JP2013253966A - Charge type electrical circuit accident investigation radar - Google Patents

Charge type electrical circuit accident investigation radar Download PDF

Info

Publication number
JP2013253966A
JP2013253966A JP2013092393A JP2013092393A JP2013253966A JP 2013253966 A JP2013253966 A JP 2013253966A JP 2013092393 A JP2013092393 A JP 2013092393A JP 2013092393 A JP2013092393 A JP 2013092393A JP 2013253966 A JP2013253966 A JP 2013253966A
Authority
JP
Japan
Prior art keywords
accident point
antennas
accident
mhz
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013092393A
Other languages
Japanese (ja)
Other versions
JP6102467B2 (en
Inventor
Yoshiaki Saito
祥明 斉藤
Yutaka Tajima
豊 田島
Shiyousuke Iwano
将介 岩野
Daisuke Suzuki
大介 鈴木
Masashi Tezuka
昌史 手塚
Hitoshi Ohira
仁志 大平
Keiichi Sato
恵一 佐藤
Haruo Taya
晴生 田家
Takuya Hoshikawa
拓也 星川
Masahiro Yamura
雅博 矢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2013092393A priority Critical patent/JP6102467B2/en
Publication of JP2013253966A publication Critical patent/JP2013253966A/en
Application granted granted Critical
Publication of JP6102467B2 publication Critical patent/JP6102467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charge type electrical circuit accident investigation radar capable of accurately investigating an accident point by accurately specifying a frequency band of a transmitted electromagnetic wave on the accident point.SOLUTION: An electromagnetic wave generated by ground discharge on an accident point caused by a high voltage pulse from a charge device is detected by a pair of antennas 13a, 13b by using a plurality of resonance frequencies. An FFT analysis device performs fast Fourier transform of detection signals detected by the pair of antennas and detects a resonance frequency of the largest output voltage of the pair of antennas. An arithmetic processing unit defines the resonance frequency of the largest output voltage detected by the FFT analysis device as an accident point resonance frequency, identifies a direction of the accident point on the basis of a time difference between output voltages of the pair of antennas at the accident point resonance frequency and outputs the direction of the accident point identified by the arithmetic processing unit to a display device to display the direction.

Description

本発明は、停電状態の配電線に高電圧パルスを印加して放電性地絡事故点を探査する課電式電路事故探査レーダに関する。   The present invention relates to a power-applying electric circuit accident detection radar that searches a discharge ground fault point by applying a high voltage pulse to a distribution line in a power failure state.

課電式電路事故探査レーダは、停電状態の配電線に課電装置から高電圧パルスを印加し、この高電圧パルスにより、配電線路から放射される電磁波を2個のアンテナで検出して放電性地絡事故点を探査するものである。   The power distribution type accident survey radar applies a high voltage pulse from the power distribution device to the power distribution line in the power outage state, and this high voltage pulse detects the electromagnetic waves radiated from the power distribution line with two antennas. This is to explore the ground fault point.

図13は、従来の課電式電路事故探査レーダの一例を示す構成図である。いま、配電線11の事故点Fで地絡事故が発生したとすると配電線11は停電状態となる。配電線11が停電状態となると、点検保守員は事故点Fの探査を行うにあたり、まず、停電状態の配電線11に課電装置12から周期的に高電圧パルスを印加する。この高電圧パルスは事故点Fで地絡放電して配電線11に電流Iが流れ、この電流Iにより発生する電磁波Sが配電線11から放射される。この電磁波Sを2個のアンテナ13a、13bで検出して、その検出時間の時間差により事故点Fの方向を決定する。   FIG. 13 is a configuration diagram showing an example of a conventional electric charging type electric circuit accident survey radar. Now, assuming that a ground fault has occurred at the accident point F of the distribution line 11, the distribution line 11 is in a power failure state. When the distribution line 11 is in a power failure state, the inspection and maintenance staff first applies a high voltage pulse periodically from the power distribution device 12 to the power distribution line 11 in a power failure state when searching for the accident point F. The high voltage pulse is grounded at the accident point F, and a current I flows through the distribution line 11. An electromagnetic wave S generated by the current I is radiated from the distribution line 11. The electromagnetic wave S is detected by the two antennas 13a and 13b, and the direction of the accident point F is determined by the time difference between the detection times.

2個のアンテナ13a、13bは、例えば、ループアンテナであり自動車14に搭載される。図13に示すように、事故点Fが2個のアンテナ13a、13bを搭載した自動車14の前方にあるときは、アンテナ13aがアンテナ13bより先に電磁波Sを検出する。一方、事故点Fが自動車14の後方にあるときは、アンテナ13bがアンテナ13aより先に電磁波Sを検出する。そこで、2個のアンテナ13a、13bの電磁波の検出時間差により事故点Fの方向を決定する。   The two antennas 13 a and 13 b are, for example, loop antennas and are mounted on the automobile 14. As shown in FIG. 13, when the accident point F is in front of the automobile 14 equipped with the two antennas 13a and 13b, the antenna 13a detects the electromagnetic wave S before the antenna 13b. On the other hand, when the accident point F is behind the automobile 14, the antenna 13b detects the electromagnetic wave S before the antenna 13a. Therefore, the direction of the accident point F is determined based on the detection time difference between the electromagnetic waves of the two antennas 13a and 13b.

ここで、課電式電路事故探査レーダとして、事故点Fから配電線11を伝搬してくる電流Iにより発生する電磁波Sの外来ノイズを除去して、事故点の探査精度を高めたものがある(例えば、特許文献1参照)。   Here, there is a power transmission type electric line accident survey radar that removes external noise of the electromagnetic wave S generated by the current I propagating from the accident point F through the distribution line 11 and improves the fault point search accuracy. (For example, refer to Patent Document 1).

特開昭63−243771号公報Japanese Unexamined Patent Publication No. 63-243771

しかし、従来のものでは、1つの共振点(例えば、1.4MHzの固定周波数)を有するアンテナ13a、13bを用いて、高電圧パルスによる配電線11の電磁波を検出するようにしているので、必ずしも事故点を精度よく検出できるものではない。これは、事故点で発生する高圧パルスにより電磁波(発信電磁波)の周波数が事故状況に応じて変動するからである。   However, in the conventional apparatus, the electromagnetic waves of the distribution line 11 due to the high voltage pulse are detected using the antennas 13a and 13b having one resonance point (for example, a fixed frequency of 1.4 MHz). Accident points cannot be detected accurately. This is because the frequency of the electromagnetic wave (transmitted electromagnetic wave) varies depending on the accident situation due to the high-pressure pulse generated at the accident point.

図14は、従来のアンテナでの電磁波の検出信号の一例のグラフである。図14では、アンテナの共振点(1.4MHzの固定周波数)を中心とした1〜2MHzの範囲の検出信号を示している。図14の曲線C1はアンテナの感度であり、共振周波数1.4MHzのときの感度が最大である。曲線C2は電磁波の磁界の大きさである。曲線C3はアンテナの検出信号(出力電圧)である。   FIG. 14 is a graph of an example of an electromagnetic wave detection signal in a conventional antenna. FIG. 14 shows a detection signal in a range of 1 to 2 MHz with the resonance point (1.4 MHz fixed frequency) of the antenna as the center. A curve C1 in FIG. 14 represents the sensitivity of the antenna, and the sensitivity is maximum when the resonance frequency is 1.4 MHz. A curve C2 is the magnitude of the electromagnetic field. A curve C3 is an antenna detection signal (output voltage).

また、図14では事故点Fの発信電磁波Sの周波数が1.8MHzであり、周波数1.3MHzや1.6MHzのノイズがある場合を示している。この場合、共振点が1.4MHzのアンテナであるので、周波数1.3MHzや1.6MHzのノイズが事故点Fの1.8MHzの発信電磁波の強度と同等以上に検出される。従って誤検出の原因となる。   FIG. 14 shows a case where the frequency of the transmitted electromagnetic wave S at the accident point F is 1.8 MHz and there is noise with a frequency of 1.3 MHz or 1.6 MHz. In this case, since the resonance point is an antenna having a frequency of 1.4 MHz, noise having a frequency of 1.3 MHz or 1.6 MHz is detected to be equal to or higher than the intensity of the 1.8 MHz outgoing electromagnetic wave at the accident point F. Therefore, it causes a false detection.

このように、アンテナは1.4MHzの固定周波数で共振させているが、事故状況に応じて発信電磁波の周波数は変化するので、事故点Fの発信電磁波の周波数が1.4MHzからずれていると、その発信電磁波以外のノイズ電磁波も同帯域で発生していることから、発信電磁波を分別することが難しい。   Thus, although the antenna is resonating at a fixed frequency of 1.4 MHz, the frequency of the transmitted electromagnetic wave changes depending on the accident situation, and therefore the frequency of the transmitted electromagnetic wave at the accident point F is deviated from 1.4 MHz. Since noise electromagnetic waves other than the transmitted electromagnetic waves are also generated in the same band, it is difficult to separate the transmitted electromagnetic waves.

本発明の目的は、事故点の発信電磁波の周波数帯域を精度よく特定し、事故点を精度よく探査できる課電式電路事故探査レーダを提供することである。   An object of the present invention is to provide a power transmission type electric circuit accident survey radar capable of accurately identifying a frequency band of a transmitted electromagnetic wave at an accident point and searching for the accident point with high accuracy.

請求項1の発明に係る課電式電路事故探査レーダは、停電状態の配電線に課電装置から高電圧パルスを印加し、高電圧パルスによる事故点での地絡放電により発生する電磁波を一対のアンテナで検出し、この一対のアンテナの出力電圧の時間差に基づいて事故点の方向を判別する課電式電路事故探査レーダにおいて、前記高電圧パルスによる事故点での地絡放電により発生する電磁波を複数の共振周波数を用いて検出する一対のアンテナと、前記一対のアンテナの検出信号を高速フーリエ変換し一対のアンテナの出力電圧が最も大きい共振周波数を検出するFFT解析装置と、前記FFT解析装置で検出された最も出力電圧が大きい共振周波数を事故点共振周波数と判断しその事故点共振周波数での一対のアンテナの出力電圧の時間差に基づいて事故点の方向を判別する演算処理装置と、前記演算処理装置で判別された事故点の方向を表示出力する表示装置とを備えたことを特徴とする。   According to a first aspect of the present invention, a power distribution type accident survey radar applies a high voltage pulse to a distribution line in a power outage state from a power application device, and generates a pair of electromagnetic waves generated by a ground fault discharge at the accident point due to the high voltage pulse. Electromagnetic wave generated by ground fault discharge at the accident point due to the high voltage pulse in the electric circuit type accident detection radar that detects the direction of the accident point based on the time difference between the output voltages of the pair of antennas. A pair of antennas using a plurality of resonance frequencies, an FFT analysis apparatus for detecting a resonance frequency having a maximum output voltage of the pair of antennas by fast Fourier transforming detection signals of the pair of antennas, and the FFT analysis apparatus Based on the time difference between the output voltages of the pair of antennas at the accident point resonance frequency, the resonance frequency with the highest output voltage detected in step 1 is determined as the accident point resonance frequency. Characterized by comprising a processing unit for determining the direction of the fault point, and a display device for displaying the output direction of the discriminated fault point by the arithmetic processing unit Te.

請求項2の発明に係る課電式電路事故探査レーダは、請求項1の発明において、前記演算処理装置は、前記FFT解析装置で検出された事故点共振周波数を前記表示装置に表示出力することを特徴とする。   According to a second aspect of the invention, the arithmetic processing device is configured to display and output the accident point resonance frequency detected by the FFT analysis device to the display device. It is characterized by.

請求項1の発明によれば、一対のアンテナで複数の共振周波数を用いて事故点の発信電磁波を検出し、一対のアンテナの検出信号を高速フーリエ変換し一対のアンテナの出力電圧が最も大きい共振周波数を事故点共振周波数として検出するので、事故点の発信電磁波の周波数帯域を精度よく特定できる。そして、その事故点共振周波数の発信電磁波の事故点共振周波数での一対のアンテナの出力電圧の時間差に基づいて事故点の方向を判別するので、事故点を精度よく探査できる。   According to the first aspect of the present invention, a pair of antennas detects a transmission electromagnetic wave at an accident point using a plurality of resonance frequencies, performs fast Fourier transform on the detection signals of the pair of antennas, and resonates with the highest output voltage of the pair of antennas. Since the frequency is detected as the accident point resonance frequency, the frequency band of the transmitted electromagnetic wave at the accident point can be accurately identified. And since the direction of an accident point is discriminate | determined based on the time difference of the output voltage of a pair of antenna in the accident point resonance frequency of the transmitted electromagnetic wave of the accident point resonance frequency, an accident point can be searched accurately.

請求項2の発明によれば、事故点共振周波数を表示装置に表示出力するので、事故の様相の推定に役立たせることができる。   According to the invention of claim 2, since the accident point resonance frequency is displayed and output on the display device, it can be used for estimation of the aspect of the accident.

本発明の第1実施形態に係る課電式電路事故探査レーダの一例を示す構成図。The block diagram which shows an example of the electric power transmission type electric circuit accident investigation radar which concerns on 1st Embodiment of this invention. 本発明の第1実施形態における複数の帯域を検出可能としたアンテナの感度の説明図。Explanatory drawing of the sensitivity of the antenna which enabled the detection of the some zone | band in 1st Embodiment of this invention. 本発明の第1実施形態のFFT解析装置18で分析した周波数帯域の電磁波強度の一例を示す波形図。The wave form diagram which shows an example of the electromagnetic wave intensity | strength of the frequency band analyzed with the FFT analyzer 18 of 1st Embodiment of this invention. 本発明の第1実施形態に係る課電式電路事故探査レーダを用いての事故探査の説明図。Explanatory drawing of the accident investigation using the electric charging type electric circuit accident investigation radar which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る課電式電路事故探査レーダを用いた事故探査で事故点が点検保守員の前方にある場合の電磁波の検出信号の一例を示す波形図。The wave form diagram which shows an example of the detection signal of the electromagnetic wave in case an accident point exists ahead of an inspection maintenance worker by the accident investigation using the electric charging type electric circuit accident investigation radar which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る課電式電路事故探査レーダを用いた事故探査で事故点が点検保守員の後方にある場合の電磁波の検出信号の一例を示す波形図。The wave form diagram which shows an example of the detection signal of the electromagnetic wave in case an accident point exists in the back of an inspection maintenance worker by the accident investigation using the electric charging type electric circuit accident investigation radar which concerns on 1st Embodiment of this invention. 本発明の第2実施形態において調査した各種の環境ごとの環境ノイズの一例を示す波形図。The wave form diagram which shows an example of the environmental noise for every environment investigated in 2nd Embodiment of this invention. 本発明の第2実施形態において地絡事故の様相別の検証実験により得られた電磁波の一例の波形図。The wave form diagram of an example of the electromagnetic wave obtained by the verification experiment according to the aspect of the ground fault accident in 2nd Embodiment of this invention. 本発明の第2実施形態において事故点からの距離が一定で配電線の亘長を変化させた場合の検証実験により得られた電磁波の一例の波形図。The wave form diagram of an example of the electromagnetic wave obtained by the verification experiment in case the distance from an accident point is constant and the length of a distribution line is changed in 2nd Embodiment of this invention. 本発明の第2実施形態において配電線の亘長が一定で事故点からの距離を変化させた場合の検証実験により得られた電磁波の一例の波形図。The wave form diagram of an example of the electromagnetic wave obtained by the verification experiment when the length of a distribution line is constant in 2nd Embodiment of this invention, and the distance from an accident point is changed. 本発明の第2実施形態における複数の帯域を検出可能としたアンテナの感度の一例の説明図。Explanatory drawing of an example of the sensitivity of the antenna which enabled the detection of the some zone | band in 2nd Embodiment of this invention. 本発明の第2実施形態における複数の帯域を検出可能としたアンテナの感度の他の一例の説明図。Explanatory drawing of the other example of the sensitivity of the antenna which enabled the detection of the some zone | band in 2nd Embodiment of this invention. 従来の課電式電路事故探査レーダの一例を示す構成図。The block diagram which shows an example of the conventional electric charging type electric circuit accident investigation radar. 従来のアンテナでの電磁波の検出信号の一例のグラフ。The graph of an example of the detection signal of the electromagnetic wave in the conventional antenna.

以下、本発明の実施形態を説明する。図1は本発明の第1実施形態に係る課電式電路事故探査レーダの一例を示す構成図である。課電式電路事故探査レーダは、一対のアンテナ13a、13bと探査レーダ本体15とから構成される。一対のアンテナ13a、13bは、課電装置からの高電圧パルスによる事故点での地絡放電により発生する電磁波(発信電磁波)を複数の共振周波数を用いて検出するものである。すなわち、アンテナにはチューニングダイヤル16a、16bが設けられ、複数の帯域の電磁波を検出できるようにしている。   Embodiments of the present invention will be described below. FIG. 1 is a block diagram showing an example of an electric charging type electric circuit accident survey radar according to the first embodiment of the present invention. The charging-type electric circuit accident survey radar includes a pair of antennas 13 a and 13 b and a survey radar main body 15. The pair of antennas 13a and 13b detects an electromagnetic wave (transmitted electromagnetic wave) generated by a ground fault discharge at an accident point due to a high voltage pulse from the power application device using a plurality of resonance frequencies. That is, tuning dials 16a and 16b are provided on the antenna so that electromagnetic waves in a plurality of bands can be detected.

図2は、本発明の第1実施形態における複数の帯域を検出可能としたアンテナの感度の説明図である。曲線C11はチューニングダイヤル16a、16bを1.0MHzとしたときの感度、曲線C12はチューニングダイヤル16a、16bを1.2MHzとしたときの感度、曲線C13はチューニングダイヤル16a、16bを1.4MHzとしたときの感度、曲線C14はチューニングダイヤル16a、16bを1.6MHzとしたときの感度、曲線C15はチューニングダイヤル16a、16bを1.8MHzとしたときの感度、曲線C16はチューニングダイヤル16a、16bを2.0MHzとしたときの感度である。   FIG. 2 is an explanatory diagram of the sensitivity of the antenna that can detect a plurality of bands in the first embodiment of the present invention. Curve C11 is the sensitivity when tuning dials 16a and 16b are 1.0 MHz, curve C12 is the sensitivity when tuning dials 16a and 16b are 1.2 MHz, and curve C13 is tuning dials 16a and 16b is 1.4 MHz. Sensitivity when the tuning dials 16a and 16b are set to 1.6 MHz, the curve C15 is sensitivity when the tuning dials 16a and 16b are set to 1.8 MHz, and the curve C16 indicates that the tuning dials 16a and 16b are 2 Sensitivity at 0 MHz.

このように、1つの電磁波強度の断面に対して、複数の帯域を設けることで、図2に示すように、共振点が1.0MHz、1.2MHz、1.4MHz、1.6MHz、1.8MHz、2.0MHzの6つの複数断面で電磁波を捉えることができる。図2では6つの複数断面で電磁波を捉える場合について説明したが、6つ以上あるいは6つ以下の複数断面で電磁波を捉えるようにしてもよい。   In this way, by providing a plurality of bands with respect to a cross section of one electromagnetic wave intensity, the resonance points are 1.0 MHz, 1.2 MHz, 1.4 MHz, 1.6 MHz, 1. Electromagnetic waves can be captured by six multiple cross sections of 8 MHz and 2.0 MHz. Although the case where electromagnetic waves are captured in six multiple cross sections has been described in FIG. 2, the electromagnetic waves may be captured in six or more or six or fewer multiple cross sections.

アンテナ13a、13bで検出された電磁波強度は探査レーダ本体15の入力装置17に入力される。入力装置17は、アンテナ13a、13bで検出された電磁波強度(出力電圧)を所定周期でサンプリングして取り込み、FFT解析装置18に出力する。FFT解析装置18は、一対のアンテナ13a、13bの検出信号を高速フーリエ変換し一対のアンテナ13a、13bの出力電圧が最も大きい共振周波数を事故点共振周波数として検出する。   The electromagnetic wave intensity detected by the antennas 13 a and 13 b is input to the input device 17 of the search radar main body 15. The input device 17 samples and captures the electromagnetic wave intensity (output voltage) detected by the antennas 13 a and 13 b at a predetermined period, and outputs the sample to the FFT analysis device 18. The FFT analyzer 18 performs fast Fourier transform on the detection signals of the pair of antennas 13a and 13b, and detects the resonance frequency at which the output voltage of the pair of antennas 13a and 13b is the highest as the accident point resonance frequency.

図3は、本発明の第1実施形態のFFT解析装置18で分析した周波数帯域の電磁波強度の一例を示す波形図である。図3では、図14の曲線C2で示す電磁波を分析した結果を示している。図14の曲線C2で示す電磁波では、周波数1.3MHzや1.6MHzのノイズが事故点Fの1.8MHzの発信電磁波とともに含まれているが、FFT解析装置18で分析すると、図3に示すように、最も電磁波強度が強い事故点Fの周波数が1.8MHzとして検波できる。   FIG. 3 is a waveform diagram showing an example of the electromagnetic wave intensity in the frequency band analyzed by the FFT analyzer 18 according to the first embodiment of the present invention. In FIG. 3, the result of having analyzed the electromagnetic wave shown by the curve C2 of FIG. 14 is shown. In the electromagnetic wave indicated by the curve C2 in FIG. 14, noise having a frequency of 1.3 MHz or 1.6 MHz is included together with a 1.8 MHz outgoing electromagnetic wave at the accident point F. When analyzed by the FFT analyzer 18, the noise is shown in FIG. Thus, the frequency of the accident point F with the strongest electromagnetic wave intensity can be detected as 1.8 MHz.

演算処理装置19は、FFT解析装置18で検出された最も出力電圧が大きい共振周波数を事故点共振周波数と判断する。そして、その事故点共振周波数での一対のアンテナ13a、13bの出力電圧の検出時点の時間差に基づいて事故点の方向を判別する。すなわち、取得した最も出力電圧が大きい電磁波波形から到達時間が早いアンテナ13側に事故点があると判定する。   The arithmetic processing unit 19 determines the resonance frequency having the highest output voltage detected by the FFT analysis unit 18 as the accident point resonance frequency. And the direction of an accident point is discriminate | determined based on the time difference of the detection time of the output voltage of a pair of antenna 13a, 13b in the accident point resonance frequency. That is, it is determined that there is an accident point on the side of the antenna 13 whose arrival time is early from the acquired electromagnetic wave waveform having the largest output voltage.

そして、演算処理装置19は、判別した事故点の方向を表示装置20に表示出力する。また、必要に応じてFFT解析装置18で検出された事故点共振周波数を表示装置20に表示出力する。これにより、点検操作員は、事故点の位置の特定がし易くなり、また、事故点共振周波数から事故の様相の推定に役立つので、事故が発生している箇所の判別を速やかに行うことができる。   Then, the arithmetic processing device 19 displays and outputs the determined direction of the accident point on the display device 20. Further, the accident point resonance frequency detected by the FFT analyzer 18 is displayed and output on the display device 20 as necessary. This makes it easier for the inspection operator to identify the location of the accident point, and also helps to estimate the aspect of the accident from the accident point resonance frequency, so that the location where the accident has occurred can be quickly identified. it can.

ここで、近年の技術進歩により、FFT解析装置18は[ns]レベルから[ps]レベルまで精度よく波形の取得が可能となった。これにより、一対のアンテナ13a、13bの出力電圧の検出時点の時間差での方向判別は[ps]レベルで行うことが可能となった。   Here, due to recent technological advancement, the FFT analyzer 18 can acquire a waveform with high accuracy from the [ns] level to the [ps] level. As a result, it becomes possible to determine the direction based on the time difference between the detection times of the output voltages of the pair of antennas 13a and 13b at the [ps] level.

従来の技術では、一対のアンテナ13a、13bの出力電圧の検出時点の時間差を10[ns]で方向判別を行っていたので、分解能の関係からアンテナ間隔が3mとなり、3mのアンテナ13a、13bを自動車に積載しなければならなかった。そのため、自動車の進入不可の場所では事故捜査はできなかったが、分解能が[ps]レベルのFFT解析装置18を採用することにより、一対のアンテナ13a、13bの間隔は短くてよくコンパクト化できる。これにより、コンパクトな可搬性に優れた課電式電路事故探査レーダとすることができる。   In the conventional technology, the direction difference is determined with the time difference between the detection times of the output voltages of the pair of antennas 13a and 13b being 10 [ns]. Therefore, the antenna interval is 3 m due to the resolution, and the 3 m antennas 13 a and 13 b are connected. I had to load it in a car. Therefore, although an accident investigation could not be performed in a place where the vehicle cannot enter, by adopting the FFT analyzer 18 having a resolution of [ps] level, the distance between the pair of antennas 13a and 13b can be short and compact. Thereby, it can be set as the electric charging type electric circuit accident investigation radar excellent in the portability compact.

図4は、本発明の第1実施形態に係る課電式電路事故探査レーダを用いての事故探査の説明図である。本発明の第1実施形態に係る課電式電路事故探査レーダは、コンパクトな可搬型であるので、点検保守員は課電式電路事故探査レーダを携帯して事故探査を行うことができる。   FIG. 4 is an explanatory diagram of an accident survey using the electric charging type electric circuit accident survey radar according to the first embodiment of the present invention. Since the electric charging type electric circuit accident survey radar according to the first embodiment of the present invention is a compact portable type, an inspection maintenance worker can carry out an electric accident investigation by carrying the electric type electric circuit accident detection radar.

図14と同様に、配電線11の事故点Fで地絡事故が発生したとすると配電線11は停電状態となるので、点検保守員は事故点Fの探査を行う。まず、停電状態の配電線11に課電装置12から周期的に高電圧パルスを印加する状態で、点検保守員は、課電式電路事故探査レーダを携帯して徒歩で事故探査を行う。従来のように、自動車にアンテナ13a、13bを搭載しての事故探査ではないので、自動車が進入不可の場所であっても事故捜査ができる。   Similarly to FIG. 14, if a ground fault occurs at the accident point F of the distribution line 11, the distribution line 11 is in a power failure state, and the inspection and maintenance staff searches for the accident point F. First, in a state where a high voltage pulse is periodically applied from the power distribution device 12 to the power distribution line 11 in a power outage state, an inspection maintenance worker carries out an accident survey on foot with a power distribution type electric circuit accident survey radar. Since it is not an accident search with the antennas 13a and 13b mounted on a vehicle as in the prior art, an accident investigation can be performed even in a place where the vehicle cannot enter.

図5は、地絡の事故点が点検保守員の前方にある場合の電磁波Sの検出信号(アンテナ13a、13bの出力電圧)の一例を示す波形図である。図5に示すように、アンテナ13aの電磁波の検出信号がアンテナ13bの電磁波の検出信号より先に検出されている。従って、事故点Fは点検保守員の前方にあると判別される。   FIG. 5 is a waveform diagram showing an example of a detection signal of the electromagnetic wave S (output voltages of the antennas 13a and 13b) when the ground fault point is in front of the maintenance staff. As shown in FIG. 5, the electromagnetic wave detection signal of the antenna 13a is detected before the electromagnetic wave detection signal of the antenna 13b. Therefore, it is determined that the accident point F is in front of the maintenance personnel.

図6は、地絡の事故点が点検保守員の後方にある場合の電磁波Sの検出信号(アンテナ13a、13bの出力電圧)の一例を示す波形図である。図6に示すように、アンテナ13bの電磁波の検出信号がアンテナ13aの電磁波の検出信号より先に検出されている。従って、事故点Fは点検保守員の後方にあると判別される。   FIG. 6 is a waveform diagram showing an example of a detection signal of the electromagnetic wave S (output voltages of the antennas 13a and 13b) when the ground fault point is behind the maintenance staff. As shown in FIG. 6, the electromagnetic wave detection signal of the antenna 13b is detected before the electromagnetic wave detection signal of the antenna 13a. Therefore, it is determined that the accident point F is behind the inspection and maintenance staff.

ここで、アンテナ13aの電磁波の検出信号及びアンテナ13bの電磁波の検出信号は、FFT解析装置18で検出された最も出力電圧が大きい信号であるので、ノイズの影響を受けずに精度よく検出できる。また、分解能が[ps]レベルのFFT解析装置18を採用することにより、一対のアンテナ13a、13bの間隔は短くても精度よく事故点の方向性を検出でき、しかもコンパクト化できる。   Here, the detection signal of the electromagnetic wave of the antenna 13a and the detection signal of the electromagnetic wave of the antenna 13b are signals having the largest output voltage detected by the FFT analyzer 18, and therefore can be accurately detected without being affected by noise. Further, by adopting the FFT analyzer 18 having a resolution of [ps] level, the direction of the accident point can be detected with high accuracy even if the distance between the pair of antennas 13a and 13b is short, and the size can be reduced.

このように、本発明の第1実施形態では、1つのアンテナ13a、13bに複数の帯域を設けるとともに、事故電流から発せられる発信電磁波のサンプリングデータをFFT解析装置18で分析することで感度調整を行い検出感度を高める。FFT解析装置18は周波数の分布を調べるために使用され、近年ではデジタルオシロスコープにFFTの機能を内蔵しているものもあることから、以前はハードウェアで信号処理していたが、近年はCPUの性能とデジタルサンプリング技術の発展及びFFT解析の情報処理技術が向上したためソフトウェアで処理可能である。   As described above, in the first embodiment of the present invention, a plurality of bands are provided in one antenna 13a, 13b, and sensitivity adjustment is performed by analyzing the sampling data of the electromagnetic wave emitted from the accident current with the FFT analyzer 18. Increase detection sensitivity. The FFT analyzer 18 is used to examine the frequency distribution. In recent years, some digital oscilloscopes have a built-in FFT function, so the signal processing was previously performed by hardware. The development of performance, digital sampling technology, and the information processing technology of FFT analysis have improved and can be processed by software.

本発明の第1実施形態によれば、1つのアンテナ13a、13bに複数の帯域を設けるとともに、事故電流から発せられる発信電磁波のサンプリングデータをFFT解析装置18で分析して感度調整を行うのでノイズ除去が可能である。また、アンテナ13a、13bに複数の帯域が設けられるようにチューニングダイヤル16a、16bを設けたので、1.4MHz帯以外でも発信電磁波の検出レベルを向上できる。アンテナ13a、13bの複数の帯域のチューニングは自動で行うことも可能である。これにより、事故点周波数帯域が特定されるので信号レベルを向上させ、ノイズとの分別が顕著となりノイズの除去が可能となる。   According to the first embodiment of the present invention, a plurality of bands are provided for one antenna 13a, 13b, and the sampling of the electromagnetic wave emitted from the accident current is analyzed by the FFT analyzer 18 to adjust the sensitivity. Removal is possible. Further, since the tuning dials 16a and 16b are provided so that a plurality of bands are provided in the antennas 13a and 13b, the detection level of the transmitted electromagnetic wave can be improved even in a band other than the 1.4 MHz band. Tuning of a plurality of bands of the antennas 13a and 13b can be performed automatically. Thereby, since the accident point frequency band is specified, the signal level is improved, the distinction from the noise becomes remarkable, and the noise can be removed.

次に、本発明の第2実施形態について説明する。第1実施形態では、アンテナ13a、13bで検出する電磁波の周波数の帯域を1MHz〜2MHzの範囲としたが、本発明の第2実施形態は、アンテナ13a、13bで検出する電磁波の周波数の帯域を2MHz〜3MHzの範囲、あるいは1MHz〜3MHzの範囲としたものである。第1実施形態と重複する説明は省略する。   Next, a second embodiment of the present invention will be described. In the first embodiment, the frequency band of the electromagnetic waves detected by the antennas 13a and 13b is in the range of 1 MHz to 2 MHz. However, in the second embodiment of the present invention, the frequency band of the electromagnetic waves detected by the antennas 13a and 13b is set. The range is 2 MHz to 3 MHz, or 1 MHz to 3 MHz. A duplicate description with the first embodiment is omitted.

このように、本発明の第2実施形態では、アンテナ13a、13bで検出する電磁波の周波数の帯域として、1MHz〜2MHzの範囲に代えて2MHz〜3MHzの範囲、または、1MHz〜2MHzの範囲に加えて1MHz〜3MHzの範囲とする。つまり、アンテナ13a、13bで検出する電磁波の周波数の帯域として、2MHz〜3MHzの範囲を採用する。2MHz〜3MHzの範囲に着目したのは以下の理由による。   As described above, in the second embodiment of the present invention, the frequency band of the electromagnetic waves detected by the antennas 13a and 13b is added to the range of 2 MHz to 3 MHz or the range of 1 MHz to 2 MHz instead of the range of 1 MHz to 2 MHz. The range is 1 MHz to 3 MHz. That is, a range of 2 MHz to 3 MHz is adopted as a frequency band of electromagnetic waves detected by the antennas 13a and 13b. The reason for paying attention to the range of 2 MHz to 3 MHz is as follows.

従来の課電式電路事故探査レーダでは、前述したように、1つの共振点(例えば、1.4MHzの固定周波数)を有するアンテナ13a、13bを用いて、高電圧パルスによる配電線11の電磁波を検出するようにしているので、ノイズの影響を受け、事故点を誤判定してしまう可能性があった。そこで、第2実施形態ではノイズの影響を把握するために、ノイズについて検討した。   As described above, in the conventional charging-type electric circuit accident survey radar, the antennas 13a and 13b having one resonance point (for example, a fixed frequency of 1.4 MHz) are used to generate electromagnetic waves of the distribution line 11 due to high voltage pulses. Since the detection is performed, there is a possibility that the accident point is erroneously determined due to the influence of noise. Therefore, in the second embodiment, noise is studied in order to grasp the influence of noise.

まず、課電装置自体によるノイズの影響を検討した。課電ノイズは30MHz〜100MHzの高い周波数帯に現れるが、課電装置より離れるにつれて減衰し、40m地点ではほとんど検出されないことを確認した。次に、環境によりノイズが異なるかどうかを各種の環境ごとに環境ノイズを調査した。   First, the influence of noise caused by the power-applying device itself was examined. Although the charging noise appears in a high frequency band of 30 MHz to 100 MHz, it was confirmed that it attenuated as the distance from the charging device increased and was hardly detected at a point of 40 m. Next, environmental noise was investigated for each environment to determine whether the noise varies depending on the environment.

図7は各種の環境ごとの環境ノイズの一例を示す波形図であり、図7(a)は繁華街でのノイズの一例を示す波形図、図7(b)は電車線路沿いでのノイズの一例を示す波形図、図7(c)は工業団地でのノイズの一例を示す波形図、図7(d)は住宅地でのノイズの一例を示す波形図である。図7(a)〜図7(d)から分かるように、1.5MHz以下の範囲はAMラジオ放送の周波数帯域であり、4MHzの近傍の帯域は短波放送の周波数帯域であることから、これらがノイズとして検出される。そして、いずれの環境下においても、2MHz〜3MHzの範囲ではノイズが少ないことが分かる。   FIG. 7 is a waveform diagram showing an example of environmental noise for each environment, FIG. 7A is a waveform diagram showing an example of noise in a downtown area, and FIG. 7B is a diagram of noise along a train line. FIG. 7C is a waveform diagram illustrating an example of noise in an industrial park, and FIG. 7D is a waveform diagram illustrating an example of noise in a residential area. As can be seen from FIGS. 7A to 7D, the range of 1.5 MHz or less is the frequency band of AM radio broadcasting, and the band in the vicinity of 4 MHz is the frequency band of shortwave broadcasting. Detected as noise. And in any environment, it turns out that there is little noise in the range of 2 MHz-3 MHz.

次に、地絡放電により発生する電磁波について、0MHz〜5MHzの範囲について調査した。図8は地絡事故の様相(事故点部材)別の検証実験により得られた電磁波の一例の波形図であり、図8では電磁波の測定点は事故点から0.14kmであり、亘長が0.15kmの配電線である場合を示している。図8(a)は地絡事故の様相を玉ギャップ(放電電圧3.8kv)で模擬した電磁波の一例を示す波形図、図8(b)は地絡事故の様相をモールド母線の絶縁劣化で模擬した電磁波の一例を示す波形図、図8(c)は地絡事故の様相を玉ギャップ(放電電圧5.0kv)で模擬した電磁波の一例を示す波形図、図8(d)は地絡事故の様相をCVTケーブルの絶縁劣化で模擬した電磁波の一例を示す波形図である。図8(a)〜図8(d)から分かるように、地絡事故の様相(事故点部材)が変わっても、地絡放電により発生する電磁波は、ノイズの少ない2MHz〜3MHzの範囲で高い信号レベルを有することが分かる。   Next, the range of 0 MHz to 5 MHz was investigated for electromagnetic waves generated by ground fault discharge. FIG. 8 is a waveform diagram of an example of an electromagnetic wave obtained by a verification experiment for each aspect of the ground fault (accident point member). In FIG. 8, the measurement point of the electromagnetic wave is 0.14 km from the accident point, and the length is The case of a 0.15 km distribution line is shown. Fig. 8 (a) is a waveform diagram showing an example of an electromagnetic wave simulating the appearance of a ground fault with a ball gap (discharge voltage 3.8kv), and Fig. 8 (b) is a diagram showing the appearance of a ground fault caused by insulation deterioration of the mold bus. Waveform diagram showing an example of simulated electromagnetic waves, FIG. 8C is a waveform diagram showing an example of electromagnetic waves simulating a ground fault accident with a ball gap (discharge voltage 5.0 kv), and FIG. 8D is a ground fault. It is a wave form diagram which shows an example of the electromagnetic wave which simulated the aspect of the accident with the insulation deterioration of the CVT cable. As can be seen from FIGS. 8A to 8D, even if the aspect of the ground fault (accident point member) changes, the electromagnetic wave generated by the ground fault discharge is high in the range of 2 MHz to 3 MHz with less noise. It can be seen that it has a signal level.

図8では、事故点からの距離及び配電線の亘長が一定である場合(事故点からの距離:0.14km、亘長:0.15kmの場合)を示したが、さらに、事故点からの距離や配電線の亘長を変化させた場合の地絡放電により発生する電磁波について調査した。図9は事故点からの距離が一定で配電線の亘長を変化させた場合の検証実験により得られた電磁波の一例の波形図であり、図9では地絡事故の様相(事故点部材)は玉ギャップ(放電電圧3.8kv)である場合を示している。図9(a)は事故点からの距離が0.2kmで配電線の亘長が0.7kmの場合の検証実験により得られた電磁波の一例を示す波形図、図9(b)は事故点からの距離が0.2kmで配電線の亘長が1.2kmの場合の検証実験により得られた電磁波の一例を示す波形図、図9(c)は事故点からの距離が0.2kmで配電線の亘長が1.9kmの場合の検証実験により得られた電磁波の一例を示す波形図である。図9(a)〜図9(c)から分かるように、配電線の亘長が変わっても、地絡放電により発生する電磁波は、ノイズの少ない2MHz〜3MHzの範囲で高い信号レベルを有することが分かる。   FIG. 8 shows the case where the distance from the accident point and the length of the distribution line are constant (distance from the accident point: 0.14 km, the length: 0.15 km). The electromagnetic wave generated by the ground fault discharge when the distance and the length of the distribution line were changed was investigated. FIG. 9 is a waveform diagram of an example of an electromagnetic wave obtained by a verification experiment when the distance from the accident point is constant and the length of the distribution line is changed. In FIG. 9, the state of the ground fault accident (accident point member). Indicates a ball gap (discharge voltage 3.8 kv). 9A is a waveform diagram showing an example of an electromagnetic wave obtained by a verification experiment when the distance from the accident point is 0.2 km and the length of the distribution line is 0.7 km, and FIG. 9B is the accident point. A waveform diagram showing an example of an electromagnetic wave obtained by a verification experiment when the distance from the center is 0.2 km and the length of the distribution line is 1.2 km, FIG. 9C is a distance from the accident point is 0.2 km It is a wave form diagram which shows an example of the electromagnetic waves obtained by the verification experiment in case the length of a distribution line is 1.9 km. As can be seen from FIGS. 9A to 9C, even when the length of the distribution line changes, the electromagnetic wave generated by the ground fault discharge has a high signal level in the range of 2 MHz to 3 MHz with less noise. I understand.

図9では、事故点からの距離が一定で配電線の亘長を変化させた場合を示したが、さらに、配電線の亘長が一定で事故点からの距離を変化させた場合の地絡放電により発生する電磁波について調査した。図10は配電線の亘長が一定で事故点からの距離を変化させた場合の検証実験により得られた電磁波の一例の波形図であり、図10では地絡事故の様相(事故点部材)は玉ギャップ(放電電圧3.8kv)である場合を示している。図10(a)は事故点からの距離が0.6kmで配電線の亘長が1.9kmの場合の検証実験により得られた電磁波の一例を示す波形図、図10(b)は事故点からの距離が1.2kmで配電線の亘長が1.9kmの場合の検証実験により得られた電磁波の一例を示す波形図である。図10(a)、図10(b)から分かるように、事故点からの距離が変わっても、地絡放電により発生する電磁波は、ノイズの少ない2MHz〜3MHzの範囲で高い信号レベルを有することが分かる。   Although FIG. 9 shows the case where the distance from the accident point is constant and the length of the distribution line is changed, the ground fault when the length of the distribution line is constant and the distance from the accident point is changed is shown. The electromagnetic waves generated by the discharge were investigated. FIG. 10 is a waveform diagram of an example of an electromagnetic wave obtained by a verification experiment in the case where the length of the distribution line is constant and the distance from the accident point is changed. In FIG. Indicates a ball gap (discharge voltage 3.8 kv). FIG. 10A is a waveform diagram showing an example of an electromagnetic wave obtained by a verification experiment when the distance from the accident point is 0.6 km and the length of the distribution line is 1.9 km, and FIG. 10B is the accident point. It is a wave form diagram which shows an example of the electromagnetic waves obtained by the verification experiment in case the distance from is 1.2 km and the length of the distribution line is 1.9 km. As can be seen from FIGS. 10 (a) and 10 (b), even if the distance from the accident point changes, the electromagnetic wave generated by the ground fault discharge has a high signal level in the range of 2 MHz to 3 MHz with less noise. I understand.

このように、地絡事故の様相(事故点部材)、配電線の亘長、事故点からの距離が変化しても、地絡放電により発生する電磁波は、ノイズの少ない2MHz〜3MHzの範囲で高い信号レベルを有する。そこで、本発明の第2実施形態では、アンテナ13a、13bで検出する電磁波の周波数の帯域として、ノイズが少ない周波数帯域である2MHz〜3MHzの範囲を採用することとした。   Thus, even if the aspect of the ground fault (accident point member), the length of the distribution line, and the distance from the accident point change, the electromagnetic wave generated by the ground fault discharge is in the range of 2 MHz to 3 MHz with less noise. Has a high signal level. Therefore, in the second embodiment of the present invention, the frequency band of 2 MHz to 3 MHz, which is a frequency band with less noise, is adopted as the frequency band of the electromagnetic waves detected by the antennas 13a and 13b.

図11は、本発明の第2実施形態における複数の帯域を検出可能としたアンテナの感度の一例の説明図である。曲線C16、C17、C18、C19、C20、C21は、チューニングダイヤル16a、16bを2.0MHz、2.2MHz、2.4MHz、2.6MHz、2.8MHz、3.0MHzとしたときの感度である。このように、1つの電磁波強度の断面に対して、複数の帯域を設けることで、図11に示すように、共振点が2.0MHz、2.2MHz、2.4MHz、2.6MHz、2.8MHz、3.0MHzの6つの複数断面で電磁波を捉えることができる。図11では6つの複数断面で電磁波を捉える場合について説明したが、6つ以上あるいは6つ未満の複数断面で電磁波を捉えるようにしてもよい。   FIG. 11 is an explanatory diagram of an example of the sensitivity of an antenna that can detect a plurality of bands in the second embodiment of the present invention. Curves C16, C17, C18, C19, C20, and C21 are the sensitivity when the tuning dials 16a and 16b are set to 2.0 MHz, 2.2 MHz, 2.4 MHz, 2.6 MHz, 2.8 MHz, and 3.0 MHz. . In this way, by providing a plurality of bands for a cross section of one electromagnetic wave intensity, the resonance points are 2.0 MHz, 2.2 MHz, 2.4 MHz, 2.6 MHz, 2. Electromagnetic waves can be captured with six cross sections of 8 MHz and 3.0 MHz. Although the case where electromagnetic waves are captured in six multiple cross sections has been described with reference to FIG. 11, the electromagnetic waves may be captured in multiple cross sections of six or more or less than six.

図12は、本発明の第2実施形態における複数の帯域を検出可能としたアンテナの感度の他の一例の説明図である。この他の一例は、図11に示した一例に対し、アンテナ13a、13bで検出する電磁波の周波数の帯域を1MHz〜3MHzの範囲としたものである。すなわち、図11に示した一例では、アンテナ13a、13bで検出する電磁波の周波数の帯域を2MHz〜3MHzの範囲としたが、この他の一例では、2MHz〜3MHzの範囲に1MHz〜2MHzの範囲も含め、1MHz〜3MHzの範囲とした。これにより、1MHz〜3MHzの範囲を11個の複数断面で電磁波を捉える。この場合、11個以上あるいは11個未満の複数断面で電磁波を捉えるようにしてもよい。   FIG. 12 is an explanatory diagram of another example of the sensitivity of the antenna that can detect a plurality of bands in the second embodiment of the present invention. In another example, the frequency band of the electromagnetic waves detected by the antennas 13a and 13b is set in the range of 1 MHz to 3 MHz, compared to the example shown in FIG. That is, in the example shown in FIG. 11, the frequency band of the electromagnetic waves detected by the antennas 13a and 13b is in the range of 2 MHz to 3 MHz. In another example, the range of 1 MHz to 2 MHz is also included in the range of 2 MHz to 3 MHz. Including the range of 1 MHz to 3 MHz. As a result, the electromagnetic wave is captured by 11 multiple cross sections in the range of 1 MHz to 3 MHz. In this case, the electromagnetic waves may be captured by a plurality of cross sections of 11 or more or less than 11.

本発明の第2実施形態によれば、第1実施形態の効果に加え、ノイズが少ない周波数帯域である2MHz〜3MHzの範囲で地絡放電により発生する電磁波を捉えることができるので、誤検出することがなくなり事故点をより精度よく探査できる。   According to the second embodiment of the present invention, in addition to the effects of the first embodiment, an electromagnetic wave generated by a ground fault discharge can be captured in the range of 2 MHz to 3 MHz, which is a frequency band with less noise, and thus erroneous detection is performed. The accident point can be searched more accurately.

本発明の実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   The embodiments of the present invention are presented as examples and are not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…配電線、12…課電装置、13…アンテナ、14…自動車、15…探査レーダ本体、16…チューニングダイヤル、17…入力装置、18…FFT解析装置、19…演算処理装置、20…表示装置 DESCRIPTION OF SYMBOLS 11 ... Distribution line, 12 ... Electric power distribution apparatus, 13 ... Antenna, 14 ... Automobile, 15 ... Exploration radar main body, 16 ... Tuning dial, 17 ... Input device, 18 ... FFT analysis device, 19 ... Arithmetic processing device, 20 ... Display apparatus

Claims (2)

停電状態の配電線に課電装置から高電圧パルスを印加し、
高電圧パルスによる事故点での地絡放電により発生する電磁波を一対のアンテナで検出し、
この一対のアンテナの出力電圧の時間差に基づいて事故点の方向を判別する課電式電路事故探査レーダにおいて、
前記高電圧パルスによる事故点での地絡放電により発生する電磁波を複数の共振周波数を用いて検出する一対のアンテナと、
前記一対のアンテナの検出信号を高速フーリエ変換し一対のアンテナの出力電圧が最も大きい共振周波数を検出するFFT解析装置と、
前記FFT解析装置で検出された最も出力電圧が大きい共振周波数を事故点共振周波数と判断しその事故点共振周波数での一対のアンテナの出力電圧の時間差に基づいて事故点の方向を判別する演算処理装置と、
前記演算処理装置で判別された事故点の方向を表示出力する表示装置とを備えたことを特徴とする課電式電路事故探査レーダ。
Apply a high-voltage pulse from the power applicator to the power distribution line
A pair of antennas detect electromagnetic waves generated by ground fault discharge at the accident point due to high voltage pulses,
In the electric circuit accident survey radar that determines the direction of the accident point based on the time difference between the output voltages of the pair of antennas,
A pair of antennas for detecting electromagnetic waves generated by a ground fault discharge at an accident point due to the high voltage pulse using a plurality of resonance frequencies;
An FFT analyzer for detecting a resonance frequency at which the output voltage of the pair of antennas is the highest by performing a fast Fourier transform on the detection signals of the pair of antennas;
Arithmetic processing that determines the resonance frequency with the highest output voltage detected by the FFT analyzer as the accident point resonance frequency and determines the direction of the accident point based on the time difference between the output voltages of the pair of antennas at the accident point resonance frequency Equipment,
And a display device for displaying and outputting the direction of the accident point determined by the arithmetic processing unit.
前記演算処理装置は、前記FFT解析装置で検出された事故点共振周波数を前記表示装置に表示出力することを特徴とする請求項1記載の課電式電路事故探査レーダ。   The power processing type electric circuit accident investigation radar according to claim 1, wherein the arithmetic processing unit displays and outputs the accident point resonance frequency detected by the FFT analysis device on the display device.
JP2013092393A 2012-05-07 2013-04-25 Electric charge type accident investigation radar Active JP6102467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013092393A JP6102467B2 (en) 2012-05-07 2013-04-25 Electric charge type accident investigation radar

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012105634 2012-05-07
JP2012105634 2012-05-07
JP2013092393A JP6102467B2 (en) 2012-05-07 2013-04-25 Electric charge type accident investigation radar

Publications (2)

Publication Number Publication Date
JP2013253966A true JP2013253966A (en) 2013-12-19
JP6102467B2 JP6102467B2 (en) 2017-03-29

Family

ID=49951554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013092393A Active JP6102467B2 (en) 2012-05-07 2013-04-25 Electric charge type accident investigation radar

Country Status (1)

Country Link
JP (1) JP6102467B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243771A (en) * 1987-03-31 1988-10-11 Tokyo Electric Power Co Inc:The Receiving apparatus for searching accident point
JPH0295274A (en) * 1988-09-30 1990-04-06 Showa Electric Wire & Cable Co Ltd Partial discharge detecting method
JPH09318698A (en) * 1996-05-31 1997-12-12 Hokuriku Electric Power Co Inc:The Partial discharge detecting method and partial discharge detecting device
JPH11142466A (en) * 1997-11-05 1999-05-28 Chugoku Electric Power Co Inc:The Method and device for estimating cause of accident of distribution lines
JP2005274440A (en) * 2004-03-25 2005-10-06 Toyota Motor Corp Inspection device and technique of rotary electric machine
JP2007232623A (en) * 2006-03-02 2007-09-13 Chubu Electric Power Co Inc Method of locating fault point on electric power cable
US20090161272A1 (en) * 2007-12-21 2009-06-25 General Electric Company Arc detection system and method
JP2009229374A (en) * 2008-03-25 2009-10-08 Fujitsu Ten Ltd Radar system, and azimuth angle detecting method
JP2010130811A (en) * 2008-11-28 2010-06-10 Jfe Steel Corp Fine ground fault detector and method of detecting fine ground fault

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243771A (en) * 1987-03-31 1988-10-11 Tokyo Electric Power Co Inc:The Receiving apparatus for searching accident point
JPH0295274A (en) * 1988-09-30 1990-04-06 Showa Electric Wire & Cable Co Ltd Partial discharge detecting method
JPH09318698A (en) * 1996-05-31 1997-12-12 Hokuriku Electric Power Co Inc:The Partial discharge detecting method and partial discharge detecting device
JPH11142466A (en) * 1997-11-05 1999-05-28 Chugoku Electric Power Co Inc:The Method and device for estimating cause of accident of distribution lines
JP2005274440A (en) * 2004-03-25 2005-10-06 Toyota Motor Corp Inspection device and technique of rotary electric machine
JP2007232623A (en) * 2006-03-02 2007-09-13 Chubu Electric Power Co Inc Method of locating fault point on electric power cable
US20090161272A1 (en) * 2007-12-21 2009-06-25 General Electric Company Arc detection system and method
JP2009229374A (en) * 2008-03-25 2009-10-08 Fujitsu Ten Ltd Radar system, and azimuth angle detecting method
JP2010130811A (en) * 2008-11-28 2010-06-10 Jfe Steel Corp Fine ground fault detector and method of detecting fine ground fault

Also Published As

Publication number Publication date
JP6102467B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
US9689909B2 (en) System for analyzing and locating partial discharges
US8474320B2 (en) Method and apparatus for locating cable faults
Hikita et al. Electromagnetic (EM) wave characteristics in GIS and measuring the EM wave leakage at the spacer aperture for partial discharge diagnosis
US10012688B2 (en) Discharge occurrence status evaluation device and evaluation method
KR101548288B1 (en) Wiring diagnosis system using reflected wave measuring apparatus
CN101655536A (en) Method for detecting partial discharge of gas insulated switchgear
EP2063276A1 (en) Partial discharge detection method and partial discharge detection device
EP3546960B1 (en) Apparatus and method for monitoring and controlling detection of stray voltage anomalies using a photonic sensor
KR20200131492A (en) Partial discharge location detection system using the radio and method thereof
US9841439B2 (en) Electromagnetic wave identification method and identification device
JP3294806B2 (en) Partial discharge detector for gas insulated electrical equipment
JP6102467B2 (en) Electric charge type accident investigation radar
KR100632078B1 (en) Noise discriminating device and method for detect the partial discharge in underground power cable
US9116186B2 (en) Detection of signals
JP5950396B2 (en) Method and system for evaluating partial discharge occurrence position
JP2006322873A (en) Identifying method and system of propagation direction of conductive interference wave
KR100928534B1 (en) Transformer Deterioration Diagnosis Apparatus and Method Using Fiber Optic Sensor
JP2003107122A (en) Partial discharge detection device for winding apparatus
JP2654793B2 (en) Partial discharge detection device
Miyazaki et al. Development of partial discharge automated locating system for power cable
Amirruddin et al. Wavelet-based Arcing Signal Source Localization Algorithm using a Compact Multi-square Microstrip Antenna
RU2463706C2 (en) Contact disturbances sources detection device
CN104569763A (en) Multi-means-integrated charged detection system for combined electric appliance
Rubio-Serrano et al. Detection and location of acoustic and electric signals from partial discharges with an adaptative wavelet-filter denoising
JPH11223654A (en) Partial discharge identifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6102467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150