JP2004025185A - Electrolytic water making apparatus - Google Patents

Electrolytic water making apparatus Download PDF

Info

Publication number
JP2004025185A
JP2004025185A JP2003354386A JP2003354386A JP2004025185A JP 2004025185 A JP2004025185 A JP 2004025185A JP 2003354386 A JP2003354386 A JP 2003354386A JP 2003354386 A JP2003354386 A JP 2003354386A JP 2004025185 A JP2004025185 A JP 2004025185A
Authority
JP
Japan
Prior art keywords
water
chamber
salt water
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003354386A
Other languages
Japanese (ja)
Other versions
JP3689417B2 (en
Inventor
Nobuo Achinami
阿知波 信夫
Kazuyoshi Okada
岡田 和義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2003354386A priority Critical patent/JP3689417B2/en
Publication of JP2004025185A publication Critical patent/JP2004025185A/en
Application granted granted Critical
Publication of JP3689417B2 publication Critical patent/JP3689417B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic water making apparatus reducing the consumption of non-electrolyzed saline water and reducing the power consumption for electrolysis. <P>SOLUTION: A casing 10 is separated into a central saline water chamber B and an anode chamber A and a cathode chamber C of both sides thereof by two diaphragms 11 and 13 comprising two parts, and an anode 15 and a cathode 16, both of which comprise a metal lath where a liquid passes freely, are respectively provided in the anode and cathode chambers 15 and 16 so as to approach the respective diaphragms corresponding to the electrodes. A circulating saline water tank 20 housing saline water with a predetermined concentration and a saline water chamber are allowed to communicate by a saline water introducing pipe 21 and a saline water lead-out pipe 22 to circulate saline water by a circulating pump 23. The raw water introducing pipe 2a and an acidic water take-out pipe 26 are provided to the anode chamber. The raw water introducing pipe 25b and an alkaline water take-out pipe 27 are provided to the cathode chamber. Voltage is applied across the anode and the cathode from the DC power supply 17 to electrolyze saline water in the saline water chamber B to take out formed acidic water and an alkaline water from the take-out pipes 26 and 27. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、生鮮食品の洗浄及び殺菌、冷凍魚肉の解凍などの食品処理や、お絞り用、手洗い用などに使用する電解水の製造装置に関する。 The present invention relates to an apparatus for producing electrolyzed water used for cleaning and sterilizing fresh food, thawing frozen fish meat, etc., and for squeezing and hand washing.

 この種の電解水の製造装置においては、例えば図3に示すように、中間部に隔膜2を挟んで張設したスペーサ2aの両側に、板状の陽極3、陰極4及びケーシング1a,1bを当接固定して本体を形成し、この本体内に隔膜2により仕切られて形成した陽極室及び陰極室内に希釈食塩水タンク5内の食塩水を供給管7を介してポンプ6により送り込み、電気分解により陽極室及び陰極室内に生成された各電解水を酸性水取出し管8a及びアルカリ性水取出し管8bにより取り出して用途に応じて使用している。 In this type of electrolyzed water producing apparatus, for example, as shown in FIG. 3, a plate-shaped anode 3, a cathode 4, and casings 1a and 1b are provided on both sides of a spacer 2a stretched across a diaphragm 2 in an intermediate portion. A saline solution in a diluted saline solution tank 5 is fed by a pump 6 through a supply pipe 7 into an anode chamber and a cathode chamber formed by partitioning the diaphragm into a main body by abutting and fixing the main body. Each electrolyzed water generated in the anode chamber and the cathode chamber by decomposition is taken out by an acidic water take-out pipe 8a and an alkaline water take-out pipe 8b and used according to the application.

 上述のような従来の電解水製造装置では、供給された食塩水は電解されたものと未電解のものが分離されることなく全てそのまま取り出されていたので大半の食塩が無駄に消費されるという問題があった。このような無駄な消費をなるべく少なくするために、通常は 0.1パーセント程度の希薄な食塩水を使用しているので食塩水の伝導度が低く、このため所定の電解を行うための消費電力が増大するという問題もあった。 In the conventional electrolyzed water producing apparatus as described above, most of the supplied salt water is wasted because most of the supplied saline solution is taken out as it is without separating the electrolyzed and unelectrolyzed ones. There was a problem. In order to reduce such wasteful consumption as much as possible, usually, a dilute saline solution of about 0.1% is used, so that the conductivity of the saline solution is low, so that the power consumption for performing a predetermined electrolysis increases. There was also the problem of doing.

 また隔膜2は陽極室及び陰極室内の流れや水圧変動等による力を直接受けるので破損のおそれがあり、これを防止するために隔膜2を横切る複数の補強リブを設けているので、この補強リブの分だけ隔膜2の有効面積が低下して電解水製造能力が低下するという問題があった。 Further, the diaphragm 2 is directly subjected to the force due to the flow in the anode chamber and the cathode chamber, fluctuations in water pressure, and the like, and may be damaged. In order to prevent this, a plurality of reinforcing ribs crossing the diaphragm 2 are provided. Therefore, there is a problem that the effective area of the diaphragm 2 is reduced by the amount of the above, and the electrolytic water production capacity is reduced.

 本発明は電解されない塩水を循環して再使用できるようにし、また隔膜を陽極及び陰極により支持するようにしてこのような各問題を解決することを目的とする。 The object of the present invention is to solve the above problems by circulating the non-electrolyzed salt water so that it can be reused, and by supporting the diaphragm with an anode and a cathode.

 このために、本発明による電解水製造装置は、図1及び図2に例示するように、ケーシング10と、このケーシングの内部を中央の塩水室Bとその両側の陽極室A及び陰極室Cに分離する2部分よりなる隔膜11,13と、一方の前記隔膜11に接近して前記陽極室A内に設けられて液体の通過が自由な陽極15と、他方の前記隔膜13に接近して前記陰極室C内に設けられて液体の通過が自由な陰極16と、前記陽極15及び陰極16に電解用電力を供給する直流電源17と、電解される塩水を収容する循環塩水タンク20と、互いに異なる位置において前記塩水室Bと循環塩水タンク20を連通する塩水導入管21及び塩水導出管22と、この塩水導入管と塩水導出管の何れか一方に設けられて前記塩水室Bと循環塩水タンク20の間で塩水を循環させる循環ポンプ23と、互いに異なる位置において前記陽極室Aに連通された原水導入管25a及び酸性水取出し管26と、互いに異なる位置において前記陰極室Cに連通された原水導入管25b及びアルカリ性水取出し管27を備えてなるものである。 For this purpose, the electrolyzed water production apparatus according to the present invention, as exemplified in FIGS. 1 and 2, arranges the casing 10 and the inside of the casing into a central salt water chamber B and an anode chamber A and a cathode chamber C on both sides thereof. The two diaphragms 11 and 13 are separated from each other; the anode 15 is provided in the anode chamber A so as to be close to one of the diaphragms 11 and free of liquid; A cathode 16 provided in the cathode chamber C and through which liquid can pass freely; a DC power supply 17 for supplying electric power for electrolysis to the anode 15 and the cathode 16; a circulating salt water tank 20 containing salt water to be electrolyzed; A salt water inlet pipe 21 and a salt water outlet pipe 22 communicating the salt water chamber B with the circulating salt water tank 20 at different positions; and the salt water chamber B and the circulating salt water tank provided at one of the salt water inlet pipe and the salt water outlet pipe. Between 20 A circulation pump 23 for circulating salt water, a raw water introduction pipe 25a and an acidic water extraction pipe 26 connected to the anode chamber A at different positions, and a raw water introduction pipe 25b connected to the cathode chamber C at different positions. An alkaline water extraction pipe 27 is provided.

 前記陽極15及び陰極16は全体として板状をなし対応する前記隔膜11,13のほゞ全面積にわたり各隔膜11,13に隣接して前記ケーシング10に固定して設け、前記塩水室B内の水圧が前記各陽極室A及び陰極室C内の水圧よりも高くなるよう設定することが望ましい。 The anode 15 and the cathode 16 have a plate shape as a whole and are fixed to the casing 10 adjacent to the respective diaphragms 11 and 13 over substantially the entire area of the corresponding diaphragms 11 and 13. It is desirable that the water pressure be set higher than the water pressure in each of the anode chamber A and the cathode chamber C.

 陽極15及び陰極16に直流電源17より電解用電力が供給されれば、塩水室B内の塩水中の陰イオンは隔膜11を通って陽極室A内に入り陽極15に接触して電価を失い、その付近の水に溶解してこれを酸性とし、この酸性水は陽極15を通り抜けて陽極室A内に広がる。また塩水室B内の塩水中の陽イオンは隔膜13を通って陰極室C内に入り陰極16に接触して電価を失い、その付近の水に溶解してこれをアルカリ性とし、このアルカリ性水は陰極16を通り抜けて陰極室C内に広がる。塩水室B内の電解されなかった塩水は隔膜11,13に遮られて陽極室Aまたは陰極室C内に入ることはほとんどなく、塩水導入管21、塩水導出管22及び循環ポンプ23により塩水室Bと循環塩水タンク20の間を循環して繰り返し使用される。電解水の原水は2本の原水導入管25a,25bにより陽極室A及び陰極室C内に導入され、上述のように塩水室B内の塩水がほとんど混入されることなく陽極室A及び陰極室C内で酸性水及びアルカリ性水となり、酸性水取出し管26及びアルカリ性水取出し管27より取り出される。 When the power for electrolysis is supplied from the DC power supply 17 to the anode 15 and the cathode 16, the anions in the salt water in the salt water chamber B pass through the diaphragm 11 into the anode chamber A and contact the anode 15 to charge the anode 15. It loses and dissolves in the water nearby to make it acidic, and this acidic water passes through the anode 15 and spreads into the anode chamber A. Further, the cations in the salt water in the salt water chamber B enter the cathode chamber C through the diaphragm 13 and come into contact with the cathode 16, lose the electric charge, dissolve in the water in the vicinity thereof, and make it alkaline. Extends through the cathode 16 into the cathode chamber C. The salt water that has not been electrolyzed in the salt water chamber B is shielded by the diaphragms 11 and 13 and hardly enters the anode chamber A or the cathode chamber C, and the salt water chamber is formed by the salt water introduction pipe 21, the salt water discharge pipe 22, and the circulation pump 23. It is circulated between B and the circulating salt water tank 20 and used repeatedly. The raw water of the electrolyzed water is introduced into the anode chamber A and the cathode chamber C by the two raw water introduction pipes 25a and 25b, and the anode chamber A and the cathode chamber are hardly mixed with the salt water in the salt water chamber B as described above. It becomes acidic water and alkaline water in C, and is taken out from the acidic water take-out pipe 26 and the alkaline water take-out pipe 27.

 塩水室B内の水圧が陽極室A及び陰極室C内の水圧よりも高くなるように設定した請求項2の発明では、その水圧の差により各隔膜11,13はそのほゞ全面積にわたり接近して設けた陽極15及び陰極16に押し付けられ、各隔膜11,13に加わる力は陽極15及び陰極16により受け止められる。 In the invention according to claim 2, the water pressure in the salt water chamber B is set higher than the water pressure in the anode chamber A and the cathode water in the cathode chamber C. The force applied to each of the diaphragms 11 and 13 is received by the anode 15 and the cathode 16.

 上述のように、本発明によれば、未電解の塩水は陽極室または陰極室内に入ることなく、塩水室と循環塩水タンクの間を循環して繰り返し使用されるので、塩が無駄に消費されることがない。またこのような無駄な消費がないので濃度の高い塩水を使用することができ、これにより塩水の伝導度が高まるので、必要な量の電解を行うための消費電力が減少する。 As described above, according to the present invention, the non-electrolyzed salt water does not enter the anode chamber or the cathode chamber, but is circulated and used repeatedly between the salt water chamber and the circulating salt water tank. Never. In addition, since there is no such wasteful consumption, it is possible to use salt water having a high concentration, thereby increasing the conductivity of the salt water, thereby reducing the power consumption for performing a required amount of electrolysis.

 また請求項2の発明によれば、各隔膜に加わる力は陽極及び陰極により受け止められるので、隔膜に補強のためのリブ等を設ける必要がなくなり、従って隔膜の有効面積の低下による電解水製造能力の低下がなくなる。 Further, according to the invention of claim 2, since the force applied to each of the diaphragms is received by the anode and the cathode, it is not necessary to provide ribs or the like for reinforcement in the diaphragm, and therefore, the electrolytic water production capacity due to a decrease in the effective area of the diaphragm is eliminated. Is no longer reduced.

 以下に図1及び図2に示す実施例により、本発明の説明をする。 The present invention will be described below with reference to the embodiment shown in FIGS.

 図1及び図2に示すように、主要部が絶縁材よりなるケーシング10の内部は、互いに平行に設けられた2枚の隔膜11,13により仕切られて、両隔膜11,13の間の塩水室Bと、隔膜11とケーシング10の間の陽極室Aと、隔膜13とケーシング10の間の陰極室Cに分離される。実質的に同一構造の各隔膜11,13は例えばポリエチレン不織布を骨材とするポリフッカビニリデン酸化チタンよりなる半透膜で、その外周全縁は塩化ビニールよりなる枠状の隔膜保持体12,14が一体的に形成されて補強されている。隔膜11の陽極室A側には殆ど隙間なく隣接して陽極15が設けられ、隔膜13の陰極室C側には殆ど隙間なく隣接して陰極16が設けられている。各電極15,16は剛性のある平板状のメタルラスよりなり、ケーシング10に固定支持され、電解用の直流電源17に接続されている。各電極15,16はメタルラスに限らず液体の通過が自由なものであれば金網またはパンチドメタルあるいは棒状の素材を格子状に多数並べたものでもよく、その材質は例えばチタンあるいはチタンに白金コーティングを施したものである。 As shown in FIGS. 1 and 2, the inside of a casing 10 whose main part is made of an insulating material is partitioned by two diaphragms 11, 13 provided in parallel with each other. The chamber B is divided into an anode chamber A between the diaphragm 11 and the casing 10 and a cathode chamber C between the diaphragm 13 and the casing 10. Each of the diaphragms 11 and 13 having substantially the same structure is, for example, a semi-permeable membrane made of polyfukkavinylidene titanium oxide using a polyethylene non-woven fabric as an aggregate, and the entire outer periphery thereof is a frame-shaped diaphragm holder 12, 14 made of vinyl chloride. Are integrally formed and reinforced. An anode 15 is provided on the anode chamber A side of the diaphragm 11 with almost no gap, and a cathode 16 is provided on the cathode chamber C side of the membrane 13 with almost no gap. Each of the electrodes 15 and 16 is made of a rigid plate-shaped metal lath, fixedly supported by the casing 10, and connected to a DC power supply 17 for electrolysis. Each of the electrodes 15 and 16 is not limited to a metal lath but may be a wire mesh, a punched metal, or a bar-shaped material in which a large number of materials are freely arranged as long as a liquid can freely pass therethrough. The material is, for example, titanium or titanium coated with platinum. It has been subjected to.

 主として図1に示すように、塩水室Bの底部と循環塩水タンク20の底部は循環ポンプ23を設けた塩水導入管21により連通され、塩水室Bの上部と循環塩水タンク20の上部は絞り24を設けた塩水導出管22により連通されている。循環塩水タンク20の上部には開閉弁32を備えた連通管31を介して飽和食塩水を収容する濃塩水タンク30が接続され、また開閉弁を備えた給水管(図示省略)が接続され、循環塩水タンク20内に設けた濃度計35により検出された食塩水濃度が所定範囲(例えば10〜20%)を外れれば開閉弁32または給水管の開閉弁を開いて、循環塩水タンク20内の食塩水濃度を所定範囲に維持するようになっている。循環塩水タンク20にはその内部の濃度を均一化するための撹拌ポンプ34が設けられている。また濃塩水タンク30の上側には濃塩水タンク30に食塩を供給する食塩タンク33が設けられている。 As shown mainly in FIG. 1, the bottom of the salt water chamber B and the bottom of the circulating salt water tank 20 are communicated with each other by a salt water introduction pipe 21 provided with a circulation pump 23, and the upper part of the salt water chamber B and the upper part of the circulating salt water tank 20 are throttles 24. Are connected by a salt water outlet pipe 22 provided with A concentrated salt water tank 30 containing a saturated saline solution is connected to an upper portion of the circulating salt water tank 20 through a communication pipe 31 having an on-off valve 32, and a water supply pipe (not shown) having an on-off valve is connected. If the concentration of the salt solution detected by the concentration meter 35 provided in the circulating salt water tank 20 is out of a predetermined range (for example, 10 to 20%), the on-off valve 32 or the on-off valve of the water supply pipe is opened to open the circulating salt water tank 20. The saline solution concentration is maintained in a predetermined range. The circulating salt water tank 20 is provided with a stirring pump 34 for making the concentration inside the tank 20 uniform. A salt tank 33 for supplying salt to the concentrated salt water tank 30 is provided above the concentrated salt water tank 30.

 図1に示すように、水道管に接続されて制御弁28が設けられた原水供給管25は2つの原水導入管25a,25bに分岐され、各原水導入管25a,25bはそれぞれ陽極室A及び陰極室Cの底部に連通されている。陽極室A及び陰極室Cの上部にはそれぞれ酸性水取出し管26及びアルカリ性水取出し管27が連通されている。なお図1の説明図の寸法関係は図示の都合上現実のものとは異なっており、ケーシング10は循環塩水タンク20、濃塩水タンク30、食塩タンク33などに比して実際より大きく表示されている。 As shown in FIG. 1, a raw water supply pipe 25 connected to a water pipe and provided with a control valve 28 is branched into two raw water introduction pipes 25a and 25b, and the raw water introduction pipes 25a and 25b are respectively connected to the anode chamber A and the anode chamber A. It communicates with the bottom of the cathode chamber C. An acidic water outlet pipe 26 and an alkaline water outlet pipe 27 are connected to the upper portions of the anode chamber A and the cathode chamber C, respectively. Note that the dimensional relationship in the explanatory diagram of FIG. 1 is different from the actual one for convenience of illustration, and the casing 10 is displayed larger than the actual one as compared with the circulating salt water tank 20, the concentrated salt water tank 30, the salt tank 33, and the like. I have.

 次に上記実施例の作動の説明をする。 Next, the operation of the above embodiment will be described.

 この電解水製造装置の使用開始時には、先ず開閉弁32を及び給水管の開閉弁を開いて循環塩水タンク20に飽和食塩水及び水道水を供給すると同時に撹拌ポンプ34を作動させて循環塩水タンク20内部の濃度を均一にし、濃度計35により検出した食塩水濃度に基づき両開閉弁を制御して所定濃度範囲内とし、循環塩水タンク20内の水位が所定のレベルに達すれば両開閉弁を閉じる。次いで循環ポンプ23を作動させ循環塩水タンク20内の食塩水を塩水導入管21を介して塩水室B内に送り込み、塩水導出管22を介して循環塩水タンク20内に戻して食塩水を循環させる。続いて原水供給管25の制御弁28を開き、水道管からの原水を陽極室A及び陰極室C内に送り込み、酸性水取出し管26及びアルカリ性水取出し管27から排出させる。 At the start of use of the electrolyzed water producing apparatus, first, the on-off valve 32 and the on-off valve of the water supply pipe are opened to supply the saturated saline solution and the tap water to the circulating salt water tank 20, and at the same time, the stirring pump 34 is operated to activate the circulating salt water tank 20. The internal concentration is made uniform, and both open / close valves are controlled to be within a predetermined concentration range based on the salt solution concentration detected by the densitometer 35. When the water level in the circulating brine tank 20 reaches a predetermined level, both open / close valves are closed. . Next, the circulation pump 23 is operated to feed the saline solution in the circulating salt water tank 20 into the salt water chamber B via the salt water introduction pipe 21 and return to the circulating salt water tank 20 via the salt water discharge pipe 22 to circulate the salt water. . Subsequently, the control valve 28 of the raw water supply pipe 25 is opened, and the raw water from the water pipe is fed into the anode chamber A and the cathode chamber C, and discharged from the acidic water discharge pipe 26 and the alkaline water discharge pipe 27.

 この状態で陽極15及び陰極16に直流電源17からの電解用電力を供給すれば、塩水室B内の食塩水中の塩素イオン(陰イオン)は隔膜11を通って陽極室A内に入り陽極15に接触して電価を失って塩素となる。この塩素の一部はそのまま陽極15付近の水中に溶解し、一部は水と反応して次亜塩素酸あるいは次亜塩素酸イオンを生じ、これらにより殺菌作用のある有効塩素濃度が与えられる。残る塩素の一部は塩酸となりあるいは塩素ガスとなって遊離される。これにより陽極15付近の水は酸性となり、これらの成分よりなる酸性水は液体の通過が自由な陽極15を通り抜けて陽極室A内に広がる。また塩水室B内の塩水中のナトリウムイオン(陽イオン)は隔膜13を通って陰極室C内に入り陰極16に接触して電価を失い、陰極16付近の水と反応して苛性ソーダ及び遊離水素を生じて陰極16付近の水をアルカリ性とする。アルカリ性となった水は液体の通過が自由な陰極16を通り抜けて陰極室C内に広がる。このようにして陽極室A及び陰極室C内にそれぞれ生成された酸性水及びアルカリ性水は、酸性水取出し管26及びアルカリ性水取出し管27から送り出され、それぞれの用途に使用される。 In this state, when the electrolytic power from the DC power supply 17 is supplied to the anode 15 and the cathode 16, chloride ions (anions) in the saline solution in the salt water chamber B pass through the diaphragm 11 into the anode chamber A, and the anode 15 Loses its charge when it comes into contact with water and becomes chlorine. A part of this chlorine is dissolved in the water near the anode 15 as it is, and a part of the chlorine reacts with the water to generate hypochlorous acid or hypochlorite ion, thereby giving an effective chlorine concentration having a bactericidal action. Part of the remaining chlorine is liberated as hydrochloric acid or chlorine gas. As a result, the water near the anode 15 becomes acidic, and the acidic water composed of these components passes through the anode 15 through which liquid can pass freely and spreads into the anode chamber A. Further, sodium ions (cations) in the salt water in the salt water chamber B enter the cathode chamber C through the diaphragm 13 and come into contact with the cathode 16 to lose the charge, react with the water near the cathode 16 and react with caustic soda and liberation. Hydrogen is generated to make water near the cathode 16 alkaline. The alkalinized water passes through the cathode 16 through which liquid can pass freely, and spreads into the cathode chamber C. The acidic water and the alkaline water generated in the anode chamber A and the cathode chamber C in this manner are sent out from the acidic water extracting pipe 26 and the alkaline water extracting pipe 27, respectively, and are used for respective applications.

 塩水室B内の電解されなかった食塩水は隔膜11,13に遮られて陽極室Aまたは陰極室C内に入ることはほとんどなく、大部分は塩水導出管22より循環塩水タンク20内に戻され、循環ポンプ23により塩水導入管21より再び塩水室B内に送り込まれて繰り返し循環して使用される。従って未電解の食塩水が酸性水取出し管26及びアルカリ性水取出し管27から排出されることがほとんどないので食塩が無駄に消費されることがない。またこのように食塩の無駄な消費がないので濃度の高い食塩水を使用することができ、これにより食塩水の伝導度が高まるので、必要な量の電解を行うための消費電力が減少する。 The salt solution that has not been electrolyzed in the salt water compartment B hardly enters the anode compartment A or the cathode compartment C while being blocked by the diaphragms 11 and 13, and most of the salt water returns to the circulating salt water tank 20 through the salt water outlet pipe 22. Then, it is sent again into the salt water chamber B from the salt water introduction pipe 21 by the circulation pump 23, and is repeatedly circulated for use. Therefore, since the non-electrolyzed saline is hardly discharged from the acidic water extracting pipe 26 and the alkaline water extracting pipe 27, the salt is not wasted. Further, since there is no wasteful consumption of the salt, a high-concentration saline solution can be used, and the conductivity of the saline solution is increased, so that the power consumption for performing a required amount of electrolysis is reduced.

 循環ポンプ23により循環塩水タンク20内の食塩水を塩水室Bを通して循環させた状態では、塩水導出管22に設けた絞り24の程度により塩水室B内の水圧が上昇し、この絞り24を適当に設定することにより塩水室B内の水圧が陽極室A及び陰極室C内の水圧よりも高くなるように設定する。この水圧の差により各隔膜11,13はそのほゞ全面積にわたり隣接して設けた陽極15及び陰極16に押し付け保持され、各隔膜11,13に加わる力は陽極15及び陰極16により受け止められる。従って各隔膜11,13はそれに加わる力を受け止める必要がないので、各隔膜11,13を横切って補強リブを設ける必要がなくなり、隔膜の有効面積の低下による電解水製造能力の低下がなくなる。 When the salt water in the circulating salt water tank 20 is circulated through the salt water chamber B by the circulation pump 23, the water pressure in the salt water chamber B increases due to the degree of the throttle 24 provided in the salt water outlet pipe 22, and the throttle 24 is , The water pressure in the salt water chamber B is set to be higher than the water pressure in the anode chamber A and the cathode chamber C. Due to the difference in water pressure, each of the diaphragms 11 and 13 is pressed and held over substantially the entire area against the adjacent anode 15 and cathode 16, and the force applied to each of the diaphragms 11 and 13 is received by the anode 15 and cathode 16. Accordingly, since it is not necessary for the diaphragms 11 and 13 to receive the force applied thereto, it is not necessary to provide reinforcing ribs across the diaphragms 11 and 13 and the electrolytic water production capacity due to a decrease in the effective area of the diaphragm does not decrease.

 電解水の製造により塩水室B及び循環塩水タンク20内の食塩が消費されて食塩水の濃度が低下すれば、濃度計35はこれを検知して開閉弁32を開き、食塩水の濃度を所定範囲内に保持する。これにより循環塩水タンク20内の水位は上昇し、所定の水位を越えた分はオーバフローパイプ(図示省略)より排出される。また、浸透圧の差により陽極室A及び陰極室C内の水は隔膜11,13を通って塩水室B内に流入し、これによっても循環塩水タンク20内の水位は上昇するが、この場合も所定の水位を越えた分はオーバフローパイプより排出される。なお、浸透圧の差による陽極室A及び陰極室Cから塩水室B内への流入は、前述のように塩水室B側の水圧を高めることにより抑制される。 When the salt in the salt water chamber B and the circulating salt water tank 20 is consumed by the production of the electrolyzed water and the concentration of the salt water decreases, the concentration meter 35 detects this and opens the on-off valve 32 to set the concentration of the salt water to a predetermined value. Keep within range. As a result, the water level in the circulating salt water tank 20 rises, and the water exceeding the predetermined water level is discharged from an overflow pipe (not shown). In addition, the water in the anode chamber A and the cathode chamber C flows into the salt water chamber B through the diaphragms 11 and 13 due to the difference in osmotic pressure, and the water level in the circulating salt water tank 20 also rises. Also, the amount exceeding the predetermined water level is discharged from the overflow pipe. The inflow from the anode chamber A and the cathode chamber C into the salt water chamber B due to the difference in osmotic pressure is suppressed by increasing the water pressure on the salt water chamber B side as described above.

 上述のようにして製造される食品処理に使用する酸性水のpH、有効塩素濃度、酸化還元電位(ORP)などの値は、制御弁28により陽極室A内を通る水の流量を調節することにより制御することができる。これらの値は、陽極15の組成、直流電源17による印加電圧、食塩水の濃度及び温度などによっても制御することができる。 The values of the pH, effective chlorine concentration, oxidation-reduction potential (ORP), etc. of the acidic water used for treating the food produced as described above are adjusted by controlling the flow rate of the water passing through the anode chamber A by the control valve 28. Can be controlled by These values can also be controlled by the composition of the anode 15, the voltage applied by the DC power supply 17, the concentration and temperature of the saline solution, and the like.

 なお上記実施例では塩水導出管22に絞り24を設けて塩水室B内の水圧を高めているが、循環塩水タンク20をケーシング10よりも高い位置として塩水室B内の水圧を高めてもよい。また上記実施例では完全に分離した2枚の隔膜11,13を使用したが、筒状とした1枚の隔膜の互いに向かい合う部分をある幅にわたりケーシング10の対向する内面に取り付け、ケーシング10内に張り渡される隔膜の2部分によりケーシング10の内部を中央の塩水室Bとその両側の陽極室A及び陰極室Cに分離するようにしてもよい。また、上記実施例は被電解溶液として食塩水を使用した場合につき説明したが、本発明はその他の塩の溶液を被電解溶液として使用する場合にも適用することができる。 In the above embodiment, the throttle 24 is provided in the salt water discharge pipe 22 to increase the water pressure in the salt water chamber B. However, the water pressure in the salt water chamber B may be increased by setting the circulating salt water tank 20 at a position higher than the casing 10. . Further, in the above embodiment, two completely separated diaphragms 11 and 13 are used. However, opposed portions of one cylindrical diaphragm are attached to opposing inner surfaces of the casing 10 over a certain width, and the inside of the casing 10 is formed. The inside of the casing 10 may be divided into a central salt water chamber B and an anode chamber A and a cathode chamber C on both sides thereof by the two portions of the stretched diaphragm. Although the above embodiment has been described in connection with the case where a saline solution is used as the electrolysis solution, the present invention can be applied to a case where another salt solution is used as the electrolysis solution.

本発明による電解水製造装置の一実施例の全体説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the whole explanatory drawing of one Example of the electrolyzed water manufacturing apparatus by this invention. 図1に示す実施例のケーシング及びその内部構造を主として示す横断面図である。FIG. 2 is a cross-sectional view mainly showing a casing of the embodiment shown in FIG. 1 and its internal structure. 従来技術による電解水製造装置の一例の説明図である。It is explanatory drawing of an example of the electrolyzed water manufacturing apparatus by a prior art.

符号の説明Explanation of reference numerals

10…ケーシング、11,13…隔膜、15…陽極、16…陰極、17…直流電源、20…循環塩水タンク、21…塩水導入管、22…塩水導出管、23…循環ポンプ、25a,25b…原水導入管、26…酸性水取出し管、27…アルカリ性水取出し管、A…陽極室、B…塩水室、C…陰極室。
DESCRIPTION OF SYMBOLS 10 ... Casing, 11, 13 ... Diaphragm, 15 ... Anode, 16 ... Cathode, 17 ... DC power supply, 20 ... Circulating salt water tank, 21 ... Salt water introducing pipe, 22 ... Salt water outlet pipe, 23 ... Circulating pump, 25a, 25b ... Raw water inlet pipe, 26 ... acid water outlet pipe, 27 ... alkaline water outlet pipe, A ... anode chamber, B ... salt water chamber, C ... cathode chamber.

Claims (2)

ケーシングと、このケーシングの内部を中央の塩水室とその両側の陽極室及び陰極室に分離する2部分よりなる隔膜と、一方の前記隔膜に接近して前記陽極室内に設けられて液体の通過が自由な陽極と、他方の前記隔膜に接近して前記陰極室内に設けられて液体の通過が自由な陰極と、前記陽極及び陰極に電解用電力を供給する直流電源と、電解される塩水を収容する循環塩水タンクと、互いに異なる位置において前記塩水室Bと循環塩水タンクを連通する塩水導入管及び塩水導出管と、この塩水導入管と塩水導出管の何れか一方に設けられて前記塩水室と循環塩水タンクの間で塩水を循環させる循環ポンプと、互いに異なる位置において前記陽極室に連通された原水導入管及び酸性水取出し管と、互いに異なる位置において前記陰極室に連通された原水導入管及びアルカリ性水取出し管を備えてなる電解水製造装置。 A casing, a diaphragm composed of two parts separating the inside of the casing into a central salt water chamber and an anode chamber and a cathode chamber on both sides thereof; and a liquid passage provided in the anode chamber close to one of the diaphragms. A free anode, a cathode provided in the cathode chamber close to the other of the diaphragms, and through which liquid can pass freely, a DC power supply for supplying power for electrolysis to the anode and the cathode, and a salt water to be electrolyzed are housed. Circulating salt water tank, and a salt water inlet pipe and a salt water outlet pipe communicating the salt water chamber B and the circulating salt water tank at different positions, and the salt water chamber provided in one of the salt water inlet pipe and the salt water outlet pipe. A circulating pump for circulating salt water between the circulating salt water tanks, a raw water inlet pipe and an acidic water outlet pipe communicated with the anode chamber at different positions, and with the cathode chamber at different positions. By raw water inlet pipe and an electrolytic water production device including the alkaline water takeout tube. 前記陽極及び陰極は全体として板状をなし対応する前記隔膜のほゞ全面積にわたり各隔膜に隣接して前記ケーシングに固定して設け、前記塩水室内の水圧が前記各陽極室及び陰極室内の水圧よりも高くなるよう設定してある請求項1に記載の電解水製造装置。 The anode and the cathode have a plate shape as a whole and are fixed to the casing adjacent to each of the diaphragms over substantially the entire area of the corresponding diaphragm, and the water pressure in the salt water chamber is equal to the water pressure in each of the anode chamber and the cathode chamber. The apparatus for producing electrolyzed water according to claim 1, wherein the apparatus is set to be higher than the above.
JP2003354386A 2003-10-14 2003-10-14 Electrolyzed water production equipment Expired - Lifetime JP3689417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003354386A JP3689417B2 (en) 2003-10-14 2003-10-14 Electrolyzed water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003354386A JP3689417B2 (en) 2003-10-14 2003-10-14 Electrolyzed water production equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP30172393A Division JP3500173B2 (en) 1993-12-01 1993-12-01 Electrolyzed water production equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004367984A Division JP3694311B2 (en) 2004-12-20 2004-12-20 Electrolyzed water production equipment

Publications (2)

Publication Number Publication Date
JP2004025185A true JP2004025185A (en) 2004-01-29
JP3689417B2 JP3689417B2 (en) 2005-08-31

Family

ID=31185633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003354386A Expired - Lifetime JP3689417B2 (en) 2003-10-14 2003-10-14 Electrolyzed water production equipment

Country Status (1)

Country Link
JP (1) JP3689417B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237033A (en) * 2006-03-07 2007-09-20 Bms:Kk Electrolytic ion water producing method and arrangement
JP2009034593A (en) * 2007-07-31 2009-02-19 Masaaki Arai Water purifier, toilet seat with bidet function, floor cleaner, cooling tower, air cleaning system, wastewater treatment system, contact lens cleaning device, shower device, dialyzer, medical appliance cleaner, irrigation and spray system for agriculture, sterilization mask, dishwasher, cleaning/sterilizing device for meat or the like, cleaning system, defecation device deodorizing system, food sterilizing and cleaning system and bathhouse, and pool sterilizing system
US7886398B2 (en) 2004-10-05 2011-02-15 Lion Corporation Oral cavity cleaning tool
JP2011136333A (en) * 2010-12-13 2011-07-14 Masaaki Arai Toilet seat with local cleaning function, floor washer, cooling tower, air washing system, wastewater treatment system, contact lens washer, shower device, dialyzer, medical instrument washing apparatus, affusion and sprinkling system for agricultural use, bactericidal mask, dish washer, washing/sterilizing device for meat or the like, washing system, defecation device deodorization system, food sterilizing/cleaning system, and bathroom/pool bactericidal system
CN106460206A (en) * 2014-09-22 2017-02-22 株式会社东芝 Electrolytic device and electrolyzed water generation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7886398B2 (en) 2004-10-05 2011-02-15 Lion Corporation Oral cavity cleaning tool
JP2007237033A (en) * 2006-03-07 2007-09-20 Bms:Kk Electrolytic ion water producing method and arrangement
JP4691457B2 (en) * 2006-03-07 2011-06-01 有限会社 ビ−エムエス Electrolytic ion water generator
JP2009034593A (en) * 2007-07-31 2009-02-19 Masaaki Arai Water purifier, toilet seat with bidet function, floor cleaner, cooling tower, air cleaning system, wastewater treatment system, contact lens cleaning device, shower device, dialyzer, medical appliance cleaner, irrigation and spray system for agriculture, sterilization mask, dishwasher, cleaning/sterilizing device for meat or the like, cleaning system, defecation device deodorizing system, food sterilizing and cleaning system and bathhouse, and pool sterilizing system
JP4705075B2 (en) * 2007-07-31 2011-06-22 優章 荒井 Water purifier
JP2011136333A (en) * 2010-12-13 2011-07-14 Masaaki Arai Toilet seat with local cleaning function, floor washer, cooling tower, air washing system, wastewater treatment system, contact lens washer, shower device, dialyzer, medical instrument washing apparatus, affusion and sprinkling system for agricultural use, bactericidal mask, dish washer, washing/sterilizing device for meat or the like, washing system, defecation device deodorization system, food sterilizing/cleaning system, and bathroom/pool bactericidal system
CN106460206A (en) * 2014-09-22 2017-02-22 株式会社东芝 Electrolytic device and electrolyzed water generation method

Also Published As

Publication number Publication date
JP3689417B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
US7008529B2 (en) Water treating device
JP3428998B2 (en) Electrolyzer producing mixed oxidant gas
JP3716042B2 (en) Acid water production method and electrolytic cell
US4129493A (en) Swimming pool chlorinator system
US20170203974A1 (en) Chemical management for swimming pools
JP3500173B2 (en) Electrolyzed water production equipment
EP3103770B1 (en) Brine tank, method to provide brine for regenerating an ion-exchange material and water softening method
JP2021169084A (en) Electrolytic water generator and electrolytic water generating method
KR101323506B1 (en) An apparatus and method for producing slight acidic hypochlorous acid water
JP4705190B1 (en) Electrolyzed water production apparatus and production method thereof
WO2008032947A1 (en) Apparatus for replenishing water in salt water tank included in apparatus for producing sodium hypochlorite
JP2003062574A (en) Mineral water generating unit
JP2004025185A (en) Electrolytic water making apparatus
CN113646268A (en) Chlorine disinfectant fluid generating device
JP3694311B2 (en) Electrolyzed water production equipment
JP2004298832A (en) Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
JP4838705B2 (en) Ozone water generator
JPH07299457A (en) Electrolyzed water producing device
JP4685838B2 (en) Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP4685830B2 (en) Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP6037238B2 (en) Electrolytic water backflow prevention mechanism
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
KR20070075624A (en) Electrolytic water generation apparatus
KR20190054754A (en) 3-room type electrolyzed water producing apparatus
JP3205527B2 (en) Method for producing weakly acidic sterilized water and weakly alkaline water

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

EXPY Cancellation because of completion of term