JP2007240351A - 分布型光ファイバセンサ - Google Patents

分布型光ファイバセンサ Download PDF

Info

Publication number
JP2007240351A
JP2007240351A JP2006063818A JP2006063818A JP2007240351A JP 2007240351 A JP2007240351 A JP 2007240351A JP 2006063818 A JP2006063818 A JP 2006063818A JP 2006063818 A JP2006063818 A JP 2006063818A JP 2007240351 A JP2007240351 A JP 2007240351A
Authority
JP
Japan
Prior art keywords
light
optical fiber
optical
pulse
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006063818A
Other languages
English (en)
Other versions
JP5021221B2 (ja
Inventor
Akimasa Ri
哲賢 李
Yoshimasu Kishida
欣増 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neubrex Co Ltd
Original Assignee
Neubrex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neubrex Co Ltd filed Critical Neubrex Co Ltd
Priority to JP2006063818A priority Critical patent/JP5021221B2/ja
Publication of JP2007240351A publication Critical patent/JP2007240351A/ja
Application granted granted Critical
Publication of JP5021221B2 publication Critical patent/JP5021221B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】本発明は、歪み及び/又は温度を高精度かつ高空間分解能で測定し得る分布型光ファイバセンサを提供する。
【解決手段】本発明では、内側に向かうほど光強度が大きくなるように光強度が階段状になった光パルスを周波数を変えながら射出する階段状光パルス光源11と、光パルスが入射される検出用光ファイバ20と、光パルスに起因して生じる自然ブリルアン散乱光を検出用光ファイバ20から受光して自然ブリルアン散乱光に基づき検出用光ファイバ20の長尺方向の歪み及び/又は温度を測定するブリルアン時間領域検出部19とを備える分布型光ファイバセンサ1において、ブリルアン時間領域検出部19は、自然ブリルアン散乱光のスペクトルにおける半値半幅より狭い透過周波数帯域を持つ狭帯域光バンドパスフィルタ204を介して自然ブリルアン散乱光を受光して歪み及び/又は温度を計測する。
【選択図】図1

Description

本発明は、光ファイバをセンサとして用い、ブリルアン散乱現象を利用することによって光ファイバの長尺方向について歪み及び/又は温度を高精度かつ高空間分解能で測定し得る分布型光ファイバセンサに関する。
光ファイバに光パルスを入射すると、光パルスが光ファイバを伝播する間に光ファイバと相互作用することによって進行方向と逆方向へ反射光が発生する。この現象は、一般に、後方散乱現象と呼ばれ、レーリー散乱現象、ブリルアン散乱現象及びラマン散乱現象等がある。このブリルアン散乱現象によって発生する反射光は、自然ブリルアン散乱光と呼ばれ、入射した光パルスの周波数とは異なる周波数で発生する。自然ブリルアン散乱光は、ポンプ光としての光パルスが電歪現象によって格子振動の音響モードを発生し、これが屈折率の周期的な変調を生成して回折格子を形成し、光パルスがこの回折格子によってブラッグ回折を受けることによって発生する。そして、この回折格子が光ファイバ中の音速vaで移動するので、ドップラー効果によって自然ブリルアン散乱光の周波数は、光パルスの周波数に対して高周波数側及び低周波数側にシフトする。この自然ブリルアン散乱光の周波数は、光パルスの周波数(波長)や光ファイバの構成材料等に依存するが、光ファイバに生じた歪みや温度にも依存する。このため、自然ブリルアン散乱光の中心周波数(自然ブリルアン散乱光のスペクトルにおけるピークの周波数)と光パルスを光ファイバに入射してからの戻り時間とを計測することによって、光ファイバにおける長手方向の歪み分布や温度分布が測定可能である。この測定法に基づく測定装置は、ブリルアン光時間領域反射測定装置(Brillouin Optical Time Domain Reflectometer、以下、「BOTDR」と略記する。)と呼ばれ、例えば特許文献1や特許文献2に開示されている。
図7は、特許文献1に開示のBOTDRの構成を示す図である。図7において、特許文献1に開示のBOTDR1000は、スペクトル線幅の狭い連続光を射出するコヒーレント光源1010と、この連続光が入射されこの連続光を測定光と参照光とに分岐してそれぞれ射出する光方向性結合器1011と、この測定光が入射されこの測定光をパルス化して光パルスを射出する光スイッチ1012と、この光パルスが入射され、光周波数変換器1014とループ回路を構成してこの入射された光パルスの周波数を所定周波数分ずつ階段状に周波数掃引して連続光を射出する光方向性結合器1013と、この連続光が入射されこの連続光をパルス化して光パルスを射出する音響光学素子1015と、この光パルスが入射されこの光パルスを被測定光ファイバ1021に射出すると共に被測定光ファイバ1021内の自然ブリルアン散乱光を射出する光方向性結合器1016と、光方向性結合器1011から射出された上記参照光と光方向性結合器1016から射出された自然ブリルアン散乱光とが入射されこれらをO/E変換器1018に射出する光方向性結合器1017と、この入射された参照光を局発光としてこの入射された自然ブリルアン散乱光をコヒーレント受信(ヘテロダイン検波)して電気信号を出力するO/E変換器1018と、この電気信号が入力されこの電気信号を増幅して出力する増幅器1019と、この増幅器1019で増幅された電気信号が入力されこの入力された電気信号を平均化加算処理して被測定光ファイバ1021の長手方向における歪み分布や温度分布等の特性を測定する信号処理回路1020とを備えて構成される。
図8は、ブリルアン・ゲイン・スペクトル(自然ブリルアン散乱光のスペクトル)を示す図である。図8の横軸は、周波数であり、その縦軸は、自然ブリルアン散乱光の光強度である。このような構成のBOTDRでは、その空間分解能は、測定に用いられる光パルスのパルス幅で制限される。即ち、光ファイバ中の光の速度をv[m/s]とした場合に、パルス幅がTp[s]の光パルスを用いた測定では、空間分解能△zは、vTp/2[m]となる。具体的には、光ファイバの材質によって光ファイバ中の光の速度が若干異なるが通常使用される一般的な光ファイバでは、ブリルアン・ゲイン・スペクトルは、図8に示すように、光パルスのパルス幅が30nsまではローレンツ曲線(Lorentzain curve)(曲線a)であり、それよりもパルス幅を短くすると広帯域な曲線(曲線b)となって中心周波数近傍で急峻さを失ったなだらかな形状となる。このため、空間分解能△zは、通常、約2〜3mとなる。空間分解能を向上させるためには短いパルス幅の光パルスを必要とするが、この場合光パルスの持つスペクトル幅が広がるため、結果的に歪みの測定精度が悪くなってしまう。そのため、高精度(例えば200με以下)で高空間分解(例えば1m以下)に歪み分布及び/又は温度分布を測定することは、困難とされ、高精度で高空間分解に歪み分布及び/又は温度分布を測定することが要望されていた。なお、100με=0.01%である。また、「A及び/又はB」は、「A及びBのうちの少なくとも1つ」を意味する。
特開平09−089714号公報 特開平05−240699号公報
そのため、発明者らは、誘導ブリルアン散乱現象を利用する場合について、光ファイバの長尺方向について歪み及び/又は温度を高精度かつ高空間分解能で測定し得る分布型光ファイバセンサをWO2006/001071(PCT/JP2004/009352)で提案した。詳細は、上記文献に記載したが、この分布型光ファイバセンサの主な特徴は、センサ用の光ファイバに連続光のポンプ光とプローブ光とを入射し、内側に向かうほど光強度が大きくなるように光強度が階段状になった光パルス(以下、「階段状光パルス」と略記する。)をこのプローブ光に用いることにある。
なお、誘導ブリルアン散乱現象とは、光ファイバ中で周波数の異なる2個の光がすれ違うとき、高い周波数の光から低い周波数の光へ、光ファイバ中の音響フォノンを介してパワーが移動する現象である。すれ違う2光波間の周波数差をνdとするとき、移動するパワーは、近似的に式1で定義されるブリルアンゲインgb(νd)に比例する。
gb(νd)=1/(1+(2(νd−νb)/△νb)) ・・・式1
νb=2nva/λ ・・・式2
ここで、νbは、ブリルアン周波数シフトであり、△νbは、ブリルアンゲイン線幅(半値全幅)であり、nは、光ファイバの屈折率であり、vaは、光ファイバ中の音速であり、λは、光ファイバに入射する光の波長である。
そして、発明者らは、ブリルアン散乱現象において、ポンプ光としての光パルスの周波数と自然ブリルアン散乱光の周波数との差fsが、光パルスの波長をλpとすると、fs=(2×n×va)/(λp)であり、自然ブリルアン散乱光の成長が、f=fsでピークを持つブリルアンゲインgb(f)で特徴付けられ、光パルスが電歪現象によって格子振動の音響モードを発生する時間をt、音響フォノンの寿命をτbとすると、exp(−t/τb)で減衰するので、ブリルアンゲインgb(f)が、ブリルアン・ゲイン・スペクトルの半値全幅を△fsとすると、ローレンツ曲線型のスペクトルgb(f)=1/(1+(2(f−fs)/△fs))を持つことから、上記文献に開示した理論がブリルアン散乱現象を利用したBOTDRにも同様に成立し、このBOTDRに上記文献に開示の方法を応用することによって光ファイバの長尺方向について歪み及び/又は温度を高精度かつ高空間分解能で測定し得ることを見出した。
ところが、背景技術に係るBOTDRの構成において、光パルスを上記階段状光パルスに代え、空間分解能を1mや10cmにするために階段状光パルスにおける内側の光パルスのパルス幅を10nsや1nsにすると、背景技術に係るBOTDRがヘテロダイン検波をしているため、O/E変換器1018や増幅器1019に例えば100MHz以上や1GHz以上の広帯域な素子が必要となってしまうという問題が生じる。仮に、O/E変換器1018や増幅器1019に帯域が不充分な素子を用いると、その出力は、図8の曲線aのようなローレンツ曲線とならず、図8の曲線bのような中心周波数近傍で急峻さを失ったなだらかな形状となってしまい、自然ブリルアン散乱光のスペクトルを測定することができない。
本発明は、上述の事情に鑑みて為された発明であり、階段状光パルスを用い、ブリルアン散乱現象を利用することによって光ファイバの長尺方向について歪み及び/又は温度を高精度かつ高空間分解能で測定し得る分布型光ファイバセンサを提供することを目的としている。
本発明者らは、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。即ち、本発明に係る一態様では、内側に向かうほど光強度が大きくなるように光強度が階段状になった光パルスを周波数を変えながら射出する階段状光パルス光源と、前記光パルスが入射される検出用光ファイバと、前記光パルスが前記検出用光ファイバを伝播することによって生じる自然ブリルアン散乱光を前記検出用光ファイバから受光して前記自然ブリルアン散乱光に基づき前記検出用光ファイバの長尺方向における歪み及び/又は温度を測定するブリルアン時間領域検出部とを備える分布型光ファイバセンサにおいて、前記ブリルアン時間領域検出部は、前記自然ブリルアン散乱光のスペクトルにおける半値半幅より狭い帯域幅の透過周波数帯域を持つ狭帯域光バンドパスフィルタを介して前記自然ブリルアン散乱光を受光して前記自然ブリルアン散乱光に基づき前記検出用光ファイバの長尺方向における歪み及び/又は温度を計測することを特徴とする
また、本発明に係る他の一態様では、予め設定された時間幅及び光強度の光パルス前方光と予め設定された時間幅及び前記光パルス前方光の光強度よりも大きな光強度の光パルスとを周波数を変えながら射出する階段状光パルス光源と、前記光パルスが入射される検出用光ファイバと、前記光パルスが前記検出用光ファイバを伝播することによって生じる自然ブリルアン散乱光を前記検出用光ファイバから受光して前記自然ブリルアン散乱光に基づき前記検出用光ファイバの長尺方向における歪み及び/又は温度を測定するブリルアン時間領域検出部とを備える分布型光ファイバセンサにおいて前記ブリルアン時間領域検出部は、前記自然ブリルアン散乱光のスペクトルにおける半値半幅より狭い帯域幅の透過周波数帯域を持つ狭帯域光バンドパスフィルタを介して前記自然ブリルアン散乱光を受光して前記自然ブリルアン散乱光に基づき前記検出用光ファイバの長尺方向における歪み及び/又は温度を計測することを特徴とする
そして、これら上述の分布型光ファイバセンサにおいて、前記ブリルアン時間領域検出部は、前記階段状光パルス光源から射出された前記階段状光パルスの一部又は前記光パルス前方光と前記光パルスとの一部が入射され、前記階段状光パルスの一部又は前記光パルス前方光と前記光パルスとの一部を検出した場合に検出信号を出力する検出部と、前記検出用光ファイバから射出された前記自然ブリルアン散乱光が入射され、前記自然ブリルアン散乱光のスペクトルにおける半値半幅より狭い帯域幅の透過周波数帯域を持つ狭帯域光バンドパスフィルタと、前記狭帯域光バンドパスフィルタを透過した光が入射され、前記光の光強度に応じた電気信号を出力する光強度検出部と、前記検出部からの前記検出信号に基づき設定した時間原点を基準に時間領域で検出した前記光強度検出部からの前記電気信号に基づいて前記検出用光ファイバの長尺方向における歪み及び/又は温度を計測する計測部とを備えることを特徴とする。
また、これら上述の分布型光ファイバセンサにおいて、前記狭帯域光バンドフィルタは、前記自然ブリルアン散乱光のスペクトルにおける半値半幅より狭い帯域幅の透過周波数帯域を持つ第1ファブリペローエタロンフィルタと、前記第1ファブリペローエタロンフィルタの透過周波数帯域を含む透過周波数帯域を持ち、かつ、前記階段状光パルスの周波数又は前記光パルス前方光と前記光パルスとの周波数前記自然ブリルアン散乱光の周波数との間の周波数間隔より広いフリースペクトラムレンジを持つ第1ファブリペローエタロンフィルタとを備えることを特徴とする。
さらに、上述の分布型光ファイバセンサにおいて、前記狭帯域光バンドフィルタは、前記階段状光パルス又は前記光パルス前方光と前記光パルスとを所定の周波数範囲で掃引する場合における中心周波数の階段状光パルスが前記検出用光ファイバを伝播することによって生じる自然ブリルアン散乱光の周波数に、前記第1及び第2ファブリペローエタロンフィルタにおける透過周波数帯域の中心周波数を一致させるようにそれぞれ制御する第1及び第2中心周波数制御部をさらに備えることを特徴とする。
そして、これら上述の分布型光ファイバセンサにおいて、前記検出用光ファイバと前記ブリルアン時間領域検出部との間に配置され、前記検出用光ファイバの長尺方向における特定の位置又は特定の領域で生じた自然ブリルアン散乱光を透過させて前記ブリルアン時間領域検出部へ射出すると共に、前記検出用光ファイバの長尺方向における前記特定の位置又は前記特定の領域を除く領域で生じた自然ブリルアン散乱光を遮光する光スイッチをさらに備えることを特徴とする。
また、これら上述の分布型光ファイバセンサにおいて、前記階段状光パルス光源は、空間分解能を1m以下とした場合であって前記自然ブリルアン散乱光のスペクトルが実質的にローレンツ曲線となる前記階段状光パルス又は前記光パルス前方光と前記光パルスとを射出することを特徴とする。
さらに、これら上述の分布型光ファイバセンサにおいて、入射光の偏光面をランダムに変更して射出する偏光制御部をさらに備え、前記階段状光パルス又は前記光パルス前方光と前記光パルスとは、前記偏光制御部を介して前記検出用光ファイバに入射することを特徴とする。
このような構成の分布型光ファイバセンサは、ブリルアン散乱現象を利用することによって光ファイバの長尺方向について歪み及び/又は温度を高精度かつ高空間分解能で測定することができる。
以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。
図1は、実施形態における分布型光ファイバセンサの構成を示すブロック図である。図2は、実施形態の分布型光ファイバセンサにおける階段状光パルス光源を説明するための図である。図2(A)は、階段状光パルス光源の構成を示すブロック図であり、図2(B)は、階段状光パルスの生成を説明するための図である。図3は、実施形態の分布型光ファイバセンサにおける狭帯域光バンドパスフィルタを説明するための図である。図3(A)は、狭帯域光バンドパスフィルタの構成を示すブロック図であり、図3(B)は、狭帯域光バンドパスフィルタにおけるATCの構成を示すブロック図である。図4は、狭帯域光バンドパスフィルタの透過周波数特性を説明するための図である。図4(A)は、狭帯域光バンドパスフィルタにおける第1エタロンフィルタの透過周波数特性を示し、図4(B)は、狭帯域光バンドパスフィルタにおける第2エタロンフィルタの透過周波数特性を示し、図4(C)は、狭帯域光バンドパスフィルタの透過周波数特性を示す。
図1において、実施形態における分布型光ファイバセンサ1は、階段状光パルス光源11と、光カプラ12と、偏光制御部13と、光サーキュレータ14と、光コネクタ15、17と、周波数校正用光ファイバ16と、制御処理部18と、ブリルアン時間領域検出部19と、検出用光ファイバ20とを備えて構成される。
階段状光パルス光源11は、制御処理部18によって制御され、内側に向かうほど光強度が大きくなるように光強度が階段状になった光パルス(階段状光パルス)を生成する光源装置である。このような階段状光パルスは、見かけ上、互いに異なる光強度の光パルスが多重されているように見える。階段状光パルス光源11の出力端子(射出端子)は、光カプラ12の入力端子(入射端子)に光学的に接続される。
このような階段状光パルス光源11は、例えば、図2(A)に示すように、光源101と、第1乃至第3光強度変調器102、103、105と、光増幅器104とを備えて構成される。
光源101は、制御処理部18によって制御され、線幅の狭い所定の周波数の光を発光する光源装置である。光源101は、例えば、多量子井戸構造DFBレーザや可変波長分布ブラッグ反射型レーザ等の波長可変半導体レーザ(周波数可変半導体レーザ)を備えて構成される発光部111と、発光部111における波長可変半導体レーザの素子温度を所定の温度に自動的に略一定に保持する自動温度制御部(Automatic Temperature Control part、以下、「ATC部」と略記する。)112と、発光部111における波長可変半導体レーザの発振周波数を所定の周波数に自動的に略一定に保持するように波長可変半導体レーザを駆動する自動周波数制御部(Automatic Frequency Control part、以下、「AFC部」と略記する。)113とを備えて構成される。ATC部112により発振周波数の温度依存性が抑制され、駆動電流を制御することにより発振周波数が安定的に変更され得る。
第1乃至第3光強度変調器102、103、105は、制御処理部18によって制御され、入射光の光強度を変調する光部品であり、例えば、マッハツェンダ型光変調器(以下、「MZ光変調器」と略記する。)や半導体電界吸収型光変調器等である。光増幅器104は、入射光の光強度を所定の増幅率で増幅する光部品であり、例えば、光源101が発光する光の周波数に対し利得を持つ半導体光増幅器や、例えば希土類元素添加光ファイバ増幅器やラマン増幅光ファイバ増幅器等の光ファイバ増幅器等である。
光源101の出力端子は、第1光強度変調器102の入力端子に光学的に接続され、第1光強度変調器102の出力端子は、第2光強度変調器103の入力端子に光学的に接続され、第2光強度変調器103の出力端子は、光増幅器104の入力端子に光学的に接続され、光増幅器104の出力端子は、第3光強度変調器105の入力端子に光学的に接続される。そして、第3光強度変調器105の出力端子から射出される光は、階段状光パルス光源11の出力となる。
このような構成の階段状光パルス光源11では、図2(B)に示すように、まず、光源101は、制御処理部18の制御により、線幅の狭い所定の周波数fであって略一定の光強度P1’である光CWを連続的に発光し射出する(PS1)。この光源101から射出された連続光CWは、第1光強度変調器102に入射される。
第1光強度変調器102は、通常状態では第1光強度変調器102から射出される光の光強度が光強度P1’より小さく微弱な光強度P2’となるように制御処理部18の制御により駆動され、所定のタイミングでオンすると共に光パルスOPのパルス幅に対応する時間経過後のタイミングで通常状態に戻るように制御処理部18の制御により駆動される。これによって第1光強度変調器102は、光強度P2’の連続的な漏れ光CWの中に光強度P1’の光パルスOPが在る光を射出する(PS2)。そして、連続的な漏れ光CWと光パルスOPとから成る波形の光が第1光強度変調器102から第2光強度変調器103に入射される。
第2光強度変調器103は、通常状態ではオフであり、所定のタイミングでオンすると共に階段状光パルスOPsのパルス幅に対応する時間経過後のタイミングで通常状態のオフに戻るように、制御処理部18の制御により駆動される。第2光強度変調器103は、入射光を透過及び遮光する光スイッチとして用いられる。これによって第2光強度変調器103に入射された光は、光パルスOPの前方及び後方に所定の時間幅だけ光強度P2’の連続的な漏れ光OPf(光パルス前方光OPf)及びOPb(光パルス後方光OPb)を残して残余が除去され、第2光強度変調器103は、微弱な光強度P2’の光パルスの中に光強度P2’よりも大きい光強度P1’の光パルスOPが在る光強度が一段階変化する階段状であって線幅の狭い階段状光パルスOPsを射出する(PS3)。そして、階段状光パルスOPsが第2光強度変調器103から光増幅器104に入射される。
光増幅器104は、第1乃至第3光強度変調器102、103、105の損失等を補償して階段状光パルスOPsを所定の光強度にするために階段状光パルスOPsを増幅する。これによって光強度P1’及び光強度P2’がそれぞれ光強度P1及び光強度P2に増幅され、光増幅器104は、光強度P2の光パルスの中に光強度P2よりも大きい光強度P1の光パルスOPが在る光強度が一段階変化する階段状であって線幅の狭い階段状光パルスOPsを射出する(PS4)。そして、増幅された階段状光パルスOPsが光増幅器104から第3光強度変調器105に入射される。
第3光強度変調器105は、通常状態ではオフであり、所定のタイミングでオンすると共に階段状光パルスOPsのパルス幅に対応する時間経過後のタイミングで通常状態のオフに戻るように、制御処理部18の制御により駆動される。第3光強度変調器105は、光スイッチとして用いられる。光増幅器104から射出された増幅された階段状光パルスOPsは、光増幅器104によって光パルス前方光OPfの前方及び光パルス後方光OPbの後方に自然放出光(Amplifier Spontaneous Emission、ASE)を伴っているが、第3光強度変調器105がこのように動作することによって、光パルス前方光OPfの前方及び光パルス後方光OPbの後方に存在する自然放出光が除去され、第3光強度変調器105は、光強度P2の光パルスの中に光強度P2よりも大きい光強度P1の光パルスが在る光強度が一段階変化する階段状であって線幅の狭い階段状光パルスOPsを射出する(PS5)。
このように動作することによって階段状光パルス光源11は、線幅の狭い所定の周波数の階段状光パルスOPsを生成し、射出する。
そして、高精度かつ高空間分解能で測定するために、階段状光パルスPOsにおける、光パルス前方光OPfの時間幅Tf、光パルスOPのパルス幅(時間幅)Tp及び光パルス後方光OPbの時間幅Tb、並びに、光パルスOPの光強度P1及び光パルス前方光OPfの光強度P2(光パルス後方光OPbの光強度P2)は、上記WO2006/001071に開示した誘導ブリルアン散乱現象の場合における解析と同様の解析をブリルアン散乱現象の場合について行うことによって、次のように決定される。
光パルス前方光OPfの時間幅Tfは、音響フォノンの立ち上り時間に応じてその音響フォノンが90%に立ち上がった場合における自然ブリルアン散乱光のスペクトルの半値全幅をFWHM(Full Width Half Maximum)とすると、Tp<Tf≦(1/FWHM)となるように設定される。光パルスOPのパルス幅Tpは、例えば1m以下の高空間分解能を得るために10ns≧Tp>0に設定される。光パルス後方光OPbの時間幅Tbは、Tb<Tfであって短い程よく、0でもよい。そして、階段状光パルスOPsが検出用光ファイバ20で光パルスとして存在する必要があるため、上述の範囲で、光パルス前方光OPfの時間幅Tf、光パルスOPの時間幅Tp及び光パルス後方光OPbの時間幅Tbが決定される。
光パルスOPの光強度P1及び光パルス前方光OPfの光強度P2(光パルス後方光OPbの光強度P2)は、自然ブリルアン散乱の基礎方程式からブリルアンゲインを表す式を求め、この求めた式に基づいて光パルス前方光OPfの光強度P2に対する光パルスOPの光強度P1の比Prx(=10×log(P1/P2))をパラメータにシミュレーションを行って最も良い値を与える比Prxを求めることによって決定される。
図1に戻って、光カプラ12は、入射光を2つの光に分配して射出する光部品であり、例えば、ハーフミラー等の微少光学素子形光分岐結合器や溶融ファイバの光ファイバ形光分岐結合器や光導波路形光分岐結合器等を利用することができる。光カプラ12の一方の出力端子は、偏光制御部13の入力端子に光学的に接続され、他方の出力端子は、ブリルアン時間領域検出部19の第1入力端子に光学的に接続される。
偏光制御部13は、制御処理部18によって制御され、入射光の偏光面をランダム(無作為)に変更して射出する偏波スクランブラである。偏光制御部13の出力端子は、光サーキュレータ14の第1端子に光学的に接続される。
自然ブリルアン散乱光は、検出用光ファイバ20を伝播する階段状光パルスOPsの偏光面に依存する。このため、本実施形態に係る分布型光ファイバセンサ1では、階段状光パルスOPsの1つの周波数に対して複数回、例えば500回や1000回の測定を行ってその平均値を採用することによって、これら測定ごとに偏光制御部13で階段状光パルスOPsの偏光面がランダムに変わるので、この依存性を実質的に解消することができる。そのため、本実施形態に係る分布型光ファイバセンサ1は、検出用光ファイバ20の長尺方向における自然ブリルアン散乱光の光強度の分布をより精度よく得ることができる。
光サーキュレータ14は、第1乃至第3の3端子の光サーキュレータであり、入射光と射出光とがその端子番号に循環関係を有する非可逆性の光部品である。即ち、第1端子に入射した光は、第2端子から射出されると共に第3端子からは射出されず、第2端子に入射した光は、第3端子から射出されると共に第1端子からは射出されず、第3端子に入射した光は、第1端子から射出されると共に第2端子からは射出されない。
光コネクタ15、17は、光ファイバ同士や光部品と光ファイバとを光学的に接続する光部品である。光サーキュレータ14の第2端子は、光コネクタ15を介して周波数校正用光ファイバ16の一方端に光学的に接続される。周波数校正用光ファイバ16の他方端は、光コネクタ17を介して検出用光ファイバ20の一方端に光学的に接続される。光サーキュレータ14の第3端子は、ブリルアン時間領域検出部19の第2入力端子に光学的に接続される。
周波数校正用光ファイバ16は、階段状光パルス光源11の発振周波数を校正するための、自然ブリルアン散乱光の周波数が既知の光ファイバである。検出用光ファイバ20で歪み及び/又は温度を測定する前に、周波数校正用光ファイバ16の自然ブリルアン散乱光の周波数が測定され、この実際に得られた自然ブリルアン散乱光の周波数と既知な自然ブリルアン散乱光の周波数との差分が無くなるように、階段状光パルス光源11の発振周波数が調整される。これによって階段状光パルス光源101の発振周波数が校正される。
検出用光ファイバ20は、歪み及び/又は温度を検出するセンサ用の光ファイバであり、その一方端から階段状光パルスOPsが入射され、ブリルアン散乱現象によって階段状光パルスOPsに起因して自然ブリルアン散乱光を発生する。階段状光パルスOPsの進行方向と逆方向に進行する自然ブリルアン散乱光は、光カプラ17、周波数校正用光ファイバ16、光カプラ15及び光サーキュレータ14を介して、ブリルアン時間領域検出部19の第2入力端子へ射出される。ここで、橋、トンネル、ダム、建物等の構造物や地盤等の計測対象物に生じた歪み及び/又は温度を測定する場合には、検出用光ファイバ20が計測対象物に固定され、測定対象物に生じた歪み及び/又は温度が測定され得る。
制御処理部18は、ブリルアン時間領域検出部19と信号を入出力することによって、検出用光ファイバ20の長尺方向における検出用光ファイバ20の歪み及び/又は温度の分布を高空間分解能で測定するように、階段状光パルス光源11及び偏光制御部13を制御する電子回路であり、例えば、マイクロプロセッサ、メモリ及びその周辺回路等を備えて構成される。
ブリルアン時間領域検出部19は、制御処理部18と信号を入出力することによって分布型光ファイバセンサ1の各部を制御し、第1入力端子から入射した階段状光パルスOPsの入射時点に基づき時間原点を設定して第2入力端子で受光した自然ブリルアン散乱光を時間領域で測定することによって、検出用光ファイバ20の長尺方向の各領域部分(各位置)における自然ブリルアン散乱光のスペクトルをそれぞれ求め、この求めた各領域部分(各位置)の自然ブリルアン散乱光のスペクトルに基づいて検出用光ファイバ20の歪み分布及び/又は温度分布を計測する。
本実施形態では、ブリルアン時間領域検出部19は、例えば、受光部201、208と、上述の光増幅器104と同様に入射光の光強度を所定の増幅率で増幅する光増幅部202と、アナログ信号をディジタル信号に変換するアナログ/ディジタル変換部(以下、「A/D変換部」と略記する。)203、206と、狭帯域光バンドパスフィルタ(以下、「狭帯域光BPF」と略記する。)204と、信号処理部205と、入力信号を所定の増幅率で増幅する増幅部207とを備えて構成される。
受光部201、208は、受光した光の光強度に応じた電気信号を出力する回路であり、受光した光をこの受光した光の光強度に応じた電流に変換する例えばフォトダイオード等の光電変換素子、光電変換素子から出力された電流を電圧に変換する電流/電圧変換素子及びその周辺回路を備えて構成される。
信号処理部205は、受光部201が光カプラ12で分岐した階段状光パルスOPsを検出した場合に出力する検出信号をA/D変換部203を介して受信し、受光部208が光増幅部202及び狭帯域光BPF204を介して受光した光の光強度に応じて出力した電気信号を増幅部207及びA/D変換部206を介して受信し、受光部201からA/D変換部203を介して受信した検出信号に基づき設定した時間原点を基準に時間領域で検出した受光部208から増幅部207及びA/D変換部206を介して受信した電気信号に基づいて検出用光ファイバ20の長尺方向における歪み及び/又は温度を計測する電子回路であり、例えば、マイクロプロセッサ、メモリ及びその周辺回路等を備えて構成される。
受光部201、受光部208及び信号処理部205は、それぞれ請求項の検出部、光強度検出部及び計測部の一例である。
狭帯域光BPF204は、狭い所定の透過周波数帯域の光部品、即ち、狭い所定の周波数帯域の光を透過すると共にこの所定の周波数帯域を除く帯域の光を遮断する光部品である。狭帯域光BPF204は、例えば、図3(A)に示すように、第1及び第2光バンドパスフィルタ(以下、「光BPF」と略記する。)301、302を備えて構成される。
第1光BPF311は、第1基板311と、第1温度検出素子312と、第1ファブリペローエタロンフィルタ(Fabry-perotEtalon Filter以下、「EF」と略記する。)313と、第1温度調整素子314と、第1ATC部315とを備えて構成される。そして、第2光BPF321は、第2基板321と、第2温度検出素子312と、第2EF323と、第2温度調整素子324と、第2ATC部325とを備えて構成される。なお、第1光BPF301と第2光BPF302とは、後述するように第1EF313と第2EF323とが異なるだけでそれらの構成は、図3(A)に示すように同様であるので、第1光BPF301の構成について説明し、第2光BPF302の構成については省略する。
第1基板311は、第1温度検出素子312及び第1EF313がその一方面上に載置される架台である。第1温度検出素子312は、第1EF313の近傍に配置され、第1EF313の温度を検出するための部品であり、例えば、抵抗値が温度変化に応じて変化することによって温度を検出するサーミスタである。第1温度検出素子312が第1EF313の温度を精度よく検出し得る観点から、第1基板311は、例えば、アルミニウムや銅等の熱伝導率の高い金属材料(合金を含む)であることが好ましい。また、第1基板311は、温度変化を少なくすることができるように、その熱容量が大きいことが好ましい。第1温度調整素子314は、発熱及び吸熱を行うことにより第1基板311の温度を調整する部品であり、例えば、ペルチェ素子やゼーベック素子等の熱電変換素子である。本実施形態では、P型とN型の熱電半導体を銅電極にはんだ付けしたペルチェ素子が用いられ、第1EF313等が配置された第1基板311の上記一方面と対向する他方面にこのペルチェ素子が密着状態で配置される。
第1ATC部315は、第1温度検出素子312の検出出力に基づいて第1温度調整素子314を制御することによって、第1基板311の温度を所定の温度に自動的に略一定に保持する回路である。
第1ATC部315は、例えば、図3(B)に示すように、第1温度検出素子312の検出出力と制御処理部18からの参照電圧Vrefとが入力されこれらの差分を出力する増幅器3151と、増幅器3151の差分出力が入力される例えばローパスフィルタ回路から成る積分回路3152と、増幅器3151の差分出力が入力される例えばハイパスフィルタ回路から成る微分回路3153と、積分回路3152の積分出力及び微分回路3153の微分出力が入力されその比例を出力する比例回路3154と、比例回路3154のプラス出力及びマイナス出力に応じて温度調整素子ドライバ回路3157を駆動する出力を得る増幅器3155、3156と、比例回路3154の比例出力に応じて第1温度調整素子314の駆動電流を生成するブリッジ回路からなる温度調整素子ドライバ回路3157とを備えて構成される。即ち、第1ATC部315は、第1温度検出素子312の検出出力に基づいて第1温度調整素子314をPID制御する構成である。参照電圧Vrefは、第1基板311が所定の温度である場合における第1温度検出素子312の検出出力と同じ値に設定される。
このような構成によって、第1ATC部301は、第1基板311が所定の温度よりも高い場合には、第1温度調整素子314が吸熱するように第1温度調整素子314を駆動し、第1基板311が所定の温度よりも低い場合には、第1温度調整素子314が発熱するように第1温度調整素子314を駆動する。本実施形態では、第1温度調整素子314であるペルチェ素子に吸熱時には+1.4Aの電流が供給され、発熱時には−0.6Aの電流が供給される。このように第1ATC部301が第1温度調整素子314を駆動することによって第1基板311の温度が所定の温度に自動的に略一定に保持される。その結果、第1EF313の温度も所定の温度に自動的に略一定に保持される。そのため、第1EF313における透過周波数帯域の中心周波数が温度依存性を有する場合に、その温度依存性が抑制される。そして、所定の温度は、第1EF313が上記所定の透過周波数帯域である場合の温度である。また、比例回路3154の比例出力は、第1基板311の温度安定度をモニタするために、アナログ/ディジタル変換されて制御処理部18に出力される。
第1温度検出素子312、第1ATC部315及び第1温度調整素子314は、請求項の第1中心周波数制御部の一例であり、第2温度検出素子322、第2ATC部325及び第2温度調整素子324は、請求項の第2中心周波数制御部の一例である。
このような構成の第1及び第2光BPF301、302は、第1光BPF301の第1EF313から射出された光が第2光BPF302の第2EF323に入射されるように、光学的に接続される。また、第1EF313は、図4(A)に示すように、その半値全幅FWHM1が狭帯域光BPF204における上記所定の透過周波数帯域に相当する周波数幅であるように設定され、そして、その透過周波数帯域の中心周波数fa1の一つが狭帯域光BPF204における透過周波数帯域の中心周波数faと一致するように設定される。第2EF323は、図4(B)に示すように、そのFSR(Free Spectral Range、フリースペクトラムレンジ)2が階段状光パルスOPsの周波数と自然ブリルアン散乱光の周波数との間の周波数間隔より広くなるように設定され、その透過周波数帯域が第1EF313の透過周波数帯域を含むようにするために、その半値全幅FWHM2が第1EF313の半値全幅FWHM1以上に設定され、そして、その透過周波数帯域の中心周波数fa2の一つが狭帯域光BPF204における透過周波数帯域の中心周波数faと一致するように設定される。
このような構成の狭帯域光BPF204では、第1光BPF301で、第1EF313の透過周波数帯域に相当する周波数の光が透過する。即ち、第1EF313のFSR1ごとに半値全幅FWHM1に相当する周波数の光が透過する。そして、第1EF313を透過した光は、第2光BPF302で、第1EF313の中心周波数fa1の透過周波数帯域に相当する周波数の光のみが透過する。このため、このような構成の狭帯域光BPF204の透過周波数特性は、図4(A)に示す第1EF313の透過周波数特性と図4(B)に示す第2EF323の透過周波数特性とを合成した特性となり、図4(C)に示すように、その透過周波数帯域の中心周波数faが周波数fa1(=fa2)で、その半値全幅FWHMが第1EF313の半値全幅FWHM1で、そして、そのFSRが第2EF323のFSR2となる。なお、上述では、第1光BPF301の第1EF313から射出された光が第2光BPF302の第2EF323に入射されるように光学的に接続することによって狭帯域光BPF204が構成されたが、第2光BPF302の第1EF323から射出された光が第1光BPF301の第1EF313に入射されるように光学的に接続することによって狭帯域光BPF204が構成されてもよい。
次に、実施形態に係る分布型光ファイバセンサの動作について説明する。
制御処理部18の制御により、階段状光パルス光源は、上述したパルス幅及び比Prxの階段状光パルスOPsを射出する。この階段状光パルスOPsは、光カプラ12へ射出され、この光カプラ12で2つの階段状光パルスOPsに分配される。
この光カプラ12で分配された一方の階段状光パルスOPsは、ブリルアン時間領域検出部19の第1入力端子へ射出される。この第1入力端子から入射した階段状光パルスOPsは、受光部201へ射出される。受光部201は、ブリルアン時間領域検出部19の第1入力端子から入射した光を受光し、この光の光強度に応じた信号をA/D変換部203へ出力する。A/D変換部203は、この信号をディジタル信号に変換して信号処理部205へ出力する。信号処理部205は、この信号をA/D変換部203から検出信号として受信することにより、階段状光パルス光源11が階段状光パルスOPsを射出したことを認識し、そして、この信号の受信時点に基づき時間原点を設定して自然ブリルアン散乱光の時間領域での検出を開始する。
この時間原点は、A/D変換部203から信号を受信した受信時点でもよいが、より精度よく測定するために、階段状光パルス光源11から光カプラ12を介してブリルアン時間領域検出部19まで階段状光パルスOPsが伝播する第1伝播時間と、階段状光パルス光源11から光カプラ12、偏光制御部13、光サーキュレータ14、光カプラ15、校正用光ファイバ16及び光カプラ17まで階段状光パルスOPsが伝播する第2伝播時間に光カプラ17から校正用光ファイバ16、光カプラ15及び光サーキュレータ14を介してブリルアン時間領域検出部19まで自然ブリルアン散乱光が伝播する第3伝播時間を加算した第4伝播時間との差(=第4伝播時間−第1伝播時間)で補正しても良い。さらに、より精度よく測定するために、受光部201及びA/D変換部203の第1処理時間と、光増幅部202、狭帯域光BPF204、受光部208、増幅部207及びA/D変換部206の第2処理時間との差(=第2処理時間−第1処理時間)も考慮して補正しても良い。
一方、光カプラ12で分配された他方の階段状光パルスOPsは、偏光制御部13へ射出され、この偏光制御部13でその偏光面が調整され、光サーキュレータ14、光コネクタ15、校正用光ファイバ16及び光コネクタ17を介して検出用光ファイバ20の一方端へ射出される。検出用光ファイバ20の一方端から入射した階段状光パルスOPsは、ブリルアン散乱現象によって自然ブリルアン散乱光を生じさせながら検出用光ファイバ20の一方端から他方端に向かって伝播する。
階段状光パルスOPsの進行方向と逆方向に伝播する自然ブリルアン散乱光は、検出用光ファイバ20の一方端から射出され、光コネクタ17、校正用光ファイバ16、光コネクタ15及び光サーキュレータ14を介してブリルアン時間領域検出部19の第2入力端子へ射出される。
この第2入力端子から入射した自然ブリルアン散乱光は、光増幅部202へ射出される。光増幅部202は、この第2入力端子から入射した自然ブリルアン散乱光を増幅し、狭帯域光BPF204に射出する。狭帯域BPF204は、この入射された自然ブリルアン散乱光を濾波して自然ブリルアン散乱光のうちの透過周波数帯域に対応する周波数の光のみを受光部208に射出する。受光部208は、この狭帯域光BPF204から入射した光を受光し、この光の光強度に応じた信号を増幅部207へ出力する。増幅部207は、この信号を増幅し、A/D変換部206へ出力する。A/D変換部206は、この信号をディジタル信号に変換して信号処理部205へ出力する。
信号処理部205は、A/D変換部203から入力した信号に基づき時間原点を設定し、A/D変換部206から入力した信号に基づいて、第2入力端子から入射した自然ブリルアン散乱光を時間領域で検出し、検出用光ファイバ20の長尺方向の各領域部分(各位置)における自然ブリルアン散乱光のスペクトルの分布を測定する。
図5は、狭帯域光バンドパスフィルタの機能を説明するための図である。図5(A)は、階段状光パルスの周波数と検出用光ファイバの或る位置における自然ブリルアン散乱光の周波数との関係を説明するための図である。図5(B)は、階段状光パルスの周波数を掃引することによって検出用光ファイバの或る位置における自然ブリルアン散乱光の測定原理を説明するための図である。図5(C)は、狭帯域光バンドパスフィルタを利用することによって測定される検出用光ファイバの或る位置における自然ブリルアン散乱光を説明するための図である。図5の各図における横軸は、周波数を示し、その縦軸は、光強度を示す。図6は、自然ブリルアン散乱光のスペクトルの分布を示す図である。図6のx軸は、検出用光ファイバ20の一方端からの距離Lであり、そのy軸は、周波数であり、そのz軸は、光強度である。また、説明の都合上、距離D1では、検出用光ファイバ20に歪みが生じていないものとし、距離D2では、検出用光ファイバ20に歪みが生じていないものとしている。
ここで、階段状光パルスの周波数を掃引して狭帯域光BPF204を利用することによる自然ブリルアン散乱光の測定について説明する。
自然ブリルアン散乱光は、図5(A)に示すように、階段状光パルスOPsの周波数fpから、検出用光ファイバ20の構成材料等によって決まる周波数間隔fsに、さらに検出用光ファイバ20の歪みや温度によって決まる周波数間隔△fbだけ離れた周波数fp+fs+△fb(=fb+△fb)で生じる。このため、階段状光パルスOPsの周波数fpが変化すると、これに従って自然ブリルアン散乱光の周波数fb+△fbも変化する。よって、階段状光パルスOPsの周波数fpが所定の周波数範囲fp−△fp〜fp+△fpで変化すると、これに従って自然ブリルアン散乱光は、周波数範囲fb+△fb−△fp〜fb+△fb+△fpで生じることになる。
一方、狭帯域光BPF204における透過周波数帯域の中心周波数faは、固定である。
このため、周波数fp1、fp2、fp3、fp4、・・・、fpnに変化させて階段状光パルスOPsを掃引すると、図5(B)に示すように、これに従って自然ブリルアン散乱光も曲線B1、B2、B3、B4、・・・、Bnのように変化するので、自然ブリルアン散乱光の曲線B1、B2、B3、B4、・・・、Bnにおける狭帯域光BPF204の透過周波数帯域に対応する周波数成分の光が狭帯域光BPF204から射出され、受光部208で受光され、その光強度に応じたレベルL1、L2、L3、L4、・・・、Lnの電気信号が受光部208から出力されることになる。
よって、階段状光パルスOPsを周波数掃引する周波数範囲fp−△fp〜fp+△fpは、階段状光パルスOPsの周波数fp、狭帯域光BPF204における透過周波数帯域の中心周波数fa、検出用光ファイバ20の構成材料等によって決まる周波数間隔fs、及び、検出用光ファイバ20の歪みや温度によって決まる周波数間隔△fbを考慮して設定される。より具体的には、狭帯域光BPF204における透過周波数帯域の中心周波数faが階段状光パルスOPsの周波数fpから、検出用光ファイバ20の構成材料等によって決まる周波数間隔fsだけ離れた周波数fp+fs(=fa)に設定され、階段状光パルスOPsを周波数掃引する周波数範囲fp−△fp〜fp+△fpは、階段状光パルスOPsを検出用光ファイバ20に入射することによって生じる自然ブリルアン散乱光の周波数範囲(例えば、自然ブリルアン散乱光の半値全幅FWHM)BWbに、さらに検出用光ファイバ20の歪みや温度によって決まる周波数間隔△fbを加算した周波数範囲BWb+△fbを考慮して設定される。
実際には、損失の少ない光ファイバが検出用光ファイバ20に採用されるので、この採用された検出用光ファイバ20に応じて階段状光パルスOPsの周波数が設定され、この設定された階段状光パルスOPsの周波数及び採用した検出用光ファイバ20に応じて狭帯域光BPF204における透過周波数帯域の中心周波数faが設定され、この設定された階段状光パルスOPsの周波数、採用した検出用光ファイバ20及び検出用光ファイバ20に加わる想定の歪み量及び/又は温度を考慮して、階段状光パルスOPsを周波数掃引する周波数範囲fp−△fp〜fp+△fpが設定されることになる。
このような設定の下に、階段状光パルスOPsの周波数を掃引することによって、図5(C)に示すローレンツ曲線形状の波形をした、検出用光ファイバ20の長尺方向の或る位置における自然ブリルアン散乱光のスペクトルが狭帯域光BPF204及び受光部208によって計測される。信号処理部205は、この検出用光ファイバ20の長尺方向の或る位置における自然ブリルアン散乱光のスペクトルを解析することによってピークを検出し、検出用光ファイバ20の長尺方向の或る位置における自然ブリルアン散乱光の周波数fb+△fbを求めることができる。ここで、狭帯域光BPF204は、その透過周波数帯域の中心周波数が第1及び第2ATC部315、325によって制御されているので、より精度よく所定の周波数で濾波することができる。このため、自然ブリルアン散乱光のスペクトルがより精度よく得られるから、信号処理部205は、自然ブリルアン散乱光のスペクトルを解析することによってピークをより精度よく検出することができ、自然ブリルアン散乱光の周波数fb+△fbをより精度よく求めることができる。そして、信号処理部205は、時間領域で解析することにより、図6に示すように、検出用光ファイバ20の長尺方向の各位置の自然ブリルアン散乱光の周波数fb+△fbを求めることができ、検出用光ファイバ20の長尺方向における歪み分布及び/又は温度分布を計測することができる。この求めた検出用光ファイバ20の長尺方向の各領域部分における歪み及び/又は温度の分布は、CRT表示装置やXYプロッタやプリンタ等の不図示の出力部に提示される。
このように本実施形態に係る分布型光ファイバセンサ1では、狭帯域光BPF204を用いるので、階段状光パルスOPsにおける光パルスOPのパルス幅を10ns以下としたとしても自然ブリルアン散乱光のスペクトルを測定することができる。このため、分布型光ファイバセンサ1は、検出用光ファイバ20の長尺方向について歪み及び/又は温度を高精度かつ高空間分解能で測定することができる。
このように階段状光パルスOPsを周波数で掃引しながら狭帯域光BPF204で自然ブリルアン散乱光を濾波することによって自然ブリルアン散乱光のスペクトルを計測するので、狭帯域光BPF204における透過周波数帯域の帯域幅は、少なくとも自然ブリルアン散乱光のスペクトルにおける半値半幅より狭い帯域幅とする必要があるが、階段状光パルスOPsを掃引する周波数間隔fps(=fp2−fp1=fp3−fp2=fp4−fp3=・・・)及び狭帯域光BPF204における透過周波数帯域の帯域幅は、自然ブリルアン散乱光のスペクトルの計測精度に影響することになる。この結果、分布型光ファイバセンサ1の歪み及び/又は温度の測定精度に影響することになる。階段状光パルスOPsを掃引する周波数間隔fpsを狭くするほど、自然ブリルアン散乱光のスペクトル波形の計測精度が向上する。また、狭帯域光BPF204における透過周波数帯域の帯域幅(本実施形態では第1EF313の半値全幅FWHM1)を狭くするほど、自然ブリルアン散乱光のスペクトル波形の計測精度が向上する。自然ブリルアン散乱光のスペクトル波形の計測精度が向上することによって、分布型光ファイバセンサ1の歪み及び/又は温度の測定精度も向上することになる。このため、階段状光パルスOPsを掃引する周波数間隔fps及び狭帯域光BPF204における透過周波数帯域の帯域幅は、分布型光ファイバセンサ1の歪み及び/又は温度における所望の測定精度(自然ブリルアン散乱光の波形における所望の計測精度)に応じて適宜決定される。
一具体例を挙げると、検出用光ファイバ20に1550nm用のシングルモード光ファイバを用い、階段状光パルスOPsの周波数fpを193464.5GHzとした場合、狭帯域光BPF204における透過周波数帯域の中心周波数は、193475.5GHzが好ましい。そして、10cmの解像度で歪み分布を計測する場合、階段状光パルスOPsを掃引する周波数間隔fpsは、5MHzで狭帯域光BPF204における透過周波数帯域の帯域幅は、20MHzが好ましい。
ここで、半値半幅HWHM(Half Width Half Maximum)は、半値全幅FWHMの半分である(HWHM=FWHM/2)。
なお、上述の実施形態では、分布型光ファイバセンサ1は、長尺方向における検出用光ファイバ20全体の歪み分布及び/又は温度分布を測定するように構成されたが、分布型光ファイバセンサ1は、検出用光ファイバ20の特定の位置における歪み及び/又は温度、あるいは、検出用光ファイバ20の特定の領域(複数の位置)における歪み分布及び/又は温度分布を測定するように構成されてもよい。
このような構成の分布型光ファイバセンサ2は、図1に破線で示すように、分布型光ファイバセンサ1の構成にさらに光スイッチ31を備えて構成される。
光スイッチ31は、制御処理部18によって制御され、検出用光ファイバ20の長尺方向における特定の位置又は特定の領域で生じた自然ブリルアン散乱光を透過させてブリルアン時間領域検出部19へ射出すると共に、検出用光ファイバ20の長尺方向における上記特定の位置又は上記特定の領域を除く領域で生じた自然ブリルアン散乱光を遮光する光部品であり、光サーキュレータ14の第3端子とブリルアン時間領域検出部19の第2入力端子(光増幅部202)との間に設けられる。光サーキュレータ14の第3端子は、光スイッチ31の入力端子に光学的に接続され、光スイッチ31の出力端子は、ブリルアン時間領域検出部19の第2入力端子に光学的に接続される。光スイッチ31は、例えば、第1乃至第3光強度変調器102、103、105と同様に、入射光の光強度を変調する光強度変調器によって構成される。
検出用光ファイバ20の一方端から、測定すべき特定の位置までの検出用光ファイバ20の長尺方向における距離をZ、光速をc、及び、光スイッチ31が入射光を透過するオンのタイミングをTとすると、Z=(c/n)×(T/2)が成り立つ。従って、制御処理部18がT=(2nZ)/cのタイミングで光スイッチ31をオンするように制御することによって検出用光ファイバ20の特定の位置における歪み及び/又は温度が測定され得る。そして、測定すべき領域を階段状光パルスOPsが伝播する伝播時間に相当する時間だけ光スイッチ31のオンを継続するように制御処理部18が光スイッチ31を制御することによって検出用光ファイバ20の特定の領域(複数の位置)における歪み分布及び/又は温度分布が測定され得る。
実施形態における分布型光ファイバセンサの構成を示すブロック図である。 実施形態の分布型光ファイバセンサにおける階段状光パルス光源を説明するための図である。 実施形態の分布型光ファイバセンサにおける狭帯域光バンドパスフィルタを説明するための図である。 狭帯域光バンドパスフィルタの透過周波数特性を説明するための図である。 狭帯域光バンドパスフィルタの機能を説明するための図である。 自然ブリルアン散乱光のスペクトルの分布を示す図である。 特許文献1に開示のBOTDRの構成を示す図である。 ブリルアン・ゲイン・スペクトル(自然ブリルアン散乱光のスペクトル)を示す図である。
符号の説明
1、2 分布型光ファイバセンサ
11 階段状光パルス光源
13 偏波制御部
18 制御処理部
19 ブリルアン時間領域検出部
20 検出用光ファイバ
31 光スイッチ
101 光源
102、103、105 光強度変調器
111 発光部
112、315、325 自動温度制御部
113 自動周波数制御部
201、208 受光部
204 狭帯域光バンドパスフィルタ
205 信号処理部
301、302 光バンドパスフィルタ
312、322 温度検出素子
313、323 ファブリペローエタロンフィルタ
314、324 温度調整素子

Claims (7)

  1. 内側に向かうほど光強度が大きくなるように光強度が階段状になった光パルスを周波数を変えながら射出する階段状光パルス光源と、前記光パルスが入射される検出用光ファイバと、前記光パルスが前記検出用光ファイバを伝播することによって生じる自然ブリルアン散乱光を前記検出用光ファイバから受光して前記自然ブリルアン散乱光に基づき前記検出用光ファイバの長尺方向における歪み及び/又は温度を測定するブリルアン時間領域検出部とを備える分布型光ファイバセンサにおいて、
    前記ブリルアン時間領域検出部は、前記自然ブリルアン散乱光のスペクトルにおける半値半幅より狭い帯域幅の透過周波数帯域を持つ狭帯域光バンドパスフィルタを介して前記自然ブリルアン散乱光を受光して前記自然ブリルアン散乱光に基づき前記検出用光ファイバの長尺方向における歪み及び/又は温度を計測すること
    を特徴とする分布型光ファイバセンサ。
  2. 前記ブリルアン時間領域検出部は、
    前記階段状光パルス光源から射出された前記階段状光パルスの一部が入射され、前記階段状光パルスの一部を検出した場合に検出信号を出力する検出部と、
    前記検出用光ファイバから射出された前記自然ブリルアン散乱光が入射され、前記自然ブリルアン散乱光のスペクトルにおける半値半幅より狭い帯域幅の透過周波数帯域を持つ狭帯域光バンドパスフィルタと、
    前記狭帯域光バンドパスフィルタを透過した光が入射され、前記光の光強度に応じた電気信号を出力する光強度検出部と、
    前記検出部からの前記検出信号に基づき設定した時間原点を基準に時間領域で検出した前記光強度検出部からの前記電気信号に基づいて前記検出用光ファイバの長尺方向における歪み及び/又は温度を計測する計測部とを備えること
    を特徴とする請求項1に記載の分布型光ファイバセンサ。
  3. 前記狭帯域光バンドフィルタは、
    前記自然ブリルアン散乱光のスペクトルにおける半値半幅より狭い帯域幅の透過周波数帯域を持つ第1ファブリペローエタロンフィルタと、
    前記第1ファブリペローエタロンフィルタの透過周波数帯域を含む透過周波数帯域を持ち、かつ、前記階段状光パルスの周波数と前記自然ブリルアン散乱光の周波数との間の周波数間隔より広いフリースペクトラムレンジを持つ第1ファブリペローエタロンフィルタとを備えること
    を特徴とする請求項1又は請求項2に記載の分布型光ファイバセンサ。
  4. 前記狭帯域光バンドフィルタは、
    前記光パルスを所定の周波数範囲で掃引する場合における中心周波数の光パルスが前記検出用光ファイバを伝播することによって生じる自然ブリルアン散乱光の周波数に、前記第1及び第2ファブリペローエタロンフィルタにおける透過周波数帯域の中心周波数を一致させるようにそれぞれ制御する第1及び第2中心周波数制御部をさらに備えること
    を特徴とする請求項3に記載の分布型光ファイバセンサ。
  5. 前記検出用光ファイバと前記ブリルアン時間領域検出部との間に配置され、前記検出用光ファイバの長尺方向における特定の位置又は特定の領域で生じた自然ブリルアン散乱光を透過させて前記ブリルアン時間領域検出部へ射出すると共に、前記検出用光ファイバの長尺方向における前記特定の位置又は前記特定の領域を除く領域で生じた自然ブリルアン散乱光を遮光する光スイッチをさらに備えること
    を特徴とする請求項1乃至請求項4の何れか1項に記載の分布型光ファイバセンサ。
  6. 前記階段状光パルス光源は、
    空間分解能を1m以下とした場合であって前記自然ブリルアン散乱光のスペクトルが実質的にローレンツ曲線となる前記光パルスを射出すること
    を特徴とする請求項1乃至請求項5の何れか1項に記載の分布型光ファイバセンサ。
  7. 入射光の偏光面をランダムに変更して射出する偏光制御部をさらに備え、
    前記光パルスは、前記偏光制御部を介して前記検出用光ファイバに入射すること
    を特徴とする請求項1乃至請求項6の何れか1項に記載の分布型光ファイバセンサ。
JP2006063818A 2006-03-09 2006-03-09 分布型光ファイバセンサ Active JP5021221B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006063818A JP5021221B2 (ja) 2006-03-09 2006-03-09 分布型光ファイバセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006063818A JP5021221B2 (ja) 2006-03-09 2006-03-09 分布型光ファイバセンサ

Publications (2)

Publication Number Publication Date
JP2007240351A true JP2007240351A (ja) 2007-09-20
JP5021221B2 JP5021221B2 (ja) 2012-09-05

Family

ID=38586034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063818A Active JP5021221B2 (ja) 2006-03-09 2006-03-09 分布型光ファイバセンサ

Country Status (1)

Country Link
JP (1) JP5021221B2 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286697A (ja) * 2007-05-18 2008-11-27 Neubrex Co Ltd 分布型光ファイバセンサ
CN102147236A (zh) * 2011-03-23 2011-08-10 南京大学 一种全分布式光纤应变及振动的传感方法与传感器
CN102322806A (zh) * 2011-08-01 2012-01-18 杭州欧忆光电科技有限公司 一种混沌激光相关布里渊光时域分析器
CN102393182A (zh) * 2011-10-31 2012-03-28 南京大学 基于三层结构传感光纤的窄带宽布里渊光时域反射仪
JP2012063146A (ja) * 2010-09-14 2012-03-29 Neubrex Co Ltd 分布型光ファイバセンサ
CN102506904A (zh) * 2011-10-17 2012-06-20 南京大学 一种基于超导纳米线单光子探测器的自发布里渊散射光时域反射仪
CN102519385A (zh) * 2011-12-30 2012-06-27 中国科学院上海光学精密机械研究所 基于布里渊散射的光纤入侵信号的快速解调装置
CN102607451A (zh) * 2012-03-12 2012-07-25 南京大学(苏州)高新技术研究院 波长扫描型布里渊光时域反射仪
JPWO2010140440A1 (ja) * 2009-06-03 2012-11-15 オリンパスメディカルシステムズ株式会社 内視鏡システム
CN103033282A (zh) * 2012-10-29 2013-04-10 大连理工大学 一种检测磁约束聚变装置偏滤器石墨瓦瞬态温度的方法
CN103048061A (zh) * 2012-10-29 2013-04-17 大连理工大学 反射太赫兹谱技术检测偏滤器石墨瓦瞬态温度的装置
WO2014045655A1 (ja) * 2012-09-19 2014-03-27 株式会社日立製作所 距離計測方法および装置
CN103913185A (zh) * 2014-03-31 2014-07-09 广西师范大学 布里渊光纤传感系统及方法
WO2014155400A2 (en) 2013-03-29 2014-10-02 Bastiannini Filippo Apparatus for interrogating distributed stimulated brillouin scattering optical fibre sensors using a quickly tuneable brillouin ring laser
WO2015170355A1 (en) 2014-05-05 2015-11-12 Filippo Bastianini Apparatus for interrogating distributed optical fibre sensors using a stimulated brillouin scattering optical frequency-domain interferometer
CN105823497A (zh) * 2016-05-24 2016-08-03 北京信息科技大学 一种基于信号自相关匹配的光纤光栅反射谱解调算法
CN107741243A (zh) * 2017-10-18 2018-02-27 南京大学 一种botdr系统及提升该系统寿命的方法
CN112088300A (zh) * 2018-09-05 2020-12-15 松下知识产权经营株式会社 计测装置及计测方法
CN114964327A (zh) * 2022-04-26 2022-08-30 浙江师范大学 一种基于时间透镜的实时弯曲传感装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109084883A (zh) * 2018-08-09 2018-12-25 合肥工业大学 基于相位-botdr光纤分布式布里渊振动传感测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132701A (ja) * 1996-10-31 1998-05-22 Ando Electric Co Ltd 光ファイバ歪測定装置
JP2003098037A (ja) * 2001-09-26 2003-04-03 Mitsubishi Heavy Ind Ltd 光ファイバ分布型測定方法及びその装置
JP2003156315A (ja) * 2001-11-21 2003-05-30 Mitsubishi Heavy Ind Ltd 歪みと温度の分布測定方法及びその装置
WO2004040241A1 (ja) * 2002-11-01 2004-05-13 Kinzo Kishida 分布型光ファイバセンサシステム
WO2006001071A1 (ja) * 2004-06-25 2006-01-05 Neubrex Co., Ltd. 分布型光ファイバセンサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132701A (ja) * 1996-10-31 1998-05-22 Ando Electric Co Ltd 光ファイバ歪測定装置
JP2003098037A (ja) * 2001-09-26 2003-04-03 Mitsubishi Heavy Ind Ltd 光ファイバ分布型測定方法及びその装置
JP2003156315A (ja) * 2001-11-21 2003-05-30 Mitsubishi Heavy Ind Ltd 歪みと温度の分布測定方法及びその装置
WO2004040241A1 (ja) * 2002-11-01 2004-05-13 Kinzo Kishida 分布型光ファイバセンサシステム
WO2006001071A1 (ja) * 2004-06-25 2006-01-05 Neubrex Co., Ltd. 分布型光ファイバセンサ

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286697A (ja) * 2007-05-18 2008-11-27 Neubrex Co Ltd 分布型光ファイバセンサ
JPWO2010140440A1 (ja) * 2009-06-03 2012-11-15 オリンパスメディカルシステムズ株式会社 内視鏡システム
JP2012063146A (ja) * 2010-09-14 2012-03-29 Neubrex Co Ltd 分布型光ファイバセンサ
CN102147236A (zh) * 2011-03-23 2011-08-10 南京大学 一种全分布式光纤应变及振动的传感方法与传感器
CN102322806A (zh) * 2011-08-01 2012-01-18 杭州欧忆光电科技有限公司 一种混沌激光相关布里渊光时域分析器
CN102506904A (zh) * 2011-10-17 2012-06-20 南京大学 一种基于超导纳米线单光子探测器的自发布里渊散射光时域反射仪
CN102393182B (zh) * 2011-10-31 2013-07-10 南京大学 基于三层结构传感光纤的窄带宽布里渊光时域反射仪
CN102393182A (zh) * 2011-10-31 2012-03-28 南京大学 基于三层结构传感光纤的窄带宽布里渊光时域反射仪
CN102519385A (zh) * 2011-12-30 2012-06-27 中国科学院上海光学精密机械研究所 基于布里渊散射的光纤入侵信号的快速解调装置
CN102607451A (zh) * 2012-03-12 2012-07-25 南京大学(苏州)高新技术研究院 波长扫描型布里渊光时域反射仪
WO2014045655A1 (ja) * 2012-09-19 2014-03-27 株式会社日立製作所 距離計測方法および装置
CN103048061A (zh) * 2012-10-29 2013-04-17 大连理工大学 反射太赫兹谱技术检测偏滤器石墨瓦瞬态温度的装置
CN103033282A (zh) * 2012-10-29 2013-04-10 大连理工大学 一种检测磁约束聚变装置偏滤器石墨瓦瞬态温度的方法
WO2014155400A2 (en) 2013-03-29 2014-10-02 Bastiannini Filippo Apparatus for interrogating distributed stimulated brillouin scattering optical fibre sensors using a quickly tuneable brillouin ring laser
CN103913185A (zh) * 2014-03-31 2014-07-09 广西师范大学 布里渊光纤传感系统及方法
WO2015170355A1 (en) 2014-05-05 2015-11-12 Filippo Bastianini Apparatus for interrogating distributed optical fibre sensors using a stimulated brillouin scattering optical frequency-domain interferometer
CN105823497A (zh) * 2016-05-24 2016-08-03 北京信息科技大学 一种基于信号自相关匹配的光纤光栅反射谱解调算法
CN105823497B (zh) * 2016-05-24 2017-12-19 北京信息科技大学 一种基于信号自相关匹配的光纤光栅反射谱解调算法
CN107741243A (zh) * 2017-10-18 2018-02-27 南京大学 一种botdr系统及提升该系统寿命的方法
CN107741243B (zh) * 2017-10-18 2019-07-12 南京大学 一种botdr系统及提升该系统寿命的方法
CN112088300A (zh) * 2018-09-05 2020-12-15 松下知识产权经营株式会社 计测装置及计测方法
CN114964327A (zh) * 2022-04-26 2022-08-30 浙江师范大学 一种基于时间透镜的实时弯曲传感装置
CN114964327B (zh) * 2022-04-26 2023-06-30 浙江师范大学 一种基于时间透镜的实时弯曲传感装置

Also Published As

Publication number Publication date
JP5021221B2 (ja) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5021221B2 (ja) 分布型光ファイバセンサ
JP5322184B2 (ja) 分布型光ファイバセンサ
EP1760424B1 (en) Distributed optical fiber sensor
JP5322162B2 (ja) 分布型光ファイバ圧力センサ
US8693512B2 (en) Frequency referencing for tunable lasers
JP5654891B2 (ja) 光ファイバ特性測定装置及び方法
JP5213125B2 (ja) 分布型光ファイバセンサ
JP2006517677A (ja) 長距離測定のための高エネルギー光学パルスの生成および送信の方法ならびに装置
CN109556527B (zh) 光纤应变测定装置和光纤应变测定方法
JP4896814B2 (ja) 分布型光ファイバセンサ
JP2009198300A (ja) 光ファイバ特性測定装置及び方法
US20220163355A1 (en) Brillouin distributed optical fiber sensor capable of measuring long measuring distance
JP5196962B2 (ja) 光波レーダ装置
JP3237745B2 (ja) 歪・温度分布測定方法およびその測定装置
JP4677426B2 (ja) コヒーレントotdr
JP7352962B2 (ja) ブリルアン周波数シフト測定装置及びブリルアン周波数シフト測定方法
CA2295780C (en) Wavelength measuring system
JPH07311120A (ja) 光ファイバの温度分布測定方法
Cooper et al. Simple and highly sensitive method for wavelength measurement of low-power time-multiplexed signals using optical amplifiers
JP7424250B2 (ja) 光ファイバ歪測定装置及び光ファイバ歪測定方法
KR20220071936A (ko) 장거리 측정이 가능한 브릴루앙 분포형 광섬유 센서
JP5521178B2 (ja) 時間ゲート付き光検出装置およびこれを用いた多点計測システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R150 Certificate of patent or registration of utility model

Ref document number: 5021221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250