JP2007231484A - Polyvinyl alcohol-based fiber and method for producing the same - Google Patents

Polyvinyl alcohol-based fiber and method for producing the same Download PDF

Info

Publication number
JP2007231484A
JP2007231484A JP2006057184A JP2006057184A JP2007231484A JP 2007231484 A JP2007231484 A JP 2007231484A JP 2006057184 A JP2006057184 A JP 2006057184A JP 2006057184 A JP2006057184 A JP 2006057184A JP 2007231484 A JP2007231484 A JP 2007231484A
Authority
JP
Japan
Prior art keywords
fiber
pva
fibers
polyvinyl alcohol
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006057184A
Other languages
Japanese (ja)
Other versions
JP4772538B2 (en
Inventor
Yoshinobu Omae
好信 大前
Riyoukei Endou
了慶 遠藤
Shunichiro Watabe
俊一郎 渡部
Hideki Kamata
英樹 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2006057184A priority Critical patent/JP4772538B2/en
Publication of JP2007231484A publication Critical patent/JP2007231484A/en
Application granted granted Critical
Publication of JP4772538B2 publication Critical patent/JP4772538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a PVA (polyvinyl alcohol)-based fiber having practically sufficient mechanical characteristics, readily dispersing various function imparting materials in the interior of the fiber by post-processing and carrying out firm processing/adhesion to the fiber surface by fine pleat shapes thereof, to provide a method for producing the fiber, to provide the PVA-based fiber extremely useful for imparting functions such as flame retardance, antimicrobial, mildew proofing, deodorizing and electroconduction according to the kind of materials thereforand to provide a method for producing the fiber. <P>SOLUTION: The PVA-based fiber has a plurality of pleats at an interval of 10 nm-2 μm in the fiber longitudinal direction. The ratio of the pleat depth to the pleat interval is (5:1) to (1:20). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、繊維長さ方向に微細な襞形状を有するポリビニルアルコール(以下、PVAと略記する)系繊維およびその製造方法に関する。   The present invention relates to a polyvinyl alcohol (hereinafter abbreviated as PVA) fiber having a fine wrinkle shape in the fiber length direction and a method for producing the same.

従来、合成繊維としてポリエステル、ポリアミド、ポリオレフィン等に代表される溶融紡糸によって得られた繊維はその断面が比較的多種多様で、襞を有するものも提案されている。但し、その襞形状はラフなものであり、その数は単糸辺りに数個〜30個程度で、襞の間隔も3μm以上あるようなものであった。その効果としては、乱反射による光沢改良や、風合改良、嵩高、毛細管現象を利用した吸水速乾、ワイピング性能向上、薬剤等の担持・耐久性を狙ったものがほとんどである。このような溶融紡糸繊維は、ノズル形状を目的とする襞形状が得られるように設計し、紡糸、延伸して得られるが、ノズルの設計に限界があり、襞形状を微細にしようとしても、溶融ポリマーがノズルから吐出され固化するまでの間に断面がマイルドになるために、単糸あたりの襞の数やその間隔などには限りがあった(例えば特許文献1、2参照)。また、溶融紡糸で得られる繊維の襞形状を微細なものにすべく、複合紡糸によって得られた繊維の一方の成分を溶解除去する方法が提案されている(例えば特許文献3、4参照)。しかしながら、これらの方法ではノズルの構造が複雑になること、一方の成分を除去する必要があり工程が増えること、回収・廃棄の問題を含むこと等の問題があった。さらには、これらの諸問題を解決し、微細な襞形状を有する繊維が得られたとしてもポリエステル、ポリアミド、ポリオレフィン等の繊維については、繊維内部にまで各種材料を後加工で繊維に取り込むのは容易ではない。   Conventionally, fibers obtained by melt spinning typified by polyester, polyamide, polyolefin and the like as synthetic fibers have relatively various cross-sections, and fibers having wrinkles have been proposed. However, the shape of the wrinkles was rough, and the number was about several to 30 per single yarn, and the distance between the wrinkles was 3 μm or more. Most of the effects are aimed at improving gloss by irregular reflection, improving texture, bulkiness, quick drying of water absorption utilizing capillary action, improving wiping performance, loading and durability of drugs and the like. Such a melt-spun fiber is designed to obtain a spear shape intended for the nozzle shape, and is obtained by spinning and stretching, but there is a limit to the design of the nozzle, Since the cross section becomes mild before the molten polymer is discharged from the nozzle and solidified, the number of wrinkles per single yarn and the interval between them are limited (see, for example, Patent Documents 1 and 2). In addition, a method for dissolving and removing one component of a fiber obtained by composite spinning has been proposed in order to make the wrinkle shape of the fiber obtained by melt spinning finer (see, for example, Patent Documents 3 and 4). However, these methods have problems such as a complicated nozzle structure, the need to remove one component, an increase in the number of processes, and a problem of recovery and disposal. Furthermore, even if these problems are solved and fibers having a fine wrinkle shape are obtained, for fibers such as polyester, polyamide, and polyolefin, various materials are incorporated into the fibers by post-processing up to the inside of the fibers. It's not easy.

一方、合成繊維としてPVA、アクリロニトリル、レーヨン等に代表される湿式紡糸によって得られた繊維は、前述のポリエステル、ポリアミド、ポリオレフィン等に代表される溶融紡糸によって得られた繊維に対し、後加工にて各種材料を繊維内部に取り込むことが比較的容易である。しかしながら、これらの湿式紡糸繊維は溶融紡糸より断面の制御が困難であり、そのほとんどは、丸型、楕円型、扁平等に限られているのが現状であるが、凝固の過程で繊維長さ方向に襞が生じるのが湿式紡糸の特徴でもあり、一般に繭型断面の繊維はこの凝固の過程で丸型断面が変形して、本発明で言うところの1個乃至2個の襞が形成されたものである。このように、湿式紡糸で得られた繊維であってもその襞の数は数個程度であり、間隔は小さくても3μm程度である(例えば特許文献5、6参照)。また、PVA、アクリロニトリルなどは湿式紡糸とは別に、乾式紡糸によって得られた繊維もあるが、その断面形状は繊維丸型や楕円型が一般的で、湿式紡糸によって得られた繊維同様、非常に微細な襞形状を有する繊維の提案は成されていないのが現状である。   On the other hand, fibers obtained by wet spinning represented by PVA, acrylonitrile, rayon, etc. as synthetic fibers are post-processed with respect to fibers obtained by melt spinning represented by the aforementioned polyester, polyamide, polyolefin, etc. It is relatively easy to incorporate various materials into the fiber. However, these wet-spun fibers are more difficult to control the cross-section than melt spinning, and most of them are currently limited to round, elliptical, flat, etc. It is also a feature of wet spinning that wrinkles occur in the direction. Generally, a fiber having a saddle-shaped cross-section is deformed in the round cross-section during the solidification process to form one or two wrinkles according to the present invention. It is a thing. Thus, even in the fiber obtained by wet spinning, the number of wrinkles is about several, and the interval is about 3 μm at the smallest (see, for example, Patent Documents 5 and 6). In addition to wet spinning, PVA, acrylonitrile, etc. also have fibers obtained by dry spinning, but their cross-sectional shapes are generally round and elliptical, and are very similar to fibers obtained by wet spinning. The present condition is that the proposal of the fiber which has a fine wrinkle shape is not made.

特開2001−271228号公報JP 2001-271228 A 特開平3−90612号公報Japanese Patent Laid-Open No. 3-90612 再公表W001/061083号公報Republished W001 / 061083 特開2004−308021号公報JP 2004-308021 A 特開2001−55621号公報JP 2001-55621 A 特開平6−346318号公報JP-A-6-346318

本発明は、繊維長さ方向に微細な襞を設けることで、繊維表面積が拡大し、後加工にて各種機能付与材料を繊維内部に容易に分散させることが可能となり、また、その微細な襞形状によって各種機能付与材料の繊維表面への強固な加工・接着も実施可能となるPVA系繊維、及びその製造方法を提供することである。   In the present invention, by providing fine wrinkles in the fiber length direction, the fiber surface area is increased, and various function-imparting materials can be easily dispersed in the fiber by post-processing. It is to provide a PVA-based fiber that can also be subjected to strong processing and adhesion of various function-imparting materials to the fiber surface depending on the shape, and a method for producing the same.

本発明者等は上記したPVA系繊維を得るべく鋭意検討を重ねた結果、PVA系ポリマーに対して特別に高価な設備を必要とせず、通常の繊維製造工程中において、延伸温度、延伸倍率を最適化することにより、繊維長さ方向に微細な襞形状を有するPVA系繊維を安価に製造できることを見出し、得られた繊維が、後加工にて各種機能付与材料を繊維内部に容易に分散させることが可能となり、また、その微細な襞形状によって各種機能付与材料の繊維表面への強固な加工・接着も実施可能となることを見出した。   As a result of intensive studies to obtain the above-described PVA fibers, the present inventors do not require specially expensive equipment for the PVA polymer, and in the normal fiber manufacturing process, the drawing temperature and draw ratio are set. By optimizing, it has been found that PVA fibers having a fine wrinkle shape in the fiber length direction can be manufactured at low cost, and the obtained fiber can easily disperse various function-providing materials in the fiber by post-processing. In addition, it has been found that the fine scissors shape enables the processing and adhesion of various function-imparting materials to the fiber surface.

すなわち本発明は、繊維長さ方向に10nm〜2μm間隔の複数の襞を有する繊維であって、襞の深さと襞の間隔の比が5:1〜1:20であることを特徴とするPVA系繊維であり、好ましくはケン化度が88モル%以上、平均重合度が1200〜15000のPVA系ポリマーからなることを特徴とする上記のPVA系繊維であり、より好ましくは膨潤度が1〜50%であることを特徴とする上記のPVA系繊維であり、さらには上記のPVA系繊維を用いた布帛に関するものである。
また、本発明は、PVA系ポリマーを乾式法にて紡糸した後、温度100〜260℃で延伸倍率1〜10倍にて延伸することを特徴とする上記のPVA系繊維の製造方法に関するものである。
That is, the present invention is a fiber having a plurality of wrinkles at intervals of 10 nm to 2 μm in the fiber length direction, wherein the ratio of wrinkle depth to wrinkle spacing is 5: 1 to 1:20. Preferably, the PVA fiber is characterized by comprising a PVA polymer having a saponification degree of 88 mol% or more and an average polymerization degree of 1200 to 15000, and more preferably a swelling degree of 1 to 1. It is said PVA type | system | group fiber characterized by being 50%, Furthermore, it is related with the fabric using said PVA type fiber.
In addition, the present invention relates to a method for producing the above PVA fiber, wherein the PVA polymer is spun by a dry method and then stretched at a stretch ratio of 1 to 10 times at a temperature of 100 to 260 ° C. is there.

本発明によれば、繊維長さ方向に微細な襞形状を設けることで、繊維表面積が拡大し、後加工にて各種機能付与材料を繊維内部に分散させることが可能なPVA系繊維を提供できる。また、その微細な襞形状によって各種機能付与材料の繊維表面への強固な加工・接着も実施可能となるものであり、後加工付与時の材料の種類によって、難燃、抗菌、防黴、消臭、導電などの機能付与に極めて有用である。   ADVANTAGE OF THE INVENTION According to this invention, by providing a fine wrinkle shape in the fiber length direction, the fiber surface area can be expanded, and a PVA fiber that can disperse various function-imparting materials in the fiber by post-processing can be provided. . In addition, the fine wrinkle shape enables strong processing and adhesion of various function-imparting materials to the fiber surface. Depending on the type of material at the time of post-processing application, flame retardant, antibacterial, antifungal, It is extremely useful for imparting functions such as odor and conductivity.

以下、本発明について具体的に説明する。まず本発明のPVA系繊維を構成するPVA系ポリマーについて説明する。本発明に用いるPVA系ポリマーの重合度は、得られる繊維の機械的特性や寸法安定性等を考慮すると30℃水溶液の粘度から求めた平均重合度が1200〜15000のものが好ましい。低重合度のものは機械的強度が低くなるため好ましくない。逆に高重合度のものを用いると、強度、耐湿熱性等の点で優れるので好ましいが、ポリマー製造コストや繊維化コストなどを考慮すると、より好ましくは、平均重合度が1500〜5000である。   Hereinafter, the present invention will be specifically described. First, the PVA polymer constituting the PVA fiber of the present invention will be described. The degree of polymerization of the PVA polymer used in the present invention is preferably that having an average degree of polymerization of 1200 to 15000 determined from the viscosity of a 30 ° C. aqueous solution in consideration of the mechanical properties and dimensional stability of the resulting fiber. Those having a low polymerization degree are not preferable because the mechanical strength is lowered. Conversely, use of a polymer having a high degree of polymerization is preferred because it is excellent in terms of strength, heat and humidity resistance, and the like, but the average degree of polymerization is more preferably 1500 to 5000 in view of polymer production costs and fiberization costs.

本発明で用いるPVA系ポリマーのケン化度は、得られる繊維の機械的特性の点から、88モル%以上であることが好ましい。PVA系ポリマーのケン化度が88モル%よりも低いものを使用した場合、得られる繊維の機械的特性や工程通過性、製造コストなどの面で好ましくない。   The saponification degree of the PVA polymer used in the present invention is preferably 88 mol% or more from the viewpoint of the mechanical properties of the obtained fiber. When the saponification degree of the PVA polymer is lower than 88 mol%, it is not preferable in terms of mechanical properties, process passability, production cost and the like of the obtained fiber.

また本発明の繊維を形成するPVA系ポリマーは、ビニルアルコールユニットを主成分とするものであれば特に限定されず、本発明の効果を損なわない限り、所望により他の構成単位を有していても構わない。このような構造単位としては、例えば、エチレン、プロピレン、ブチレン等のオレフィン類、アクリル酸、及びその塩とアクリル酸メチルなどのアクリル酸エステル、メタクリル酸、及びその塩、メタクリル酸メチル等のメタクリル酸エステル類、アクリルアミド、N−メチルアクリルアミド等のアクリルアミド誘導体、メタクリルアミド、N−メチロールメタクリルアミド等のメタクリルアミド誘導体、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド等のN−ビニルアミド類、ポリアルキレンオキシドを側鎖に有するアリルエーテル類、メチルビニルエーテル等のビニルエーテル類、アクリロニトリル等のニトリル類、塩化ビニル等のハロゲン化ビニル、マレイン酸、及びその塩またはその無水物やそのエステル等の不飽和ジカルボン酸等がある。このような変性ユニットの導入法は共重合による方法でも、後反応による方法でもよい。もちろん本発明の効果を損なわない範囲であれば、目的に応じてポリマー中に酸化防止剤、凍結防止剤、pH調整剤、隠蔽剤、着色剤、油剤、特殊機能剤などの添加剤が含まれていてもよい。   The PVA polymer forming the fiber of the present invention is not particularly limited as long as it has a vinyl alcohol unit as a main component, and may have other structural units as desired as long as the effects of the present invention are not impaired. It doesn't matter. Examples of such a structural unit include olefins such as ethylene, propylene, and butylene, acrylic acid, and salts thereof and acrylic esters such as methyl acrylate, methacrylic acid, and salts thereof, and methacrylic acid such as methyl methacrylate. Esters, acrylamide derivatives such as acrylamide and N-methylacrylamide, methacrylamide derivatives such as methacrylamide and N-methylolmethacrylamide, N-vinylamides such as N-vinylpyrrolidone, N-vinylformamide and N-vinylacetamide, poly Allyl ethers having an alkylene oxide in the side chain, vinyl ethers such as methyl vinyl ether, nitriles such as acrylonitrile, vinyl halides such as vinyl chloride, maleic acid, salts thereof, anhydrides thereof, and esters thereof And the like unsaturated dicarboxylic acids and the like. Such a modified unit may be introduced by copolymerization or post-reaction. Of course, as long as the effects of the present invention are not impaired, additives such as antioxidants, antifreeze agents, pH adjusters, masking agents, colorants, oil agents, and special functional agents are included in the polymer depending on the purpose. It may be.

次に本発明のPVA系繊維は繊維長さ方向に微細な襞形状を形成していることが重要である。具体的には繊維長さ方向の襞の間隔は10nm〜2μmであることが重要であり、且つ襞の深さと襞の間隔の比が5:1〜1:20であることが重要である。襞の間隔が2μmを超える場合、繊度が細いと(言い換えれば繊維径が小さいと)、襞の数が限られ、繊維表面積を大きくアップさせることができず、後加工での機能付与効果が小さくなる。一方、襞の間隔が10nmよりも狭い場合、後加工にて各種機能付与材料を繊維内部に分散させることが困難となる。好ましくは50nm〜1.5μm間隔であり、より好ましくは100nm〜1μm間隔である。
また襞の深さについては、深さが深いほど繊維表面積が大きくなるので好ましいが、フィブリルが発生し易くなり、毛羽等の発生の原因となる。逆に襞の深さが浅いと繊維表面積を大きくアップさせることができず、先述の襞の数と同様、後加工での機能付与効果が小さくなるため好ましくない。よって、襞の深さと襞の間隔の比はより好ましくは、3:1〜1:15、さらには1:1〜1:10が好ましい。なお、本発明でいう襞の間隔および深さは後述する方法で測定される。
Next, it is important that the PVA fiber of the present invention forms a fine wrinkle shape in the fiber length direction. Specifically, it is important that the distance between the wrinkles in the fiber length direction is 10 nm to 2 μm, and it is important that the ratio of the wrinkle depth to the wrinkle distance is 5: 1 to 1:20. When the distance between the ridges exceeds 2 μm, if the fineness is thin (in other words, the fiber diameter is small), the number of ridges is limited, the fiber surface area cannot be increased greatly, and the function-imparting effect in post-processing is small. Become. On the other hand, when the space | interval of a wrinkle is narrower than 10 nm, it will become difficult to disperse | distribute various function provision materials in a fiber by post-processing. The spacing is preferably 50 nm to 1.5 μm, and more preferably 100 nm to 1 μm.
As for the depth of the wrinkles, the deeper the depth, the greater the surface area of the fiber, which is preferable. However, fibrils are likely to be generated, which causes generation of fluff and the like. On the contrary, if the depth of the wrinkles is shallow, the fiber surface area cannot be increased greatly, and the function-imparting effect in the post-processing is reduced as in the case of the number of wrinkles described above. Therefore, the ratio of the depth of the ridge to the interval between the ridges is more preferably 3: 1 to 1:15, and further preferably 1: 1 to 1:10. In addition, the space | interval and depth of a wrinkle said by this invention are measured by the method mentioned later.

本発明により得られる繊維の単繊維繊度は、特に限定されないが、例えば0.1〜1000dtex、好ましくは1〜50dtexの繊度の繊維が広く使用できる。繊維の繊度はノズル径や吐出量、延伸倍率により適宜調整が可能である。   Although the single fiber fineness of the fiber obtained by this invention is not specifically limited, For example, the fiber of 0.1-1000 dtex, Preferably the fineness of 1-50 dtex can be used widely. The fineness of the fiber can be appropriately adjusted depending on the nozzle diameter, discharge amount, and draw ratio.

繊維の膨潤度は1〜50%が好ましく、15〜40%がより好ましい。これは、後加工による機能付与の際、繊維が膨潤することで各種機能付与材料を繊維内部まで分散するためである。膨潤度が1%未満の場合、各種機能付与材料が繊維内部まで分散させることができなかったり、また繊維内部まで分散させようとすると長時間を要したり、あるいは取り込むために高温としなければならなくなるといった点などがあり望ましくない。また、膨潤度が50%を超える場合には、後加工時の工程で繊維同士の膠着や、機械的強度低下による工程通過性不良を招くため好ましくない。なお、繊維の膨潤度は後述する方法で測定されるものを示す。また、ここでいう各種機能付与材料については後に説明する。   The degree of swelling of the fibers is preferably 1 to 50%, more preferably 15 to 40%. This is because, when the function is imparted by post-processing, the fibers swell to disperse various function-imparting materials to the inside of the fiber. If the degree of swelling is less than 1%, various functional materials cannot be dispersed inside the fiber, or it takes a long time to disperse inside the fiber, or a high temperature is required to take in. It is not desirable because there is a point that it disappears. On the other hand, when the degree of swelling exceeds 50%, it is not preferable because it causes sticking between fibers in a post-processing step or poor process passability due to a decrease in mechanical strength. In addition, the swelling degree of a fiber shows what is measured by the method mentioned later. The various function-imparting materials here will be described later.

次に本発明のPVA系繊維の製造方法について説明する。本発明においては、PVA系ポリマーを水あるいは有機溶剤に溶解した紡糸原液を用いる。紡糸原液を構成する溶媒としては、例えば水、ジメチルスルホキシド(以下、DMSOと略記)、ジメチルアセトアミド、ジメチルホルムアミド、N−メチルピロリドンなどの極性溶媒やグリセリン、エチレングリコールなどの多価アルコール類、及びこれらとロダン塩、塩化リチウム、塩化カルシウム、塩化亜鉛などの膨潤性金属塩の混合物、さらにはこれら溶媒同士、あるいはこれら溶媒と水との混合物などが挙げられるが、これらの中でも、とりわけ水やDMSOがコスト、回収性等の工程通過性の点で最も好適である。   Next, the manufacturing method of the PVA type fiber of this invention is demonstrated. In the present invention, a spinning stock solution in which a PVA polymer is dissolved in water or an organic solvent is used. Examples of the solvent constituting the spinning dope include polar solvents such as water, dimethyl sulfoxide (hereinafter abbreviated as DMSO), dimethylacetamide, dimethylformamide, N-methylpyrrolidone, polyhydric alcohols such as glycerin and ethylene glycol, and the like. And a mixture of swellable metal salts such as rhodan salts, lithium chloride, calcium chloride, zinc chloride and the like, or a mixture of these solvents, or a mixture of these solvents and water. Among these, water and DMSO are particularly preferable. Most suitable in terms of process passability such as cost and recoverability.

紡糸原液中のポリマー濃度は組成、重合度、溶媒によって異なるが、8〜60質量%の範囲であることが好ましい。紡糸原液の吐出時の液温は、紡糸原液が分解、着色しない範囲であることが好ましく、具体的には50〜200℃とすることが好ましい。また、本発明の効果を損なわない範囲であれば、紡糸原液にはPVA系ポリマー以外にも、目的に応じて、難燃剤、酸化防止剤、凍結防止剤、pH調整剤、隠蔽剤、着色剤、油剤、特殊機能剤などの添加剤などが含まれていてもよい。更にこれらは、一種類または二種類以上のものを併用して使用しても構わない。   The polymer concentration in the spinning dope varies depending on the composition, polymerization degree, and solvent, but is preferably in the range of 8 to 60% by mass. The liquid temperature at the time of discharging the spinning dope is preferably in a range in which the spinning dope is not decomposed or colored, and specifically 50 to 200 ° C. is preferable. Moreover, as long as the effect of the present invention is not impaired, the spinning dope includes a flame retardant, an antioxidant, an antifreezing agent, a pH adjuster, a concealing agent, and a colorant in addition to the PVA polymer. In addition, additives such as oil agents and special functional agents may be included. Furthermore, these may be used alone or in combination of two or more.

かかる紡糸原液をノズルから気体中に吐出して乾式紡糸を行えばよい。なお、乾式紡糸とは、空気中あるいは不活性ガス中に紡糸原液を吐出する方法のことである。   Such spinning dope may be discharged into a gas from a nozzle to perform dry spinning. Dry spinning is a method of discharging a spinning solution into the air or an inert gas.

次に乾熱延伸、熱処理を施す。このための延伸条件は、100〜260℃の温度、好ましくは150℃〜240℃の温度で行うのがよい。延伸倍率は1〜10倍で延伸するのが好ましく、さらには1.5〜6倍で延伸するのが好ましい。高延伸倍率とすると、繊維の結晶化度と配向度が高くなり、繊維の力学物性が著しく向上するので好ましいが、10倍を超える延伸倍率で延伸すると襞形状がマイルド化し、本発明の目的でもある繊維表面積のアップに寄与しないがために望ましくない。延伸温度は、100℃未満の場合、繊維の白化が生じ、そのため力学物性の低下をもたらす。また260℃を越えると繊維の部分的な融解が生じ、この場合においても力学物性の低下をもたらすので好ましくない。かかる方法により、本発明の繊維長さ方向に微細な襞を有する繊維を得ることができる。   Next, dry heat stretching and heat treatment are performed. The stretching conditions for this purpose are 100 to 260 ° C, preferably 150 to 240 ° C. The draw ratio is preferably 1 to 10 times, more preferably 1.5 to 6 times. A high draw ratio is preferable because the crystallinity and orientation of the fiber are increased, and the mechanical properties of the fiber are remarkably improved. However, when the draw ratio is more than 10 times, the wrinkle shape becomes mild, and also for the purpose of the present invention. This is undesirable because it does not contribute to an increase in the surface area of the fiber. When the stretching temperature is less than 100 ° C., whitening of the fiber occurs, and therefore mechanical properties are deteriorated. On the other hand, if the temperature exceeds 260 ° C., partial melting of the fiber occurs, and in this case, mechanical properties are deteriorated, which is not preferable. By this method, a fiber having fine wrinkles in the fiber length direction of the present invention can be obtained.

本発明でいう各種機能付与材料とは、特に限定されないが、例えば、紫外線発光目的では硫化亜鉛+マンガンであったり、磁性目的ではフェライトであったり、消臭・抗菌目的ではゼオライトであったり、導電目的では硫化銅などが後加工で容易に付与できる。   Various function-providing materials referred to in the present invention are not particularly limited. For example, zinc sulfide + manganese for ultraviolet light emission purposes, ferrite for magnetic purposes, zeolite for deodorization / antibacterial purposes, and conductive materials. For the purpose, copper sulfide or the like can be easily applied by post-processing.

ここで本発明における機能付与の一例である、導電化を目的とした硫化銅の後加工について詳細に述べる。本発明のPVA系繊維を用い、銅イオンを含む化合物の浴(濃度=10〜400g/L、温度=30〜80℃)に3秒以上浸漬し、次にPVA系繊維中に含有している銅イオンを硫化処理する目的で、硫化物イオンを含む化合物を溶解した浴(濃度=1〜100g/L、温度=30〜80℃)に0.1秒以上を通過させればよい。各浴の濃度、温度、浸漬時間は目標とする導電性能のレベルによって適宜設定すればよいし、さらに高性能化を求めるなら、複数回の後加工を実施すればよい。本発明の繊維を用いれば、ヤーンで上記後加工を実施しても構わないし、織物、編物、不織布等の布帛形態とした後に、上記後加工を実施することも可能であり、その性能は、前者、後者でほとんど変わらない。   Here, the post-processing of copper sulfide for the purpose of electrical conductivity, which is an example of the function provision in the present invention, will be described in detail. Using the PVA fiber of the present invention, it is immersed in a bath of a compound containing copper ions (concentration = 10 to 400 g / L, temperature = 30 to 80 ° C.) for 3 seconds or more, and then contained in the PVA fiber. For the purpose of sulfiding copper ions, it may be passed through a bath (concentration = 1-100 g / L, temperature = 30-80 ° C.) in which a compound containing sulfide ions is dissolved for 0.1 seconds or more. What is necessary is just to set suitably the density | concentration of each bath, temperature, and immersion time according to the level of the target electroconductive performance, and what is necessary is just to implement a multiple times of post-processing, when high performance improvement is calculated | required. If the fiber of the present invention is used, the post-processing may be carried out with a yarn, or the post-processing may be carried out after forming a fabric form such as a woven fabric, a knitted fabric, or a non-woven fabric. There is almost no difference between the former and the latter.

また、本発明の繊維はその襞形状が微細であることから、繊維表面に付着した各種機能付与材料が脱落しにくいことも特徴の一つである。例えば襞の内部に付着した各種材料は耐洗濯性や耐摩耗性の点で、襞のない繊維に比べ良好であるといった特徴を有する。   Another feature of the fiber of the present invention is that various function-providing materials attached to the surface of the fiber are difficult to drop off because the shape of the ridge is fine. For example, various materials adhering to the inside of the bag have characteristics such that they are better than fibers without wrinkles in terms of washing resistance and wear resistance.

本発明の繊維は、例えばステープルファイバー、ショートカットファイバー、フィラメントヤーン、紡績糸、紐状物、ロープ等の他、織物、編物不織布等の布帛などのあらゆる繊維形態において使用可能であり、目的とする機能を付与可能な材料を繊維内部に取り込むことで多種多様の用途に用いることが出来る。その際、併用し得る繊維としては、目的とする機能が損なわれない範囲でPVA系繊維、ポリエステル系繊維、ポリアミド系繊維、セルロース系繊維等を挙げることができ、特に限定されるものではない。   The fibers of the present invention can be used in any fiber form such as staple fibers, shortcut fibers, filament yarns, spun yarns, strings, ropes, and fabrics such as woven fabrics and knitted nonwoven fabrics. Can be used for a wide variety of applications by incorporating a material capable of imparting the content into the fiber. In this case, examples of fibers that can be used in combination include PVA fibers, polyester fibers, polyamide fibers, and cellulose fibers as long as the intended function is not impaired, and are not particularly limited.

以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何等限定されるものではない。なお以下の実施例において、繊維の引張強度、膨潤度、繊維表面長さ方向の襞の間隔、その深さ、数、および繊維中に含有される機能付与材料の含有量、機能性(ここでは導電性)、さらに耐久性(洗濯耐久性、耐屈曲性、耐摩耗性)は下記の方法により測定したものを示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by this Example. In the following examples, the tensile strength of the fiber, the degree of swelling, the distance between wrinkles in the fiber surface length direction, the depth and number thereof, the content of the function-imparting material contained in the fiber, and the functionality (here, Conductivity) and durability (washing durability, flex resistance, wear resistance) are those measured by the following methods.

[繊維の引張強度 cN/dtex]
JIS L1013に準じて、予め調湿されたヤーンを試長20cm、初荷重0.25cN/dtex及び引張速度50%/分の条件で測定し、n=20の平均値を採用した。また繊維繊度(dtex)は質量法により求めた。
[Tensile strength of fiber cN / dtex]
In accordance with JIS L1013, a yarn conditioned in advance was measured under the conditions of a test length of 20 cm, an initial load of 0.25 cN / dtex and a tensile speed of 50% / min, and an average value of n = 20 was adopted. The fiber fineness (dtex) was determined by a mass method.

[膨潤度 %]
繊維を1cm程度にカットし、30℃の水に30分浸漬した。その後、繊維を濾取し、3000rpmの回転数の遠心分離機で10分間遠心脱水を行い、重量(A)を測定した。脱水を行なった繊維を90℃の乾燥機で4時間放置し、完全に乾燥させ重量(B)を測定した。膨潤度は下記の式にて算出した。
膨潤度(%)={重量(A)− 重量(B)}/ 重量(B)×100
[Swelling degree%]
The fiber was cut to about 1 cm and immersed in water at 30 ° C. for 30 minutes. Thereafter, the fibers were collected by filtration, subjected to centrifugal dehydration for 10 minutes with a centrifuge at a rotation speed of 3000 rpm, and the weight (A) was measured. The dehydrated fiber was left in a dryer at 90 ° C. for 4 hours, completely dried, and the weight (B) was measured. The degree of swelling was calculated by the following formula.
Swelling degree (%) = {weight (A) −weight (B)} / weight (B) × 100

[襞形状:間隔、深さ、数]
(株)日立製作所製H−800NA透過型電子顕微鏡(TEM)にて繊維断面を観察し、襞の頂点とその隣り合う頂点の距離を襞の間隔とし、頂点と頂点の接線から谷の部分に垂線を下ろした際の最大距離を深さとした。また、繊維断面における襞の頂点の数をカウントし、襞の数とした。
[Shape shape: spacing, depth, number]
Observe the cross section of the fiber with an H-800NA transmission electron microscope (TEM) manufactured by Hitachi, Ltd., and set the distance between the apex of the ridge and the adjacent apex to the distance between the ridges. The maximum distance when the perpendicular is lowered is defined as the depth. In addition, the number of wrinkles at the top of the fiber cross section was counted and used as the number of wrinkles.

[繊維中に含有される機能付与材料の定量測定 質量%]
繊維含有の後加工材料の定量測定は、ジャーレルアッシュ社製ICP発光分析装置IRIS−APを用いて行った。
[Quantitative measurement of function-providing material contained in fiber by mass%]
The quantitative measurement of the post-processed material containing fibers was performed using an ICP emission analyzer IRIS-AP manufactured by Jarrel Ash.

[繊維の導電性(体積固有抵抗値)測定 Ω・cm]
PVA繊維を温度105℃で1時間かけて乾燥させ、その後、温度20℃、湿度30%の条件下で24時間以上放置させて調湿した。この繊維に対して、長さ2cmの単繊維試験片を採取し、該試験片の両端間に、横河ヒューレットパッカード社製の抵抗値測定機「MULTIMETER」を使用して、10Vの電圧をかけてその抵抗値(Ω)を測定した。そして、体積固有抵抗値(ρ)(Ω・cm)=R×(S/L)により、各試験片の体積固有抵抗値を求め、これを25試料片について行い、その平均値を試料の体積固有抵抗値とした。なお、Rは試験片の抵抗値(Ω)、Sは断面積(cm)、及びLは長さ(2cm)を示す。ここで、試験片の断面積は、繊維を顕微鏡下で観察することにより算出した。
[Measurement of fiber conductivity (volume resistivity) Ω · cm]
The PVA fiber was dried at a temperature of 105 ° C. for 1 hour, and then allowed to stand for 24 hours or more under conditions of a temperature of 20 ° C. and a humidity of 30% to adjust the humidity. For this fiber, a single fiber test piece having a length of 2 cm was collected, and a voltage of 10 V was applied between both ends of the test piece using a resistance measuring device “MULTITIMETER” manufactured by Yokogawa Hewlett-Packard Company. The resistance value (Ω) was measured. Then, the volume specific resistance value (ρ) (Ω · cm) = R × (S / L) is used to obtain the volume specific resistance value of each test piece, and this is performed for 25 sample pieces, and the average value is obtained as the volume of the sample. The specific resistance value was used. Here, R represents the resistance value (Ω) of the test piece, S represents the cross-sectional area (cm 2 ), and L represents the length (2 cm). Here, the cross-sectional area of the test piece was calculated by observing the fiber under a microscope.

[洗濯試験]
JIS L0217の103法に準拠した方法で行なった。JIS C9606に規定する遠心式脱水装置付きの家庭用電器洗濯機の水槽の標準水量を示す水位線まで40℃の水を入れ、これに標準使用量となる割合で洗濯用合成洗剤を添加して溶解し、洗濯液とした。この洗濯液に1対30となるように試料及び必要に応じて負荷布を投入して運転を開始した。5分間処理した後、運転を停止し試料及び負荷布を脱水機で脱水した。洗濯液を30℃以下の新しい水に替えて同一の浴比で2分間すすぎ洗いを行、脱水を行なう。その後、再び2分間のすすぎ洗い、脱水を行なう。この一連の処理を10回繰り返し直接日光の影響を受けない状態で風乾し、処理の前後の導電性で耐久性を評価した。
[Laundry test]
This was carried out by a method based on the method 103 of JIS L0217. Add 40 ° C water to the water level line indicating the standard amount of water in a household electric appliance washing machine with a centrifugal dehydrator as specified in JIS C 9606, and add a laundry detergent to the standard amount of use. It melt | dissolved and it was set as the washing liquid. A sample and a load cloth were added as needed so that it might become 1:30 to this washing | cleaning liquid, and the driving | operation was started. After the treatment for 5 minutes, the operation was stopped and the sample and the load cloth were dehydrated with a dehydrator. The washing liquid is changed to fresh water of 30 ° C. or less, rinsed for 2 minutes at the same bath ratio, and dehydrated. Then, rinse again for 2 minutes and dehydrate. This series of treatments was repeated 10 times and air-dried in a state not directly affected by sunlight, and durability was evaluated by conductivity before and after the treatment.

[屈曲試験]
試験片は20℃、65%RHの雰囲気下で24時間以上調湿したもので評価を行なった。紙及び板紙−耐折強さ試験方法(JIS P8115)にて使用されるMIT試験機を使用した。繊維1000dtexに対し4.9Nの荷重をかけ、屈曲角度 270度、屈曲回数 30000回、屈曲速度 175cpm折り曲げ試験を実施した。この処理前後で、導電性の測定を行い、その変化で耐屈曲性を評価した。
[Bending test]
The test piece was evaluated by adjusting the humidity for 24 hours or more in an atmosphere of 20 ° C. and 65% RH. Paper and paperboard-The MIT testing machine used in the folding strength test method (JIS P8115) was used. A load of 4.9 N was applied to the fiber 1000 dtex, a bending angle 270 degrees, a bending frequency 30000 times, a bending speed 175 cpm bending test was performed. The conductivity was measured before and after this treatment, and the bending resistance was evaluated based on the change.

[摩耗試験]
試験片は20℃、65%RHの雰囲気下で24時間以上調湿したもので評価を行なった。摩擦に対する染色堅ろう度試験方法JIS L0849に使用される摩擦試験機II形(学振形)にヤーン状で試験片を固定し、先端に綿布を固定し2Nの荷重をかけた摩擦子で、試験片上を1000回の往復運動させた。この処理前後で、導電性の測定を行い、その変化で耐摩耗性を評価した。
[Abrasion test]
The test piece was evaluated by adjusting the humidity for 24 hours or more in an atmosphere of 20 ° C. and 65% RH. Dye fastness test method for friction Friction tester used for JIS L0849, a test piece was fixed in yarn form to a friction tester type II (Gakushin type), a cotton cloth was fixed to the tip, and a tester was applied with a load of 2N. The reciprocating motion was performed 1000 times on the piece. The conductivity was measured before and after this treatment, and the wear resistance was evaluated based on the change.

[実施例1]
(1)粘度平均重合度1700、ケン化度99.9モル%のPVAポリマーをPVA濃度41.0質量%となるように水中に添加し、95℃にて加熱溶解した。得られた紡糸原液を、孔径0.10mm、ホール数40の丸型ノズルを通して、原液吐出量100cc/分、引取速度155m/分にて紡出した後、200℃で2.0倍延伸を行い、PVA系繊維を得た。得られた繊維の物性、断面の襞形状を表1、図1に示す。
(2)得られたPVA系繊維を和光純薬(株)製の硝酸銅を230g/L溶解した75℃の水溶液浴中に滞留時間が5分になるように導糸し、引き続き、和光純薬(株)製の硫化ナトリウムを50g/L溶解した25℃の水浴に滞留時間が2分になるように導糸した。この処理を2回繰り返した後、100℃の熱風で乾燥して得られた繊維の導電性能評価結果を表1に示す。このようにして得られた繊維は初期導電性能及び耐久性に優れるものであった。
[Example 1]
(1) A PVA polymer having a viscosity average polymerization degree of 1700 and a saponification degree of 99.9 mol% was added to water so as to have a PVA concentration of 41.0% by mass, and dissolved by heating at 95 ° C. The obtained spinning dope is spun through a round nozzle having a hole diameter of 0.10 mm and a hole number of 40 at a stock solution discharge rate of 100 cc / min and a take-up speed of 155 m / min, and then stretched 2.0 times at 200 ° C. A PVA fiber was obtained. Table 1 and FIG. 1 show the physical properties and cross-sectional shape of the obtained fiber.
(2) The obtained PVA fiber was introduced into a 75 ° C. aqueous solution in which 230 g / L of copper nitrate manufactured by Wako Pure Chemical Industries, Ltd. was dissolved so that the residence time was 5 minutes. Yarn was introduced into a 25 ° C. water bath in which 50 g / L of sodium sulfide manufactured by Yakuhin Co., Ltd. was dissolved so that the residence time was 2 minutes. Table 1 shows the results of evaluating the conductive performance of fibers obtained by repeating this treatment twice and then drying with hot air at 100 ° C. The fiber thus obtained was excellent in initial conductive performance and durability.

[実施例2]
(1)実施例1と同様の紡糸原液を用い、孔径0.10mm、ホール数40の丸型ノズルを通して、原液吐出量100cc/分、引取速度155m/分にて紡出した後、240℃で10倍延伸を行い、PVA系繊維を得た。得られた繊維の物性、断面の襞形状を表1に示す。
(2)得られたPVA系繊維を導電化する目的で和光純薬(株)製の硝酸銅を230g/L溶解した75℃の水溶液浴中に滞留時間が5分になるように導糸し、引き続き、和光純薬(株)製の硫化ナトリウムを50g/L溶解した25℃の水浴に滞留時間が2分になるように導糸した。この処理を2回繰り返した後、100℃の熱風で乾燥して得られた繊維の導電性能評価結果を表1に示す。得られた繊維は初期導電性能及び耐久性に優れるものであった。
[Example 2]
(1) Using the same spinning stock solution as in Example 1 and spinning through a round nozzle with a hole diameter of 0.10 mm and a hole number of 40 at a stock solution discharge rate of 100 cc / min and a take-up speed of 155 m / min, at 240 ° C. Ten-fold stretching was performed to obtain a PVA fiber. Table 1 shows the physical properties and cross-sectional shape of the obtained fiber.
(2) In order to make the obtained PVA fiber conductive, the yarn was introduced into a 75 ° C. aqueous solution in which 230 g / L of copper nitrate manufactured by Wako Pure Chemical Industries, Ltd. was dissolved so that the residence time was 5 minutes. Subsequently, the yarn was introduced into a 25 ° C. water bath in which 50 g / L of sodium sulfide manufactured by Wako Pure Chemical Industries, Ltd. was dissolved so that the residence time was 2 minutes. Table 1 shows the results of evaluating the conductive performance of fibers obtained by repeating this treatment twice and then drying with hot air at 100 ° C. The obtained fiber was excellent in initial conductive performance and durability.

[比較例1]
(1)ポリプロピレンを280℃にて溶融したポリマーを、孔径0.40mm、ホール数48の丸型ノズルを通して、吐出量48g/分、捲取速度200m/分にて溶融紡糸した後、95℃の水浴中で5.0倍に延伸後、100℃にて乾燥して丸型のポリプロピレン繊維を得た。得られた繊維の物性、断面の形状を表1に示す。
(2)得られたポリプロピレン繊維を導電化する目的で和光純薬(株)製の硝酸銅を230g/L溶解した75℃の水溶液浴中に滞留時間が5分になるように導糸し、引き続き、和光純薬(株)製の硫化ナトリウムを50g/L溶解した25℃の水浴に滞留時間が2分になるように導糸した。この処理を2回繰り返した後、100℃の熱風で乾燥して得られた繊維の導電性能評価結果を表1に示すが、この繊維は初期から導電性能が発現しておらず、導電性の付与はできなかった。
[Comparative Example 1]
(1) A polymer obtained by melting polypropylene at 280 ° C. was melt-spun through a round nozzle having a hole diameter of 0.40 mm and a hole number of 48 at a discharge rate of 48 g / min and a take-up speed of 200 m / min. After stretching 5.0 times in a water bath, it was dried at 100 ° C. to obtain a round polypropylene fiber. Table 1 shows the physical properties and cross-sectional shape of the obtained fibers.
(2) Introducing the resulting polypropylene fiber into a 75 ° C. aqueous bath in which 230 g / L of copper nitrate manufactured by Wako Pure Chemical Industries, Ltd. was dissolved was introduced so as to have a residence time of 5 minutes, Subsequently, the yarn was introduced into a 25 ° C. water bath in which 50 g / L of sodium sulfide manufactured by Wako Pure Chemical Industries, Ltd. was dissolved so that the residence time was 2 minutes. Table 1 shows the conductive performance evaluation results of the fiber obtained by repeating this treatment twice and then drying with hot air at 100 ° C. Granting was not possible.

[比較例2]
(1)実施例1と同様の紡糸原液を用い、孔径0.10mm、ホール数40の丸型ノズルを通して、原液吐出量100cc/分、引取速度155m/分にて紡出した後、240℃で12倍延伸を行い、PVA系繊維を得た。得られた繊維の物性、断面の襞形状を表1に示す。
(2)得られたPVA系繊維を導電化する目的で和光純薬(株)製の硝酸銅を230g/L溶解した75℃の水溶液浴中に滞留時間が5分になるように導糸し、引き続き、和光純薬(株)製の硫化ナトリウムを50g/L溶解した25℃の水浴に滞留時間が2分になるように導糸した。この処理を2回繰り返した後、100℃の熱風で乾燥して得られた繊維の導電性能評価結果を表1に示すが、得られた繊維は初期導電性能、及び耐久性に劣るものであった。
[Comparative Example 2]
(1) Using the same spinning stock solution as in Example 1 and spinning through a round nozzle with a hole diameter of 0.10 mm and a hole number of 40 at a stock solution discharge rate of 100 cc / min and a take-up speed of 155 m / min, at 240 ° C. The PVA fiber was obtained by stretching 12 times. Table 1 shows the physical properties and cross-sectional shape of the obtained fiber.
(2) In order to make the obtained PVA fiber conductive, the yarn was introduced into a 75 ° C. aqueous solution in which 230 g / L of copper nitrate manufactured by Wako Pure Chemical Industries, Ltd. was dissolved so that the residence time was 5 minutes. Subsequently, the yarn was introduced into a 25 ° C. water bath in which 50 g / L of sodium sulfide manufactured by Wako Pure Chemical Industries, Ltd. was dissolved so that the residence time was 2 minutes. Table 1 shows the conductive performance evaluation results of the fibers obtained by repeating this treatment twice and then drying with hot air at 100 ° C. The obtained fibers are inferior in initial conductive performance and durability. It was.

[比較例3]
(1)粘度平均重合度1700、ケン化度99.9モル%のPVAをPVA濃度15.8質量%となるように水中に添加し、95℃にて加熱溶解した。この紡糸原液を用い、孔径0.08mm、ホール数4000の丸型ノズルを通して、原液吐出量330cc/分、引取速度10m/分にて飽和芒硝水溶液からなる凝固浴中に紡出し、235℃で6.4倍延伸を行い、その後ホルマリン28g/l、硫酸240g/l、芒硝130g/l、75℃の浴に30分浸漬することでホルマール化してPVA系繊維を得た。得られた繊維の物性、断面の襞形状を表1に示す。
(2)得られたPVA系繊維を導電化する目的で和光純薬(株)製の硝酸銅を230g/L溶解した75℃の水溶液浴中に滞留時間が5分になるように導糸し、引き続き、和光純薬(株)製の硫化ナトリウムを50g/L溶解した25℃の水浴に滞留時間が2分になるように導糸した。この処理を2回繰り返した後、100℃の熱風で乾燥して得られた繊維の導電性能評価結果を表1に示すが、得られた繊維は初期導電性能、及び耐久性に劣るものであった。
[Comparative Example 3]
(1) PVA having a viscosity average polymerization degree of 1700 and a saponification degree of 99.9 mol% was added to water so as to have a PVA concentration of 15.8% by mass, and dissolved by heating at 95 ° C. Using this spinning solution, it was spun into a coagulation bath consisting of a saturated sodium sulfate aqueous solution at a discharge rate of 330 cc / min and a take-up speed of 10 m / min through a round nozzle having a hole diameter of 0.08 mm and a hole number of 4000. The film was stretched 4 times, and then formalized by dipping in a bath of formalin 28 g / l, sulfuric acid 240 g / l, sodium sulfate 130 g / l, and 75 ° C. for 30 minutes to obtain a PVA fiber. Table 1 shows the physical properties and cross-sectional shape of the obtained fiber.
(2) In order to make the obtained PVA fiber conductive, the yarn was introduced into a 75 ° C. aqueous solution in which 230 g / L of copper nitrate manufactured by Wako Pure Chemical Industries, Ltd. was dissolved so that the residence time was 5 minutes. Subsequently, the yarn was introduced into a 25 ° C. water bath in which 50 g / L of sodium sulfide manufactured by Wako Pure Chemical Industries, Ltd. was dissolved so that the residence time was 2 minutes. Table 1 shows the conductive performance evaluation results of the fibers obtained by repeating this treatment twice and then drying with hot air at 100 ° C. The obtained fibers are inferior in initial conductive performance and durability. It was.

Figure 2007231484
Figure 2007231484

表1、図1、図2の結果から明らかなように、本発明のPVA系繊維は、繊維表面長さ方向に所定の襞を有しているので繊維内部に機能性付与のための材料(特に図2では導電性付与のための硫化銅)が均一に分散されており、その初期の性能のみならず、耐久性にも優れ、PVA本来の力学物性をも兼ね備えている。一方でPVA以外のポリマーを用いた繊維や、PVA系繊維であっても繊維表面長さ方向に所定の襞を有していない繊維では、目的とする機能性付与がされていない。   As is clear from the results of Table 1, FIG. 1 and FIG. 2, the PVA fiber of the present invention has a predetermined wrinkle in the fiber surface length direction, so that a material for imparting functionality to the inside of the fiber ( In particular, in FIG. 2, copper sulfide for imparting conductivity is uniformly dispersed, and not only the initial performance but also durability is excellent, and PVA has original mechanical properties. On the other hand, even if it is a fiber using a polymer other than PVA or a PVA-based fiber and does not have a predetermined wrinkle in the fiber surface length direction, the intended functionality is not imparted.

本発明によれば、後加工にて各種材料を繊維内部に分散させることが可能となるPVA系繊維を提供することができる。また、その材料の種類によって、難燃、抗菌、防黴、消臭、導電などの機能付与に極めて有用である。さらには、本発明のPVA系繊維は特別に高価な工程を必要とせず、通常の紡糸、延伸工程で安価に製造可能である。   ADVANTAGE OF THE INVENTION According to this invention, the PVA type fiber which becomes possible [disperse | distributing various materials inside a fiber by post-processing] can be provided. In addition, depending on the type of the material, it is extremely useful for imparting functions such as flame retardancy, antibacterial, antifungal, deodorant, and conductivity. Furthermore, the PVA fiber of the present invention does not require a particularly expensive process and can be manufactured at a low cost by ordinary spinning and drawing processes.

本発明のPVA繊維の一例を示す繊維表面写真。The fiber surface photograph which shows an example of the PVA fiber of this invention. 本発明のPVA繊維において繊維内部に硫化銅が均一に分散されている状態の一例を示す繊維断面写真。The fiber cross-section photograph which shows an example of the state by which copper sulfide is uniformly disperse | distributed inside the fiber in the PVA fiber of this invention.

Claims (4)

繊維長さ方向に10nm〜2μm間隔の複数の襞を有する繊維であって、襞の深さと襞の間隔の比が5:1〜1:20であることを特徴とするポリビニルアルコール系繊維。   A polyvinyl alcohol fiber having a plurality of wrinkles at intervals of 10 nm to 2 μm in the fiber length direction, wherein a ratio of wrinkle depth to wrinkle spacing is 5: 1 to 1:20. ケン化度が88モル%以上、平均重合度が1200〜15000のポリビニルアルコール系ポリマーからなることを特徴とする請求項1記載のポリビニルアルコール系繊維。   The polyvinyl alcohol fiber according to claim 1, comprising a polyvinyl alcohol polymer having a saponification degree of 88 mol% or more and an average polymerization degree of 1200 to 15000. 膨潤度が1〜50%であることを特徴とする請求項1または2記載のポリビニルアルコール系繊維。   The degree of swelling is 1 to 50%, and the polyvinyl alcohol fiber according to claim 1 or 2. ポリビニルアルコール系ポリマーを乾式法にて紡糸した後、温度100〜260℃で延伸倍率1〜10倍にて延伸することを特徴とする請求項1〜3のいずれか1項記載のポリビニルアルコール系繊維の製造方法。
The polyvinyl alcohol fiber according to any one of claims 1 to 3, wherein the polyvinyl alcohol polymer is spun by a dry method and then stretched at a stretch ratio of 1 to 10 at a temperature of 100 to 260 ° C. Manufacturing method.
JP2006057184A 2006-03-03 2006-03-03 Polyvinyl alcohol fiber and method for producing the same Active JP4772538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057184A JP4772538B2 (en) 2006-03-03 2006-03-03 Polyvinyl alcohol fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057184A JP4772538B2 (en) 2006-03-03 2006-03-03 Polyvinyl alcohol fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007231484A true JP2007231484A (en) 2007-09-13
JP4772538B2 JP4772538B2 (en) 2011-09-14

Family

ID=38552359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057184A Active JP4772538B2 (en) 2006-03-03 2006-03-03 Polyvinyl alcohol fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP4772538B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107881578A (en) * 2017-11-06 2018-04-06 成都天府轨谷科技有限公司 The method of yarn is made with it in a kind of abrasion resistant fire blocking antibacterial composite fibers and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125270A (en) * 1980-03-06 1981-10-01 Kuraray Co Cement reinforcing fiber and manufacture
JPH04136213A (en) * 1990-04-11 1992-05-11 Kuraray Co Ltd High-tenacity polyvinyl alcohol-based synthetic fiber having fine unevenness
JP2001271221A (en) * 2000-03-23 2001-10-02 Kuraray Co Ltd Polyvinyl alcohol-based fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125270A (en) * 1980-03-06 1981-10-01 Kuraray Co Cement reinforcing fiber and manufacture
JPH04136213A (en) * 1990-04-11 1992-05-11 Kuraray Co Ltd High-tenacity polyvinyl alcohol-based synthetic fiber having fine unevenness
JP2001271221A (en) * 2000-03-23 2001-10-02 Kuraray Co Ltd Polyvinyl alcohol-based fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107881578A (en) * 2017-11-06 2018-04-06 成都天府轨谷科技有限公司 The method of yarn is made with it in a kind of abrasion resistant fire blocking antibacterial composite fibers and preparation method thereof

Also Published As

Publication number Publication date
JP4772538B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
KR870001132B1 (en) Antistatic fiber containing polyoxyalkylene glycol
JP4962619B2 (en) Antistatic acrylic fiber and method for producing the same
TWI237669B (en) Acrylic composite fiber, the manufacturing method therefor, and the fiber complex by using the same
IE44104B1 (en) Hygroscopic fibres and filaments of synthetic polymers
JP4134829B2 (en) Nanofiber mixed yarn
US4810449A (en) Process for the production of hydrophilic polyacrylonitrile filaments or fibers
JP4773849B2 (en) Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property
KR102184471B1 (en) Organic resin non-crimped staple fiber
JP4772538B2 (en) Polyvinyl alcohol fiber and method for producing the same
JP5744505B2 (en) Para-type wholly aromatic polyamide fiber, fabric made of the fiber, hose, fish net, and method for producing the fiber
JP2005133250A (en) Core-sheath conjugate fiber
JP2012082565A (en) Antistatic acrylic fiber excellent in color development and manufacturing method thereof
JP2004124269A (en) Tourmaline-containing fiber
JPH09157978A (en) Textile product comprising deodorizing/antimicrobial acrylic synthetic fiber
JP2013253817A (en) Radiation shielding fiber and fabric
JP2003342831A (en) Water-absorbing acrylic fiber and method for producing the same and fiber structure containing the fiber
JP2005200799A (en) Woven or knitted fabric of polyester fiber having water absorption property/quick-drying property and method for producing the same
JPH05148709A (en) Acrylic modified cross section fiber and its production
JPH0791750B2 (en) Acrylic nonwoven fabric and method for producing the same
JP4100180B2 (en) Polymer alloy fiber
JPH10158928A (en) Splittable acrylic synthetic yarn and its production
JP2007051384A (en) Flame-retardant polyester-based fiber structure and method for producing the same
KR100253018B1 (en) Cloth of hollow fibers and method of manufacturing same
JP2022011493A (en) Fiber, nonwoven fabric, and sound absorbing material
JP2003147630A (en) Acrylic modified cross section fiber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4772538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150