槽内
の真空度を変えることで、大気圧解放後にハウジング2
の内部空間に残る空気の量を異ならせた5種類の試験軸
受装置(実施例1〜2、比較例1〜3)を作製した。真
空含浸後のハウジング内部空間の残存空気量を測定する
ことは困難であるが、例えば真空槽内を380Torr
(大気圧の1/2)まで減圧すれば、大気圧解放後のハ
ウジング内部には内部空間容積の50vol%の空気が
残存すると推定できるため、この方法にて残存空気量を
推定した。EXAMPLE Lubricating oil was applied to the hydrodynamic bearing device 1 of the form shown in FIG. 1 in the above-described manner (vacuum impregnation), and the degree of vacuum in the vacuum chamber at that time was changed to release the housing 2 after the atmospheric pressure was released.
Five types of test bearing devices (Examples 1 and 2 and Comparative Examples 1 to 3) were produced in which the amount of air remaining in the inner space of was varied. It is difficult to measure the amount of air remaining in the internal space of the housing after vacuum impregnation, but for example, in a vacuum chamber at 380 Torr.
If the pressure is reduced to (1/2 of atmospheric pressure), it can be estimated that 50 vol% of air in the internal space volume remains inside the housing after the atmospheric pressure is released. Therefore, the residual air amount was estimated by this method.
【0073】上記の各試験軸受装置を用い、減圧環境下
に放置した際の潤滑油漏れ有無の確認(減圧試験)、及
び各試験軸受装置を実機モータに組み込み、大気圧下で
運転姿勢を変えてON−OFF運転をした際の潤滑油漏
れ有無の確認を行った(実機試験)。試験結果を表1
(減圧試験)、表2(実施試験)に示す。尚、試験条件
は下記のとおりである。
[減圧試験]
真空度:100Torr
[実機試験]
使用モータ:CD−ROM実機モータ
回転速度:8000rpm
雰囲気温度:60℃
モータ姿勢:正置、横向き、倒立
運転条件:ON−OFF(1サイクル30秒)
試験時間:30万サイクルUsing each of the above test bearing devices, confirmation of the presence or absence of lubricating oil leakage when left in a depressurized environment (pressure reduction test), and incorporating each test bearing device into an actual machine motor, the operating posture was changed under atmospheric pressure. Then, the presence or absence of lubricating oil leakage was checked during ON-OFF operation (actual machine test). Table 1 shows the test results
(Decompression test) and Table 2 (implementation test). The test conditions are as follows. [Decompression test] Vacuum degree: 100 Torr [Actual machine test] Motor used: CD-ROM Actual machine motor rotation speed: 8000 rpm Atmosphere temperature: 60 ° C Motor attitude: Normal position, sideways, inverted operating condition: ON-OFF (30 seconds per cycle) Test time: 300,000 cycles
【0074】[0074]
【表1】 [Table 1]
【0075】[0075]
【表2】 [Table 2]
【0076】減圧試験では、真空槽内の真空度によって
ハウジング内部空間に残存する空気の量は異なるため、
真空含浸を行っても減圧下において潤滑油漏れを発生す
るものがあった(比較例1〜3)。In the decompression test, the amount of air remaining in the housing internal space varies depending on the degree of vacuum in the vacuum chamber.
Even when vacuum impregnation was performed, there was a case where lubricating oil leak occurred under reduced pressure (Comparative Examples 1 to 3).
【0077】実機試験では、潤滑油を点滴したもの(比
較例2、比較例3)は、横向きと倒立姿勢において5〜
20万サイクルにて潤滑油漏れが発生した。一方、真空
含浸を行ったもの(実施例1、実施例2、比較例1)
は、30万サイクル全姿勢において潤滑油漏れは発生し
なかった。In the actual machine test, the ones to which the lubricating oil was drip-dried (Comparative Examples 2 and 3) were 5 to 5 in the lateral and inverted postures.
Lubricating oil leaked after 200,000 cycles. On the other hand, those subjected to vacuum impregnation (Example 1, Example 2, Comparative Example 1)
No lubricating oil leak occurred in all positions of 300,000 cycles.
【0078】従って、実施例のように100Torrの
減圧下においても潤滑油漏れを起こさないような注油を
行うことによって、想定されるあらゆる使用姿勢、環境
条件においても安定した運転、運搬が可能で、潤滑油漏
れのない流体軸受装置を提供することが可能となる。Therefore, by performing the lubrication such that the lubricating oil does not leak even under the reduced pressure of 100 Torr as in the embodiment, it is possible to stably operate and transport under any assumed posture of use and environmental conditions. It is possible to provide a hydrodynamic bearing device that does not leak lubricating oil.
【0079】また、図3に示す構成において、ワッシャ
7とシール部材5との間の軸方向隙間X1を0.1m
m、0.3mm、0.5mmに設定した3種類の流体軸
受装置1を作製し(実施例3〜5)、各流体軸受装置1
の軸部材4に実機と同等の負荷となるようなダミーディ
スク9を装着して(図5)、1000Gの落下衝撃試験
を行った後、ハウジング2内部からの潤滑油漏れの有無
を確認した。尚、衝撃値1000Gは、ノートパソコン
用のHDD装置など、近年の携帯ユース機器等に使用さ
れるスピンドルモータに求められる耐衝撃荷重特性を参
考にして設定した。また、図7に示す従来の流体軸受装
置について、上記と同じ条件で試験を行った(比較例
4)。試験の結果を表3に示す。Further, in the structure shown in FIG. 3, the axial gap X1 between the washer 7 and the seal member 5 is 0.1 m.
Three types of hydrodynamic bearing devices 1 set to m, 0.3 mm, and 0.5 mm were produced (Examples 3 to 5), and each hydrodynamic bearing device 1 was manufactured.
A dummy disk 9 having a load equivalent to that of the actual machine was attached to the shaft member 4 of FIG. 5 (FIG. 5), and a 1000 G drop impact test was performed, and then the presence or absence of leakage of lubricating oil from the inside of the housing 2 was confirmed. The impact value of 1000 G was set with reference to the impact load resistance characteristics required for spindle motors used in recent portable youth equipment such as HDD devices for notebook computers. Further, the conventional hydrodynamic bearing device shown in FIG. 7 was tested under the same conditions as above (Comparative Example 4). The test results are shown in Table 3.
【0080】[0080]
【表3】 [Table 3]
【0081】表3に示す試験結果より、1000Gの衝
撃荷重を加えた場合、比較例4では軸部材がハウジング
から抜けてしまったが(軸抜け)、実施例3〜5では軸
抜けが起こらず、潤滑油漏れも見られなかった。From the test results shown in Table 3, when an impact load of 1000 G was applied, the shaft member slipped out of the housing in Comparative Example 4 (shaft slippage), but shaft slippage did not occur in Examples 3-5. There was no lubricant leakage.
【0082】また、上記実施例3〜5及び比較例4の流
体軸受装置をそれぞれ実機モータ(レーザビームプリン
タ用ポリゴンスキャナモータ)に組み込み、下記の条件
にて運転した後、ハウジング内部からの潤滑油漏れの有
無を確認した。試験の結果を表4に示す。
[運転条件]
実機モータ:LBP用ポリゴンスキャナモータ
回転速度 :30000rpm
ヒートサイクルパターン:図6参照
試験時間:20サイクル
モータ姿勢:横向き姿勢、倒立姿勢Further, the hydrodynamic bearing devices of Examples 3 to 5 and Comparative Example 4 were each incorporated into an actual machine motor (polygon scanner motor for laser beam printer), and after operating under the following conditions, the lubricating oil from the inside of the housing was used. The presence or absence of leakage was confirmed. The test results are shown in Table 4. [Operating conditions] Actual motor: Polygon scanner motor for LBP Rotation speed: 30000 rpm Heat cycle pattern: See Fig. 6 Test time: 20 cycles Motor posture: Lateral posture, inverted posture
【0083】[0083]
【表4】
表4に示す試験結果より、ヒートサイクルをかけて運転
した際、比較例4では潤滑油漏れが見られたが、実施例
3〜5では、横向き姿勢、倒立姿勢の何れの姿勢でも潤
滑漏れが見られなかった。[Table 4] From the test results shown in Table 4, lubricating oil leakage was observed in Comparative Example 4 when operating under heat cycles, but in Examples 3 to 5, lubricating leakage was observed in any of the sideways posture and the inverted posture. I couldn't see it.
【0084】[0084]
【発明の効果】本発明は以下に示す効果を奏する。The present invention has the following effects.
【0085】(1)減圧環境下、特に大気圧から100
Torrでの環境下におけるハウジングの内部空間に残
存する空気の膨張・収縮によっても、潤滑油が外部に漏
れ出さないレベルに、ハウジングの内部空間が潤滑油で
充満されているので、高温・低温環境、高地での使用や
空輸時といった減圧環境下等、モータの使用・運搬環境
として想定されるあらゆる環境条件において、正置姿
勢、倒立姿勢、横向き姿勢など、あらゆる任意の姿勢を
採った場合でも、ハウジング内部から外部への潤滑油漏
れがなく、安定した運転、運搬が可能である。(1) Under reduced pressure environment, especially from atmospheric pressure to 100
Since the internal space of the housing is filled with the lubricating oil to the level where the lubricating oil does not leak outside even if the air remaining in the internal space of the housing expands or contracts under the environment of Torr, the high temperature / low temperature environment In any environment conditions that are assumed to be the use and transportation environment of the motor, such as use in high altitude or under reduced pressure such as during air transportation, even if you take any arbitrary posture such as normal posture, inverted posture, sideways posture, There is no leakage of lubricating oil from the inside of the housing to the outside, and stable operation and transportation are possible.
【0086】(2)ハウジングの内部空間に、空気を介
在させない状態で潤滑油を充満することにより、空気の
混入に起因する潤滑油漏れやキャビテーションの発生を
防止することができる。(2) By filling the internal space of the housing with the lubricating oil in a state where no air is interposed, it is possible to prevent the lubricating oil from leaking or cavitation due to the mixing of the air.
【0087】(3)シール部材と接触して、軸部材のハ
ウジングに対する一端側への軸方向相対移動を規制する
突出部を軸部材に設けることにより、軸部材が常にハウ
ジング内に保持され、ハウジングからの抜けが防止され
る。(3) The shaft member is always held in the housing by providing the shaft member with a protrusion that comes into contact with the seal member and restricts the axial relative movement of the shaft member toward one end side with respect to the housing. It is prevented from coming off.
【0088】(4)突出部とシール部材との間に0.0
5mm〜0.5mmの軸方向隙間を設けることにより、
突出部とシール部材との接触を回避して、安定した運転
状態を得ることができると同時に、軸部材が上記軸方向
隙間の範囲内で軸方向相対移動した場合でも、ハウジン
グ内部への空気流入や、ハウジング内部からの潤滑油漏
れを防止することができる。(4) 0.0 between the protrusion and the seal member
By providing an axial gap of 5 mm to 0.5 mm,
It is possible to avoid contact between the protruding part and the seal member and obtain a stable operating state, and at the same time, even if the shaft member relatively moves in the axial direction within the range of the axial gap, the air inflows into the housing. Moreover, it is possible to prevent the lubricating oil from leaking from the inside of the housing.
【0089】(5)シール部材の内周面とこれに対向す
る軸部材の外周面との間に、一端側に向かって漸次拡大
するテーパ形状のシール空間を設けることにより、シー
ル性を高めて、潤滑油漏れを一層効果的に防止すること
ができる。(5) By providing a tapered seal space that gradually expands toward the one end side between the inner peripheral surface of the seal member and the outer peripheral surface of the shaft member facing the seal member, the sealing performance is improved. Therefore, the leakage of lubricating oil can be prevented more effectively.
【0090】(6)スラスト軸受部とシール空間とを連
通させる連通溝を設けることにより、スラスト軸受部と
シール空間で潤滑油の圧力差を生じるような場合でも、
両者を等圧にすることができる。従って、圧力差の発生
に起因した気泡の生成、潤滑油漏れ、軸の浮き上がり、
スラストプレートの異常摩耗等の弊害を防止することが
可能となる。(6) By providing a communication groove for communicating the thrust bearing portion and the seal space, even when a pressure difference of the lubricating oil is generated between the thrust bearing portion and the seal space,
Both can be made equal pressure. Therefore, the generation of bubbles due to the pressure difference, the leakage of lubricating oil, the lifting of the shaft,
It is possible to prevent adverse effects such as abnormal wear of the thrust plate.
【図1】本発明の第1の実施形態に係る流体動圧軸受装
置を示す断面図である。FIG. 1 is a cross-sectional view showing a fluid dynamic bearing device according to a first embodiment of the present invention.
【図2】本発明の第2の実施形態に係る流体動圧軸受装
置を示す断面図である。FIG. 2 is a sectional view showing a fluid dynamic bearing device according to a second embodiment of the present invention.
【図3】本発明の第3の実施形態に係る流体動圧軸受装
置を示す断面図である。FIG. 3 is a sectional view showing a fluid dynamic bearing device according to a third embodiment of the present invention.
【図4】本発明の第4の実施形態に係る流体動圧軸受装
置を示す断面図である。FIG. 4 is a sectional view showing a fluid dynamic bearing device according to a fourth embodiment of the present invention.
【図5】試験に用いた流体軸受装置の断面図である。FIG. 5 is a cross-sectional view of a hydrodynamic bearing device used in a test.
【図6】ヒートサイクルパターンを示す図である。FIG. 6 is a diagram showing a heat cycle pattern.
【図7】従来の流体軸受装置を組み込んだスピンドルモ
ータの断面図である。FIG. 7 is a sectional view of a spindle motor incorporating a conventional hydrodynamic bearing device.
【図8】動圧発生手段として、軸受部材の内周面に複数
の軸方向溝形状の動圧溝を形成した例を示す断面図であ
る。FIG. 8 is a cross-sectional view showing an example in which a plurality of axial groove-shaped dynamic pressure grooves are formed on the inner peripheral surface of the bearing member as the dynamic pressure generating means.
【図9】動圧発生手段として、軸受部材の内周面を複数
の円弧で構成した例を示す断面図である。FIG. 9 is a cross-sectional view showing an example in which an inner peripheral surface of a bearing member is formed of a plurality of arcs as a dynamic pressure generating means.
【図10】動圧発生手段として、軸受部材の内周面を複
数の円弧で構成した例を示す断面図である。FIG. 10 is a cross-sectional view showing an example in which an inner peripheral surface of a bearing member is formed of a plurality of arcs as a dynamic pressure generating means.
【図11】動圧発生手段として、軸受部材の内周面を複
数の円弧で構成した例を示す断面図である。FIG. 11 is a cross-sectional view showing an example in which an inner peripheral surface of a bearing member is formed of a plurality of arcs as a dynamic pressure generating means.
【図12】ラジアル軸受部を、動圧発生手段を備えてい
ない真円軸受とした例を示す断面図である。FIG. 12 is a cross-sectional view showing an example in which the radial bearing portion is a perfect circular bearing without a dynamic pressure generating means.
【図13】連通溝を有する流体軸受装置の一実施形態を
示す断面図である。FIG. 13 is a cross-sectional view showing an embodiment of a hydrodynamic bearing device having a communication groove.
【図14】連通溝を有する流体軸受装置の他の実施形態
を示す断面図である。FIG. 14 is a cross-sectional view showing another embodiment of a fluid dynamic bearing device having a communication groove.
1、1’ 流体軸受装置 2 ハウジング 3 軸受部材 4、4’ 軸部材 5 シール部材 7 ワッシャ(突出部) 10、10’ 連通溝 10a、10a’ 第一半径方向溝 10b、10b’ 軸方向溝 10c、10c’ 第二半径方向溝 S1、S2 シール空間 R1、R2 ラジアル軸受部 T スラスト軸受部 1, 1'fluid bearing device 2 housing 3 Bearing members 4,4 'shaft member 5 Seal member 7 Washer (projection) 10, 10 'communication groove 10a, 10a 'first radial groove 10b, 10b 'axial groove 10c, 10c 'second radial groove S1, S2 Sealed space R1, R2 radial bearing T thrust bearing
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J011 AA07 BA04 BA10 CA01 CA02 JA02 KA02 KA03 LA01 MA05 SB01 SB19 SC01 ─────────────────────────────────────────────────── ─── Continued front page F term (reference) 3J011 AA07 BA04 BA10 CA01 CA02 JA02 KA02 KA03 LA01 MA05 SB01 SB19 SC01
Claims (10)
ハウジングと、前記ハウジングに収容される軸部材およ
び軸受部材と、前記軸受部材の内周面と前記軸部材の外
周面との間に設けられ、ラジアル軸受隙間に生じる潤滑
油の油膜で前記軸部材をラジアル方向に非接触支持する
ラジアル軸受部と、前記ハウジングの開口部に配置され
たシール部材とを備えた流体軸受装置において、 減圧環境下における前記ハウジングの内部空間に残存す
る空気の膨張・収縮によっても、潤滑油が外部に漏れ出
さないレベルに、前記ハウジングの内部空間が潤滑油で
充満されていることを特徴とする流体軸受装置。1. A housing having an opening at one end and a bottom at the other end, a shaft member and a bearing member housed in the housing, an inner peripheral surface of the bearing member and an outer peripheral surface of the shaft member. In a hydrodynamic bearing device provided between: a radial bearing portion for supporting the shaft member in a radial direction in a non-contact manner with an oil film of lubricating oil generated in a radial bearing gap; and a seal member arranged in an opening portion of the housing. The internal space of the housing is filled with the lubricating oil to a level at which the lubricating oil does not leak outside even when the air remaining in the internal space of the housing in a depressurized environment expands or contracts. Hydrodynamic bearing device.
0Torrであることを特徴とする請求項1記載の流体
軸受装置。2. The atmospheric pressure in the reduced pressure environment is from atmospheric pressure to 10
The hydrodynamic bearing device according to claim 1, wherein the hydrodynamic bearing device has a pressure of 0 Torr.
ハウジングと、前記ハウジングに収容される軸部材およ
び軸受部材と、前記軸受部材の内周面と前記軸部材の外
周面との間に設けられ、ラジアル軸受隙間に生じる潤滑
油の油膜で前記軸部材をラジアル方向に非接触支持する
ラジアル軸受部と、前記ハウジングの底部に設けられ、
前記軸部材の他端側の端面をスラスト方向に支持するス
ラスト軸受部と、前記ハウジングの開口部に配置された
シール部材とを備えた流体軸受装置において、 前記シール部材と接触して、前記軸部材の前記ハウジン
グに対する一端側への軸方向相対移動を規制する突出部
を前記軸部材に設けたことを特徴とする流体軸受装置。3. A housing having an opening at one end and a bottom at the other end, a shaft member and a bearing member housed in the housing, an inner peripheral surface of the bearing member and an outer peripheral surface of the shaft member. A radial bearing portion which is provided between the radial bearing portion and a radial bearing portion for supporting the shaft member in a radial direction in a non-contact manner with an oil film of lubricating oil, and which is provided at the bottom portion of the housing,
A hydrodynamic bearing device comprising: a thrust bearing portion that supports an end surface on the other end side of the shaft member in a thrust direction; and a seal member arranged in an opening portion of the housing, wherein the shaft is in contact with the seal member. A hydrodynamic bearing device, wherein the shaft member is provided with a protrusion that restricts axial relative movement of the member toward the one end side with respect to the housing.
満され、かつ、大気圧から100Torrの減圧環境下
における前記ハウジングの内部空間に残存する空気の膨
張・収縮によっても、前記ハウジングの内部から潤滑油
の漏れがないことを特徴とする請求項3記載の流体軸受
装置。4. The interior space of the housing is also lubricated by the expansion / contraction of air remaining in the interior space of the housing under a depressurized environment of atmospheric pressure to 100 Torr. 4. The hydrodynamic bearing device according to claim 3, wherein there is no oil leakage.
0.05mm〜0.5mmの軸方向隙間を設けたことを
特徴とする請求項3又は4記載の流体軸受装置。5. The hydrodynamic bearing device according to claim 3, wherein an axial gap of 0.05 mm to 0.5 mm is provided between the protrusion and the seal member.
受隙間内の潤滑油に動圧を発生させる動圧発生手段を備
えていることを特徴とする請求項1から5の何れかに記
載の流体軸受装置。6. The fluid according to claim 1, wherein the radial bearing portion is provided with a dynamic pressure generating means for generating a dynamic pressure in the lubricating oil in the radial bearing gap. Bearing device.
る前記軸部材の外周面との間に、一端側に向かって漸次
拡大するテーパ形状のシール空間を有することを特徴と
する請求項1から6の何れかに記載の流体軸受装置。7. A tapered seal space that gradually expands toward one end side is provided between an inner peripheral surface of the seal member and an outer peripheral surface of the shaft member facing the seal member. 7. The hydrodynamic bearing device according to any one of 1 to 6.
ハウジングと、前記ハウジングに収容される軸部材およ
び軸受部材と、前記軸受部材の内周面と前記軸部材の外
周面との間に設けられ、ラジアル軸受隙間に生じる潤滑
油の油膜で前記軸部材をラジアル方向に非接触支持する
ラジアル軸受部と、軸部材の軸端部をスラスト方向に接
触支持するスラスト軸受部と、前記ハウジングの開口部
に配置され、軸部材の外周との間でシール空間を形成す
るシール部材とを備えた流体軸受装置において、 スラスト軸受部とシール空間とを連通させる連通溝を設
けたことを特徴とする流体軸受装置。8. A housing having an opening at one end and a bottom at the other end, a shaft member and a bearing member housed in the housing, an inner peripheral surface of the bearing member and an outer peripheral surface of the shaft member. A radial bearing portion that is provided between the radial bearing portion and a radial bearing portion that supports the shaft member in the radial direction in a non-contact manner with an oil film of lubricating oil, and a thrust bearing portion that supports the shaft end portion of the shaft member in the thrust direction. A hydrodynamic bearing device, which is disposed in an opening of a housing and includes a seal member that forms a seal space with the outer periphery of a shaft member, is characterized in that a communication groove is provided to connect the thrust bearing portion and the seal space. Hydrodynamic bearing device.
受部材の一方の端面とこれに対向するハウジングの面と
の間に形成された第一半径方向溝と、ハウジングの開口
部側で軸受部材の他方の端面とこれに対向するシール部
材の面との間に形成された第二半径方向溝と、軸受部材
の外周面とハウジングの内周面との間に形成された軸方
向溝とを有する請求項8記載の流体軸受装置。9. The first radial groove formed between the one end surface of the bearing member on the bottom side of the housing and the surface of the housing facing the communication groove, and the bearing on the opening side of the housing. A second radial groove formed between the other end surface of the member and the surface of the seal member facing the other end surface; and an axial groove formed between the outer peripheral surface of the bearing member and the inner peripheral surface of the housing. The fluid dynamic bearing device according to claim 8, further comprising:
軸受装置を備えたモータ。10. A motor provided with the hydrodynamic bearing device according to claim 1.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002281599A JP3971982B2 (en) | 2001-11-13 | 2002-09-26 | Hydrodynamic bearing device |
CN2008100847101A CN101255892B (en) | 2001-11-13 | 2002-11-11 | Fluid bearing device |
CN200810084707XA CN101469742B (en) | 2001-11-13 | 2002-11-11 | Fluid bearing |
US10/294,483 US7048444B2 (en) | 2001-11-13 | 2002-11-13 | Fluid lubricated bearing device |
US11/854,366 US7604410B2 (en) | 2001-11-13 | 2007-09-12 | Fluid lubricated bearing device |
US11/972,584 US7566174B2 (en) | 2001-11-13 | 2008-01-10 | Fluid lubricated bearing device |
US12/119,403 US7604411B2 (en) | 2001-11-13 | 2008-05-12 | Fluid lubricated bearing device |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001347725 | 2001-11-13 | ||
JP2001-347725 | 2001-11-13 | ||
JP2002035790 | 2002-02-13 | ||
JP2002-35790 | 2002-02-13 | ||
JP2002281599A JP3971982B2 (en) | 2001-11-13 | 2002-09-26 | Hydrodynamic bearing device |
Related Child Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004220827A Division JP2004316927A (en) | 2001-11-13 | 2004-07-28 | Fluid bearing device |
JP2004220843A Division JP2004316928A (en) | 2001-11-13 | 2004-07-28 | Fluid bearing device |
JP2004220853A Division JP4216780B2 (en) | 2001-11-13 | 2004-07-28 | Hydrodynamic bearing device and motor including the same |
JP2006355796A Division JP4541351B2 (en) | 2001-11-13 | 2006-12-28 | Hydrodynamic bearing device |
JP2006355786A Division JP2007100963A (en) | 2001-11-13 | 2006-12-28 | Fluid bearing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003307212A true JP2003307212A (en) | 2003-10-31 |
JP3971982B2 JP3971982B2 (en) | 2007-09-05 |
Family
ID=29407483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002281599A Expired - Lifetime JP3971982B2 (en) | 2001-11-13 | 2002-09-26 | Hydrodynamic bearing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3971982B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005059387A1 (en) * | 2003-12-17 | 2005-06-30 | Ntn Corporation | Fluid bearing device |
JP2006112614A (en) * | 2004-09-17 | 2006-04-27 | Ntn Corp | Dynamic pressure bearing device |
JP2006226388A (en) * | 2005-02-17 | 2006-08-31 | Nippon Densan Corp | Bearing mechanism, spindle motor using bearing mechanism and recording disk drive equipped with spindle motor |
JP2007051708A (en) * | 2005-08-18 | 2007-03-01 | Hitachi Powdered Metals Co Ltd | Fluid dynamic bearing unit and spindle motor using the same |
JP2007162950A (en) * | 2001-11-13 | 2007-06-28 | Ntn Corp | Fluid bearing device |
JP2007247675A (en) * | 2006-03-13 | 2007-09-27 | Ntn Corp | Fluid bearing device |
JP2008025789A (en) * | 2006-07-25 | 2008-02-07 | Sony Corp | Dynamic pressure fluid bearing unit and rotation device using the dynamic pressure fluid bearing unit |
KR100810477B1 (en) | 2005-09-27 | 2008-03-10 | 닛뽕빅터 가부시키가이샤 | Fluid bearing device |
JP2008275145A (en) * | 2007-04-25 | 2008-11-13 | Fuzhun Precision Industry (Shenzhen) Co Ltd | Dynamic pressure bearing and heat dissipation fan with this dynamic pressure bearing |
WO2014045772A1 (en) | 2012-09-18 | 2014-03-27 | Ntn株式会社 | Fluid dynamic bearing device and motor with same |
US8746978B2 (en) | 2005-02-10 | 2014-06-10 | Ntn Corporation | Fluid bearing apparatus |
JP2017022801A (en) * | 2015-07-07 | 2017-01-26 | ミネベア株式会社 | motor |
CN107620768A (en) * | 2016-07-14 | 2018-01-23 | Ntn株式会社 | Fluid dynamic-pressure bearing device and the motor for possessing the fluid dynamic-pressure bearing device |
CN115411872A (en) * | 2022-09-13 | 2022-11-29 | 丁晓芳 | Traction motor with single bearing structure |
-
2002
- 2002-09-26 JP JP2002281599A patent/JP3971982B2/en not_active Expired - Lifetime
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4541351B2 (en) * | 2001-11-13 | 2010-09-08 | Ntn株式会社 | Hydrodynamic bearing device |
JP2007162950A (en) * | 2001-11-13 | 2007-06-28 | Ntn Corp | Fluid bearing device |
US7699527B2 (en) | 2003-12-17 | 2010-04-20 | Ntn Corporation | Fluid bearing device |
WO2005059387A1 (en) * | 2003-12-17 | 2005-06-30 | Ntn Corporation | Fluid bearing device |
JP2006112614A (en) * | 2004-09-17 | 2006-04-27 | Ntn Corp | Dynamic pressure bearing device |
US8746978B2 (en) | 2005-02-10 | 2014-06-10 | Ntn Corporation | Fluid bearing apparatus |
JP2006226388A (en) * | 2005-02-17 | 2006-08-31 | Nippon Densan Corp | Bearing mechanism, spindle motor using bearing mechanism and recording disk drive equipped with spindle motor |
JP2007051708A (en) * | 2005-08-18 | 2007-03-01 | Hitachi Powdered Metals Co Ltd | Fluid dynamic bearing unit and spindle motor using the same |
JP4587220B2 (en) * | 2005-08-18 | 2010-11-24 | 日立粉末冶金株式会社 | Hydrodynamic bearing unit and spindle motor using the same |
KR100810477B1 (en) | 2005-09-27 | 2008-03-10 | 닛뽕빅터 가부시키가이샤 | Fluid bearing device |
JP2007247675A (en) * | 2006-03-13 | 2007-09-27 | Ntn Corp | Fluid bearing device |
JP4708228B2 (en) * | 2006-03-13 | 2011-06-22 | Ntn株式会社 | Hydrodynamic bearing device |
JP2008025789A (en) * | 2006-07-25 | 2008-02-07 | Sony Corp | Dynamic pressure fluid bearing unit and rotation device using the dynamic pressure fluid bearing unit |
JP2008275145A (en) * | 2007-04-25 | 2008-11-13 | Fuzhun Precision Industry (Shenzhen) Co Ltd | Dynamic pressure bearing and heat dissipation fan with this dynamic pressure bearing |
JP2014059014A (en) * | 2012-09-18 | 2014-04-03 | Ntn Corp | Fluid dynamic pressure bearing device and motor equipped therewith |
WO2014045772A1 (en) | 2012-09-18 | 2014-03-27 | Ntn株式会社 | Fluid dynamic bearing device and motor with same |
KR20150053922A (en) | 2012-09-18 | 2015-05-19 | 엔티엔 가부시키가이샤 | Fluid dynamic bearing device and motor with same |
US9476449B2 (en) | 2012-09-18 | 2016-10-25 | Ntn Corporation | Fluid dynamic bearing device and motor with same |
KR102068517B1 (en) * | 2012-09-18 | 2020-01-21 | 엔티엔 가부시키가이샤 | Fluid dynamic bearing device and motor with same |
JP2017022801A (en) * | 2015-07-07 | 2017-01-26 | ミネベア株式会社 | motor |
CN107620768A (en) * | 2016-07-14 | 2018-01-23 | Ntn株式会社 | Fluid dynamic-pressure bearing device and the motor for possessing the fluid dynamic-pressure bearing device |
US10819180B2 (en) | 2016-07-14 | 2020-10-27 | Ntn Corporation | Fluid dynamic bearing device and motor with same |
CN115411872A (en) * | 2022-09-13 | 2022-11-29 | 丁晓芳 | Traction motor with single bearing structure |
Also Published As
Publication number | Publication date |
---|---|
JP3971982B2 (en) | 2007-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7048444B2 (en) | Fluid lubricated bearing device | |
US7566174B2 (en) | Fluid lubricated bearing device | |
US7604410B2 (en) | Fluid lubricated bearing device | |
JP2003307212A (en) | Fluid lubricated bearing device | |
KR20100089073A (en) | Fluid dynamic-pressure bearing device | |
JP2008008368A (en) | Hydrodynamic bearing device | |
JP4541351B2 (en) | Hydrodynamic bearing device | |
KR101321383B1 (en) | Fluid bearing device | |
JPH11280755A (en) | Fluid bearing device and spindle motor using the same | |
JP2017053398A (en) | Fluid dynamic pressure bearing device and motor with the same | |
JP4216780B2 (en) | Hydrodynamic bearing device and motor including the same | |
JP5220359B2 (en) | Hydrodynamic bearing device | |
TW202219396A (en) | Fluid dynamic pressure bearing device | |
JP2004316928A (en) | Fluid bearing device | |
JP2007100963A (en) | Fluid bearing device | |
JP2018017393A (en) | Fluid dynamic pressure bearing device and motor provided with the same | |
JP2009228873A (en) | Fluid bearing device | |
JP2004316927A (en) | Fluid bearing device | |
WO2019139007A1 (en) | Fluid dynamic bearing device and motor equipped with same | |
JP4579013B2 (en) | Hydrodynamic bearing device | |
JP2007060731A (en) | Spindle motor and rotary device | |
JP2000352416A (en) | Dynamic pressure type bearing unit and its manufacture | |
JP2004197889A (en) | Dynamic-pressure bearing device | |
JP5231095B2 (en) | Hydrodynamic bearing device | |
JP2007309496A (en) | Fluid bearing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060626 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070405 |
|
R155 | Notification before disposition of declining of application |
Free format text: JAPANESE INTERMEDIATE CODE: R155 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070611 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3971982 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100615 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110615 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110615 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130615 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |