JP2007232623A - Method of locating fault point on electric power cable - Google Patents

Method of locating fault point on electric power cable Download PDF

Info

Publication number
JP2007232623A
JP2007232623A JP2006056253A JP2006056253A JP2007232623A JP 2007232623 A JP2007232623 A JP 2007232623A JP 2006056253 A JP2006056253 A JP 2006056253A JP 2006056253 A JP2006056253 A JP 2006056253A JP 2007232623 A JP2007232623 A JP 2007232623A
Authority
JP
Japan
Prior art keywords
power cable
pulse wave
pulse
waveform
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006056253A
Other languages
Japanese (ja)
Other versions
JP4812007B2 (en
Inventor
Shinichi Kobayashi
真一 小林
Mare Morimoto
希 森本
Tadahiro Hozumi
直裕 穂積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Toyohashi University of Technology NUC
Original Assignee
Chubu Electric Power Co Inc
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Toyohashi University of Technology NUC filed Critical Chubu Electric Power Co Inc
Priority to JP2006056253A priority Critical patent/JP4812007B2/en
Publication of JP2007232623A publication Critical patent/JP2007232623A/en
Application granted granted Critical
Publication of JP4812007B2 publication Critical patent/JP4812007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the precision of locating a fault point of an electric power cable than before. <P>SOLUTION: The method of locating a fault point is constituted in that when an end of a conductor of a power cable is impressed with DC voltage for making discharge between the shield layer and the conductor, and when the pulse generated by the discharge propagates, a first pulse wave propagated to the end of the power cable is made to pass through the first BPF 31. Further, the rising part of the first pulse wave is segmented by the first window function 32, the segmented part of the first pulse wave is made the first signal wave shape by Fourier transform process by the first FFT part 33. Further, the second pulse wave propagated to the conductor of the other end of the power cable is made the second signal wave form by the similar process, for obtaining the phase difference for every frequency of the first signal wave form and the second signal wave form, and based on the obtained phase difference the fault point is detected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電力ケーブルの故障点検出方法に関し、特に、高精度で故障点検出できる電力ケーブルの故障点検出方法に関するものである。   The present invention relates to a power cable failure point detection method, and more particularly to a power cable failure point detection method capable of detecting a failure point with high accuracy.

従来、電力ケーブルの故障点検出方法として、電力ケーブルの故障相に直流高電圧を印加して故障点で放電を発生させ、この放電によるパルスの電力ケーブル内の伝搬時間から故障点を検出する方法がある(例えば、非特許文献1参照)。
具体的には、図7に示すように、この場合の測定方法は、以下のようになる。まず、電力ケーブル50の故障相51の導体51aの遠端と健全相52の導体52aの遠端を接続し、故障相51の導体51aの測定端にブロッキング抵抗53を介して直流高電圧を印加し、故障相51の故障点51xにて放電させる。そして、この放電により発生するパルスが故障相51の導体51aの測定端に到達したときのパルス波形を第1検出器61で検出し、CH1のパルス波形とし、前記放電により発生するパルスが健全相52の導体52aの測定端に到達したときのパルス波形を第2検出器62で検出し、CH2のパルス波形とする。
図8は前記CH1のパルス波形およびCH2のパルス波形をオシロスコープ63で表示した例を示す。そして、前記CH1のパルス波形およびCH2のパルス波形をオシロスコープ63で観測し、その時間差ΔTを目測で求めることができる。
また、検出したパルス波形に反射波が重畳している場合には、JEC−187に記載の方法で規約原点を求めると、実際の波形の起点と求めた規約原点との間に大きな時間差が生じてしまう不具合があり、これを解決する技術として、検出したパルス波形を微分した波形のピーク点を波形の起点として、この起点を基にして時間差ΔTの精度をJEC−187に記載の方法に対して向上させる方法もある(例えば、特許文献1参照)。
「電気工学ポケットブック」P775、電気学会編集、株式会社オーム社平成13年1月20日第1版第12刷発行 特開平10−170587号公報
Conventionally, as a failure detection method for a power cable, a method is used in which a DC high voltage is applied to the failure phase of the power cable to generate a discharge at the failure point, and the failure point is detected from the propagation time of pulses caused by this discharge in the power cable. (For example, refer nonpatent literature 1).
Specifically, as shown in FIG. 7, the measurement method in this case is as follows. First, the far end of the conductor 51a of the failure phase 51 and the far end of the conductor 52a of the healthy phase 52 of the power cable 50 are connected, and a DC high voltage is applied to the measurement end of the conductor 51a of the failure phase 51 via the blocking resistor 53. And discharge at the failure point 51x of the failure phase 51. The pulse waveform when the pulse generated by this discharge reaches the measurement end of the conductor 51a of the fault phase 51 is detected by the first detector 61 to obtain the pulse waveform of CH1, and the pulse generated by the discharge is the healthy phase. The second detector 62 detects the pulse waveform when it reaches the measurement end of the conductor 52a of 52, and obtains the pulse waveform of CH2.
FIG. 8 shows an example in which the pulse waveform of CH1 and the pulse waveform of CH2 are displayed on an oscilloscope 63. Then, the CH1 pulse waveform and the CH2 pulse waveform can be observed with an oscilloscope 63, and the time difference ΔT can be obtained visually.
In addition, when a reflected wave is superimposed on the detected pulse waveform, when the contract origin is obtained by the method described in JEC-187, a large time difference occurs between the actual waveform starting point and the obtained contract origin. As a technique for solving this problem, the peak point of the waveform obtained by differentiating the detected pulse waveform is used as the starting point of the waveform, and the accuracy of the time difference ΔT based on this starting point is compared with the method described in JEC-187. There is also a method for improving this (see, for example, Patent Document 1).
"Electrical Engineering Pocketbook" P775, edited by the Institute of Electrical Engineers of Japan, published by OHM Co., Ltd. January 20, 2001 Japanese Patent Laid-Open No. 10-170587

しかし、上述の非特許文献1の方法では、図8に示すように、電力ケーブル50内を伝搬する際のパルスの減衰により、パルス波形の立ち上がり部分の高周波成分が喪失するため、目測により前記時間差ΔTを測定する際に誤差が生じやすいという問題があった。また、上述の特許文献1の方法においても、JEC−187に規定の方法に比べれば、測定誤差を少なくできるものの、パルス波形の高周波成分が喪失した波形に対しては、非特許文献1の方法に比べ測定精度の向上が期待できないと考えられる。
そこで、本発明が解決しようとする課題は、電力ケーブルの故障点の検出精度を従来よりも向上させることである。
However, in the method of Non-Patent Document 1 described above, as shown in FIG. 8, the high-frequency component at the rising portion of the pulse waveform is lost due to the attenuation of the pulse when propagating through the power cable 50. There was a problem that errors were likely to occur when measuring ΔT. In the method of Patent Document 1 described above, the measurement error can be reduced as compared with the method specified in JEC-187, but the method of Non-Patent Document 1 is used for a waveform in which a high-frequency component of the pulse waveform is lost. It is considered that improvement in measurement accuracy cannot be expected.
Therefore, the problem to be solved by the present invention is to improve the detection accuracy of the failure point of the power cable as compared with the conventional technique.

上記課題を解決するため、請求項1記載の発明は、電力ケーブルの一端の導体に直流電圧を加え、前記電力ケーブルの故障点において前記導体と前記電力ケーブルの遮蔽層との間で放電させたときのその放電により発生するパルスが前記電力ケーブルを伝搬する場合に、前記電力ケーブルの前記一端に伝搬したパルスを第1パルス波とし、前記第1パルス波を第1BPF(バンドパスフィルタ)を通過させて、さらに、第1窓関数により前記第1パルス波の立ち上がり部分を切り出し、前記第1パルス波の切り出した部分をフーリエ変換処理をしたものを第1信号波形とし、さらに、前記電力ケーブルの他端の導体に伝搬したパルスを第2パルス波とし、この第2パルス波を第2BPFを通過させて、さらに、第2窓関数により前記第2パルスの立ち上がり部分を切り出し、前記第2パルス波の切り出した部分をフーリエ変換処理をして第2信号波形とし、前記第1信号波形と第2信号波形の周波数ごとの位相差を求め、求めた位相差に基づいて前記故障点を検出することを特徴とする電力ケーブルの故障点検出方法である。
これにより、前記電力ケーブルの一端の導体における第1パルス波を第1BPFを通過させることにより、高周波ノイズ成分およびパルス波形の検出に不要な低周波部分をカットして波形整形し、さらに、第1窓関数により第1パルス波の立ち上がり部分を強調して、フーリエ変換処理により、フーリエ級数に変換して第1信号波形とし、前記電力ケーブルの他端の導体における第2パルス波を第2BPFを通過させることにより、高周波ノイズ成分およびパルス波形の検出に不要な低周波部分をカットして波形整形し、さらに、第2窓関数により第2パルス波の立ち上がり部分を強調して、フーリエ変換処理により、フーリエ級数に変換して第2信号波形としている。このため、第1信号波形および第2信号波形はともに離散的な周波数成分を有しているので、同じ周波数の成分同士を比較してその位相差を求めることができる。そして、求めた位相差が前記電力ケーブルにおける故障点から前記一端までのパルスの伝搬距離と前記故障点と前記他端までのパルスの伝搬距離の差を示すので、この位相差から電力ケーブルの故障点を検出することができる。
In order to solve the above-mentioned problem, the invention according to claim 1 applies a DC voltage to the conductor at one end of the power cable, and discharges between the conductor and the shielding layer of the power cable at the failure point of the power cable. When a pulse generated by the electric discharge propagates through the power cable, the pulse propagated to the one end of the power cable is defined as a first pulse wave, and the first pulse wave passes through a first BPF (band pass filter). Further, the rising portion of the first pulse wave is cut out by the first window function, the portion of the cut out portion of the first pulse wave is subjected to Fourier transform processing, and the first signal waveform is obtained. The pulse propagated to the conductor at the other end is set as a second pulse wave, the second pulse wave is passed through the second BPF, and further, the second pulse function is used to generate the second pulse wave. The rising portion of the second pulse wave is cut out, and the portion of the second pulse wave cut out is subjected to Fourier transform processing to obtain a second signal waveform, and a phase difference for each frequency between the first signal waveform and the second signal waveform is obtained. A failure detection method for a power cable, wherein the failure point is detected based on a phase difference.
Thus, by passing the first pulse wave in the conductor at one end of the power cable through the first BPF, the low-frequency portion unnecessary for detection of the high-frequency noise component and the pulse waveform is cut, and the waveform is shaped. Emphasizes the rising portion of the first pulse wave by the window function, converts it to the Fourier series by Fourier transform processing to obtain the first signal waveform, and passes the second pulse wave at the other end of the power cable through the second BPF By cutting the low frequency part unnecessary for the detection of the high frequency noise component and the pulse waveform, the waveform shaping is performed, and the rising part of the second pulse wave is emphasized by the second window function, and the Fourier transform process is performed. The second signal waveform is converted into a Fourier series. For this reason, since both the first signal waveform and the second signal waveform have discrete frequency components, the phase difference can be obtained by comparing components having the same frequency. Then, since the obtained phase difference indicates the difference between the propagation distance of the pulse from the failure point to the one end of the power cable and the propagation distance of the pulse from the failure point to the other end, the failure of the power cable is determined from this phase difference. A point can be detected.

請求項2記載の発明は、請求項1記載の電力ケーブルの故障点検出方法において、前記第1パルス波の時刻に同期した第1インパルスを発生させ、この第1インパルスをフーリエ変換処理をして前記第1信号波形に加えて第1合成波形とし、前記第2パルス波の時刻に同期した第2インパルスを発生させ、この第2インパルスをフーリエ変換処理をして前記第2信号波形に加えて第2合成波形とし、前記第1合成波形と第2合成波形の周波数ごとの位相差を求め、求めた位相差に基づいて前記故障点を検出することを特徴とする電力ケーブルの故障点検出方法である。
これにより、第1パルス波の時刻に同期した第1インパルスをフーリエ変換処理をして前記第1信号波形に加えた第1合成波形は、元になる第1パルス波の低周波成分がBPFにより除去されていても、元になる第1パルス波の低周波成分を精度よく表している。同様に、第2パルス波の時刻に同期した第2インパルスをフーリエ変換処理をして前記第2信号波形に加えた第2合成波形は、元になる第2パルス波の低周波成分がBPFにより除去されていても、元になる第2パルス波の低周波成分を精度よく表している。
このため、前記第1合成波形と第2合成波形の周波数ごとの位相差は、元になる第1パルス波と第2パルス波の位相差を精度よく表している。これにより、前記故障点を精度よく検出することができる。
According to a second aspect of the present invention, in the power cable failure point detecting method according to the first aspect, a first impulse synchronized with the time of the first pulse wave is generated, and the first impulse is subjected to a Fourier transform process. In addition to the first signal waveform, a first synthesized waveform is generated, a second impulse synchronized with the time of the second pulse wave is generated, and the second impulse is subjected to Fourier transform processing and added to the second signal waveform. A failure point detection method for a power cable, characterized in that a phase difference for each frequency of the first synthesized waveform and the second synthesized waveform is obtained as a second synthesized waveform, and the failure point is detected based on the obtained phase difference. It is.
As a result, the first synthesized waveform obtained by subjecting the first impulse synchronized with the time of the first pulse wave to the first signal waveform after Fourier transform processing is the low-frequency component of the original first pulse wave due to the BPF. Even if it is removed, the low-frequency component of the original first pulse wave is accurately represented. Similarly, the second synthesized waveform obtained by performing Fourier transform on the second impulse synchronized with the time of the second pulse wave and adding it to the second signal waveform has a low-frequency component of the original second pulse wave due to BPF. Even if it is removed, the low-frequency component of the original second pulse wave is accurately represented.
For this reason, the phase difference for each frequency of the first synthesized waveform and the second synthesized waveform accurately represents the phase difference between the original first pulse wave and the second pulse wave. As a result, the failure point can be detected with high accuracy.

請求項3記載の発明は、請求項1または2記載の電力ケーブルの故障点検出方法において、前記求めた位相差を時間差に変換し、求めた時間差と前記パルスの前記電力ケーブルにおける伝搬速度とから前記故障点を検出することを特徴とする電力ケーブルの故障点検出方法である。
これにより、前記求めた位相差を時間差に変換し、この時間差と予め測定した前記電力ケーブルにおけるパルスの伝搬速度との積を求めることにより、故障点の位置を検出することができる。
According to a third aspect of the present invention, in the power cable failure point detecting method according to the first or second aspect, the obtained phase difference is converted into a time difference, and the obtained time difference and the propagation speed of the pulse in the power cable are calculated. A failure detection method for a power cable, wherein the failure point is detected.
Thereby, the position of the failure point can be detected by converting the obtained phase difference into a time difference and obtaining the product of the time difference and the propagation speed of the pulse in the power cable measured in advance.

請求項1記載の発明によれば、検出したパルス波形の同一の周波数成分毎に位相差を求めるようにしたため、電力ケーブルの故障点を従来よりも精度よく検出することができる。
さらに、請求項2記載の発明によれば、請求項1記載の発明の効果とともに、低周波成分を合成することでさらに精度よく電力ケーブルの故障点を検出することができる。
さらに、請求項3記載の発明によっても、電力ケーブルの故障点を従来よりも精度よく検出することができる。
According to the first aspect of the present invention, the phase difference is obtained for each identical frequency component of the detected pulse waveform, so that the failure point of the power cable can be detected more accurately than in the past.
Furthermore, according to the invention described in claim 2, together with the effect of the invention described in claim 1, the failure point of the power cable can be detected with higher accuracy by combining the low frequency components.
Furthermore, according to the third aspect of the invention, the failure point of the power cable can be detected with higher accuracy than in the prior art.

以下、本発明における実施の形態を図面に基づいて説明する。
図1は、本発明の実施の形態に係る測定装置を示し、図2は図1の測定装置で測定したパルス波を処理する手段を示し、図3は図1の測定装置で測定したパルス波を示し、図4は図3のパルス波を処理した状態を示し、図5は処理した波形をフーリエ変換したときの位相差を示し、図6は前記位相差をアンラップ(unwrap)した状態を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 shows a measuring apparatus according to an embodiment of the present invention, FIG. 2 shows means for processing a pulse wave measured by the measuring apparatus of FIG. 1, and FIG. 3 shows a pulse wave measured by the measuring apparatus of FIG. 4 shows a state where the pulse wave of FIG. 3 is processed, FIG. 5 shows a phase difference when the processed waveform is Fourier transformed, and FIG. 6 shows a state where the phase difference is unwrapped. .

本発明に係る電力ケーブルの故障点検出方法は、以下のとおりである。
すなわち、図1に示すように、電力ケーブル10の故障相11の導体11aの遠端と健全相12の導体12aの遠端を接続する。そして、電力ケーブル10の一端の導体となる故障相11の導体11aの測定端に直流電圧を加え、電力ケーブル10の故障点11xにおいて導体11aと故障相11の導電性の遮蔽層11bとの間で放電させたときのその放電により発生するパルス波が故障相11および健全相12を伝搬するようにする。
The power cable failure point detection method according to the present invention is as follows.
That is, as shown in FIG. 1, the far end of the conductor 11a of the failure phase 11 of the power cable 10 and the far end of the conductor 12a of the healthy phase 12 are connected. Then, a DC voltage is applied to the measurement end of the conductor 11a of the fault phase 11 serving as a conductor of one end of the power cable 10, and the conductor 11a and the conductive shielding layer 11b of the fault phase 11 are interposed at the fault point 11x of the power cable 10. So that the pulse wave generated by the discharge is propagated through the failure phase 11 and the healthy phase 12.

具体的には、電力ケーブル10は三相交流のCVケーブルであり、その故障相11では故障相11の導体11aの外側には絶縁層11cが形成され、絶縁層11cの外側には導電性の遮蔽層11bが同軸円筒状に形成されている。健全相12も同様に、その導体12aの外側には絶縁層12cが形成され、絶縁層12cの外側には導電性の遮蔽層12bが同軸円筒状に形成されている。ここで、導体11aの遠端と導体12aの遠端は接続され、各遮蔽層11b、12bは接地されている。そして、直流電源13のプラス電極を接地し、直流電源13のマイナス電極をブロッキング抵抗14を介して導体11aの測定端に接続して、導体11aの測定端に直流電圧を加えている。   Specifically, the power cable 10 is a three-phase AC CV cable. In the failure phase 11, an insulating layer 11c is formed outside the conductor 11a of the failure phase 11, and a conductive layer is formed outside the insulation layer 11c. The shielding layer 11b is formed in a coaxial cylindrical shape. Similarly, the healthy phase 12 has an insulating layer 12c formed outside the conductor 12a, and a conductive shielding layer 12b formed coaxially outside the insulating layer 12c. Here, the far end of the conductor 11a and the far end of the conductor 12a are connected, and the shielding layers 11b and 12b are grounded. Then, the positive electrode of the DC power supply 13 is grounded, the negative electrode of the DC power supply 13 is connected to the measurement end of the conductor 11a via the blocking resistor 14, and a DC voltage is applied to the measurement end of the conductor 11a.

この場合、故障点11xから故障相11の前記測定端の導体11aに伝搬したパルスを第1パルス波とする。さらに、故障相11の遠端を通過し健全相12の測定端の導体12a(電力ケーブル10の他端の導体となる)に伝搬したパルスを第2パルス波とする。
具体的には、故障相11の測定端(CH1)のパルス波を第1コンデンサ(C1)21と第2コンデンサ(C2)22で分圧し、第2コンデンサ22の両端の波形を第1パルス波とし、健全相12の測定端(CH2)のパルス波を第3コンデンサ(C3)23と第4コンデンサ(C4)24で分圧し、第4コンデンサ24の両端の波形を第2パルス波とする。そして、前記第1パルス波および第2パルス波をオシロスコープ25で観測する。図3はこの場合の前記第1パルス波および第2パルス波の例を示す。
In this case, a pulse propagated from the failure point 11x to the conductor 11a at the measurement end of the failure phase 11 is defined as a first pulse wave. Further, a pulse that has passed through the far end of the failure phase 11 and propagated to the conductor 12a at the measurement end of the healthy phase 12 (becomes the conductor at the other end of the power cable 10) is defined as a second pulse wave.
Specifically, the pulse wave at the measurement end (CH1) of the failure phase 11 is divided by the first capacitor (C1) 21 and the second capacitor (C2) 22, and the waveform at both ends of the second capacitor 22 is the first pulse wave. The pulse wave at the measurement end (CH2) of the healthy phase 12 is divided by the third capacitor (C3) 23 and the fourth capacitor (C4) 24, and the waveforms at both ends of the fourth capacitor 24 are defined as the second pulse wave. Then, the first pulse wave and the second pulse wave are observed with an oscilloscope 25. FIG. 3 shows an example of the first pulse wave and the second pulse wave in this case.

そして、図2に示す第1波形処理部30において、前記第1パルス波を第1BPF31を通過させて、さらに、第1窓関数部32により前記第1パルス波の立ち上がり部分を切り出し、前記第1パルス波の切り出した部分を第1FFT(高速フーリエ変換)部33によりフーリエ変換処理をしたものを第1信号波形とする。
さらに、図2に示す第2波形処理部40において、前記第2パルス波を第2BPF41を通過させて、さらに、第2窓関数部42により前記第2パルス波の立ち上がり部分を切り出し、前記第2パルス波の切り出した部分を第3FFT部43によりフーリエ変換処理をして第2信号波形とする。
ここで、第1および第2BPF31、41は、故障点の放電によるパルスが電力ケーブル10(図1参照)を伝搬中に喪失し、ほぼノイズだけとなっている5MHz以上の高周波領域と、第1パルス波および第2パルス波の立ち上がり部分を検出するために必要のない1MHz以下の低周波領域とをカットするバンドパスフィルタである。また、第1および第2窓関数部32、42は、第1および第2パルス波の立ち上がり点近傍を強調し、その波尾信号をカットするため、窓関数として例えばガウス関数を用いる。
図4はこの場合の波形処理の例を示す。図4に示すように、各BPF31、41通過後では第1および第2パルス波の低周波成分および高周波成分が除かれ、さらに、各窓関数部32、42により第1および第2パルス波の立ち上がり部分が強調されている。
Then, in the first waveform processing unit 30 shown in FIG. 2, the first pulse wave is passed through the first BPF 31, and the rising portion of the first pulse wave is cut out by the first window function unit 32. A part obtained by subjecting the pulse wave to a Fourier transform process by a first FFT (fast Fourier transform) unit 33 is defined as a first signal waveform.
Further, in the second waveform processing unit 40 shown in FIG. 2, the second pulse wave is passed through the second BPF 41, and the rising portion of the second pulse wave is cut out by the second window function unit 42. The portion from which the pulse wave is cut out is subjected to Fourier transform processing by the third FFT unit 43 to obtain a second signal waveform.
Here, the first and second BPFs 31 and 41 have a high-frequency region of 5 MHz or higher in which a pulse due to the discharge at the failure point is lost while propagating through the power cable 10 (see FIG. 1), and is almost only noise. It is a band pass filter that cuts a low frequency region of 1 MHz or less that is not necessary for detecting the rising portions of the pulse wave and the second pulse wave. Further, the first and second window function units 32 and 42 use, for example, a Gaussian function as a window function in order to emphasize the vicinity of the rising points of the first and second pulse waves and cut the wave tail signal.
FIG. 4 shows an example of waveform processing in this case. As shown in FIG. 4, after passing through each of the BPFs 31 and 41, the low-frequency component and the high-frequency component of the first and second pulse waves are removed. The rising part is emphasized.

つぎに、図2に示すように、位相差計算部47により前記第1信号波形と第2信号波形の周波数ごとの位相差を求め、求めた位相差に基づいて故障点11x(図1参照)を検出する。
具体的には、位相差は+π〜−πで計算されるが、実際の「周波数」対「位相差」は比例関係となる。図5はこの場合の位相差の例を示している。図5(a)では、nMHzと3nMHzの場合の一例を示している。この場合、CH1とCH2のnMHzと3nMHzの到達時間差Δtは同じであるが、nMHzでは計算位相差α(実位相差と等しい)がπ/2となるが、3nMHzでは計算位相差βは−π/2、実位相差γは3π/2となる。図5(b)のグラフは図5(a)の結果により、周波数と計算位相差の関係を示している。なお、図5(b)にてu点は計算位相差π/2の点を示し、v点は計算位相差−π/2の点を示している。この結果、低周波成分ほど伝搬速度が遅くなるため、単純比例ではないが、周波数が倍になれば位相差はほぼ倍になる。
Next, as shown in FIG. 2, the phase difference calculation unit 47 obtains a phase difference for each frequency of the first signal waveform and the second signal waveform, and a failure point 11x (see FIG. 1) based on the obtained phase difference. Is detected.
Specifically, the phase difference is calculated from + π to −π, but the actual “frequency” versus “phase difference” has a proportional relationship. FIG. 5 shows an example of the phase difference in this case. FIG. 5A shows an example of n MHz and 3 n MHz. In this case, the arrival time difference Δt between CH1 and CH2 between nMHz and 3nMHz is the same, but the calculated phase difference α (equal to the actual phase difference) is π / 2 at nMHz, but the calculated phase difference β is −π at 3nMHz. / 2, and the actual phase difference γ is 3π / 2. The graph of FIG. 5B shows the relationship between the frequency and the calculated phase difference based on the result of FIG. In FIG. 5B, the point u indicates a point with a calculated phase difference π / 2, and the point v indicates a point with a calculated phase difference −π / 2. As a result, the propagation speed of the low-frequency component becomes slower, so it is not simply proportional, but if the frequency is doubled, the phase difference is almost doubled.

さらに、図2に示すように、第1波形処理部30の第1インパルス発生部34により前記第1パルス波の時刻に同期した第1インパルスを発生させ、この第1インパルスを第2FFT部35にてフーリエ変換処理をして前記第1信号波形に加えて第1合成波形とする。そして、第2波形処理部40の第2インパルス発生部44により前記第2パルス波の時刻に同期した第2インパルスを発生させ、第4FFT部45により前記第2インパルスをフーリエ変換処理をして前記第2信号波形に加えて第2合成波形とする。さらに、位相差計算部47により前記第1合成波形と第2合成波形の周波数ごとの位相差を求め、求めた位相差に基づいて故障点11xを検出することができる。   Further, as shown in FIG. 2, the first impulse generator 34 of the first waveform processing unit 30 generates a first impulse synchronized with the time of the first pulse wave, and this first impulse is sent to the second FFT unit 35. Fourier transform processing is performed to obtain a first composite waveform in addition to the first signal waveform. The second impulse generator 44 of the second waveform processor 40 generates a second impulse synchronized with the time of the second pulse wave, and the fourth FFT unit 45 performs a Fourier transform process on the second impulse. In addition to the second signal waveform, the second combined waveform is used. Further, the phase difference calculation unit 47 can obtain a phase difference for each frequency of the first synthesized waveform and the second synthesized waveform, and detect the failure point 11x based on the obtained phase difference.

具体的には、「周波数」対「計算位相差」の関係を「周波数」対「実位相差」の関係に変換する処理すなわち位相アンラップ(unwrap)を行う。
上述のように、立ち上がり部分の検出に必要のない第1および第2パルス波(原波形)の低周波成分(1MHz以下)をカットしていることから、別途事前に、上述の純粋な第1および第2インパルスから、立ち上がり点の情報(時間・大きさ)をもとに生成した低周波成分の信号を加えておくことでアンラップの失敗を防ぐことができる。
図6(a)に示すように、測定データは1MHz〜5MHzの周波数成分を有している。すなわち、低周波成分をカットしているので、基準となる初めの位相差が実際と違うことがある。図6(b)に示すように、補正データは1MHz以下の成分であり、純粋なインパルス波形により生成した低周波成分による「周波数」対「位相差」の関係を基準にする。そして、図6(a)のAの部分と図6(b)のBの部分がつながる。このため、図6(c)に示す補正後のデータは、5MHz以下の周波数成分になり、低周波成分の補正後にアンラップさせることで「周波数」対「実位相差」の関係を得ることができる。なお、図6(b)および(c)におけるPの周波数範囲は補正データの範囲であり、図6(c)におけるQの周波数範囲は故障点11xの検出に使用する周波数範囲である。
Specifically, a process of converting a relationship of “frequency” to “calculated phase difference” into a relationship of “frequency” to “actual phase difference”, that is, phase unwrapping is performed.
As described above, since the low-frequency components (1 MHz or less) of the first and second pulse waves (original waveforms) that are not necessary for the detection of the rising portion are cut, the pure first first described above is separately provided in advance. Further, by adding a low-frequency component signal generated based on the rising point information (time and size) from the second impulse, unwrapping failure can be prevented.
As shown in FIG. 6A, the measurement data has a frequency component of 1 MHz to 5 MHz. That is, since the low-frequency component is cut, the initial phase difference that is the reference may be different from the actual one. As shown in FIG. 6B, the correction data is a component of 1 MHz or less and is based on the relationship between “frequency” and “phase difference” due to a low frequency component generated by a pure impulse waveform. Then, the portion A in FIG. 6A and the portion B in FIG. 6B are connected. For this reason, the data after correction shown in FIG. 6C has a frequency component of 5 MHz or less, and the relationship between “frequency” and “actual phase difference” can be obtained by unwrapping after correcting the low frequency component. . The frequency range P in FIGS. 6B and 6C is a correction data range, and the frequency range Q in FIG. 6C is a frequency range used for detecting the failure point 11x.

さらに、図2に示すように、時間差変換部48により前記求めた実位相差を時間差に変換し、求めた時間差とパルスの電力ケーブル10(図1参照)における伝搬速度とから故障点算出部49により故障点11xを検出することができる。なお、電力ケーブル10におけるパルスの伝搬速度は事前の測定により算出する必要がある。   Further, as shown in FIG. 2, the time difference conversion unit 48 converts the obtained actual phase difference into a time difference, and a failure point calculation unit 49 based on the obtained time difference and the propagation speed of the pulse in the power cable 10 (see FIG. 1). Thus, the failure point 11x can be detected. The pulse propagation speed in the power cable 10 needs to be calculated by prior measurement.

上記構成の電力ケーブルの故障点検出方法は、以下の作用効果がある。
図1に示すように、電力ケーブル10の一端の導体11aにおける第1パルス波を第1BPF31を通過させることにより、高周波ノイズ成分およびパルス波形の検出に不要な低周波部分をカットして波形整形する。さらに、第1窓関数部32により第1パルス波の立ち上がり部分を強調して、フーリエ変換処理により、フーリエ級数に変換して第1信号波形とする。
一方、電力ケーブル10の他端の導体12aにおける第2パルス波を第2BPF41を通過させることにより、高周波ノイズ成分およびパルス波形の検出に不要な低周波部分をカットして波形整形し、さらに、第2窓関数部42により第2パルス波の立ち上がり部分を強調して、フーリエ変換処理により、フーリエ級数に変換して第2信号波形としている。
このため、第1信号波形および第2信号波形はともに離散的な周波数成分を有しているので、同じ周波数の成分同士を比較してその位相差を求めすることができる。そして、求めた位相差が電力ケーブル10における故障点11xから前記一端(導体11aの測定端)までのパルス波の伝搬距離と故障点11xと前記他端(導体12aの測定端)までのパルスの伝搬距離の差を示すので、この位相差から電力ケーブル10の故障点11xを検出することができる。
The failure detection method of the power cable having the above configuration has the following effects.
As shown in FIG. 1, by passing the first pulse wave in the conductor 11a at one end of the power cable 10 through the first BPF 31, the low frequency part unnecessary for detection of the high frequency noise component and the pulse waveform is cut and the waveform is shaped. . Further, the rising portion of the first pulse wave is emphasized by the first window function unit 32, and converted into a Fourier series by the Fourier transform process to obtain a first signal waveform.
On the other hand, by passing the second pulse wave in the conductor 12a at the other end of the power cable 10 through the second BPF 41, the low-frequency portion unnecessary for detection of the high-frequency noise component and the pulse waveform is cut, and the waveform is shaped. The rising portion of the second pulse wave is emphasized by the two-window function unit 42 and converted into a Fourier series by the Fourier transform process to obtain a second signal waveform.
For this reason, since both the first signal waveform and the second signal waveform have discrete frequency components, the phase difference can be obtained by comparing components of the same frequency. The obtained phase difference is the propagation distance of the pulse wave from the failure point 11x to the one end (the measurement end of the conductor 11a) in the power cable 10, and the pulse wave from the failure point 11x to the other end (the measurement end of the conductor 12a). Since the difference in propagation distance is indicated, the failure point 11x of the power cable 10 can be detected from this phase difference.

さらに、第1パルス波の時刻に同期した第1インパルスをフーリエ変換処理をして前記第1信号波形に加えた第1合成波形は、元になる第1パルス波の低周波成分が第1BPF31により除去されていても、元になる第1パルス波の低周波成分を精度よく表している。同様に、第2パルス波の時刻に同期した第2インパルスをフーリエ変換処理をして前記第2信号波形に加えた第2合成波形は、元になる第2パルス波の低周波成分が第2BPF41により除去されていても、元になる第2パルス波の低周波成分を精度よく表している。
このため、前記第1合成波形と第2合成波形の周波数ごとの位相差は、元になる第1パルス波と第2パルス波の位相差を精度よく表している。これにより、前記故障点を精度よく検出することができる。
さらに、前記求めた位相差を時間差に変換し、この時間差と予め測定した電力ケーブル10におけるパルスの伝搬速度との積を求めることにより、故障点11xの位置を検出することができる。
Further, the first synthesized waveform obtained by subjecting the first impulse synchronized with the time of the first pulse wave to the first signal waveform by performing Fourier transform processing is such that the low frequency component of the original first pulse wave is caused by the first BPF 31. Even if it is removed, the low-frequency component of the original first pulse wave is accurately represented. Similarly, the second synthesized waveform obtained by subjecting the second impulse synchronized with the time of the second pulse wave to the second signal waveform after Fourier transform processing has a low frequency component of the second pulse wave as the second BPF 41. Even if it is removed by this, the low-frequency component of the original second pulse wave is accurately represented.
For this reason, the phase difference for each frequency of the first synthesized waveform and the second synthesized waveform accurately represents the phase difference between the original first pulse wave and the second pulse wave. As a result, the failure point can be detected with high accuracy.
Furthermore, the position of the failure point 11x can be detected by converting the obtained phase difference into a time difference and obtaining the product of the time difference and the propagation velocity of the pulse in the power cable 10 measured in advance.

このようにして、電力ケーブル10を伝搬することにより、減衰し鈍った第1および第2パルス波の立ち上がりをデジタル処理により明瞭にするとともに、電力ケーブル10の故障点11xの検出を自動化することで、測定者によるオシロスコープ25の読み取りによる誤差をなくすことができる。   In this way, by propagating through the power cable 10, the rise of the first and second pulse waves that are attenuated and dull is clarified by digital processing, and the detection of the failure point 11 x of the power cable 10 is automated. The error due to the reading of the oscilloscope 25 by the measurer can be eliminated.

なお、上記実施の形態において、第1波形処理部30、第2波形処理部40、位相差計算部47、時間差変換部48および故障点算出部49は、パソコンにインストールされたプログラムで構築可能である。
また、図2に示すように、第1インパルスをフーリエ変換したものを第1LPF(ローパスフィルタ)36を通過させて不要な高周波成分を除去し、同様に第2インパルスをフーリエ変換したものを第2LPF46を通過させて不要な高周波成分を除去しているが、これらの第1および第2LPF36、46はなくてもよい。
In the above embodiment, the first waveform processing unit 30, the second waveform processing unit 40, the phase difference calculation unit 47, the time difference conversion unit 48, and the failure point calculation unit 49 can be constructed by a program installed in a personal computer. is there.
Further, as shown in FIG. 2, the Fourier transform of the first impulse is passed through a first LPF (low-pass filter) 36 to remove unnecessary high-frequency components, and the second impulse is similarly Fourier-transformed from the second impulse. However, the first and second LPFs 36 and 46 may be omitted.

本発明の実施の形態に係る測定装置の説明図である。It is explanatory drawing of the measuring apparatus which concerns on embodiment of this invention. 図1の測定装置で測定したパルス波を処理する手段を示すブロック図である。It is a block diagram which shows the means to process the pulse wave measured with the measuring apparatus of FIG. 図1の測定装置で測定したパルス波を示す説明図である。It is explanatory drawing which shows the pulse wave measured with the measuring apparatus of FIG. 図3のパルス波形を処理した状態を示す説明図である。It is explanatory drawing which shows the state which processed the pulse waveform of FIG. 処理した波形をフーリエ変換したときの位相差を示す説明図である。It is explanatory drawing which shows a phase difference when Fourier-transforming the processed waveform. 位相差をアンラップした状態を示すグラフである。It is a graph which shows the state which unwrapped the phase difference. 従来例の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of a prior art example. 図7の方法で測定したパルス波を示す説明図である。It is explanatory drawing which shows the pulse wave measured by the method of FIG.

符号の説明Explanation of symbols

10 電力ケーブル
11 故障相
11a 導体
11b 遮蔽層
11x 故障点
12 健全相
12a 導体
13 直流電源
30 第1波形処理部
31 第1BPF
32 第1窓関数部
33 第1FFT部
34 第1インパルス発生部
35 第2FFT部
40 第2波形処理部
41 第2BPF
42 第2窓関数部
43 第3FFT部
44 第2インパルス発生部
45 第4FFT部
47 位相差計算部
48 時間差変換部
49 故障点算出部
DESCRIPTION OF SYMBOLS 10 Power cable 11 Failure phase 11a Conductor 11b Shielding layer 11x Failure point 12 Sound phase 12a Conductor 13 DC power supply 30 1st waveform processing part 31 1st BPF
32 1st window function part 33 1st FFT part 34 1st impulse generation part 35 2nd FFT part 40 2nd waveform processing part 41 2nd BPF
42 Second window function unit 43 Third FFT unit 44 Second impulse generation unit 45 Fourth FFT unit 47 Phase difference calculation unit 48 Time difference conversion unit 49 Failure point calculation unit

Claims (3)

電力ケーブルの一端の導体に直流電圧を加え、前記電力ケーブルの故障点において前記導体と前記電力ケーブルの遮蔽層との間で放電させたときのその放電により発生するパルスが前記電力ケーブルを伝搬する場合に、
前記電力ケーブルの前記一端に伝搬したパルスを第1パルス波とし、この第1パルス波を第1バンドパスフィルタを通過させて、さらに、第1窓関数により前記第1パルス波の立ち上がり部分を切り出し、前記第1パルス波の切り出した部分をフーリエ変換処理をしたものを第1信号波形とし、
さらに、前記電力ケーブルの他端の導体に伝搬したパルスを第2パルス波とし、この第2パルス波を第2バンドパスフィルタを通過させて、さらに、第2窓関数により前記第2パルス波の立ち上がり部分を切り出し、前記第2パルス波の切り出した部分をさらに、フーリエ変換処理をして第2信号波形とし、
前記第1信号波形と第2信号波形の周波数ごとの位相差を求め、求めた位相差に基づいて前記故障点を検出することを特徴とする電力ケーブルの故障点検出方法。
When a DC voltage is applied to the conductor at one end of the power cable and a discharge is caused between the conductor and the shielding layer of the power cable at the failure point of the power cable, a pulse generated by the discharge propagates through the power cable. In case,
The pulse propagated to the one end of the power cable is defined as a first pulse wave, the first pulse wave is passed through a first band pass filter, and a rising portion of the first pulse wave is cut out by a first window function. , A first signal waveform obtained by subjecting the cut out portion of the first pulse wave to Fourier transform processing,
Further, the pulse propagated to the conductor at the other end of the power cable is set as a second pulse wave, the second pulse wave is passed through the second band pass filter, and further, the second pulse wave is transmitted by the second window function. The rising portion is cut out, the portion of the second pulse wave cut out is further subjected to Fourier transform processing to obtain a second signal waveform,
A method for detecting a failure point of a power cable, wherein a phase difference for each frequency between the first signal waveform and the second signal waveform is obtained, and the failure point is detected based on the obtained phase difference.
請求項1記載の電力ケーブルの故障点検出方法において、
前記第1パルス波の時刻に同期した第1インパルスを発生させ、この第1インパルスをフーリエ変換処理をして前記第1信号波形に加えて第1合成波形とし、
前記第2パルス波の時刻に同期した第2インパルスを発生させ、この第2インパルスをフーリエ変換処理をして前記第2信号波形に加えて第2合成波形とし、
前記第1合成波形と第2合成波形の周波数ごとの位相差を求め、求めた位相差に基づいて前記故障点を検出することを特徴とする電力ケーブルの故障点検出方法。
In the power cable failure point detection method according to claim 1,
A first impulse synchronized with the time of the first pulse wave is generated, the first impulse is subjected to a Fourier transform process and added to the first signal waveform to form a first synthesized waveform;
A second impulse synchronized with the time of the second pulse wave is generated, the second impulse is subjected to Fourier transform processing and added to the second signal waveform to form a second synthesized waveform;
A power cable failure point detection method, comprising: obtaining a phase difference for each frequency of the first synthesized waveform and the second synthesized waveform, and detecting the failure point based on the obtained phase difference.
請求項1または2記載の電力ケーブルの故障点検出方法において、
前記求めた位相差を時間差に変換し、求めた時間差と前記パルスの前記電力ケーブルにおける伝搬速度とから前記故障点を検出することを特徴とする電力ケーブルの故障点検出方法。
In the power cable failure point detection method according to claim 1 or 2,
A method for detecting a failure point in a power cable, comprising: converting the obtained phase difference into a time difference, and detecting the failure point from the obtained time difference and a propagation speed of the pulse in the power cable.
JP2006056253A 2006-03-02 2006-03-02 Fault detection method for power cables Active JP4812007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056253A JP4812007B2 (en) 2006-03-02 2006-03-02 Fault detection method for power cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056253A JP4812007B2 (en) 2006-03-02 2006-03-02 Fault detection method for power cables

Publications (2)

Publication Number Publication Date
JP2007232623A true JP2007232623A (en) 2007-09-13
JP4812007B2 JP4812007B2 (en) 2011-11-09

Family

ID=38553335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056253A Active JP4812007B2 (en) 2006-03-02 2006-03-02 Fault detection method for power cables

Country Status (1)

Country Link
JP (1) JP4812007B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253966A (en) * 2012-05-07 2013-12-19 Tokyo Electric Power Co Inc:The Charge type electrical circuit accident investigation radar
CN103472333A (en) * 2013-09-16 2013-12-25 国家电网公司 Wind power integration electric energy quality overall performance detection method
JP2013257150A (en) * 2012-06-11 2013-12-26 Mitsubishi Electric Corp Insulation defect position locating device and insulation defect position locating method for power cable
CN103809081A (en) * 2014-02-27 2014-05-21 武汉虹信通信技术有限责任公司 Feeder line standing wave fault location method and detector thereof
JP2015143701A (en) * 2010-03-05 2015-08-06 アンビエント・コーポレイション Evaluating noise and excess current on power line
CN106841854A (en) * 2016-12-30 2017-06-13 国网山东省电力公司鄄城县供电公司 Power equipment safety monitoring method and system
CN107064761A (en) * 2017-05-08 2017-08-18 南京电力工程设计有限公司 The detection method and detecting system of velocity of wave characteristic inside a kind of ac cable
JP2017181148A (en) * 2016-03-29 2017-10-05 矢崎エナジーシステム株式会社 Power cable insulation degraded position estimation method and estimation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111796165B (en) * 2020-07-21 2021-10-15 河海大学 Power distribution network fault positioning method based on self-adaptive Fourier transform

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143701A (en) * 2010-03-05 2015-08-06 アンビエント・コーポレイション Evaluating noise and excess current on power line
US9612271B2 (en) 2010-03-05 2017-04-04 Ericsson Inc. Evaluating noise and excess current on a power line
JP2013253966A (en) * 2012-05-07 2013-12-19 Tokyo Electric Power Co Inc:The Charge type electrical circuit accident investigation radar
JP2013257150A (en) * 2012-06-11 2013-12-26 Mitsubishi Electric Corp Insulation defect position locating device and insulation defect position locating method for power cable
CN103472333A (en) * 2013-09-16 2013-12-25 国家电网公司 Wind power integration electric energy quality overall performance detection method
CN103809081A (en) * 2014-02-27 2014-05-21 武汉虹信通信技术有限责任公司 Feeder line standing wave fault location method and detector thereof
JP2017181148A (en) * 2016-03-29 2017-10-05 矢崎エナジーシステム株式会社 Power cable insulation degraded position estimation method and estimation system
CN106841854A (en) * 2016-12-30 2017-06-13 国网山东省电力公司鄄城县供电公司 Power equipment safety monitoring method and system
CN107064761A (en) * 2017-05-08 2017-08-18 南京电力工程设计有限公司 The detection method and detecting system of velocity of wave characteristic inside a kind of ac cable
CN107064761B (en) * 2017-05-08 2023-08-11 南京电力工程设计有限公司 Method and system for detecting internal wave velocity characteristics of alternating current cable

Also Published As

Publication number Publication date
JP4812007B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4812007B2 (en) Fault detection method for power cables
KR102014582B1 (en) Apparatus for processing reflected wave
US10338124B2 (en) Cable fault diagnosis method and system
JP6753841B2 (en) Insulation diagnostic equipment and insulation diagnostic method for electric power equipment
JP5935850B2 (en) Partial discharge diagnostic device
KR101525475B1 (en) Cable fault diagnostic apparatus and method for thereof
EP2786163A1 (en) Fault location in power distribution systems
JP2009229184A (en) Harmonic probing method and device
KR101213195B1 (en) Cable fault diagnostic method and system
CN111007316B (en) FFT (fast Fourier transform) and DWT (discrete wavelet transform) based hybrid harmonic detection improvement method
JPH06138169A (en) Measuring method for partial degradation of insulation of cable
KR101789577B1 (en) On-line Patial Discharge Location Monitoring Device of Rotating high voltage three-phase stator winding
US10359465B2 (en) Method for characterizing a soft fault in a cable
JP5218852B2 (en) Optical fiber strain measurement device
JP6063354B2 (en) Conducted disturbance source search device
Olszewska et al. Location of partial discharge sources and analysis of signals in chosen power oil transformers by means of acoustic emission method
CN111523231A (en) Subsynchronous oscillation analysis method based on EEMD and Prony method
JP2017181148A (en) Power cable insulation degraded position estimation method and estimation system
JP6600567B2 (en) Vacuum valve vacuum degree monitoring device and monitoring method
JP2009047663A (en) Partial discharge detecting technique for electric equipment and device thereof
Shi et al. Dual-Guidance-Based optimal resonant frequency band selection and multiple ridge path identification for bearing fault diagnosis under time-varying speeds
WO2024053539A1 (en) Noise removal device, noise removal method, and program
Bastos et al. Frequency retrieval from PMU data corrupted with pseudo-oscillations during off-nominal operation
JP3431390B2 (en) Cable insulation diagnosis method
Kobayashi et al. A fault location method for power cables using time–frequency analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110819

R150 Certificate of patent or registration of utility model

Ref document number: 4812007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250