JP2007244963A - メタノール改質触媒及びその製造方法及びメタノール改質方法及びメタノール改質器 - Google Patents
メタノール改質触媒及びその製造方法及びメタノール改質方法及びメタノール改質器 Download PDFInfo
- Publication number
- JP2007244963A JP2007244963A JP2006069999A JP2006069999A JP2007244963A JP 2007244963 A JP2007244963 A JP 2007244963A JP 2006069999 A JP2006069999 A JP 2006069999A JP 2006069999 A JP2006069999 A JP 2006069999A JP 2007244963 A JP2007244963 A JP 2007244963A
- Authority
- JP
- Japan
- Prior art keywords
- methanol
- zno
- catalyst
- support
- reforming catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
【課題】
酸素と蒸気を含む酸化雰囲気でメタノールを改質することが可能な十分な活性と選択性を持ち、又使用される総Pd量を減少させコストを低減させたメタノール改質触媒を提供する。
【解決手段】
少なくとも表面層3がZnOとなっている担持体1の表面にPd−Zn合金2が担持されたメタノール改質触媒。
【選択図】 図1
酸素と蒸気を含む酸化雰囲気でメタノールを改質することが可能な十分な活性と選択性を持ち、又使用される総Pd量を減少させコストを低減させたメタノール改質触媒を提供する。
【解決手段】
少なくとも表面層3がZnOとなっている担持体1の表面にPd−Zn合金2が担持されたメタノール改質触媒。
【選択図】 図1
Description
本発明はメタノールを改質し、水素を主成分とする改質ガスを生成する場合のメタノール改質触媒、及びその製造方法、及びメタノール改質方法及びメタノール改質器に関するものである。
近年、地球環境を汚染しないエネルギ源として水素が注目されている。水素は、環境を害する物質を一切排出しない理想的なエネルギ源であり、エネルギ源としての水素は燃料電池自動車用の燃料、又は分散用発電ユニットの燃料として供給することができる。
現在、水素貯蔵技術、例えば高圧水素ガスタンクと水素吸蔵合金では経済的に充分な水素吸蔵量(体積当りの水素吸蔵量、重さ当りの水素吸蔵量)が得られず、又システム的にも大型化する、設備コストが大きい等問題がある。この為、現実的な解決法としては、今迄使用していた液体燃料、例えばガソリン、メタノールを現場用改質器を使って水素を生成することが考えられる。
改質法の中でも、一般的に下記(1)式で表される酸化メタノール改質(OMR: Oxidative Methanol Reforming)は、特に固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)用の現場水素供給法として有望である。
下記(1)式に於いて、p(H2 O/CH3 OH)とq(O2 /CH3 OH)のモル比を最適化することでオートサーマル反応が成立し、q=0の時はメタノール水蒸気改質(SRM: Steam Reforming of Methanol)であり、p=0の時は部分酸化メタノール(POM:Partial Oxidation of Methanol)と呼ばれる。
CH3 OH+pH2 O+qO2 →sCO2 +(1−s)CO+(2+p)H2 ・・・・・・・(1)
SRMプロセスと比較してOMRは反応速度が早い為、メタノールが触媒上で蒸気と酸素と共に反応する改質器をコンパクトにすることが可能である。一方、COはPEFCのアノード触媒の活性を失わせる為、最終段階の生成ガスに含まれるCO濃度は通常10ppm以下が要求される。炭化水素の燃料改質のプロセスに於いて、COの形成を避けて水素を生成する水−ガスシフト反応リアクタは水素の生成量を増加させ、そして、COの量を例えば1%以下、更に選択性酸化反応器を使えば10ppm以下に低減することができる。OMR反応はPOM反応と比較するとCO生成量がとても少ない。然し、水−ガスシフト反応リアクタを減少させ、燃料処理器をもっと簡単かつ信頼性のあるものにする為には、OMR反応に対して選択性が高い触媒が要求される。加えて、OMR反応は、酸素と一部のメタノールの酸化反応の為、普通SRM反応と比較すると高い温度で進行する。従って、使用される触媒は高温に耐えることが要求される。
メタノールの改質に用いられる触媒として、Cu−ZnO基触媒、Pd−ZnO基触媒がある。Cu−ZnO基触媒は、メタノール改質によって水素リッチガスを生成する高い活性と選択性があることが知られている。然し、それは耐熱性に劣る為、特にOMRの時に、運転中に急速に劣化する。これに対し、Pd−ZnO基触媒は高耐熱性を持つ優れた触媒であることが報告されている。それは又、Pd−ZnO基触媒はOMR反応とSRM反応で高い活性と選択性を有している。Pd−ZnO基触媒では、反応又は予備還元処理の間、ZnO担持体上に触媒として機能するPd−Zn合金が形成されることによる。
特許文献1、特許文献2に示される様に、OMR反応に於ける水素発生に対し、ZnO上にPd(パラジウム金属塩)の量を増加させるに伴って活性と選択性が向上する。燃料改質工程に於けるCO形成を下げる為、通常の含浸法又は共沈法を用いて作った触媒は20%以上の様な高いPd量が必要である。然し、Pdは高価な材料であるので、Pd量を減らしてコストを下げることはPd−ZnO基触媒の開発そして広く商業化する為に重要な課題となっている。
知られているPd−ZnO基触媒の製造方法について、図11、図12を参照して説明する。
図11、図12は含浸法と称される製造方法であり、図11に於いて、Al2 O3 、ZrO2 又はメタルフォーム、フェルト、モノリシックの様な担体材料から成る担持体1をPd(パラジウム金属塩)とZn(亜鉛金属塩)を含む溶液により含浸させ、乾燥、焼成、還元処理することで、前記担持体1の表面にPd−Zn合金層2が形成され、触媒4として機能する。
又図12に於いて示される方法では、前記担持体1をZnを含む溶液中に浸漬して、該担持体1にZnを含浸させ、次に乾燥、焼成する。該担持体1の表面にはZnO層3が形成される。該ZnO層3が形成された前記担持体1をPdを含む溶液で含浸させ、乾燥、焼成、還元処理を行う。還元処理により、前記担持体1の表面にはPd−Zn合金層2が形成され、触媒4として機能する。
又その他の方法として、構造物の担体材料にPd/ZnOスラリを直接コーティングするか、水酸化ナトリウム、炭酸ナトリウム、炭酸アンモニウム等の様な、PdとZnを含む溶液の沈殿物による共沈法の何れかによって合成することができる。
上記した製造方法で得られた触媒では、ZnO以外の担体材料に含まれる元素とPdの相互作用を避けることができない。その結果、Pdの元素状態がCO形成を促進させる結果となっていた。
尚、Pd−ZnO基触媒の製造方法については、特許文献3に示されている。
本発明は斯かる実情に鑑み、酸素と蒸気を含む酸化雰囲気でメタノールを改質することが可能な十分な活性と選択性を持つ触媒を提供するものであり、又使用される総Pd量を減少させ、触媒のコストを低減するものであり、更に、斯かる触媒の製造方法を提供するものである。
本発明は、少なくとも表面層がZnOとなっている担持体の表面にPd−Zn合金が担持されたメタノール改質触媒に係り、又前記担持体は、ZnO、ZnOで修飾された材料、Znを含む複合酸化物のいずれかであるメタノール改質触媒に係り、又Pdの含有量は、1wt%〜50wt%であるメタノール改質触媒に係るものである。
又本発明は、担持体の表面にZnO層を形成する工程と、該ZnO層にPd−Zn合金を担持させる工程とを含むメタノール改質触媒製造方法に係り、又Znを含む複合酸化物から成る担持体を、Zn、Pdを含む溶液で含浸させ、乾燥、焼成、還元して、Zn−Pd合金を担持させる工程を含むメタノール改質触媒製造方法に係り、又前記担持体をZnを含む溶液で含浸させ、乾燥、焼成して前記担持体にZnO層を形成する工程と、該ZnO層が形成された前記担持体をZn、Pdを含む溶液で含浸させ、乾燥、焼成、還元して、前記ZnO層にZn−Pd合金を担持させる工程を含むメタノール改質触媒製造方法に係り、又Zn、Pdを含むエマルジョンを中和還元する工程と、前記担持体を中和還元されたエマルジョンに含浸させ前記ZnO層を形成する工程と、乾燥、焼成して該ZnO層にZn−Pd合金を担持させる工程を含むメタノール改質触媒製造方法に係り、又前記含浸は、含浸法、共沈法、沈澱法、ゾル・ゲルディップコーティング法、スラリーディップコーティング法のいずれかで実施されるメタノール改質触媒製造方法に係るものである。
又本発明は、上記メタノール改質触媒を用いてメタノールを改質するメタノール改質方法に係るものである。
更に又本発明は、上記メタノール改質触媒を具備する反応器と、該反応器にメタノールを供給するラインを具備し、メタノールを改質するメタノール改質器に係るものである。
本発明によれば、少なくとも表面層がZnOとなっている担持体の表面にPd−Zn合金が担持されたので、担体材料に含まれるZnO以外の元素とPdの接触、或は接触状態が抑制され、担体材料に含まれる元素とPdの相互作用が避けられ、CO形成が抑制される。又、形成されるCOが低減することで、CO還元工程で消費される水素量が減少して改質効率が向上する。
又本発明によれば、担持体の表面にZnO層を形成する工程と、該ZnO層にPd−Zn合金を担持させる工程とを含むので、製造されたメタノール改質触媒は少なくとも表面層がZnOとなっている担持体の表面にPd−Zn合金が担持され、担体材料に含まれるZnO以外の元素とPdの接触、或は接触状態が抑制され、担体材料に含まれる元素とPdの相互作用が避けられ、CO形成が抑制される。又、形成されるCOが低減することで、CO還元工程で消費される水素量が減少して改質効率が向上する。
又本発明によれば、Zn、Pdを含むエマルジョンを中和還元する工程と、前記担持体を中和還元されたエマルジョンに含浸させ前記ZnO層を形成する工程と、乾燥、焼成して該ZnO層にZn−Pd合金を担持させる工程を含んでメタノール改質触媒が製造されるので、触媒機能を有するZn−Pd合金が微粒子化し、表面積が増大し、メタノール改質性能が向上すると共に高価なPdの使用量を低減でき、メタノール改質触媒の製作コストが低減する。
更に又本発明によれば、上記メタノール改質触媒を用いてメタノールを改質するので、改質効率が向上し、又上記メタノール改質触媒を具備する反応器と、該反応器にメタノールを供給するラインを具備し、メタノールを改質するので、高効率で安価なメタノール改質器を提供することができる等の優れた効果を発揮する。
以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。
本発明に係る触媒の基本的な構造は、大きな表面積を有する担体材料の表面にZnO層を介在させ、Pd−Zn合金層(Pd−Zn合金粒子層)を形成したものである。或は、担体材料としてZnを含む金属酸化物、又はZnを含む金属酸化物の混合物(以下、両者をZnを含む複合酸化物と称す)とし、該担体材料にPd−Zn合金層を形成したものである。或は、表面にZnO膜を形成する等ZnOによって修飾した担体材料にPd−Zn合金層を形成したものである。尚、本発明では、PdがZnO以外の担持体に接触した場合触媒として機能しないことに着目してなしたものであり、投入したPdの全てを効果的に触媒として作用させることで無駄なPdを少なくでき、Pdの使用量を減少させることができる。
先ず、図1に於いて、担体材料の表面にZnO層を介在させ、Pd−Zn合金層を形成する場合の触媒の製造方法について概略を説明する。
所要の担持体1をZn(亜鉛金属塩)を含む溶液により含浸させ、乾燥、焼成する(第1工程)。第1工程により、前記担持体1の表面にZnO層3が形成される(第2工程)。第2工程で該ZnO層3が形成された前記担持体1を、Pd(パラジウム金属塩)、Zn(亜鉛金属塩)を含む溶液により含浸させ、乾燥、焼成、還元処理を行う(第3工程)。第3工程により前記ZnO層3の表面にPd−Zn合金粒子が担持され、Pd−Zn合金層(Pd−Zn合金粒子層)2が形成され、触媒4が構成される。尚、前記担持体1にZnを含浸、或は付着させる方法としては、共沈法、沈澱法、ディップコーティング等が用いられる。
前記Pd−Zn合金層2と前記担持体1との間に前記ZnO層3が介在することで、担体材料に含まれるZnO以外の元素とPdの接触、或は接触状態が抑制される。この為、担体材料に含まれる元素とPdの相互作用が避けられ、CO形成が抑制される。又、形成されるCOが低減することで、CO還元工程で消費される水素量が減少して改質効率が向上する。
前記ZnO層3の量としては1分子以上であり、前記担持体1にAl2 O3 を用いた場合、ZnOの量は、1wt%〜60wt%、特に2wt%〜50wt%が好ましい。又、前記触媒4が含む最終的なPdの量は、0.1wt%〜50wt%、特に1wt%〜30wt%が好ましい。更に、Pd、Znを含む溶液中のZnに対するPdの原子比は、0.05〜1.2が好ましい。
尚、前記担持体1としては、Al2 O3 の他に、ZrO2 、或は、酸化亜鉛系の材質、例えばZnAl2 O4 、ZnFe2 O4 、或は、ZnO/Al2 O3 、ZnO/SiO2 、ZnO/ZrO2 、ZnO/TiO2 、ZnO/Al2 O3 −SiO2 、ZnO/CeO2 等の様なZnOで化学修飾された材料が用いられる。
図2は、マイクロエマルジョン法による触媒の製造方法の概略を示している。
Pd、Znを含む溶液、例えば適宜な表面活性剤を加える等してナノスケールの粒子としたマイクロエマルジョンを中和、還元、沈澱処理を行う(第1工程)。尚、Pd、Znを含む溶液中のZnに対するPdの原子比は、0.05〜1.2が好ましい。
第1工程が実施されることで、溶液中に含まれるPd2+、Zn2+は、Pd、Zn2+の状態となる。溶液中に前記担持体1を含浸、浸漬し、該担持体1表面にPd、Zn2+を付着させる(第2工程)。ここで、該担持体1の材質としては、ZnO単体、ZnOで化学修飾した材料、Znを含む複合酸化物が挙げられる。
次に、濾過、洗浄、乾燥、焼成、還元処理が為されることで、前記担持体1の表面にPd−Zn合金粒子が担持され、Pd−Zn合金層(Pd−Zn合金粒子層)2が形成され、触媒4が構成される。
ナノスケールの粒子としたマイクロエマルジョンにより、微細なZn−Pd合金粒子を前記担持体1に担持させるので、Zn−Pd合金は微粒子化し、表面積が増大し、メタノール改質性能が向上すると共に高価なPdの使用量を低減でき、メタノール改質触媒の製作コストが低減される。
構成された前記触媒4は、前記担持体1がZnOで修飾した材料、Znを含む複合酸化物の場合、前記担持体1の表面にはZnOが形成され、該担持体1がZnO単体の場合は、該担持体1の表面にPd−Zn合金粒子が担持され、Pd−Zn合金層2が形成される。即ち、前記担持体1の少なくともPd−Zn合金粒子が担持される表面層はZnO層3となっている。
前記担持体1がZnOで化学修飾した材料、Znを含む複合酸化物の場合、ZnOの量は、上記したと同様、1wt%〜60wt%、特に2wt%〜50wt%が好ましく、又、前記触媒4が含む最終的なPdの量は、ZnOで修飾した材料、Znを含む複合酸化物のいずれも、0.1wt%〜50wt%、特に1wt%〜30wt%が好ましい。
尚、前記担持体1の材質としては、上記した様に、Al2 O3 の他に、ZrO2 、ZnAl2 O4 、ZnFe2 O4 、或は、ZnO/Al2 O3 、ZnO/SiO2 、ZnO/ZrO2 、ZnO/TiO2 、ZnO/Al2 O3 −SiO2 、ZnO/CeO2 等の様な化学修飾されたZnO材料が用いられる。
又、図3は第3の触媒の製造方法を示している。
第3の触媒の製造方法では、担持体1として、ZnAl2 O4 の様な、Znを含む複合酸化物を用いる。
担持体1を、PdとZnを含む溶液により含浸させ(第1工程)、乾燥、焼成、還元処理する(第2工程)。第1工程、第2工程を実施することで、前記担持体1の表面にPd−Zn合金粒子層が担持され、Pd−Zn合金層(Pd−Zn合金粒子層)2が形成され、触媒4として機能する。第1工程に於いて、Pd、Znを含む溶液中のZnに対するPdの原子比は、0.05〜1.2が好ましい。
第3の方法で製造された、前記触媒4では前記担持体1の表面に直接、前記Pd−Zn合金層2が形成されるが、前記担持体1中に含まれる、Zn、Oが上記した触媒4の前記ZnO層3と同様な機能を有し、前記担持体1に含まれるZnO以外の元素とPdの相互作用が避けられ、CO形成が抑制される。
次に、図2に於いて説明した、マイクロエマルジョン法による触媒の製造方法について、より具体的に説明する。
Pd−Zn合金を前記担持体1に担持する為に、用いられるエマルジョンとしては、ナノスケールの粒子を含む溶液、ゾル―ゲル、マイクロエマルジョン又はスラリで分子量が具体的に決められたPdとZnの両方を含む前駆体が普通必要とされる。
前駆体に含まれているパラジウムの原料は、パラジウム・ナイトレート、パラジウム・アセテート、塩化パラジウム、Diammindinitropalladium(Pd(NH3 )2 (NO2 )2 )等が含まれる。
前駆体に含まれる亜鉛の原料は、亜鉛ナイトレート、亜鉛アセテート、亜鉛アルコキシド、亜鉛ハイドロオキサイド、炭酸亜鉛、酸化亜鉛等が含まれる。非水溶性の物質を用いる場合、例えば炭酸亜鉛、酸化亜鉛を原料とした時、それらの原材料を酸性のパラジウムの溶液に直接溶かす方が好ましい。前駆体に於けるパラジウムと亜鉛の分子量の比は0.01から1.5の間、その中でも0.05から0.8が好ましい。
パラジウムと亜鉛が共存した前駆体に於いて、パラジウムと亜鉛が分子レベルでよく混合されている原料が用いられる。混合する方法としては、パラジウムと亜鉛イオンを含む水溶液を混合する方法、非水溶性の亜鉛原料を酸性のパラジウムを含む溶液に溶かす方法、原材料としてアルコキシド(alkoxides)を用いたパラジウムと亜鉛を含むゾル−ゲル法による合成する方法、Na−B−H化合物(NaBH4 )又はヒドラジンの様なものをパラジウムイオンと亜鉛イオン溶液に入れマイクロエマルジョンを作り還元する方法、水酸化ナトリウム又は他の物質と炭酸ナトリウム、シュウ酸塩、水酸基化とPdイオン、Znイオンをマイクロエマルジョンにして共沈法で合成する方法等が有る。
よく混合されたパラジウム−亜鉛の前駆体は、含浸法、共沈−沈降法、又はデイップコーティング法を用いることにより、ZnO、ZnO修飾した材料、Znを含む複合酸化物からなる担持体の上に付けることができる。触媒の前駆体は、濾過、洗浄後得られる。もし必要なら塩素イオン、ナトリウムイオンの様な必要のない元素を完全に取り除く為、その後乾燥、焼成する。
触媒に付ける最終的なPdの量は、担持体に前駆体として付けたPd量とZn量の比、そして担持体に付けた前駆体の量で決定される。最終的なPdの量は、0.1wt%〜50wt%の間で、特に1wt%〜30wt%が好ましい。乾燥の温度は50℃〜180℃の間で、特に60℃〜150℃迄が好ましい。焼成温度は300℃〜600℃の間で、特に350℃〜500℃迄が好ましい。そして、還元温度は200℃〜600℃の間で350℃〜550℃迄が好ましい。触媒の還元は通常in−situ(その場)反応器で行われ、還元反応は窒素又はアルゴンガスに1%〜50%の水素ガス又は1%〜50%のメタノールを混ぜたものを使用する。
本発明に係る製造方法で得られた触媒4についての改質作用の確認を、以下の条件で試験した。
酸化雰囲気下でのメタノール改質は、大気圧で自動化された通常のflow fixed bed quartz反応器を用いている。
メタノール+水の混合(H2 O/CH3 OH モル比(S/C)=1.5)は液体ポンプにより蒸発器に供給され、そして窒素ガスにより反応器へ運ばれる。それらは両方ともキャリアガス、そして生成物を評価する時の基準となる。酸素ガスはO2 /CH3 OHの比(O2 /C)が0.1になる様に反応器に運ばれる。
試験ではメタノール重量空間速度(WM HSV)は〜50h-1を用いた。反応後、生成されたガスは、自動化されたガスクロマトグラフィーを使ってオンラインで分析される。触媒性能は水素形成速度(NL/g−cat/h)そして水蒸気と窒素を除去した状態のCOの濃度を計測し、比較した。
比較例としての共沈法によるPd−ZnO触媒の合成
Pd−ZnO触媒は、室温でNaOHとNa2 CO3 が入った水溶液中にZn(NO3 )2 とPd(NO3 )2 を加え、共沈法で合成された。その溶液中のメタルイオン(Zn2++Pd2+)の典型的な濃度は1モルである。そして、水溶液中のNaOHとNa2 CO3 の典型的な濃度はそれぞれ2モルと1モルである。沈澱中のPH値は10となる様に沈澱スピードをコントロールする。沈澱後、スラリは2時間の間、50℃〜60℃の間に保った。その前駆体はフィルタで濾過し、非イオン水で洗浄後、24時間の間80℃で乾燥させる。そして、最後に2時間の間450℃で焼成する。ZnOに対して求められるPd量はPd2+/Zn2+の原子の比に変化することができる。
Pd−ZnO触媒は、室温でNaOHとNa2 CO3 が入った水溶液中にZn(NO3 )2 とPd(NO3 )2 を加え、共沈法で合成された。その溶液中のメタルイオン(Zn2++Pd2+)の典型的な濃度は1モルである。そして、水溶液中のNaOHとNa2 CO3 の典型的な濃度はそれぞれ2モルと1モルである。沈澱中のPH値は10となる様に沈澱スピードをコントロールする。沈澱後、スラリは2時間の間、50℃〜60℃の間に保った。その前駆体はフィルタで濾過し、非イオン水で洗浄後、24時間の間80℃で乾燥させる。そして、最後に2時間の間450℃で焼成する。ZnOに対して求められるPd量はPd2+/Zn2+の原子の比に変化することができる。
実施例1で製造した触媒4の性能を図4で示す。
比較例としての含浸法(Impregnation:IMP)によるPd/Al2 O3 とPd−Zn/Al2 O3 の合成)
Pd/Al2 O3 とPd−ZnO/Al2 O3 はそれぞれ、Al2 O3 にPd(NO3 )を加えたもの、そしてPd(NO3 )2 +Zn(NO3 )2 水溶液で含浸法(inicipient wetness impregnation)で合成される。最初に、用いた担持体Al2 O3 の空孔体積と同じ量の水溶液を、Pd(NO3 )2 水溶液と適当な水を混合することにより、又は決められた量のPd(NO3 )2 水溶液の中にZn(NO3 )2 を溶解することにより合成される。その時、担持体Al2 O3 は用意された担持体に含浸され、そして24時間以上保持される。それらのサンプルは24時間120℃で乾燥させた後、2時間450℃で焼成される。
Pd/Al2 O3 とPd−ZnO/Al2 O3 はそれぞれ、Al2 O3 にPd(NO3 )を加えたもの、そしてPd(NO3 )2 +Zn(NO3 )2 水溶液で含浸法(inicipient wetness impregnation)で合成される。最初に、用いた担持体Al2 O3 の空孔体積と同じ量の水溶液を、Pd(NO3 )2 水溶液と適当な水を混合することにより、又は決められた量のPd(NO3 )2 水溶液の中にZn(NO3 )2 を溶解することにより合成される。その時、担持体Al2 O3 は用意された担持体に含浸され、そして24時間以上保持される。それらのサンプルは24時間120℃で乾燥させた後、2時間450℃で焼成される。
実施例2で製造した触媒4の性能を図5で示す。それによるとPd−Zn/Al2 O3 触媒は、それに対応するPd/Al2 O3 触媒と比較して活性と選択性が高い。
含浸法によるPd−Zn/ZnO/Al2 O3 の合成
担持体Al2 O3 は、第1に実施例2と同様、Zn(NO3 )2 水溶液とAl2 O3 で含浸法で化学修飾される。含浸されたAl2 O3 は24時間120℃で乾燥され、2時間600℃で焼成される。得られたZnO/Al2 O3 はPd(NO3 )2 水溶液に決められた量のZnOを溶解して準備したZn(NO3 )2 +Pd(NO3 )2 水溶液で含浸される。それらのサンプルは24時間120℃で乾燥させ、最後に2時間450℃で焼成される。Pd量が2%そして6.5%の2つのサンプルは上記の手順に従って合成される。そして図6に示す様にPd−Zn/ZnO/Al2 O3 は、それに対応するPd−Zn/Al2 O3 触媒と比較して大きな選択性がある。
担持体Al2 O3 は、第1に実施例2と同様、Zn(NO3 )2 水溶液とAl2 O3 で含浸法で化学修飾される。含浸されたAl2 O3 は24時間120℃で乾燥され、2時間600℃で焼成される。得られたZnO/Al2 O3 はPd(NO3 )2 水溶液に決められた量のZnOを溶解して準備したZn(NO3 )2 +Pd(NO3 )2 水溶液で含浸される。それらのサンプルは24時間120℃で乾燥させ、最後に2時間450℃で焼成される。Pd量が2%そして6.5%の2つのサンプルは上記の手順に従って合成される。そして図6に示す様にPd−Zn/ZnO/Al2 O3 は、それに対応するPd−Zn/Al2 O3 触媒と比較して大きな選択性がある。
実施例3で製造した触媒4の性能を図6で示す。
含浸法によるPd−Zn/ZnAl2 O4 の合成
第1に担持体ZnAl2 O4 は、実施例1と同様な方法で、室温でNaOHとNa2 CO3 を含む水溶液とZn(NO3 )+Al(NO3 )3 水溶液による共沈法で準備される。共沈させた後、スラリは2時間50℃〜60℃で保持される。その前駆体は濾過して分離させ、非イオン水で洗浄し、24時間80℃で乾燥させ、最後に2時間600℃で焼成される。得られたZnAl2 O4 は、Pd(NO3 )2 水溶液に決められた量のZnOを溶解して準備したZn(NO3 )2 +Pd(NO3 )2 水溶液に含浸させた。サンプルは24時間120℃で乾燥させ、最後に2時間450℃で焼成した。
第1に担持体ZnAl2 O4 は、実施例1と同様な方法で、室温でNaOHとNa2 CO3 を含む水溶液とZn(NO3 )+Al(NO3 )3 水溶液による共沈法で準備される。共沈させた後、スラリは2時間50℃〜60℃で保持される。その前駆体は濾過して分離させ、非イオン水で洗浄し、24時間80℃で乾燥させ、最後に2時間600℃で焼成される。得られたZnAl2 O4 は、Pd(NO3 )2 水溶液に決められた量のZnOを溶解して準備したZn(NO3 )2 +Pd(NO3 )2 水溶液に含浸させた。サンプルは24時間120℃で乾燥させ、最後に2時間450℃で焼成した。
実施例4で製造した触媒4の性能を図7で示す。
図7に示されたそれらの反応によると、Pd−Zn/ZnAl2 O4 触媒はそれに対応するPd−Zn/Al2 O3 触媒より選択性が高い。
含浸法によるPd−Zn/ZnCr2 O4 の合成
担持体ZnCr2 O4 は、実施例1と同様の方法である、室温でNaOHとNa2 CO3 を含む水溶液とZn(NO3 )+Cr(NO3 )3 水溶液の共沈法で合成される。共沈させた後、スラリは2時間50℃〜60℃そのままで保持した。その前駆体は濾過で分離し、非イオン水で洗浄、24時間80℃で乾燥させ、最後に2時間600℃で焼成した。得られたZnCr2 O4 は、Pd(NO3 )2 水溶液に決められた量のZnOを溶解することで準備したZn(NO3 )2 +Pd(NO3 )2 水溶液に含浸させた。サンプルは24時間120℃で乾燥させ、最後に2時間450℃で焼成した。
担持体ZnCr2 O4 は、実施例1と同様の方法である、室温でNaOHとNa2 CO3 を含む水溶液とZn(NO3 )+Cr(NO3 )3 水溶液の共沈法で合成される。共沈させた後、スラリは2時間50℃〜60℃そのままで保持した。その前駆体は濾過で分離し、非イオン水で洗浄、24時間80℃で乾燥させ、最後に2時間600℃で焼成した。得られたZnCr2 O4 は、Pd(NO3 )2 水溶液に決められた量のZnOを溶解することで準備したZn(NO3 )2 +Pd(NO3 )2 水溶液に含浸させた。サンプルは24時間120℃で乾燥させ、最後に2時間450℃で焼成した。
反応結果を図8に示す。それによると、Pd−Zn/ZnCr2 O4 触媒はそれに対応するPd/Al2 O3 触媒と比較すると活性と選択性が高い。
マイクロエマルジョン法によるPd/ZnOの合成
最初に、シクロヘキサンの中に入ったPd(NO3 )2 を入れたエマルジョン水溶液は、Pd(NO3 )2 水溶液を入れたシクロヘキサンを20%NP−5(Nonphenolethoxylate)界面活性剤が入ったシクロヘキサンを加えよく掻混ぜて準備される。水と界面活性剤のモル比は0.1〜20とした。準備したPd(NO3 )2 マイクロエマルジョンはヒドラジンで還元後、THF(tetrahydrofuran)で化学的に不安定にし、よく攪拌しながら担持体ZnOの上にPdを担持させる。その触媒は濾過して取り出し、メタノールで洗浄する。24時間110℃で乾燥させた後、サンプルは2時間450℃で焼成される。
最初に、シクロヘキサンの中に入ったPd(NO3 )2 を入れたエマルジョン水溶液は、Pd(NO3 )2 水溶液を入れたシクロヘキサンを20%NP−5(Nonphenolethoxylate)界面活性剤が入ったシクロヘキサンを加えよく掻混ぜて準備される。水と界面活性剤のモル比は0.1〜20とした。準備したPd(NO3 )2 マイクロエマルジョンはヒドラジンで還元後、THF(tetrahydrofuran)で化学的に不安定にし、よく攪拌しながら担持体ZnOの上にPdを担持させる。その触媒は濾過して取り出し、メタノールで洗浄する。24時間110℃で乾燥させた後、サンプルは2時間450℃で焼成される。
ここで合成されたサンプルは実施例7のサンプルと比較の為用いられる。
実施例6で製造した触媒4の性能を図9で示す。
マイクロエマルジョン法によるPd−Zn/ZnOの合成
第1に、Pd(NO3 )2 +Zn(NO3 )2 水溶液は、Pd(NO3 )2 水溶液に予め決められた量のZnOを溶解して準備される。Pd(NO3 )2 +Zn(NO3 )2 水溶液は、室温でよく攪拌し20%NP−5(Nonphenolethoxylate)界面活性剤を入れたシクロヘキサン溶液を加える。水と界面活性剤のモル比は、マイクロエマルジョン法に於いて0.1〜20である。予め決められた量のヒドラジンとNa2 CO3 を含む水溶液は同時にPd2+の還元、そしてZn2+の沈澱の為に準備したPd(NO3 )2 +Zn(NO3 )2 マイクロエマルジョンを加えた。得られたエマルジョンはTHFで化学的に不安定になり、よく攪拌しながら予め決められた量のZnO担体材料に担持される。その触媒は濾過によって取り出され、メタノールで洗浄後、24時間110℃乾燥させ、2時間450℃で焼成する。
第1に、Pd(NO3 )2 +Zn(NO3 )2 水溶液は、Pd(NO3 )2 水溶液に予め決められた量のZnOを溶解して準備される。Pd(NO3 )2 +Zn(NO3 )2 水溶液は、室温でよく攪拌し20%NP−5(Nonphenolethoxylate)界面活性剤を入れたシクロヘキサン溶液を加える。水と界面活性剤のモル比は、マイクロエマルジョン法に於いて0.1〜20である。予め決められた量のヒドラジンとNa2 CO3 を含む水溶液は同時にPd2+の還元、そしてZn2+の沈澱の為に準備したPd(NO3 )2 +Zn(NO3 )2 マイクロエマルジョンを加えた。得られたエマルジョンはTHFで化学的に不安定になり、よく攪拌しながら予め決められた量のZnO担体材料に担持される。その触媒は濾過によって取り出され、メタノールで洗浄後、24時間110℃乾燥させ、2時間450℃で焼成する。
実施例7で製造した触媒4の反応結果は図10で示される。Pd−Zn/ZnO触媒は実施例6の図9で示されているPd/ZnO触媒と比較して活性と選択性が高いのは明らかである。更に、2wt%のPd量のPd−Zn/ZnOは又、図4で示されている共沈法で準備されたPd/ZnO触媒と比較して選択性が高い。
尚、上記実施の形態では、担持体材料としてZnを含む金属酸化物、又はZnを含む金属酸化物の混合物としたが、Znに代え III族元素の酸化物、例えばInを含む金属酸化物、又はInを含む金属酸化物の混合物、或はInOによって化学修飾したものを用いてもよい。
得られた触媒4は、適宜、プレス(粉砕)処理及び分級処理が施される。この粉末体をペレット触媒としてそのまま用いるか、或いは粉末体を金属製(又はセラミックス製)のハニカム担持体に担持させてハニカム触媒として用いる。ここで、ペレット触媒としては、粉末状態のままでも使用可能であるが、粉末触媒に圧縮成形を施し、ペレット体(円柱体、球体)に成形してもよい。これによって、触媒の取扱性が向上する。圧縮成形方法としては、打錠成形法、転動造粒法、押出成形法が挙げられる。
又、本発明に係る触媒を、反応器のハニカム担持体に担持させ、その反応器に、反応器内にメタノール及び水蒸気を供給する供給ラインを接続すると共に、メタノールを改質して生成された水素を排出する水素ラインを接続することで、水蒸気改質反応用のメタノール改質器を得ることができる。ここで、メタノールの水蒸気改質反応を酸化雰囲気下で行う、所謂オートサーマル改質反応用のメタノール改質器の場合、メタノール及び水蒸気を供給する供給ラインの他に、空気を供給する供給ラインを設ける必要がある。又、触媒として、ペレット触媒を用いる場合は、反応器内にペレット触媒を装填するだけでよい。
又、これらのメタノール改質器の各供給ラインに、メタノール供給手段(貯蔵タンク)及び水蒸気供給手段(又はメタノール供給手段(貯蔵タンク)、水蒸気供給手段、及び空気供給手段)をそれぞれ接続すると共に、メタノール改質器の水素ラインに燃料電池を接続することで、メタノールの改質によって生成された水素を用いて発電を行うことができる固体高分子形燃料電池システムを得ることができる。ここで、水素を用いて発電することによって生成された水蒸気を回収して、水蒸気供給手段にフィードバックする様にしてもよい。
前述した本実施の形態に係るメタノール改質触媒を用いたメタノール改質器は、高い熱効率を有し、コンパクトで、起動・停止が容易で、且つ、実用に耐える耐久性を備えたものとなる。依って、これらのメタノール改質器を用いた固体高分子形燃料電池システムは、燃料電池車や家庭用・ポータブル用及び分散電源用の発電装置などに適したシステムとなる。
1 担持体
2 Pd−Zn合金層
3 ZnO層
4 触媒
2 Pd−Zn合金層
3 ZnO層
4 触媒
Claims (10)
- 少なくとも表面層がZnOとなっている担持体の表面にPd−Zn合金が担持されたことを特徴とするメタノール改質触媒。
- 前記担持体は、ZnO、ZnOで修飾された材料、Znを含む複合酸化物のいずれかである請求項1のメタノール改質触媒。
- Pdの含有量は、1wt%〜50wt%である請求項1のメタノール改質触媒。
- 担持体の表面にZnO層を形成する工程と、該ZnO層にPd−Zn合金を担持させる工程とを含むことを特徴とするメタノール改質触媒製造方法。
- Znを含む複合酸化物から成る担持体を、Zn、Pdを含む溶液で含浸させ、乾燥、焼成、還元して、Zn−Pd合金を担持させる工程を含むことを特徴とするメタノール改質触媒製造方法。
- 前記担持体をZnを含む溶液で含浸させ、乾燥、焼成して前記担持体にZnO層を形成する工程と、該ZnO層が形成された前記担持体をZn、Pdを含む溶液で含浸させ、乾燥、焼成、還元して、前記ZnO層にZn−Pd合金を担持させる工程を含む請求項4のメタノール改質触媒製造方法。
- Zn、Pdを含むエマルジョンを中和還元する工程と、前記担持体を中和還元されたエマルジョンに含浸させ前記ZnO層を形成する工程と、乾燥、焼成して該ZnO層にZn−Pd合金を担持させる工程を含む請求項4のメタノール改質触媒製造方法。
- 前記含浸は、含浸法、共沈法、沈澱法、ゾル・ゲルディップコーティング法、スラリーディップコーティング法のいずれかで実施される請求項5又は請求項6のメタノール改質触媒製造方法。
- 請求項1乃至請求項3のいずれかに記載のメタノール改質触媒を用いてメタノールを改質することを特徴とするメタノール改質方法。
- 請求項1乃至請求項3のいずれかに記載のメタノール改質触媒を具備する反応器と、該反応器にメタノールを供給するラインを具備し、メタノールを改質することを特徴とするメタノール改質器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006069999A JP2007244963A (ja) | 2006-03-14 | 2006-03-14 | メタノール改質触媒及びその製造方法及びメタノール改質方法及びメタノール改質器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006069999A JP2007244963A (ja) | 2006-03-14 | 2006-03-14 | メタノール改質触媒及びその製造方法及びメタノール改質方法及びメタノール改質器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007244963A true JP2007244963A (ja) | 2007-09-27 |
Family
ID=38589815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006069999A Pending JP2007244963A (ja) | 2006-03-14 | 2006-03-14 | メタノール改質触媒及びその製造方法及びメタノール改質方法及びメタノール改質器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007244963A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008101603A2 (en) * | 2007-02-19 | 2008-08-28 | Dsm Ip Assets B.V. | Catalysts based on sintered metal fibers coated by zinc oxide layer impregnated with palladium nanoparticles for the hydrogenation of alkynols |
KR102280650B1 (ko) * | 2021-01-21 | 2021-07-22 | 국방과학연구소 | 펠렛 촉매를 포함하는 메탄올 개질기 및 그것의 제조 방법 |
CN116251589A (zh) * | 2023-03-24 | 2023-06-13 | 北京工业大学 | 一种用于甲醇蒸汽重整制氢的Pd/ZnO-ZrO2催化剂及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6082137A (ja) * | 1983-10-14 | 1985-05-10 | Mitsubishi Heavy Ind Ltd | メタノ−ル改質用触媒 |
JP2000354764A (ja) * | 1999-05-22 | 2000-12-26 | Degussa Huels Ag | アルコールの水蒸気改質のための触媒、該触媒の製造法及びその使用 |
JP2002059005A (ja) * | 2000-08-18 | 2002-02-26 | Nissan Motor Co Ltd | メタノール改質触媒、その製造方法及びメタノール改質方法 |
JP2005185969A (ja) * | 2003-12-25 | 2005-07-14 | Nissan Motor Co Ltd | 高耐熱性触媒及びその製造方法 |
JP2005185968A (ja) * | 2003-12-25 | 2005-07-14 | Nissan Motor Co Ltd | 触媒及びその製造方法 |
-
2006
- 2006-03-14 JP JP2006069999A patent/JP2007244963A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6082137A (ja) * | 1983-10-14 | 1985-05-10 | Mitsubishi Heavy Ind Ltd | メタノ−ル改質用触媒 |
JP2000354764A (ja) * | 1999-05-22 | 2000-12-26 | Degussa Huels Ag | アルコールの水蒸気改質のための触媒、該触媒の製造法及びその使用 |
JP2002059005A (ja) * | 2000-08-18 | 2002-02-26 | Nissan Motor Co Ltd | メタノール改質触媒、その製造方法及びメタノール改質方法 |
JP2005185969A (ja) * | 2003-12-25 | 2005-07-14 | Nissan Motor Co Ltd | 高耐熱性触媒及びその製造方法 |
JP2005185968A (ja) * | 2003-12-25 | 2005-07-14 | Nissan Motor Co Ltd | 触媒及びその製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008101603A2 (en) * | 2007-02-19 | 2008-08-28 | Dsm Ip Assets B.V. | Catalysts based on sintered metal fibers coated by zinc oxide layer impregnated with palladium nanoparticles for the hydrogenation of alkynols |
WO2008101603A3 (en) * | 2007-02-19 | 2008-12-18 | Dsm Ip Assets Bv | Catalysts based on sintered metal fibers coated by zinc oxide layer impregnated with palladium nanoparticles for the hydrogenation of alkynols |
KR102280650B1 (ko) * | 2021-01-21 | 2021-07-22 | 국방과학연구소 | 펠렛 촉매를 포함하는 메탄올 개질기 및 그것의 제조 방법 |
CN116251589A (zh) * | 2023-03-24 | 2023-06-13 | 北京工业大学 | 一种用于甲醇蒸汽重整制氢的Pd/ZnO-ZrO2催化剂及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12097482B2 (en) | Systems and methods for processing ammonia | |
JP5279227B2 (ja) | 燃料改質反応用触媒及びこれを利用した水素の製造方法 | |
US20100298131A1 (en) | Catalyst For Hydrogen Production By Autothermal Reforming, Method Of Making Same And Use Thereof | |
WO2022261488A1 (en) | Systems and methods for processing ammonia | |
US11795055B1 (en) | Systems and methods for processing ammonia | |
JP2004522672A (ja) | 水性ガス転換反応触媒によるメタン化活性の抑制 | |
WO2008056621A1 (fr) | Agent et procédé de désulfuration du kérosène et système de pile à combustible utilisant ledit agent | |
CN102574103B (zh) | 分解烃的多孔催化体及其制造方法、从烃中制造包含氢的混合重整气体的方法和燃料电池系统 | |
JP2001232197A (ja) | メタノール改質触媒、メタノール改質装置及びメタノール改質方法 | |
KR20060105957A (ko) | 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용코발트-붕소 촉매 및 그 제조 방법 | |
US11866328B1 (en) | Systems and methods for processing ammonia | |
JP2007244963A (ja) | メタノール改質触媒及びその製造方法及びメタノール改質方法及びメタノール改質器 | |
US20060111457A1 (en) | Process for the production of a hydrogen-rich reformate gas by methanol autothermal reforming reaction | |
KR100286425B1 (ko) | 용융 탄산염 연료 전지용 개질 촉매 및 그의 제조 방법 | |
JP3796745B2 (ja) | 水素ガス中のco選択酸化触媒およびその製造方法ならびに水素ガス中のco除去方法 | |
JP3574469B2 (ja) | Coのco2への酸化方法及び燃料電池用の水素含有ガスの製造方法 | |
US8785061B2 (en) | CO conversion catalyst for use in fuel cell in DSS operation, method for producing the same, and fuel cell system | |
JP3796744B2 (ja) | 水素ガス中のco選択酸化触媒およびその製造方法ならびに水素ガス中のco除去方法 | |
KR20050079567A (ko) | 일산화탄소의 수성반응용 촉매 | |
US20240228272A9 (en) | Systems and methods for processing ammonia | |
US20240132347A1 (en) | Systems and methods for processing ammonia | |
JP4359748B2 (ja) | 水素含有ガスの製造方法 | |
WO2024107770A1 (en) | Systems and methods for processing ammonia | |
CN117730051A (zh) | 用于处理氨的系统和方法 | |
JP4206813B2 (ja) | 一酸化炭素変成用触媒及び該触媒を用いた一酸化炭素の変成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101116 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110426 |