JP2007237033A - Electrolytic ion water producing method and arrangement - Google Patents

Electrolytic ion water producing method and arrangement Download PDF

Info

Publication number
JP2007237033A
JP2007237033A JP2006060465A JP2006060465A JP2007237033A JP 2007237033 A JP2007237033 A JP 2007237033A JP 2006060465 A JP2006060465 A JP 2006060465A JP 2006060465 A JP2006060465 A JP 2006060465A JP 2007237033 A JP2007237033 A JP 2007237033A
Authority
JP
Japan
Prior art keywords
water
electrolytic
electrode
main
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006060465A
Other languages
Japanese (ja)
Other versions
JP4691457B2 (en
JP2007237033A5 (en
Inventor
Tetsuyuki Kitagawa
哲幸 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BMS KK
Original Assignee
BMS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BMS KK filed Critical BMS KK
Priority to JP2006060465A priority Critical patent/JP4691457B2/en
Publication of JP2007237033A publication Critical patent/JP2007237033A/en
Publication of JP2007237033A5 publication Critical patent/JP2007237033A5/en
Application granted granted Critical
Publication of JP4691457B2 publication Critical patent/JP4691457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce strong alkaline water of pH of 12 or higher, and pH of 12.3 or higher efficiently and at a low cost by a simple, small and inexpensive arrangement. <P>SOLUTION: Raw water 51 is supplied to a main production chamber 21 partitioned from a sub production chamber 11 by an ion permeable diaphragm 20 through a water supply pipe 22 constituted of a main electrode, and is made to overflow through an overflowing pipe 23 constituted of a main electrode. A sub electrode 12 having a different polarity from the main electrode is placed in the sub production chamber 11 and an electrolyte 53 is supplied to produce electrolytic ion water corresponding to the polarity around it by electrolytic action by electric current applied between the sub electrode 12 and the main electrode. Alkaline or acid electrolytic ion water 52 overflowing from the main production chamber 21 is collected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水に直流電圧を印加して直流電流を水に流し、水を電気分解してアルカリイオン水や酸性イオン水を生成する電解イオン水生成方法と装置に関するものである。   The present invention relates to an electrolytic ionic water generation method and apparatus for applying a direct current voltage to water to cause a direct current to flow through the water and electrolyzing the water to generate alkali ion water or acidic ion water.

このような電解イオン水生成装置は家庭用、商業用、工業用などとして種々のタイプのものが提供され広く利用されている。凡そ、酸性イオン水はPH4以下で除菌作用があるが飲用には向かないのに対し、アルカリイオン水はPH8、9で飲用に適し、PH10以上で洗浄効果があり、PH12以上の強アルカリ性では除菌効果があるなど用途が広い。近時これらイオン水の特性の認識がさらに深まるなか酸性イオン水でも、空気や有機物に触れると普通の水に戻ることから、残留性がなく安全で環境に優しい消毒用の水といった感があり、小さなクラスターによる高い浸透性と剥離作用を持った除菌や殺菌という点だけでなく洗顔、園芸、消臭など他の用途が次々開発されている。一方、強アルカリイオン水については酸化防止作用、溶解力が強く可溶成分を取り込む溶媒効果に優れ、血液、体液の分解のほか脂肪や蛋白質の溶解にも効力を発揮している。具体的には強酸性水の前処理洗浄、強酸性水の中和、調理場の床やペットのケージなどでの落ちにくい油脂、蛋白汚れの洗浄、鮮魚の傷みやすさの原因であるヌメリの除去、野菜や切り花の鮮度保持のための水上げ、園芸野菜や観賞用植物の生長促進、家畜の肉質改善や健康維持のための給餌水、入れ歯の洗浄、水虫の治癒、白衣やふきんの洗濯時の漂白など種々に利用されている。   Such electrolyzed ion water generators are provided in various types and widely used for home use, commercial use, industrial use, and the like. In general, acidic ionized water has a sterilizing action at pH 4 or less, but is not suitable for drinking, whereas alkaline ionized water is suitable for drinking at pH 8 and 9, has a cleaning effect at pH 10 or higher, and is strongly alkaline at pH 12 or higher. Wide range of uses such as sterilization effect. As recognition of the characteristics of these ionic waters has deepened recently, even acidic ionic water returns to normal water when it comes into contact with air or organic matter, so there is a feeling of disinfecting water that is safe and environmentally friendly with no persistence. In addition to sterilization and sterilization with high permeability and exfoliating action due to small clusters, other uses such as face washing, horticulture, deodorization are being developed one after another. On the other hand, strong alkaline ionized water has a strong antioxidant effect and a solvent effect that has a strong dissolving power and takes in soluble components, and is effective in dissolving blood and body fluids as well as dissolving fats and proteins. Specifically, pre-treatment washing of strong acid water, neutralization of strong acid water, hard-to-fall oils and fats on kitchen floors and pet cages, washing of protein stains, and removal of slime that cause fresh fish to be damaged Watering to maintain the freshness of vegetables and cut flowers, promoting the growth of horticultural vegetables and ornamental plants, feeding water for improving meat quality and maintaining health, cleaning dentures, healing athlete's foot, washing lab coats and towels It is used in various ways such as bleaching.

ところで、強アルカリイオン水は飲用に向かないが、以上のように優れた性質と幅広い用途があり、ますます需要が増大し用途が広がっている。しかし、PH12以上、PH12.3以上の強アルカリイオン水は製造しにくく、これを可能にするものとしては従来タイプの効率の低い電解イオン水生成方式にて水を多段に連続に電解処理する装置が提案されている(例えば、特許文献1、2参照。)。特許文献1に記載のものは原料水と塩水とを使い分け、塩水は10%以上にして強アルカリ性イオン水の生成を実現している。   By the way, strong alkaline ionized water is not suitable for drinking, but as described above, it has excellent properties and a wide range of uses. However, it is difficult to produce strong alkaline ionized water having a pH of 12 or more and a pH of 12.3 or more, and as a device that enables this, an apparatus for continuously performing electrolytic treatment of water in multiple stages using a conventional type of electrolytic ionic water generation method with low efficiency. Has been proposed (see, for example, Patent Documents 1 and 2). The thing of patent document 1 uses raw material water and salt water separately, and salt water is 10% or more, and the production | generation of strong alkaline ionized water is implement | achieved.

また、強酸性水を生成するため、隔膜を挟んで配した陰極と陽極との間、およびマイナス電極およびプラス電極の外側に、マイナス電極面に沿って蛇行するマイナス電極室通路と、プラス電極面に沿って蛇行するプラス電極室とを設け、これらマイナス電極室とプラス電極室とに塩水を通して連続処理する装置も提案されている(例えば、特許文献3参照)。
特開平8−24865号公報 特開2001−9453号公報 特開平8−332486号公報
Also, a negative electrode chamber passage that snakes along the negative electrode surface between the cathode and the anode arranged across the diaphragm and outside the negative electrode and the positive electrode to generate strongly acidic water, and the positive electrode surface There has also been proposed an apparatus in which a plus electrode chamber meandering along the line is provided, and the minus electrode chamber and the plus electrode chamber are continuously processed through salt water (see, for example, Patent Document 3).
JP-A-8-24865 JP 2001-9453 A JP-A-8-332486

しかし、特許文献1、2に記載のものは連続処理できるものの、PH12以上、PH12.3以上の強アルカリイオン水を得るには従来タイプの電解イオン水生成装置を多数段接続する必要があり、複雑かつ大型で高価につくので工業用や商業用の大規模用途には向いても家庭などの小規模用途には向かない。しかも、強アルカリイオン水の生成効率が低く生産性はまだ十分とはいえずイオン水コストが高くなる。特許文献1に記載のもののように塩水の濃度を10%以上にも高くすると人体や自然環境に悪影響するものとなりかねない問題がある。   However, although those described in Patent Documents 1 and 2 can be continuously processed, it is necessary to connect a conventional type of electrolytic ionic water generator in multiple stages in order to obtain strong alkaline ionized water having a pH of 12 or more and a pH of 12.3 or more, Since it is complicated, large and expensive, it is suitable for industrial and commercial large-scale applications but not for small-scale applications such as homes. Moreover, the production efficiency of strong alkaline ionized water is low, and the productivity is not yet sufficient, and the cost of ionized water is increased. When the concentration of salt water is increased to 10% or more like the one described in Patent Document 1, there is a problem that may adversely affect the human body and the natural environment.

上記とは別の特許文献4である特開平6−246272号公報は、陰極、陽極間でのH+の移動速度がOH-の移動速度よりも数倍速く、イオンの拡散と電界の作用によりH+は陽極板と水面との境界からより速やかに離散するので、陽極板と陰極板との間における等PH線の分布において陰極板と水との境界に存在し原水の下流側に向けて成長する強アルカリ性水の厚い層に比べ、陽極板と水との間に存在する強酸性水の層(PH3の層)が非常に薄くなる旨を、また、これが強酸性水の生成効率は強アルカリ性水の生成効率よりも低くなる原因である旨を開示している。ここに、強アルカリ性水や強酸性水を生成するのに生成対象イオン水を得る側の電極との接触面積が多いほど生成効率を上げられると思われる。しかし、特許文献3に記載のものは水と電極との接触通路を比較的コンパクトに長く形成できるが、生成対象イオン水側も非生成対象イオン水側も同じ接触面積比であるので、その分生成効率は低くなる。しかも、折角の蛇行通路の周壁の一側でしか水は電極と接触しないのでこの面でも生成効率は低くなる。従って、強アルカリ性水や強酸性水を効率よく多量に生成するには装置が大型化し高価なものにならざるを得ず、イオン水コストも高くなる。 Japanese Patent Laid-Open No. 6-246272, which is a patent document 4 different from the above, discloses that the movement speed of H + between the cathode and the anode is several times faster than the movement speed of OH , Since H + disperses more quickly from the boundary between the anode plate and the water surface, in the distribution of iso-PH lines between the anode plate and the cathode plate, it exists at the boundary between the cathode plate and water and toward the downstream side of the raw water. Compared with the thick layer of strong alkaline water that grows, the strong acidic water layer (PH3 layer) that exists between the anode plate and water is very thin. It is disclosed that it is a cause that becomes lower than the production efficiency of alkaline water. Here, it is considered that the generation efficiency can be increased as the contact area with the electrode on the side where the generation target ion water is obtained to generate strong alkaline water or strong acid water. However, although the thing of patent document 3 can form the contact path of water and an electrode comparatively compactly long, since the production | generation object ionic water side and the non-production | generation object ionic water side are the same contact area ratios, it is the part. Production efficiency is low. In addition, since water contacts the electrode only on one side of the peripheral wall of the meandering meandering passage, the generation efficiency is low also on this surface. Therefore, in order to efficiently produce a large amount of strong alkaline water or strong acidic water, the apparatus must be large and expensive, and the cost of ionic water increases.

本発明の目的は、簡単かつ小型で安価なものにてPH12以上、PH12.3以上の強アルカリ性水を効率よく低コストで生成できる電解イオン水生成方法と装置を提供することにある。   An object of the present invention is to provide an electrolytic ionic water generation method and apparatus capable of generating strong alkaline water having a pH of 12 or more and a pH of 12.3 or more efficiently and at low cost with a simple, small and inexpensive one.

上記の目的を達成するために、本発明の電解イオン水生成方法は、イオン透過可能な隔膜により副生成室と仕切られた主生成室に主電極よりなる給水管を通して原水を供給しながら主電極よりなる溢流管を通して溢流させるのに併せ、副生成室に主電極と異なった極性の副電極を配して電解液を供給し、副電極と主電極との間の通電による電解作用にてそれらのまわりに極性に応じた電解イオン水を生成させ、主生成室から溢流するアルカリ性または酸性の電解イオン水を採取することを1つの特徴としている。   In order to achieve the above-mentioned object, the electrolytic ionic water generation method of the present invention provides a main electrode while supplying raw water through a water supply pipe made of a main electrode to a main generation chamber partitioned from a by-product chamber by an ion permeable diaphragm. In addition to overflowing through the overflow tube, an electrolyte solution is supplied by supplying a sub-electrode having a polarity different from that of the main electrode to the by-product chamber, and the electrolytic action is caused by energization between the sub-electrode and the main electrode. One feature is that electrolytic ionic water corresponding to the polarity is generated around them, and alkaline or acidic electrolytic ionic water overflowing from the main generation chamber is collected.

このような構成では、隔膜で仕切られた一方の主生成室に位置する主電極と、他方の副生成室に位置する副電極との間の通電により、主、副両生成室内に供給しながら溢流させる原水を電気分解して、隔膜を通じたイオンの行き来を伴い主生成室で得られる主電極の極性に応じたアルカリ性または酸性の電解イオン水を生成対象イオン水として溢流させ採取できる。この採取のために副生成室には電解液を供給して通電、電解特性を高めながら主生成室には電解液でない地下水や水道水などの原水を供給するので、副生成室での電解促進成分の濃度制限のもとに電解促進成分を含まないアルカリ性または酸性の電解イオン水が得られる。特に、原水の供給と生成対象イオン水の溢流採取とを行う給水管が主電極を兼ねて、少なくともその供給水中に浸漬される部分の周壁全周が副電極との間の通電域となって原水と接し電解作用を及ぼすのと、これらは種々な配管形態が採れて配管密度や総配管長を簡単に大きくできるし、配管分布がほぼ均等になりやすいので、前記通電域周壁の外まわりでの原水との接触面積が、配管構造でない板状の副電極に比して各段に大きくなる上、水の非接触なバイパスを回避しやすいので、生成対象イオン水の生成効率、生成速度を高められる。   In such a configuration, while the main electrode located in one main generation chamber partitioned by the diaphragm and the sub electrode located in the other sub-generation chamber are energized, both the main and sub-generation chambers are supplied. The raw water to be overflowed is electrolyzed, and alkaline or acidic electrolytic ionic water according to the polarity of the main electrode obtained in the main generation chamber accompanying the flow of ions through the diaphragm can be overflowed and collected as the ionic water to be generated. For this collection, electrolyte is supplied to the by-product chamber and electricity is supplied, and raw water such as ground water and tap water that is not electrolyte solution is supplied to the main product chamber while improving the electrolysis characteristics. Alkaline or acidic electrolyzed ion water containing no electrolysis promoting component is obtained under the component concentration limit. In particular, the water supply pipe for supplying raw water and collecting the overflow of the ionic water to be generated also serves as the main electrode, and at least the entire circumference of the peripheral wall immersed in the supply water is a current-carrying area between the sub electrode. In contact with the raw water and exerting an electrolysis effect, these can take various piping forms and easily increase the pipe density and total pipe length, and the pipe distribution tends to be almost uniform. The area of contact with the raw water is larger in each stage than a plate-like sub-electrode with no piping structure, and it is easy to avoid non-contact bypass of water. Enhanced.

このような方法は、電解槽と、電解槽内を原水が供給され溢流する主生成室と電解液が供給される副生成室とに仕切るイオン透過可能な隔膜と、主生成室と、副生成室とに配置された極性の異なった主電極および副電極とを備え、主電極は主生成室内に原水を供給する給水管と、主電極の極性に応じ生成される電解イオン水を溢流させる溢流管として配管したことを主たる特徴とする電解イオン水生成装置によって達成することができる。   Such a method includes an electrolytic cell, an ion-permeable diaphragm that partitions the electrolytic cell into a main generation chamber that is supplied with raw water and overflows, and a secondary generation chamber that is supplied with an electrolyte, a main generation chamber, A main electrode and a sub electrode with different polarities arranged in the generation chamber are provided. The main electrode overflows the water supply pipe that supplies raw water into the main generation chamber and the electrolytic ion water generated according to the polarity of the main electrode. This can be achieved by an electrolytic ionic water generating apparatus mainly characterized by being piped as an overflow pipe.

また、電解槽と、電解槽内を原水が供給され溢流する主生成室および副生成室と電解液が供給される電解液室とに仕切るイオン透過可能な隔膜と、主生成室と副生成室とに配置されて相互間に電解液を介し通電される極性の異なった主電極および副電極とを備え、主電極はそれが設けられる主生成室内に原水を供給する給水管と、主電極の極性に応じ生成される電解イオン水を溢流させる溢流管として配管し、副電極はそれが設けられる副生成室内に原水を供給する給水管と、副電極の極性に応じ生成される電解イオン水を溢流させる溢流管として配管したことを別の特徴とする電解イオン水生成装置であると、主生成室と副生成室とで、それらに配した電極の極性の違いに応じた異なったイオン生成水、つまりアルカリイオン水と酸性イオン水とが1つの特徴の場合同様に高い生成効率、生成速度をもって同時に得られる。   In addition, an electrolytic cell, an ion permeable diaphragm that partitions the electrolytic cell into a main generation chamber and a secondary generation chamber that are overflowed with raw water and an electrolytic solution chamber that is supplied with an electrolytic solution, a main generation chamber and a by-product A main electrode and a sub-electrode having different polarities arranged in a chamber and energized through an electrolyte between the main electrode and the main electrode. The secondary electrode is piped as an overflow pipe that overflows the electrolytic ion water generated according to the polarity of the water, and the secondary electrode is a water supply pipe that supplies raw water into the secondary generation chamber where it is provided, and the electrolytic that is generated according to the polarity of the secondary electrode. In the electrolytic ionic water generating device, which is another feature of piping as an overflow pipe that overflows ionic water, the main generation chamber and the sub-generation chamber correspond to the difference in polarity of the electrodes arranged in them. Different ion-generated waters, namely alkaline ionized water and acidic ionized water If water is one feature similarly high generation efficiency, obtained simultaneously with production rate.

電解液は塩分濃度がほぼ1〜2%の塩水を用いることにより、塩分が不足で生成対象のアルカリ性または酸性の電解イオン水の生成効率を低下させたり、塩分が過剰で生成対象イオン水に塩分の影響がでたり、発熱したりすることを回避することができる。ここで、電解液は経時的に減少し濃度も変化するのでこれを調整するように定期的に補充を行えばよいが、循環利用しながら調整することもできるし、掛け流しでもよい。   The electrolyte uses salt water with a salt concentration of approximately 1 to 2%, so that the production efficiency of alkaline or acidic electrolytic ionic water to be generated is reduced due to insufficient salinity, or the salt content in the production target ionic water is excessive. It is possible to avoid the influence of or the generation of heat. Here, since the electrolytic solution decreases with time and the concentration also changes, it may be replenished periodically so as to adjust this, but it can also be adjusted while being circulated, or it may be poured.

給水管が少なくともそれが設けられる室の底部に給水口が位置し、溢流管はそれが設けられる室の電解イオン水生成域中に分岐またはおよび屈曲して広がった後電解イオン水生成域上に開口して位置する溢流口に至っている、さらなる構成では、
分岐またはおよび屈曲した広がりを持った溢流管が給水管との組み合わせにより、それが設けられる室、つまり主生成室や副生成室内でのほぼ均等で高い配管密度にて、水とのほぼ均等でバイパスのない高い接触効率、長い接触時間を確保して、生成対象となるアルカリ性または酸性の電解イオン水の生成を促進し、かつ安定させられる。また、給水管および溢流管が陰極である場合はH+が引き寄せられて、陰極における電子との反応によりH2ガスとなって放散され、陽極である場合はOH-ガスが引き付けられて陽極に電子を奪い取られO2ガスとなり放散される。これらガスの放散は前記のような電極および水の接触状態での電解イオン水の生成過程では、水内のほぼ均等に及ぶ活発な上昇気泡となるので1本の給水管が1つの給水口から主生成室の底部に供給する単純な給水方式になるが給水流は前記上昇気泡によって拡散、随伴されながら上昇していき、給水管および溢流管とよく接触することによっても接触効率、電解イオン水生成効率が高まり、溢流管の溢流口の高さ位置へはむらの無い高いアルカリ性または酸性の電解イオン水となって到達し溢流口から溢流管内に溢流することで採取でき、溢流管内でも副電極との通電域ではなお生成対象イオン水が生成されアルカリ性または酸性の度合いがその安定性と共にさらに高まる。放散するガスは水面上に出るので密閉環境ではその水面上に充満しながら溢流管に抜けるので、溢流管途中にて電解イオン水から自然離脱させて排気させられる。
The water supply pipe is positioned at least at the bottom of the chamber in which the water supply pipe is provided, and the overflow pipe is branched or bent into the electrolytic ion water generation area of the chamber in which the water supply pipe is provided and then spread over the electrolytic ion water generation area. In a further configuration, leading to an overflow opening located at
The overflow pipe with branching or bending spread is combined with the water supply pipe, so that it is almost equal to the water in the chamber in which it is installed, that is, almost equal and high pipe density in the main generation chamber and sub-generation chamber. Thus, high contact efficiency without a bypass and a long contact time are secured, and the production of alkaline or acidic electrolytic ionic water to be produced is promoted and stabilized. In addition, when the water supply pipe and the overflow pipe are cathodes, H + is attracted and diffused as H 2 gas by reaction with electrons at the cathode, and when it is an anode, OH gas is attracted to the anode. The electrons are taken away and become O 2 gas. In the process of generating electrolytic ionic water in the contact state of the electrode and water as described above, these gas emissions become active rising bubbles extending almost evenly in the water, so one water supply pipe is connected to one water supply port. It becomes a simple water supply system that supplies water to the bottom of the main generation chamber, but the water supply flow is diffused and accompanied by the rising bubbles, and rises while being in close contact with the water supply pipe and overflow pipe. The water generation efficiency is improved, and it can be collected by reaching the height of the overflow outlet of the overflow pipe as high alkaline or acidic electrolytic ionic water with no unevenness and overflowing from the overflow outlet into the overflow pipe. Even in the overflow tube, the ion water to be generated is still generated in the energization region with the sub-electrode, and the degree of alkalinity or acidity is further increased along with its stability. Since the gas to be emitted comes out on the surface of the water, it fills the surface of the water and escapes to the overflow pipe in a sealed environment, so that it is naturally separated from the electrolytic ion water in the middle of the overflow pipe and exhausted.

主生成室の密閉によれば特にそこに溜まる放散ガスの全てを液面に開口している溢流口から溢流管内に導入して余すことなく所定の経路にて排気できる。   According to the sealing of the main production chamber, in particular, all of the diffused gas accumulated in the main generation chamber can be exhausted through a predetermined path without being exhausted by introducing it into the overflow pipe from the overflow opening opened to the liquid surface.

溢流口が複数ある、さらなる構成では、
溢流口が多くあるほど液面付近での横の流れを抑えられ、前記放散ガスの真っ直ぐな上昇流への影響をなくしてむらの無い高効率な電解イオン水の生成を実現することができる。
In a further configuration with multiple overflow outlets,
As there are more overflow ports, the lateral flow near the liquid surface can be suppressed, and it is possible to realize uniform and highly efficient generation of electrolytic ionic water without affecting the straight upward flow of the emitted gas. .

主電極は陰極であり、主生成室はアルカリイオン水を生成溢流させる、さらなる構成では、
PH12以上、PH12.3以上の強アルカリイオン水が効率良く多量に連続して生成することができる。
In a further configuration, the main electrode is a cathode, and the main generation chamber generates and overflows alkaline ionized water.
Strong alkaline ionized water having a pH of 12 or more and a pH of 12.3 or more can be efficiently and continuously produced in a large amount.

主電極は陽極であり、主生成室は酸性イオン水を生成溢流させる、さらなる構成では、
PH2以上、3以上の強酸性イオン水が効率良く多量に連続して生成することができる。
In a further configuration, the main electrode is the anode, and the main generation chamber generates and overflows acidic ion water.
Strong acidic ionized water having a pH of 2 or more and 3 or more can be efficiently and continuously produced in a large amount.

本発明のそれ以上の目的および特徴は、以下の詳細な説明および図面によって明らかになる。本発明の各特徴はそれ単独で、あるいは可能な限り種々な組合せで複合して用いることができる。   Further objects and features of the present invention will become apparent from the following detailed description and drawings. Each feature of the present invention can be used alone or in combination in various combinations as much as possible.

本発明の電解イオン水生成方法と装置によれば、主生成室にて主電極である原水の給水管と電解イオン水の溢流管とが副生成室の副電極との通電を図って得られる水との特異な接触、電解構造により、主電極の極性に応じたアルカリ性または酸性の生成対象イオン水を効率よく生成することができ、アルカリ性または酸性の高い電解イオン水でも簡単かつ小型で安価な装置により生産性よく低コストに得られ、家庭用の小規模用途、工業用、商業用の大規模用途のいずれにも好適である。   According to the method and apparatus for producing electrolytic ionic water of the present invention, the raw water feed pipe, which is the main electrode in the main production chamber, and the overflow pipe of the electrolytic ionic water are obtained by energizing the sub electrode in the by-product chamber. Due to the unique contact with the generated water and the electrolytic structure, it is possible to efficiently generate alkaline or acidic target ion water according to the polarity of the main electrode. Even alkaline or highly acidic electrolytic ion water is simple, small and inexpensive. Such a device can be obtained with low productivity and low cost, and is suitable for any of small-scale household use, industrial use, and commercial large-scale use.

副生成室に用いる電解液の塩分濃度をほぼ1〜2%にすることで、塩分不足による生成対象イオン水の生成効率が低下したり、塩分過剰で生成対象イオン水に塩分が影響したり、発熱したりせず、PH12以上、PH12.3以上の強アルカリ性、PH3以下、2以下の強酸性の生成対象イオン水が高い安定度のものとして得られる。また、得られる電解イオン水は塩分の影響がないことによりアルカリイオン水では特に生体や環境にやさしく、あらゆる分野に問題なく適用してその特性を発揮できる。   By making the salt concentration of the electrolyte used in the by-product chamber to be approximately 1 to 2%, the generation efficiency of the production target ionic water due to insufficient salinity decreases, or the salinity affects the production target ionic water due to excessive salt, It does not generate heat, and a strongly alkaline production target ionic water having a pH of 12 or more and a pH of 12.3 or more, and a pH of 3 or less and 2 or less is obtained with high stability. Moreover, since the obtained electrolytic ionic water is not affected by salt, the alkaline ionic water is particularly friendly to living bodies and the environment, and can be applied to any field without any problems and exhibit its characteristics.

以下、図1、図2を参照して本発明に係る電解イオン水生成方法と装置の実施の形態について説明し、本発明の理解に供する。なお、以下に示す実施の形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。   Hereinafter, with reference to FIG. 1, FIG. 2, embodiment of the electrolytic ionic water production | generation method and apparatus concerning this invention is described, and it uses for an understanding of this invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.

本実施の形態の電解イオン水生成方法は、図1に模式的に示す電解イオン水生成装置を参照して説明すると、イオン透過可能な隔膜20により副生成室11と仕切られた主生成室21に主電極である給水管22を通して井戸水、水道水などの電解促進成分である例えば塩分の含まない原水51を供給しながら主電極よりなる溢流管23を通して電解イオン水52として溢流させるのに併せ、副生成室11に主電極と異なった極性の副電極12を配して塩水などの電解液53を供給しながら電解液廃水54として溢流させ、副電極12と主電極である給水管22および溢流管23との間の通電による電解作用にてそれらのまわりに極性に応じた電解イオン水を生成させ、主生成室21から溢流するアルカリ性または酸性の電解イオン水52を採取する。   The electrolytic ionic water generation method of the present embodiment will be described with reference to the electrolytic ionic water generation apparatus schematically shown in FIG. 1. The main generation chamber 21 partitioned from the sub-generation chamber 11 by an ion permeable diaphragm 20. For example, raw water 51 which does not contain salt, such as well water and tap water, is supplied through the water supply pipe 22 which is the main electrode, and overflows as electrolytic ionic water 52 through the overflow pipe 23 which is the main electrode. At the same time, a sub-electrode 12 having a polarity different from that of the main electrode is arranged in the sub-generation chamber 11 and is overflowed as an electrolyte waste water 54 while supplying an electrolytic solution 53 such as salt water. The electrolytic ionic water according to the polarity is generated around them by the electrolysis action by energization between 22 and the overflow pipe 23, and the alkaline or acidic electrolytic ionic water 52 overflowing from the main generation chamber 21 is collected. To.

このように隔膜20で仕切られた一方の主生成室21に位置する主電極と、他方の副生成室11に位置する副電極12との間に直流電圧を印加したときの通電により、主、副両生成室21、11内に供給しながら溢流させる原水51および電解液53を電気分解すると、隔膜20を通じたイオンの行き来を伴い主生成室21で得られる主電極の極性に応じたアルカリ性または酸性の電解イオン水52を生成対象イオン水52として溢流させ採取できる。この採取のため上記のように副生成室11には塩水などの電解液53を供給して通電、電解特性を高めながら主生成室21には塩水などの電解液でない地下水や水道水などの原水51を供給するので、副生成室11での電解液53の塩分などの電解促進成分の濃度制限のもとに塩分などの電解促進成分を含まないアルカリ性または酸性の電解イオン水52が得られる。特に、原水51の給水管22と生成対象イオン水52の溢流採取とを行う溢流管23が主電極を兼ねて、少なくともその供給原水51中に浸漬される斜線部分の周壁全周が副電極12との間の図1に斜線で示す通電域となってその外面で原水51と接触して電解作用を及ぼすのと、これら給水管22、溢流管23は種々な配管形態が採れて配管密度や総配管長を簡単に大きくできるし、配管分布がほぼ均等になりやすいので、前記通電域周壁外まわりの原水51との接触面積が、配管構造でない板状の副電極12に比して各段に大きくなる上、原水51の給水管22、溢流管23に対する非接触なバイパスを回避しやすいので、生成対象イオン水52の生成効率、生成速度を高められる。   As a result of energization when a DC voltage is applied between the main electrode located in one main generation chamber 21 partitioned by the diaphragm 20 and the sub electrode 12 located in the other sub-generation chamber 11, the main, When the raw water 51 and the electrolyte solution 53 that are overflowed while being supplied into the auxiliary generation chambers 21 and 11 are electrolyzed, the alkaline flow according to the polarity of the main electrode obtained in the main generation chamber 21 is accompanied by the movement of ions through the diaphragm 20. Alternatively, acidic electrolytic ionic water 52 can be overflowed and collected as production target ionic water 52. For this collection, as described above, the electrolytic solution 53 such as salt water is supplied to the by-product chamber 11 and the main generation chamber 21 is supplied with the electrolytic solution 53 such as salt water, and the raw water such as ground water or tap water that is not electrolyte solution such as salt water is improved. Since 51 is supplied, alkaline or acidic electrolytic ionic water 52 that does not contain an electrolytic promoting component such as salt is obtained under the concentration limitation of the electrolytic promoting component such as salt in the electrolytic solution 53 in the by-product chamber 11. In particular, the water supply pipe 22 of the raw water 51 and the overflow pipe 23 for collecting the overflow of the production target ion water 52 also serve as the main electrode, and at least the entire circumference of the peripheral wall of the hatched portion immersed in the supply raw water 51 is the sub-surface. The energized region indicated by the oblique lines in FIG. 1 between the electrode 12 and the outer surface comes into contact with the raw water 51 to effect electrolysis, and these water supply pipe 22 and overflow pipe 23 can take various piping forms. Since the pipe density and the total pipe length can be easily increased and the pipe distribution tends to be almost uniform, the contact area with the raw water 51 around the outer peripheral wall of the current-carrying region is larger than that of the plate-like sub-electrode 12 having no pipe structure. In addition to being increased in each stage, it is easy to avoid non-contact bypass of the raw water 51 with respect to the water supply pipe 22 and the overflow pipe 23, so that the production efficiency and production speed of the production target ion water 52 can be increased.

この結果、主生成室21にて主電極である原水の給水管22と電解イオン水52の溢流管23とが副生成室11の副電極12との通電を図って得られる水との特異な接触、電解構造により、主電極の極性に応じたアルカリ性または酸性の生成対象である電解イオン水52を効率よく生成することができ、アルカリ性、酸性の高い電解イオン水52でも簡単かつ小型で安価な装置により生産性よく低コストで得られ、家庭用の小規模用途、工業用、商業用の大規模用途のいずれにも好適である。   As a result, in the main generation chamber 21, the raw water supply pipe 22 which is the main electrode and the overflow pipe 23 of the electrolytic ion water 52 are peculiar to water obtained by energizing the sub electrode 12 of the sub-generation chamber 11. Electrolytic ionic water 52, which is an alkaline or acidic generation target according to the polarity of the main electrode, can be efficiently generated by a simple contact and electrolytic structure. Even alkaline and highly acidic electrolytic ionic water 52 is simple, small and inexpensive. And can be obtained at low cost with good productivity and suitable for any of small-scale household use, industrial use, and commercial large-scale use.

なお、副生成室11に用いる電解液53の塩分濃度をほぼ1〜2%にすることで、塩分不足による生成対象イオン水生成効率が低下したり、塩分過剰で生成対象イオン水に塩分が影響したり、発熱したりせず、PH12以上、PH12.3以上の強アルカリ性、PH3以下、PH2以下の強酸性の生成対象イオン水が得られる。特に、主電極を陰極として生成対象イオン水52が強アルカリ性電解イオン水として得る場合、塩分の影響がないことにより生体や環境にやさしく、あらゆる分野に問題なく適用してその特性を如何なく発揮できる。例えば、食品などの殺菌に効果的なほか、染色前の前洗浄に適用すると洗浄効果が高く汚れに起因した染めの色むらが解消された。また、クラスタが小さく蒸発し難くいので食品に利用すれば保水性がよく保存期間の増大が図れたし、食感を壊さない利点が得られた。   In addition, by making the salt concentration of the electrolytic solution 53 used for the by-product chamber 11 approximately 1 to 2%, the generation target ionic water generation efficiency due to insufficient salt content is reduced, or the generation target ionic water is affected by the salinity. Without generating heat or generating heat, strongly alkaline ionized water having a pH of 12 or more and a pH of 12.3 or more, and a strongly acidic product water of PH3 or less and PH2 or less is obtained. In particular, when the production target ionic water 52 is obtained as strong alkaline electrolytic ionic water using the main electrode as a cathode, it is friendly to the living body and the environment due to the absence of the influence of salt, and can be applied to any field without any problems and exhibit its characteristics. . For example, it is effective for sterilization of foods and the like, and when applied to pre-cleaning before dyeing, it has a high cleaning effect and eliminates uneven coloring due to dirt. Further, since the clusters are small and difficult to evaporate, if used in food, the water retention is good and the storage period can be increased, and the texture is not broken.

このような方法を実現するのに、図に示す装置は、電解槽10と、電解槽10内を原水51が供給され溢流する主生成室21と塩水である電解液53が供給され溢流する副生成室11とに仕切るイオン透過可能な隔膜20とを備え、主生成室21と、副生成室11とに配置された極性の異なった主電極および副電極を設けるのに、主電極は主生成室21内に原水51を供給する給水管22と、主電極の極性に応じ生成される電解イオン水52を溢流させる溢流管23とし、主生成室21での原水51による電解イオン水52の生成域中に配管し、副電極は副生成室11内にて主生成室21の外まわりを囲う従来から用いられている環状の、あるいは断続配置した板状の副電極12としている。主電極および副電極を特定の極関係にして用いるには、直流電圧の一方の電極を主電極に、他方の電極を副電極に接続して双方間に直流電圧を印加すればよい。主電極および副電極は通常、原水51や電解液53の水面より上の部分で電圧印加装置の電極と接続されるが、双方間で通電が生じるのは原水51および電解液53の水面以下、つまりそれらに没している図1に示す斜線を施した範囲となる。   In order to realize such a method, the apparatus shown in the figure includes an electrolytic cell 10, a main production chamber 21 in which raw water 51 is supplied and overflowed in the electrolytic cell 10, and an electrolytic solution 53 that is salt water is supplied and overflowed. In order to provide main electrodes and sub-electrodes having different polarities arranged in the main generation chamber 21 and the sub-generation chamber 11, the main electrode is The water supply pipe 22 that supplies the raw water 51 into the main generation chamber 21 and the overflow pipe 23 that overflows the electrolytic ion water 52 generated according to the polarity of the main electrode are used. Pipes are provided in the water 52 generation area, and the sub-electrodes are the annular or intermittently arranged plate-like sub-electrodes 12 that surround the outer periphery of the main generation chamber 21 in the sub-generation chamber 11. In order to use the main electrode and the sub electrode in a specific pole relationship, one electrode of the DC voltage may be connected to the main electrode, the other electrode may be connected to the sub electrode, and a DC voltage may be applied between them. The main electrode and the sub-electrode are usually connected to the electrode of the voltage application device at a portion above the water surface of the raw water 51 and the electrolytic solution 53, but energization between them occurs below the surface of the raw water 51 and the electrolytic solution 53, That is, it becomes the range which gave the oblique line shown in FIG.

ここで、アルカリイオン水を生成対象の電解イオン水52として得るには主電極を陰極、副電極を陽極にすればよい。また、酸性イオン水を生成対象イオン水52として得るには主電極を陽極にすればよい。もっとも、極性を切り換えられる直流電圧印加装置を用いて主電極、副電極の極性をその時々で切り換えられるようにすることもできる。陰極は腐食しにくくステンレス鋼を採用して問題はなくアルカリ性イオン水を生成対象イオン水52とするときの給水管22、溢流管23に好適であるが、陽極は腐食しやすく耐腐食性の高いプラチナ、金などが好適であるが、頻繁にメンテナンスをすればそれらよりも低コストな金属材料を採用することができる。電解液53を供給する給水管40やそれを溢流させる排水管41、電解槽10などは塩分を含む電解液53に触れるが電気特性を持たなくて良いので塩化ビニルなどの樹脂材料を採用すればよい。隔膜20は微小なポーラス組織である陶器材料を採用して好適である。   Here, in order to obtain alkaline ionized water as electrolytic ionic water 52 to be generated, the main electrode may be a cathode and the sub electrode may be an anode. Moreover, what is necessary is just to make a main electrode into an anode in order to obtain acidic ion water as the production | generation object ion water 52. FIG. However, the polarity of the main electrode and the sub electrode can be switched from time to time by using a DC voltage application device capable of switching the polarity. The cathode is not easily corroded and employs stainless steel, which is suitable for the water supply pipe 22 and the overflow pipe 23 when the alkaline ionized water is used as the production target ionized water 52. However, the anode is easily corroded and is resistant to corrosion. High platinum, gold, etc. are suitable, but if maintenance is performed frequently, metal materials with lower costs can be used. The water supply pipe 40 for supplying the electrolytic solution 53, the drain pipe 41 for overflowing the electrolytic solution 53, the electrolytic bath 10 and the like are in contact with the electrolytic solution 53 containing salt, but may not have electrical characteristics, so a resin material such as vinyl chloride is used. That's fine. The diaphragm 20 is preferably made of a ceramic material having a fine porous structure.

なお、図1に示す例では、給水管22が少なくとも主生成室21の底部に給水口22aが位置し、溢流管23が電解イオン水生成域中に分岐(またはおよび屈曲)して広がった後電解イオン水生成域液面51a上に上向きに開口し位置する溢流口23aに至るようにしている。このように、分岐またはおよびスパイラルなど各種に屈曲した広がりを持った溢流管23が給水管22との組み合わせにより、主生成室21内でのほぼ均等で高い配管密度にて、原水51とのほぼ均等でバイパスのない高い接触効率、長い接触時間を確保して、生成対象のアルカリ性または酸性の電解イオン水の生成を促進し、かつ安定させられる。   In the example shown in FIG. 1, the water supply pipe 22 has a water supply port 22a located at least at the bottom of the main generation chamber 21, and the overflow pipe 23 branches (or bends) into the electrolytic ionic water generation area and spreads. It is made to reach the overflow port 23a which opens upward and is located on the post-electrolyzed ionic water generation region liquid surface 51a. In this way, the overflow pipe 23 having a bent or expanded shape such as a spiral is combined with the water supply pipe 22, so that it has a substantially uniform and high pipe density in the main generation chamber 21 and the raw water 51. It is possible to ensure high contact efficiency and long contact time that are substantially equal and without bypass, and to promote and stabilize the generation of alkaline or acidic electrolytic ionic water to be generated.

また、給水管22および溢流管23が陰極である場合はそれにH+が引き寄せられて、陰極における電子との反応によりH2ガスとなって放散され、陽極である場合はそれにOH-ガスが引き付けられて陽極に電子を奪い取られO2ガスとなり放散される。これらガスの放散は前記のような電極および水の接触状態での電解イオン水の生成過程では、原水51内のほぼ均等に及ぶ活発な上昇気泡となって1本の給水管22が1つの給水口22aから主生成室21の底部に供給する単純な給水方式になるが、このような給水方式での給水流でも前記上昇気泡によって拡散、随伴されながら上昇していき、給水管22および溢流管23とよく接触することによっても接触効率、電解イオン水生成効率が高まり、溢流管23の溢流口23aの高さ位置へはむらの無い高いアルカリ性または酸性の電解イオン水52となって到達し溢流口23aから溢流管23内に溢流することで採取でき、溢流管23内でも副電極との通電域ではなお生成対象イオン水が生成されアルカリ性または酸性がさらに高まる。放散するガスは水面上の密閉した空間55に出て水面上に充満しながら溢流管23に抜けるので、溢流管23途中に接続した排気管23bを通じて電解イオン水52から自然離脱させて排気させられる。また、前記密閉によって主生成室21で発生する放散ガスの全てを液面に開口している溢流口23aから溢流管23内に導入して余すことなく所定の経路にて排気できる。つまり、炭酸ガスとの接触を遮断でき炭酸ガスと反応して有害化するようなことを回避することができる。 Also, if the water supply pipe 22 and overflow pipe 23 is a cathode is H + is attracted to it, be dissipated becomes H 2 gas by reaction with electrons at the cathode, when an anode is it OH - gas The electrons are attracted and taken into the anode and diffused as O 2 gas. In the process of generating electrolytic ionic water in the contact state of the electrode and water as described above, these gases are diffused as active rising bubbles extending almost evenly in the raw water 51, and one water supply pipe 22 supplies one water supply. A simple water supply system that supplies water to the bottom of the main generation chamber 21 from the opening 22a is used, but the water supply flow in such a water supply system rises while being diffused and accompanied by the rising bubbles. Contact efficiency and electrolytic ionic water generation efficiency are also increased by making good contact with the tube 23, and the alkaline ionic water 52 is highly alkaline or acidic with no unevenness at the height of the overflow port 23 a of the overflow tube 23. It can be collected by arriving and overflowing into the overflow pipe 23 from the overflow port 23a. Even in the overflow pipe 23, ion water to be generated is still generated in the energization region with the sub electrode, and the alkalinity or acidity is further increased. The emitted gas exits into the sealed space 55 on the water surface and fills the water surface and escapes to the overflow pipe 23. Therefore, the gas is naturally separated from the electrolytic ionic water 52 through the exhaust pipe 23b connected in the middle of the overflow pipe 23 and exhausted. Be made. Further, all of the diffused gas generated in the main generation chamber 21 due to the sealing is introduced into the overflow pipe 23 from the overflow port 23a that opens to the liquid surface, and can be exhausted through a predetermined route without leaving any excess. That is, contact with carbon dioxide gas can be cut off, and it can be avoided that it reacts with carbon dioxide gas and becomes harmful.

ここで、図1に示す例のように溢流口23aが複数で、多いほど液面付近での横の流れを抑えられ、前記放散ガスの真っ直ぐな上昇流への影響をなくしてむらの無い高効率な電解イオン水の生成を実現することができる。   Here, as in the example shown in FIG. 1, the more the number of overflow ports 23a is, the more the lateral flow in the vicinity of the liquid level is suppressed, and there is no unevenness in eliminating the influence on the straight upward flow of the emitted gas. Highly efficient generation of electrolytic ionic water can be realized.

本発明者による実験では、PH12以上のアルカリイオン水を生成するのに、8A、50Vの給電での従来の装置の能力では2L/Hrであったのが、本実施の形態の装置では15L/Hrと生産性が大幅に高まった。   In the experiment by the present inventor, in order to generate alkaline ionized water having a pH of 12 or more, the capacity of the conventional apparatus with a power supply of 8 A and 50 V was 2 L / Hr. Hr and productivity increased significantly.

図2に模式的に示す例の電解イオン水生成装置は、アルカリイオン水および酸性イオン水の双方を同時に得られるようにしたものである。そのために、電解槽10と、電解槽10内を原水51が供給され溢流する主生成室21および副生成室11と電解液53が供給される電解液室121とに仕切るイオン透過可能な隔膜20と、主生成室21と副生成室11とに配置されて相互間に電解液53を介し通電される極性の異なった主電極および副電極とを備え、主電極はそれが設けられる主生成室21内に原水51を供給する給水管22と、主電極の極性に応じ生成される電解イオン水52を溢流させる溢流管23として配管し、副電極はそれが設けられる副生成室11内に原水51を供給する給水管122と、副電極の極性に応じ生成される電解イオン水152を溢流させる溢流管123として配管している。これにより、主生成室21と副生成室11とで、それらに配した電極の極性の違いに応じた異なったイオン生成水52、152、つまりアルカリイオン水と酸性イオン水とが1つの特徴の場合同様に高い生成効率、生成速度をもって同時に得られる。図示例では、主電極である給水管22および溢流管23が陰極で主生成室21からはアルカリイオン水52が得られ、副電極である給水管122および溢流管123が陽極で副生成室11からは酸性イオン水152が得られる。副生成室11、給水管122とその給水口122a、溢流管123とその溢流口123aおよび排気管123bのそれぞれは、先の例で既述した主生成室21、給水管22とその給水口22a、溢流管23とその溢流口23aおよび排気管23bのそれぞれと共通した条件にて設けてある。なお、陽極とする給水管122、溢流管123は酸性イオン水を生成する環境から酸による侵食を受けるので、チタン製で2μm程度のプラチナメッキをしたものを用いた。これによって耐久性が向上しかつ成分溶出があっても生体への悪影響がなくなる。   The electrolytic ionic water generator of the example schematically shown in FIG. 2 is configured to obtain both alkaline ionized water and acidic ionic water at the same time. For this purpose, an ion permeable diaphragm that partitions the electrolytic cell 10 into the main generation chamber 21 and the by-product chamber 11 in which the raw water 51 is supplied and overflows in the electrolytic cell 10 and the electrolytic solution chamber 121 to which the electrolytic solution 53 is supplied. 20 and the main generation chamber 21 and the sub-generation chamber 11, and the main electrode and the sub-electrode having different polarities that are energized through the electrolytic solution 53 between the main generation chamber 21 and the sub-generation chamber 11. The water supply pipe 22 for supplying the raw water 51 into the chamber 21 and the overflow pipe 23 for overflowing the electrolytic ion water 52 generated according to the polarity of the main electrode are piped, and the sub-electrode is the sub-generation chamber 11 in which it is provided. A water supply pipe 122 for supplying the raw water 51 and an overflow pipe 123 for overflowing the electrolytic ion water 152 generated according to the polarity of the sub electrode are provided. As a result, in the main generation chamber 21 and the sub-generation chamber 11, different ion generation waters 52 and 152 corresponding to the difference in polarity of the electrodes arranged on them, that is, alkaline ion water and acidic ion water have one characteristic. In the same way, high production efficiency and production speed can be obtained at the same time. In the illustrated example, the water supply pipe 22 and the overflow pipe 23 which are main electrodes are cathodes, and alkaline ionized water 52 is obtained from the main generation chamber 21, and the water supply pipe 122 and the overflow pipe 123 which are sub electrodes are by-produced as anodes. Acidic ion water 152 is obtained from the chamber 11. The by-product chamber 11, the water supply pipe 122 and its water supply port 122a, the overflow pipe 123 and its overflow port 123a, and the exhaust pipe 123b are respectively the main generation chamber 21, the water supply pipe 22 and its water supply already described in the previous example. The outlet 22a, the overflow pipe 23 and the overflow outlet 23a and the exhaust pipe 23b are provided under common conditions. Note that the water supply pipe 122 and the overflow pipe 123 serving as anodes are eroded by acid from the environment in which acidic ion water is generated, and therefore, those made of titanium and plated with platinum of about 2 μm were used. This improves durability and eliminates adverse effects on the living body even if components are eluted.

なお、本実施の形態では、先の場合のように電解液の掛け流し形態を採っていないので、電解液は経時的に減少し濃度も変化するのでこれを調整するように定期的に補充を行う。しかし、循環利用しながら調整することもでき、先の例の場合もこのような方式を採用することができる。   In this embodiment, since the electrolyte solution is not applied as in the previous case, the electrolyte solution decreases with time and the concentration also changes. Do. However, the adjustment can be performed while being circulated, and such a method can also be adopted in the case of the previous example.

発明者の本例に関する実験によれば、電解液53の容量が50L、通電が130V、8Aでの条件にて、イオン生成水の温度調整にもよるが概ねPH12以上の強アルカリイオン水52とPH2以下の強酸性イオン水152とが、それぞれ6L/Hrずつ生成することができた。   According to the inventor's experiment on this example, the strong alkaline ionized water 52 having a pH of approximately 12 or more, although depending on the temperature adjustment of the ion-generated water, under the conditions that the electrolytic solution 53 has a capacity of 50 L, energization is 130 V, and 8 A It was possible to generate 6 L / Hr each of strongly acidic ionized water 152 having a pH of 2 or less.

本発明は電解イオン水を生成するのに、簡単かつ小型で安価な装置で強アルカリイオン水や強酸性イオン水を効率よく安価に生成することができる。   In the present invention, electrolytic alkaline ionized water can be produced efficiently and inexpensively with a simple, small and inexpensive apparatus.

本発明の実施の形態に係る電解イオン水生成装置の1つの例を示す摸式図である。It is a model diagram which shows one example of the electrolytic ionic water production | generation apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電解イオン水生成装置の今1つの例を示す摸式図である。It is a model which shows another example of the electrolytic ion water production | generation apparatus which concerns on embodiment of this invention.

符号の説明Explanation of symbols

10 電解槽
11 副生成室
12 副電極
20 隔膜
21 主生成室
22 給水管(主電極)
122 給水管(副電極)
22a、122a 給水口
23 溢流管(主電極)
123 溢流管(副電極)
23a 溢流口
123a 溢流口
23b 排気管
123b 排気管
41 排水管
51 原水
52 電解イオン水
53 電解液
54 電解液廃水
121 電解液室
DESCRIPTION OF SYMBOLS 10 Electrolyzer 11 Subgeneration chamber 12 Subelectrode 20 Diaphragm 21 Main generation chamber 22 Water supply pipe (main electrode)
122 Water supply pipe (sub electrode)
22a, 122a Water supply port 23 Overflow pipe (main electrode)
123 Overflow pipe (sub electrode)
23a Overflow port 123a Overflow port 23b Exhaust pipe 123b Exhaust pipe 41 Drain pipe 51 Raw water 52 Electrolytic ion water 53 Electrolytic solution 54 Electrolytic waste water 121 Electrolytic solution chamber

Claims (9)

イオン透過可能な隔膜により副生成室と仕切られた主生成室に主電極よりなる給水管を通して原水を供給しながら主電極よりなる溢流管を通して溢流させるのに併せ、副生成室に主電極と異なった極性の副電極を配して電解液を供給し、副電極と主電極との間の通電による電解作用にてそれらのまわりに極性に応じた電解イオン水を生成させ、主生成室から溢流するアルカリ性または酸性の電解イオン水を採取することを特徴とする電解イオン水生成方法。 In addition to supplying raw water to the main generation chamber, which is separated from the by-product chamber by the ion-permeable membrane, through the water supply pipe consisting of the main electrode, the main generation chamber is overflowed through the overflow pipe consisting of the main electrode. A secondary electrode with a different polarity is supplied and an electrolyte solution is supplied, and electrolytic ionic water corresponding to the polarity is generated around the secondary electrode and the main electrode by electrolysis caused by energization. A method for producing electrolytic ionic water, which comprises collecting alkaline or acidic electrolytic ionic water overflowing from the water. 電解液は塩分濃度がほぼ1〜2%の塩水を用いる請求項1に記載の電解イオン水生成方法。 2. The electrolytic ionic water generating method according to claim 1, wherein the electrolytic solution uses salt water having a salt concentration of approximately 1 to 2%. 電解槽と、電解槽内を原水が供給され溢流する主生成室および生成室と電解液が供給される副生成室とに仕切るイオン透過可能な隔膜と、主生成室と、副生成室とに配置されて相互間に通電される極性の異なった主電極および副電極とを備え、主電極は主生成室内に原水を供給する給水管と、主電極の極性に応じ生成される電解イオン水を溢流させる溢流管として配管したことを特徴とする電解イオン水生成装置。 An electrolytic cell, a main production chamber that is supplied with raw water and overflows inside the electrolytic cell, an ion permeable membrane that is divided into a production chamber and a secondary production chamber that is supplied with an electrolyte, a main production chamber, and a secondary production chamber; A main electrode and a sub electrode having different polarities arranged between each other and energized between them, the main electrode being a water supply pipe for supplying raw water into the main generation chamber, and electrolytic ionic water generated according to the polarity of the main electrode An electrolytic ionic water generator characterized by being piped as an overflow pipe for overflowing water. 電解槽と、電解槽内を原水が供給され溢流する主生成室および副生成室と電解液が供給される電解液室とに仕切るイオン透過可能な隔膜と、主生成室と副生成室とに配置されて相互間に電解液を介し通電される極性の異なった主電極および副電極とを備え、主電極はそれが設けられる主生成室内に原水を供給する給水管と、主電極の極性に応じ生成される電解イオン水を溢流させる溢流管として配管し、副電極はそれが設けられる副生成室内に原水を供給する給水管と、副電極の極性に応じ生成される電解イオン水を溢流させる溢流管として配管したことを特徴とする電解イオン水生成装置。 An electrolytic cell, an ion permeable diaphragm that partitions an electrolytic cell into a main generation chamber and by-product chamber that are supplied with raw water and overflow, and an electrolytic solution chamber to which an electrolytic solution is supplied; a main generation chamber and a by-production chamber; A main electrode and a sub-electrode having different polarities that are arranged to be energized through an electrolyte solution, the main electrode being a water supply pipe for supplying raw water into a main production chamber in which the main electrode is provided, and the polarity of the main electrode The secondary electrode is piped as an overflow pipe for overflowing the electrolytic ionic water generated according to the water supply pipe, the water supply pipe for supplying raw water into the secondary generation chamber in which the secondary electrode is provided, and the electrolytic ionic water generated according to the polarity of the secondary electrode An electrolytic ionic water generator characterized by being piped as an overflow pipe for overflowing water. 給水管は少なくともそれが設けられる室の底部に給水口が位置し、溢流管はそれが設けられる室の電解イオン水生成域中に分岐またはおよび屈曲して広がった後電解イオン水生成域上に開口して位置する溢流口に至っている請求項3、4のいずれか1項に記載の電解イオン水生成装置。 The water supply pipe is located at least at the bottom of the chamber in which the water supply pipe is provided, and the overflow pipe is branched or bent into the electrolytic ion water generation area of the room in which the water supply pipe is provided and then spread over the electrolytic ionic water generation area. The electrolytic ionic water generating device according to any one of claims 3 and 4, wherein the electrolytic ionic water generating device reaches an overflow port that is open and located. 溢流口は複数ある請求項3〜5のいずれか1項に記載の電解イオン水生成装置。 The electrolytic ionic water generator according to any one of claims 3 to 5, wherein there are a plurality of overflow ports. 電極を配されてイオン水生成域を図る室は密閉している請求項3〜6のいずれか1項に記載の電解イオン水生成装置。 The electrolytic ionic water generating apparatus according to any one of claims 3 to 6, wherein a chamber in which an electrode is arranged to plan an ionic water generating region is sealed. 主電極は陰極であり、主生成室はアルカリイオン水を生成溢流させる請求項3に記載の電解イオン水生成装置。 4. The electrolytic ionic water generating apparatus according to claim 3, wherein the main electrode is a cathode, and the main generation chamber generates and overflows alkaline ionic water. 主電極は陽極であり、主生成室は酸性イオン水を生成溢流させる請求項3に記載の電解イオン水生成装置。 4. The electrolytic ionic water generating device according to claim 3, wherein the main electrode is an anode, and the main generation chamber generates and overflows acidic ionic water.
JP2006060465A 2006-03-07 2006-03-07 Electrolytic ion water generator Active JP4691457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060465A JP4691457B2 (en) 2006-03-07 2006-03-07 Electrolytic ion water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060465A JP4691457B2 (en) 2006-03-07 2006-03-07 Electrolytic ion water generator

Publications (3)

Publication Number Publication Date
JP2007237033A true JP2007237033A (en) 2007-09-20
JP2007237033A5 JP2007237033A5 (en) 2009-04-23
JP4691457B2 JP4691457B2 (en) 2011-06-01

Family

ID=38583105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060465A Active JP4691457B2 (en) 2006-03-07 2006-03-07 Electrolytic ion water generator

Country Status (1)

Country Link
JP (1) JP4691457B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319751A (en) * 2006-05-31 2007-12-13 Best Kobo:Kk Device for producing ion water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128940A (en) * 1997-10-30 1999-05-18 First Ocean Kk Device and method for electrolysis of water
JP2001286868A (en) * 2000-04-11 2001-10-16 First Ocean Kk Method of producing electrolytic water and electrolytic water
JP2004025185A (en) * 2003-10-14 2004-01-29 Hoshizaki Electric Co Ltd Electrolytic water making apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128940A (en) * 1997-10-30 1999-05-18 First Ocean Kk Device and method for electrolysis of water
JP2001286868A (en) * 2000-04-11 2001-10-16 First Ocean Kk Method of producing electrolytic water and electrolytic water
JP2004025185A (en) * 2003-10-14 2004-01-29 Hoshizaki Electric Co Ltd Electrolytic water making apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319751A (en) * 2006-05-31 2007-12-13 Best Kobo:Kk Device for producing ion water

Also Published As

Publication number Publication date
JP4691457B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
US20050023227A1 (en) Electrochemical sterilizing and bacteriostatic method
KR101579044B1 (en) Apparatus for Generating Electrolyzed Water
JP5595213B2 (en) Disinfecting water manufacturing apparatus and disinfecting water manufacturing method
CN1810668A (en) Production process hydroxyl radical negative ion water
WO2018135080A1 (en) Electrolyzed-water generation device, water treatment device, device for producing water for dialysate preparation, and hydrogen water server
RU2297980C1 (en) Method of the electroactivation of the water solutions
JP5486170B2 (en) Domestic water supply system with hot water storage system
JP2005177672A (en) Electrolysis type ozonizer
JP4691457B2 (en) Electrolytic ion water generator
RU2480416C1 (en) Apparatus for increasing biological activity of water
JP2018117870A (en) Air purification device
KR20080040659A (en) Induction catalyst and electrolysis system
KR20170021523A (en) Method and apparatus of pipe cleaning by electrolysis
KR100603536B1 (en) Electrolysis having a mesh type electrode
CN214936280U (en) Sterilization device of water treatment equipment and water treatment equipment with sterilization device
JPH10328667A (en) Method for making sterilized water
EP1226094B1 (en) Device for electrolysis
KR20000017715A (en) Mass storage electrolytic water making apparatus
JP2000093964A (en) Alkali water making method and electrolytic apparatus
JP2008114209A (en) Method for treating sludge
JP3806626B2 (en) Hypochlorous acid generator
JP2007234459A (en) Fungistatic treatment method of fuel cell system
KR102204841B1 (en) Moss removal apparatus in seawater aquarium using the resistance of seawater
JP3836799B2 (en) Cleaning liquid production equipment
RU2082677C1 (en) Electrolyzer for treating water

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R150 Certificate of patent or registration of utility model

Ref document number: 4691457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250