JP2007231349A - Metal powder for metal laser sintering - Google Patents

Metal powder for metal laser sintering Download PDF

Info

Publication number
JP2007231349A
JP2007231349A JP2006053572A JP2006053572A JP2007231349A JP 2007231349 A JP2007231349 A JP 2007231349A JP 2006053572 A JP2006053572 A JP 2006053572A JP 2006053572 A JP2006053572 A JP 2006053572A JP 2007231349 A JP2007231349 A JP 2007231349A
Authority
JP
Japan
Prior art keywords
powder
metal
nickel
copper
modeled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006053572A
Other languages
Japanese (ja)
Other versions
JP4640216B2 (en
Inventor
Isao Fuwa
勲 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006053572A priority Critical patent/JP4640216B2/en
Publication of JP2007231349A publication Critical patent/JP2007231349A/en
Application granted granted Critical
Publication of JP4640216B2 publication Critical patent/JP4640216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal powder, when fed to metal laser sintering, free from cracks in the vicinity of the joint with a fabrication plate, also precipitating no carbon on the fabricated material, and further capable of obtaining the fabricated material having high strength and high hardness. <P>SOLUTION: The powder of tool steel is a powdery mixture composed of: iron based powder; the powder of nickel or/and a nickel based alloy; the powder of copper or/and a copper based alloy; and graphite powder. In the iron based powder, the content of carbon is reduced to 0.2 to 0.6 wt.%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は金属粉末からなる粉末層に光ビームを照射して焼結層を形成するとともにこの焼結層を積層することで所望の三次元形状造形物を得る金属光造形に用いる金属粉末に関するものである。   The present invention relates to a metal powder for use in metal stereolithography to form a sintered layer by irradiating a powder layer made of metal powder with a light beam and laminating this sintered layer. It is.

金属粉末で形成した粉末層に光ビーム(指向性エネルギービーム、例えばレーザ)を照射して焼結層を形成し、この焼結層の上に新たな粉末層を形成して光ビームを照射することで焼結層を形成するということを繰り返して三次元形状造形物を製造する技術が知られている。金属光造形と称されているこの技術においては、複雑な三次元形状を短時間で製造することができるのが特徴の製造工法である。エネルギー密度の高い光ビームを照射することで金属粉末がほぼ完全に溶融した後に固化した状態、つまり造形密度(焼結密度)がほぼ100%の状態となり、この高密度の造形物の表面を仕上げ加工することで滑らかな面を形成でき、プラスチック成形用金型などに適用できる。   A powder layer formed of metal powder is irradiated with a light beam (directional energy beam, for example, a laser) to form a sintered layer, and a new powder layer is formed on the sintered layer and irradiated with the light beam. Thus, a technique for manufacturing a three-dimensional shaped object by repeating the formation of a sintered layer is known. In this technique called metal stereolithography, a characteristic manufacturing method is that a complicated three-dimensional shape can be manufactured in a short time. By irradiating a light beam with high energy density, the metal powder is almost completely melted and then solidified, that is, the modeling density (sintering density) is almost 100%, and the surface of this high-density model is finished. By processing, a smooth surface can be formed, and it can be applied to plastic molds.

しかし、このような三次元形状造形物を金属光造形で得るにあたっては、通常の粉末焼結に用いられる金属粉末とは異なった要求を満たさなくてはならない上に特性上においても異なったものが必要となる。   However, in order to obtain such a three-dimensional shaped object by metal stereolithography, the metal powder used for normal powder sintering must satisfy different requirements and have different characteristics. Necessary.

たとえば金属粉末の粒径は、粉末層の厚みよりも小さくする必要があり、この時、粒子径は細かい方が粉末の充填密度が高く、造形時の光ビーム(レーザ)吸収率も良いために造形密度も高くすることができるとともに表面粗さも小さくすることができるが、粉末が細かすぎて凝集を起こしてしまうと、逆に粉末の充填密度は小さくなり、薄く均一に敷けなくなってしまう。   For example, the particle size of the metal powder needs to be smaller than the thickness of the powder layer. At this time, the smaller the particle size, the higher the powder packing density, and the better the light beam (laser) absorption during modeling. The modeling density can be increased and the surface roughness can be decreased. However, if the powder is too fine and agglomerates, the packing density of the powder decreases, and the powder cannot be spread evenly.

また、ある程度の造形強度を得るためには、レーザ照射された造形部とその下層の焼結層との接合面積が大きく、かつその密着強度が高くなければならないと同時に、隣接する焼結層との接合面積が大きくて密着強度が高いものである必要がある。   Also, in order to obtain a certain degree of modeling strength, the bonding area between the laser-irradiated modeling part and the underlying sintered layer must be large and the adhesion strength must be high, The bonding area must be large and the adhesion strength must be high.

さらに、レーザ照射された箇所の上面があまり大きく盛り上がってはならない。次の層を造形するために次の粉末層を敷く際に、盛り上がり量が粉末層の厚み以上となると、粉末層の形成そのものが困難となってしまう場合がある。   Furthermore, the upper surface of the laser-irradiated portion should not rise so much. When the next powder layer is laid to form the next layer, if the bulge amount exceeds the thickness of the powder layer, the formation of the powder layer itself may be difficult.

また、造形された造形物の表面には金属粉末が付着してしまっていることから、この不要な金属粉末を落として高密度な表面を露出させるための切削仕上げ等の加工を行う時の加工性が良いことが望まれる。   In addition, since the metal powder has adhered to the surface of the modeled object, the processing when performing processing such as cutting finish to remove this unnecessary metal powder and expose the high-density surface It is desirable that the property is good.

もちろん、外観に大きな割れが生じてはならないし、射出成形用金型などの内部に流体(冷却水)を流す場合のことなども考慮すると、内部組織にマイクロクラックが無いことが望まれる。   Of course, there should be no large cracks in the appearance, and it is desirable that the internal structure should be free of microcracks in consideration of the case of flowing a fluid (cooling water) inside an injection mold or the like.

ここにおいて、レーザ照射された金属粉末は、その一部または全部が一旦溶融し、その後急冷凝固されて焼結品となるが、この溶融した時の濡れ性が大きいと隣接する焼結部との接合面積が大きくなり、流動性が大きければ盛り上がりが小さくなることから、溶融した時の流動性が大きく且つ濡れ性も良いことが望まれる。   Here, a part or all of the metal powder irradiated with the laser is once melted and then rapidly solidified to form a sintered product. If the bonding area is large and the fluidity is large, the rise is small. Therefore, it is desired that the fluidity when melted is high and the wettability is good.

このような観点から、本出願人は特開2001−152204号公報(特許文献1)において、鉄系粉末(クロムモリブデン鋼、合金工具鋼)と、ニッケル、ニッケル系合金、銅および銅系合金からなる群から選ばれる1種類以上の非鉄系粉末とを含む金属光造形用金属粉末を提案し、更にこの金属粉末を用いた金属光造形で問題となるマイクロクラックの低減を図ったものとして、特許3633607号公報(特許文献2)において、鉄系粉末(クロムモリブデン鋼、機械構造用合金鋼(非工具鋼))と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末と黒鉛粉末からなる金属光造形用の混合粉末を提案した。クロムモリブデン鋼はその強度や靭性の点から、銅または及び銅系合金粉末は濡れ性及び流動性の点から、ニッケルまたは及びニッケル系合金粉末は強度及び加工性の点から、黒鉛粉末はレーザの吸収率及びマイクロクラック低減の点から採用したものである。   From this point of view, the present applicant disclosed in Japanese Patent Application Laid-Open No. 2001-152204 (Patent Document 1) from iron-based powder (chromium molybdenum steel, alloy tool steel), nickel, nickel-based alloy, copper, and copper-based alloy. Proposing metal powder for metal stereolithography including one or more types of non-ferrous powders selected from the group consisting of, and further reducing the number of microcracks that would be problematic in metal stereolithography using this metal powder, No. 3633607 (Patent Document 2), iron-based powder (chromium molybdenum steel, alloy steel for machine structure (non-tool steel)), nickel or nickel-based alloy powder, copper or copper-based alloy powder, A mixed powder for metal stereolithography consisting of graphite powder was proposed. Chromium molybdenum steel is from the point of strength and toughness, copper or copper alloy powder is from the point of wettability and fluidity, nickel or nickel base alloy powder is from the point of strength and workability, graphite powder is from laser It is adopted from the viewpoint of absorption rate and microcrack reduction.

後者の金属光造形用の金属粉末(混合粉末)は、レーザ照射とその積層によって複雑な三次元形状造形物を得るという点において、かなり好ましい結果を得ることができているが、次の点が問題として残っていた。すなわち、金属光造形に際しては、造形プレート上に混合粉末層を形成してこれを焼結することで、造形プレート上に造形物を形成するのであるが、混合粉末が溶融凝固する際に発生する収縮応力により、造形物と造形プレートの近傍で剥がれ(厳密には造形物の割れ)が発生するという問題がある。また、造形物に炭素の析出があるためそれが欠陥となり、表面を仕上げ加工しても滑らかな面を形成できないという問題が生じている。混合粉末が溶融して形成される合金中に、混合した炭素あるいは鉄系粉末中に入っていた炭素が合金形成(凝固)時に固溶しきれなくなって析出したと考えられ、合金層との密着力はほとんどなく、仕上げ加工時に造形物からこぼれ落ちてしまうからである。   The latter metal powder for metal stereolithography (mixed powder) has been able to obtain quite favorable results in terms of obtaining a complicated three-dimensional shaped object by laser irradiation and its lamination. It remained as a problem. That is, in metal stereolithography, a mixed powder layer is formed on a modeling plate and sintered to form a modeled object on the modeling plate, but this occurs when the mixed powder melts and solidifies. Due to the shrinkage stress, there is a problem in that peeling (strictly, cracking of the modeled object) occurs in the vicinity of the modeled object and the modeled plate. Moreover, since carbon deposits exist in the modeled object, it becomes a defect, and there is a problem that a smooth surface cannot be formed even if the surface is finished. In the alloy formed by melting the mixed powder, the mixed carbon or the carbon contained in the iron-based powder is considered to have precipitated out of solid solution at the time of alloy formation (solidification). This is because there is almost no force and it spills out of the shaped object during finishing.

また、この造形物をプラスチック成型用金型として用いる場合において、その強度や硬度が大きいほどその耐久性は向上する。そのため切削加工性を損なわない程度に、造形物の強度や硬度を上げる必要もある。
特開2001−152204号公報 特許3633607号公報
Moreover, when this molded article is used as a mold for plastic molding, the durability increases as the strength and hardness increase. Therefore, it is necessary to increase the strength and hardness of the shaped object to the extent that the cutting workability is not impaired.
JP 2001-152204 A Japanese Patent No. 3633607

本発明は上記の従来の問題点に鑑みて発明したものであって、金属光造形に供した時、造形プレートとの接合部近傍における造形物の割れがない上に造形物に炭素を析出させることもなく、しかも高強度・高硬度の造形物を得ることができる金属粉末を提供することを課題とするものである。   The present invention has been invented in view of the above-described conventional problems, and when subjected to metal stereolithography, there is no crack of the modeled object in the vicinity of the joint with the modeled plate, and carbon is deposited on the modeled object. It is an object of the present invention to provide a metal powder that can obtain a molded article having high strength and high hardness without any problems.

上記課題を解決するために本発明に係る金属光造形用金属粉末は、鉄系粉末と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末と、黒鉛粉末からなる混合粉末であり、上記鉄系粉末はその炭素含有量を0.2〜0.6重量パーセントに低減した工具鋼の粉末であることに特徴を有している。なお、ここで言う工具鋼は、炭素工具鋼(JIS G4401)と合金工具鋼(JIS G4403)と合金工具鋼(JIS G4404)を意味するとともに、炭素含有量のみを本来の含有量よりも低減して0.2〜0.6重量パーセントとしたものを用いる。   In order to solve the above problems, a metal stereolithographic metal powder according to the present invention is a mixed powder comprising an iron-based powder, a nickel or nickel-based alloy powder, a copper or copper-based alloy powder, and a graphite powder. The iron-based powder is characterized in that it is a tool steel powder whose carbon content is reduced to 0.2 to 0.6 weight percent. The tool steel referred to here means carbon tool steel (JIS G4401), alloy tool steel (JIS G4403), and alloy tool steel (JIS G4404), and only the carbon content is reduced from the original content. 0.2 to 0.6 weight percent is used.

造形プレートの近傍で剥がれ(割れ)が発生するのは、レーザ照射された金属光造形用金属粉末が溶融凝固される時に発生する収縮応力によるものと考えられるが、炭素量を低減させた工具鋼粉末と炭素粉末を混合した本発明に係る金属光造形用金属粉末においては、レーザ照射され溶融した工具鋼中に炭素が固溶するときに起きる膨張と、凝固冷却時に発生する収縮が組み合わされることで、得られる造形物の内部応力(収縮応力)が小さくなると考えられ、造形プレートの近傍で剥がれが発生しなくなるほか、工具鋼中に含まれている合金成分が炭化物を生成し、造形物中に炭素の析出もなくなり、同時に強度及び硬度の高いものを得ることができる。   Peeling (cracking) in the vicinity of the modeling plate is thought to be due to the shrinkage stress that occurs when the metal powder for metal stereolithography irradiated with laser is melted and solidified, but the tool steel has a reduced carbon content. In the metal stereolithography metal powder according to the present invention in which powder and carbon powder are mixed, the expansion that occurs when carbon is dissolved in the tool steel melted by laser irradiation and the shrinkage that occurs during solidification cooling are combined. It is thought that the internal stress (shrinkage stress) of the resulting shaped article is reduced, peeling does not occur in the vicinity of the shaped plate, and alloy components contained in the tool steel generate carbides in the shaped article. In addition, carbon deposition is eliminated, and at the same time, a material having high strength and hardness can be obtained.

ただし、マイクロクラックの低減のために混合させる黒鉛の配合量を多くし過ぎると炭素の析出を起こすことから、黒鉛粉末の配合量は0.2〜0.8重量%としておくことが好ましく、更には鉄系粉末の配合量を60〜80重量パーセント、ニッケルまたは及びニッケル系合金の粉末の配合量が5〜35重量パーセント、銅または及び銅系合金の粉末の配合量が5〜15重量パーセントとする時、特に好ましい結果を得ることができる。   However, if too much graphite is added to reduce microcracks, carbon precipitation occurs, so the graphite powder content is preferably 0.2 to 0.8% by weight. The amount of the iron-based powder is 60 to 80 weight percent, the amount of the nickel or nickel-based alloy powder is 5 to 35 weight percent, the amount of the copper or copper-based alloy powder is 5 to 15 weight percent, Particularly favorable results can be obtained.

上記鉄系粉末はその炭素含有量を0.2〜0.6重量パーセントに低減した高速度工具鋼の粉末であることが高強度化及び高硬度化において望ましく、殊にその炭素含有量を0.2〜0.6重量パーセントに低減したSKH57鋼粉末とすることで高強度及び高硬度の造形物を得ることができる。   The iron-based powder is preferably a high-speed tool steel powder whose carbon content is reduced to 0.2 to 0.6 weight percent in high strength and high hardness. By using SKH57 steel powder reduced to 2 to 0.6 weight percent, a molded article having high strength and high hardness can be obtained.

本発明の金属光造形用金属粉末においては、その炭素含有量を0.2〜0.6重量パーセントに低減した工具鋼粉末と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末と、黒鉛粉末からなる混合粉末であるために、造形物に造形プレートとの接合部近傍における割れがなく、造形物中に炭素の析出も殆どなく、しかも高強度・高硬度の造形物を得ることができた。   In the metal stereolithography metal powder of the present invention, the tool steel powder whose carbon content is reduced to 0.2 to 0.6 weight percent, nickel or nickel-based alloy powder, copper or copper-based alloy Because of the mixed powder consisting of powder and graphite powder, there is no crack in the vicinity of the joint with the modeling plate in the modeled article, and there is almost no carbon deposition in the modeled article, and the modeled article has high strength and high hardness. Could get.

以下本発明を実施の形態の一例に基づいて詳述すると、図1は金属光造形のための装置の一例を示しており、外周が囲まれた空間内をシリンダーで上下に昇降する昇降テーブル20上に供給した金属粉末をスキージング用ブレード21でならすことで所定厚みΔt1の粉末層10を形成する粉末層形成手段2と、レーザ発振器30から出力されたレーザをガルバノミラー31等のスキャン光学系を介して上記粉末層10に照射することで金属粉末を焼結して焼結層11を形成する焼結層形成手段3と、上記粉末層形成手段2のベース部にXY駆動機構40を介してミーリングヘッド41を設けることで形成した除去手段4とを備えている。   Hereinafter, the present invention will be described in detail based on an example of an embodiment. FIG. 1 shows an example of an apparatus for metal stereolithography, and an elevating table 20 that moves up and down by a cylinder in a space surrounded by an outer periphery. Powder layer forming means 2 for forming the powder layer 10 having a predetermined thickness Δt1 by leveling the supplied metal powder with the squeezing blade 21, and a scanning optical system such as a galvano mirror 31 for the laser output from the laser oscillator 30 By irradiating the powder layer 10 via the sintered layer forming means 3 for sintering the metal powder to form the sintered layer 11, and the base portion of the powder layer forming means 2 via the XY drive mechanism 40 The removal means 4 formed by providing the milling head 41 is provided.

このものにおける三次元形状造形物の製造は、図2に示すように、焼結層形成手段と焼結層との相対距離を調整する調整手段であるところの昇降テーブル20上面の造形プレート22表面に金属粉末をブレード21で供給すると同時にブレード21でならすことで第1層目の粉末層10を形成し、この粉末層10の硬化させたい箇所に光ビーム(レーザ)Lを照射して粉末を焼結させて造形プレート22と一体化した焼結層11を形成する。   As shown in FIG. 2, the manufacturing of the three-dimensional modeled object in this product is the surface of the modeling plate 22 on the upper surface of the lifting table 20 which is an adjusting means for adjusting the relative distance between the sintered layer forming means and the sintered layer. The first powder layer 10 is formed by supplying the metal powder to the blade 21 at the same time as the blade 21, and the portion of the powder layer 10 to be cured is irradiated with a light beam (laser) L to give the powder. The sintered layer 11 integrated with the modeling plate 22 is formed by sintering.

この後、昇降テーブル20を少し下げて再度金属粉末を供給してブレード21でならすことで第2層目の粉末層10を形成し、この粉末層10の硬化させたい箇所に光ビーム(レーザ)Lを照射して粉末を焼結させて下層の焼結層11と一体化した焼結層11を形成する。   Thereafter, the lifting table 20 is slightly lowered, the metal powder is supplied again, and the blade 21 is used to form the second powder layer 10. A light beam (laser) is applied to the portion of the powder layer 10 to be cured. L is irradiated to sinter the powder to form the sintered layer 11 integrated with the lower sintered layer 11.

昇降テーブル20を下降させて新たな粉末層10を形成し、光ビームを照射して所要箇所を焼結層11とする工程を繰り返すことで、目的とする三次元形状造形物を製造するものであり、光ビームとしては炭酸ガスレーザーを好適に用いることができ、粉末層10の厚みΔt1としては、得られた三次元形状造形物を成形用金型などに利用する場合、0.05mm程度とするのが好ましい。   By lowering the elevating table 20 to form a new powder layer 10 and irradiating a light beam to make the required portion a sintered layer 11, a desired three-dimensional shaped object is manufactured. Yes, a carbon dioxide laser can be suitably used as the light beam, and the thickness Δt1 of the powder layer 10 is about 0.05 mm when the obtained three-dimensional shaped object is used for a molding die or the like. It is preferable to do this.

光ビームの照射経路は、予め三次元CADデータから作成しておく。すなわち、三次元CADモデルから生成したSTLデータを等ピッチ(Δt1を0.05mmとした場合、0.05mmピッチ)でスライスした各断面の輪郭形状データを用いる。この輪郭形状データの内部を金属粉末が溶融して高密度となる条件で光ビームを照射することで、切削仕上げ後に緻密な表面を持つ造形物を高速に得ることができる。   The irradiation path of the light beam is created in advance from three-dimensional CAD data. That is, contour shape data of each cross section obtained by slicing STL data generated from a three-dimensional CAD model at an equal pitch (0.05 mm pitch when Δt1 is 0.05 mm) is used. By irradiating the inside of the contour shape data with a light beam under the condition that the metal powder is melted to obtain a high density, a shaped article having a dense surface after cutting finish can be obtained at high speed.

そして、上記粉末層10を形成しては光ビームを照射して焼結層11を形成することを繰り返していくのであるが、焼結層11の全厚みがたとえばミーリングヘッド41の工具長さなどから求めた所要の値になれば、いったん除去手段4を作動させてそれまでに造形した造形物の表面を切削する。たとえば、ミーリングヘッド41の工具(ボールエンドミル)が直径1mm、有効刃長3mmで深さ3mmの切削加工が可能であり、粉末層10の厚みΔt1が0.05mmであるならば、60層の焼結層11を形成した時点で、除去手段4を作動させる。   Then, the powder layer 10 is formed and the light beam is irradiated to repeatedly form the sintered layer 11. The total thickness of the sintered layer 11 is, for example, the tool length of the milling head 41. When the required value obtained from the above is reached, the removal means 4 is once activated to cut the surface of the shaped object that has been shaped so far. For example, if the tool (ball end mill) of the milling head 41 is capable of cutting with a diameter of 1 mm, an effective blade length of 3 mm and a depth of 3 mm, and the thickness Δt1 of the powder layer 10 is 0.05 mm, 60 layers of fired When the binder layer 11 is formed, the removing means 4 is operated.

この除去手段4による切削加工により、造形物表面に付着した粉末による低密度表面層を除去すると同時に、高密度部まで削り込むことで、造形物表面に高密度部を全面的に露出させる。   By removing the low-density surface layer of the powder adhering to the surface of the modeled object by cutting by the removing means 4, the high-density part is entirely exposed on the surface of the modeled object by cutting into the high-density part.

この除去手段4による切削加工経路は、光ビームの照射経路と同様に予め三次元CADデータから作成しておく。この時、等高線加工を適用して加工経路を決定するが、Z方向ピッチは焼結時の積層ピッチにこだわる必要はなく、緩い傾斜の場合はZ方向ピッチをより細かくして補間することで、滑らかな表面を得られるようにしておく。なお、ここでは造形途中での切削加工のための除去手段4を備えたものを示したが、この除去手段4を持たないものであってもよい。   The cutting path by the removing means 4 is created in advance from three-dimensional CAD data in the same manner as the light beam irradiation path. At this time, the machining path is determined by applying contour line processing, but the Z direction pitch does not need to stick to the stacking pitch at the time of sintering, and in the case of a gentle inclination, by interpolating with a finer Z direction pitch, Keep a smooth surface. In addition, although the thing provided with the removal means 4 for the cutting process in the middle of modeling was shown here, you may not have this removal means 4.

このような金属光造形での三次元形状造形物の製造にあたっては、前述のように金属粉末としてどのようなものを用いるかが、造形性の点や造形物の出来上がり具合に大きな影響を及ぼすのであるが、この金属光造形用金属粉末として、ここでは造形プレートとの接合部近傍での造形物の割れがなく、造形物中に固溶しきれなかった炭素の析出がなく、さらに強度や硬度が高い造形物を得るという点から、その炭素含有量を0.2〜0.6重量パーセントに低減した工具鋼粉末(鉄系粉末)と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末と、黒鉛粉末とを混合したものを用いている。   In manufacturing a three-dimensional shaped object in such metal stereolithography, what kind of metal powder is used as described above has a great influence on the point of formability and the quality of the object. However, as this metal powder for metal stereolithography, here there is no cracking of the modeled object in the vicinity of the joint with the modeled plate, there is no precipitation of carbon that could not be completely dissolved in the modeled object, and the strength and hardness Is obtained from a tool steel powder (iron-based powder) whose carbon content is reduced to 0.2 to 0.6 weight percent, nickel or a nickel-based alloy powder, copper or A mixture of copper-based alloy powder and graphite powder is used.

ベースとなる鉄系粉末を、造形物の強度や硬度を上げる目的で炭素量や合金成分を多く含む工具鋼粉末とする場合、造形時の熱収縮により造形プレートとの接合部近傍での造形物の割れが発生する。本発明者らは、混合粉末のベースとなる工具鋼粉末の炭素量を低減させると同時に、混合粉末中に適量の黒鉛粉末を混合させることで造形物の割れがなくなり、強度や硬度の高い造形物が得られることを見出したものである。   When the iron-based powder used as the base is a tool steel powder containing a large amount of carbon and alloy components for the purpose of increasing the strength and hardness of the modeled object, the modeled object in the vicinity of the joint with the model plate due to thermal shrinkage during modeling Cracking occurs. The present inventors reduce the carbon content of the tool steel powder that is the base of the mixed powder, and at the same time, by mixing an appropriate amount of graphite powder in the mixed powder, there is no cracking of the molded object, and the molding has high strength and hardness. It has been found that a product can be obtained.

ただし、工具鋼粉末の炭素の低減量が大きい場合は、造形物にポアなどの造形欠陥が発生し、ひどい場合はマイクロクラックが発生する。工具鋼粉末の炭素量は0.2〜0.6重量パーセントが適当であり、そうすることで造形プレートとの接合部近傍での造形物の割れがなく、造形物中に炭素の析出がなく、かつ強度や硬度が高い造形物を得ることができる。   However, if the reduction amount of carbon in the tool steel powder is large, a modeling defect such as a pore occurs in the modeled object, and if it is severe, a microcrack occurs. The amount of carbon in the tool steel powder is suitably 0.2 to 0.6 weight percent, so that there is no cracking of the modeled object in the vicinity of the joint with the modeled plate, and there is no carbon deposition in the modeled object. In addition, a molded article having high strength and hardness can be obtained.

前記混合粉末において、鉄系粉末である低炭素の工具鋼粉末はその配合量を60〜90重量パーセント、ニッケルまたは及びニッケル系合金の粉末の配合量を5〜35重量パーセント、銅または及び銅系合金の粉末の配合量を5〜15重量パーセント、黒鉛粉末の配合量を0.2〜0.8重量パーセントとすることが望ましい。黒鉛粉末を混合しない場合やその配合量が少ない場合は、造形物にポアなどの造形欠陥が発生し、ひどい場合はマイクロクラックが発生する。逆に混合する黒鉛粉末の量が多すぎる場合は、造形物中に炭素が固溶しきれなくなって炭素析出が発生する。   In the mixed powder, the low-carbon tool steel powder that is an iron-based powder has a blending amount of 60 to 90 weight percent, a nickel or nickel-based alloy powder blending amount of 5 to 35 weight percent, copper or copper-based powder. It is desirable that the blending amount of the alloy powder is 5 to 15 weight percent and the blending amount of the graphite powder is 0.2 to 0.8 weight percent. When the graphite powder is not mixed or when the blending amount is small, a modeling defect such as a pore occurs in the modeled object, and a micro crack occurs when it is severe. On the other hand, when the amount of graphite powder to be mixed is too large, carbon cannot be completely dissolved in the molded article, and carbon deposition occurs.

高強度・高硬度の造形物を得るためには鉄系粉末は工具鋼の中でも高速度工具鋼の粉末であることが望ましく、更に高速度工具鋼の中でもSKH57鋼の粉末であることがさらに望ましい。
[実施例1]
鉄系粉末として、非球形粒子状で平均粒子径20μmの高速度工具鋼SKH57粉末(炭素量1.2%)と、非球形粒子状で平均粒子径20μmの炭素含有量を低減した高速度工具鋼SKH57粉末(炭素量0.4%、図3参照)と、非球形粒子状で平均粒子径20μmのさらに炭素含有量を低減した高速度工具鋼SKH57粉末(炭素量0.08%)の3種類に加え、球形粒子状で平均粒子径が30μmのニッケルNi粉末(図4参照)と、球形粒子状で平均粒子径が30μmの銅マンガン合金CuMnNi(たとえばCu−10%Mn−3%Ni)粉末(図5参照)と、長径が10μmのフレーク状の黒鉛粉末(図6参照)を用意し、
a 70%SKH57(C:1.2%)−20%Ni−10%CuMnNi
b 70%SKH57(C:0.4%)−20%Ni−10%CuMnNi
c 混合粉末b+0.5%黒鉛粉末
d 混合粉末b+1.0%黒鉛粉末
e 70%SKH57(C:0.08%)−20%Ni−10%CuMnNi
f 混合粉末e+0.5%黒鉛粉末
の配合量で金属光造形用金属粉末を作成した。なお、各%はいずれも重量%である。混合粉末cの外観SEM写真を図7に示す。
In order to obtain a high-strength and high-hardness shaped article, the iron-based powder is preferably a high-speed tool steel powder among tool steels, and more preferably a SKH57 steel powder among high-speed tool steels. .
[Example 1]
High-speed tool steel SKH57 powder (carbon content 1.2%) with non-spherical particles and an average particle size of 20 μm as iron-based powder, and high-speed tool with non-spherical particles and an average particle size of 20 μm with a reduced carbon content Steel SKH57 powder (carbon content 0.4%, see Fig. 3) and non-spherical particles of high-speed tool steel SKH57 powder (carbon content 0.08%) with an average particle size of 20 µm and further reduced carbon content In addition to the types, nickel Ni powder (see FIG. 4) with a spherical particle shape and an average particle diameter of 30 μm, and a copper manganese alloy CuMnNi (for example, Cu-10% Mn-3% Ni) with a spherical particle shape and an average particle diameter of 30 μm Prepare powder (see FIG. 5) and flaky graphite powder (see FIG. 6) having a major axis of 10 μm,
a 70% SKH57 (C: 1.2%)-20% Ni-10% CuMnNi
b 70% SKH57 (C: 0.4%)-20% Ni-10% CuMnNi
c Mixed powder b + 0.5% graphite powder d Mixed powder b + 1.0% graphite powder e 70% SKH57 (C: 0.08%)-20% Ni-10% CuMnNi
f A metal powder for metal stereolithography was prepared with a blending amount of mixed powder e + 0.5% graphite powder. Each% is% by weight. An appearance SEM photograph of the mixed powder c is shown in FIG.

上記a〜fの金属粉末を用いて金属光造形を行った。粉末層の厚みは0.05mmとし、使用したレーザは炭酸ガスレーザ(出力200Wの90%出力)であり、レーザスキャン速度75mm/sec、スキャンピッチ0.25mmで焼結させた。     Metal stereolithography was performed using the metal powders a to f described above. The thickness of the powder layer was 0.05 mm, and the laser used was a carbon dioxide laser (90% output of 200 W output), which was sintered at a laser scan speed of 75 mm / sec and a scan pitch of 0.25 mm.

炭素量がJIS規格の範囲内である高速度工具鋼SKH57粉末とニッケル粉末と銅マンガン合金粉末を配合した上記aの混合粉末でレーザ焼結を行うと、造形物の抗折強度は2,000MPa、ビッカース硬さはHV400と非常に高かったが、造形プレートの近傍で造形物に割れが発生した(図8参照:造形プレートから造形物が剥がれている)。また、造形物の内部には炭素の析出物が僅かに見られた。(図9参照)
鉄系粉末の炭素量を0.4%に低減した高速度工具鋼SKH57粉末(炭素以外の成分およびその量はJIS規格通り)とした上記混合粉末bを用いてレーザ焼結を行ったところ、前述の造形プレート近傍の造形物の割れはなくなったが、造形物の内部組織を観察してみると、造形欠陥の一種である空孔が僅かにあった(図10参照)。この時の造形物の抗折強度は1,300MPa、ビッカース硬さはHV280であった。
When laser sintering is performed with the above mixed powder of a, which contains high-speed tool steel SKH57 powder, nickel powder and copper manganese alloy powder whose carbon content is within the range of JIS standard, the bending strength of the shaped article is 2,000 MPa. The Vickers hardness was as high as HV400, but cracks occurred in the modeled object in the vicinity of the modeled plate (see FIG. 8: modeled object peeled off from modeled plate). In addition, a slight amount of carbon deposits was observed inside the shaped object. (See Figure 9)
When laser sintering was performed using the mixed powder b, which was a high-speed tool steel SKH57 powder (components other than carbon and the amount thereof according to JIS standards) in which the amount of carbon in the iron-based powder was reduced to 0.4%, Although the crack of the modeled object in the vicinity of the modeled plate disappeared, when the internal structure of the modeled object was observed, there were a few vacancies as a type of modeling defect (see FIG. 10). The bending strength of the molded article at this time was 1,300 MPa, and the Vickers hardness was HV280.

次いで、混合粉末bに0.5重量%の黒鉛粉末を添加させた本発明に係る混合粉末cでレーザ焼結を行うと、造形プレート近傍の造形物の割れはなく(図11参照:造形プレートからの造形物の剥がれがない)、造形欠陥のない造形物が得られた(図12参照)。この時の造形物の抗折強度は1,700MPa、ビッカース硬さはHV340となり、混合粉末bからの造形物と比較して強度・硬度ともに向上した。   Next, when laser sintering is performed with the mixed powder c according to the present invention in which 0.5% by weight of graphite powder is added to the mixed powder b, there is no crack of the molded object in the vicinity of the modeling plate (see FIG. 11: modeling plate). There was no peeling of the molded object from No.), and a molded object without a modeling defect was obtained (see FIG. 12). The bending strength of the molded article at this time was 1,700 MPa, the Vickers hardness was HV340, and both strength and hardness were improved as compared with the molded article from the mixed powder b.

さらに、混合粉末bに1.0重量%の黒鉛粉末を添加させた混合粉末dでレーザ焼結を行うと、造形プレート近傍の造形物の割れはないが、炭素析出の多い造形物となった(図13参照)。ただし、造形物の抗折強度は1,900MPa、ビッカース硬さはHV380となり、強度・硬度ともにさらに向上した。   Furthermore, when laser sintering was performed with the mixed powder d obtained by adding 1.0 wt% graphite powder to the mixed powder b, there was no crack of the molded object in the vicinity of the modeling plate, but the modeled article with many carbon deposits was obtained. (See FIG. 13). However, the bending strength of the molded article was 1,900 MPa, the Vickers hardness was HV380, and both the strength and hardness were further improved.

次に、鉄系粉末の炭素量を0.08%まで低減した高速度工具鋼SKH57粉末とし、ニッケル粉末と銅マンガン合金粉末を配合した混合粉末eを用いてレーザ焼結を行った。造形プレート近傍の造形物の割れはなかったが、造形物の内部組織を観察してみると、多くの空孔やマイクロクラックがあり(図14参照)、造形物の抗折強度は100MPa、ビッカース硬さはHV170と低かった。   Next, laser sintering was performed using mixed powder e in which high-speed tool steel SKH57 powder in which the carbon content of the iron-based powder was reduced to 0.08% was blended with nickel powder and copper-manganese alloy powder. Although there was no crack of the modeled object in the vicinity of the modeled plate, when the internal structure of the modeled object was observed, there were many vacancies and microcracks (see FIG. 14), and the bending strength of the modeled object was 100 MPa, Vickers The hardness was as low as HV170.

また、混合粉末eに0.5重量%の黒鉛粉末を添加させた混合粉末fでレーザ焼結を行った。造形プレート近傍の造形物の割れはなかったが、混合粉末bの場合と同様の空孔が観察された(図15参照)。この造形物の抗折強度は1,500MPa、ビッカース硬さはHV280であった。
[実施例2]
非球形粒子状で平均粒子径20μmの高速度工具鋼SKH51粉末(炭素量0.85%)と、球形粒子状で平均粒子径が30μmのニッケルNi粉末と、球形粒子状で平均粒子径が30μmの銅マンガン合金CuMnNi(たとえばCu−10%Mn−3%Ni)粉末と、長径10μmのフレーク状の黒鉛粉末を用意し、
g 70%SKH51(C:0.85%)−20%Ni−10%CuMnNi
h 混合粉末g+0.5%黒鉛粉末
の配合量で金属光造形用金属粉末を作成し、これらの金属粉末を用いて金属光造形を行った。なお、各%はいずれも重量%である。粉末層の厚み、使用したレーザ、レーザのスキャン速度、スキャンピッチの条件は実施例1と同じである。
Further, laser sintering was performed with a mixed powder f obtained by adding 0.5% by weight of graphite powder to the mixed powder e. Although there was no crack of the modeled object in the vicinity of the modeled plate, the same holes as in the case of the mixed powder b were observed (see FIG. 15). This molded article had a bending strength of 1,500 MPa and a Vickers hardness of HV280.
[Example 2]
High-speed tool steel SKH51 powder (carbon content 0.85%) with non-spherical particles and an average particle size of 20 μm, nickel Ni powder with spherical particles and an average particle size of 30 μm, and spherical particles with an average particle size of 30 μm A copper-manganese alloy CuMnNi (for example, Cu-10% Mn-3% Ni) powder and a flake graphite powder having a major axis of 10 μm,
g 70% SKH51 (C: 0.85%)-20% Ni-10% CuMnNi
h Metal powder for metal stereolithography was prepared with a blending amount of mixed powder g + 0.5% graphite powder, and metal stereolithography was performed using these metal powders. Each% is% by weight. The conditions of the thickness of the powder layer, the laser used, the scan speed of the laser, and the scan pitch are the same as those in Example 1.

JIS規格の範囲内である炭素量(0.85%)の高速度工具鋼SKH51粉末とニッケル粉末と銅マンガン合金粉末を配合した上記gの混合粉末でレーザ焼結を行うと、造形欠陥のない造形物が得られ(図16参照)、その抗折強度は1,500MPa、ビッカース硬さはHV320となり、強度・硬度ともに高い造形物が得られたが、造形プレートの近傍で造形物に小さな割れが発生した。   When laser sintering is performed with the above-mentioned mixed powder of g in which high-speed tool steel SKH51 powder having a carbon content (0.85%) within the range of JIS standard, nickel powder, and copper-manganese alloy powder is blended, there is no modeling defect. A modeled object was obtained (see FIG. 16), its bending strength was 1,500 MPa, Vickers hardness was HV320, and a modeled object with high strength and hardness was obtained, but small cracks were formed in the modeled object in the vicinity of the modeled plate. There has occurred.

次いで、混合粉末gに0.5重量%の黒鉛粉末を添加させた混合粉末hでレーザ焼結を行うと、造形物の強度・硬度は混合粉末gの時よりも向上(抗折強度は2,200MPa、ビッカース硬さはHV375)したが、造形プレート近傍の造形物の割れはなくならず、造形物内部に炭素の析出が僅かに発生した(図17参照)。
[実施例3]
非球形粒子状で平均粒子径20μmの合金工具鋼SKD11粉末(炭素量1.5%)と、非球形粒子状で平均粒子径20μmの炭素含有量を低減した合金工具鋼SKD11粉末(炭素量0.4%)と、球形粒子状で平均粒子径が30μmのニッケルNi粉末と、球形粒子状で平均粒子径が30μmの銅マンガン合金CuMnNi(たとえばCu−10%Mn−3%Ni)粉末と、長径10μmのフレーク状の黒鉛粉末を用意し、
i 70%SKD11(C:1.5%)−20%Ni−10%CuMnNi
j 70%SKD11(C:0.4%)−20%Ni−10%CuMnNi
k 混合粉末j+0.5%黒鉛粉末
の配合量で金属光造形用金属粉末を作成し、これらの金属粉末を用いて金属光造形を行った。なお、各%はいずれも重量%であり、粉末層の厚み、使用したレーザ、レーザのスキャン速度、スキャンピッチの条件は実施例1、2と同じである。
Next, when laser sintering is performed with a mixed powder h in which 0.5% by weight of graphite powder is added to the mixed powder g, the strength and hardness of the molded product is improved as compared with the mixed powder g (the bending strength is 2). , 200 MPa, Vickers hardness was HV375), but the molded object in the vicinity of the modeling plate was not broken, and a slight amount of carbon was generated inside the molded object (see FIG. 17).
[Example 3]
Non-spherical alloy tool steel SKD11 powder with an average particle size of 20 μm (carbon content 1.5%) and non-spherical alloy tool steel SKD11 powder with an average particle size of 20 μm and reduced carbon content (carbon content 0) 0.4%), a nickel Ni powder having a spherical particle shape and an average particle diameter of 30 μm, a copper manganese alloy CuMnNi (for example, Cu-10% Mn−3% Ni) powder having a spherical particle shape and an average particle diameter of 30 μm, Prepare flaky graphite powder with a long diameter of 10 μm,
i 70% SKD11 (C: 1.5%)-20% Ni-10% CuMnNi
j 70% SKD11 (C: 0.4%)-20% Ni-10% CuMnNi
k Metal powder for metal stereolithography was prepared with a blending amount of mixed powder j + 0.5% graphite powder, and metal stereolithography was performed using these metal powders. Each% is% by weight, and the conditions of the thickness of the powder layer, the laser used, the laser scanning speed, and the scanning pitch are the same as those in Examples 1 and 2.

JIS規格の範囲内である炭素量(1.5%)の合金工具鋼SKD11鋼粉末とニッケル粉末と銅マンガン合金粉末を配合した上記iの混合粉末でレーザ焼結を行うと、造形開始直後に、造形プレートの近傍で造形物に割れが発生し、粉末積層が不可能となり造形が停止した。   When laser sintering is performed with the above mixed powder of i, which is a mixture of alloy tool steel SKD11 steel powder, nickel powder and copper manganese alloy powder with carbon content (1.5%) within the range of JIS standard, immediately after the start of modeling Cracks occurred in the modeled object in the vicinity of the modeling plate, making powder lamination impossible and modeling stopped.

続いて、鉄系粉末を炭素量を0.4%に低減したSKHD11鋼粉末とした混合粉末jを用いてレーザ焼結を行ったところ、前述の造形プレート近傍の造形物の割れはなくなった。造形物の内部組織を観察してみると、造形欠陥の一種であるマイクロクラックが僅かにあった(図18参照)。この時の造形物の抗折強度は700MPa、ビッカース硬さはHV210と、やや低かった。   Subsequently, when laser sintering was performed using the mixed powder j in which the iron-based powder was SKHD11 steel powder with the carbon content reduced to 0.4%, the above-described cracked structure in the vicinity of the modeling plate disappeared. When the internal structure of the modeled object was observed, there were a few micro cracks which are a type of modeling defect (see FIG. 18). The bending strength of the molded article at this time was 700 MPa, and the Vickers hardness was HV210, which was slightly low.

次いで、混合粉末jに0.5重量%の黒鉛粉末を添加させた本発明に係る混合粉末kでレーザ焼結を行うと、造形プレート近傍の造形物の割れはなく、造形欠陥のない造形物が得られた(図19参照)。この時の造形物の抗折強度は1,200MPa、ビッカース硬さはHV250となり、混合粉末jの造形物と比較して強度・硬度ともにやや向上した。   Next, when laser sintering is performed with the mixed powder k according to the present invention in which 0.5% by weight of graphite powder is added to the mixed powder j, there is no crack in the molded object near the modeling plate, and there is no modeling defect. Was obtained (see FIG. 19). The bending strength of the molded article at this time was 1,200 MPa, the Vickers hardness was HV250, and both strength and hardness were slightly improved as compared with the molded article of the mixed powder j.

本発明の実施の形態の一例の金属粉末を用いて金属光造形を行う装置の一例の概略斜視図である。It is a schematic perspective view of an example of the apparatus which performs metal stereolithography using the metal powder of an example of embodiment of this invention. 同上の説明図である。It is explanatory drawing same as the above. 同上の非球形粒子状の炭素含有量を低減した高速度工具鋼SKH57粉末のSEM写真である。It is a SEM photograph of the high speed tool steel SKH57 powder which reduced the carbon content of a non-spherical particle form same as the above. 同上の球形粒子状のニッケル粉末のSEM写真である。It is a SEM photograph of the spherical particle-like nickel powder same as the above. 同上の球形粒子状の銅マンガン合金粉末のSEM写真である。It is a SEM photograph of the spherical particulate copper manganese alloy powder same as the above. 同上のフレーク状の黒鉛粉末のSEM写真である。It is a SEM photograph of flaky graphite powder same as the above. 同上の混合粉末のSEM写真である。It is a SEM photograph of mixed powder same as the above. 混合粉末aで造形した造形物の、造形プレート近傍の断面写真である。It is a cross-sectional photograph of the modeling object modeled with the mixed powder a in the vicinity of the modeling plate. 混合粉末aで造形した造形物から切り出した試験片の倍率40倍の断面写真である。It is a cross-sectional photograph of 40 times magnification of the test piece cut out from the modeling object modeled with the mixed powder a. 混合粉末bで造形した造形物から切り出した試験片の倍率40倍の断面写真である。It is a cross-sectional photograph of 40 times magnification of the test piece cut out from the modeling object modeled with the mixed powder b. 混合粉末cで造形した造形物の、造形プレート近傍の断面写真である。It is a cross-sectional photograph of the modeling object modeled with the mixed powder c in the vicinity of the modeling plate. 混合粉末cで造形した造形物から切り出した試験片の倍率40倍の断面写真である。(It is a cross-sectional photograph of 40 times magnification of the test piece cut out from the modeling object modeled with the mixed powder c. ( 混合粉末dで造形した造形物から切り出した試験片の倍率40倍の断面写真である。It is a cross-sectional photograph of 40 times magnification of the test piece cut out from the modeled object modeled with the mixed powder d. 混合粉末eで造形した造形物から切り出した試験片の倍率40倍の断面写真である。It is a cross-sectional photograph of 40 times magnification of the test piece cut out from the modeled object modeled with the mixed powder e. 混合粉末fで造形した造形物から切り出した試験片の倍率40倍の断面写真である。It is a cross-sectional photograph of 40 times magnification of the test piece cut out from the modeling object modeled with the mixed powder f. 混合粉末gで造形した造形物から切り出した試験片の倍率40倍の断面写真である。It is a cross-sectional photograph of 40 times magnification of the test piece cut out from the modeling object modeled with the mixed powder g. 混合粉末hで造形した造形物から切り出した試験片の倍率40倍の断面写真である。It is a cross-sectional photograph of 40 times magnification of the test piece cut out from the modeling object modeled with the mixed powder h. 混合粉末jで造形した造形物から切り出した試験片の倍率40倍の断面写真である。It is a cross-sectional photograph of 40 times magnification of the test piece cut out from the modeling object modeled with the mixed powder j. 混合粉末kで造形した造形物から切り出した試験片の倍率40倍の断面写真である。It is a cross-sectional photograph of 40 times magnification of the test piece cut out from the modeling object modeled with the mixed powder k.

符号の説明Explanation of symbols

2 粉末層形成手段
3 焼結層形成手段
22 造形プレート
L 光ビーム
2 Powder layer forming means 3 Sintered layer forming means 22 Modeling plate L Light beam

Claims (4)

金属粉末からなる粉末層に光ビームを照射して焼結層を形成するとともにこの焼結層を積層することで所望の三次元形状造形物を得る金属光造形用の金属粉末であって、鉄系粉末と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末と、黒鉛粉末とからなる混合粉末であり、上記鉄系粉末はその炭素含有量を0.2〜0.6重量パーセントに低減した工具鋼の粉末であることを特徴とする金属光造形用金属粉末。   A metal powder for metal stereolithography, which forms a sintered layer by irradiating a powder layer made of metal powder to form a sintered layer and obtains a desired three-dimensional shaped object by laminating the sintered layer. A mixed powder composed of a nickel-based powder, a nickel or nickel-based alloy powder, a copper or copper-based alloy powder, and a graphite powder, and the iron-based powder has a carbon content of 0.2-0. Metal powder for metal stereolithography, characterized in that it is a powder of tool steel reduced to 6 weight percent. 鉄系粉末の配合量が60〜90重量パーセント、ニッケルまたは及びニッケル系合金の粉末の配合量が5〜35重量パーセント、銅または及び銅系合金の粉末の配合量が5〜15重量パーセント、黒鉛粉末の配合量が0.2〜0.8重量パーセントであることを特徴とする請求項1記載の金属光造形用金属粉末。   60-90 weight percent of iron-based powder, 5-35 weight percent of nickel or nickel alloy powder, 5-15 weight percent of copper or copper alloy powder, graphite The metal powder for metal stereolithography according to claim 1, wherein the blending amount of the powder is 0.2 to 0.8 weight percent. 鉄系粉末はその炭素含有量を0.2〜0.6重量パーセントに低減した高速度工具鋼の粉末であることを特徴とする請求項1または2記載の金属光造形用金属粉末。   The metal powder for metal stereolithography according to claim 1 or 2, wherein the iron-based powder is a high-speed tool steel powder whose carbon content is reduced to 0.2 to 0.6 weight percent. 鉄系粉末はその炭素含有量を0.2〜0.6重量パーセントに低減した高速度工具鋼SKH57の粉末であることを特徴とする請求項3記載の金属光造形用金属粉末。   The metal powder for metal stereolithography according to claim 3, wherein the iron-based powder is a powder of high-speed tool steel SKH57 whose carbon content is reduced to 0.2 to 0.6 weight percent.
JP2006053572A 2006-02-28 2006-02-28 Metal powder for metal stereolithography Active JP4640216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006053572A JP4640216B2 (en) 2006-02-28 2006-02-28 Metal powder for metal stereolithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053572A JP4640216B2 (en) 2006-02-28 2006-02-28 Metal powder for metal stereolithography

Publications (2)

Publication Number Publication Date
JP2007231349A true JP2007231349A (en) 2007-09-13
JP4640216B2 JP4640216B2 (en) 2011-03-02

Family

ID=38552238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053572A Active JP4640216B2 (en) 2006-02-28 2006-02-28 Metal powder for metal stereolithography

Country Status (1)

Country Link
JP (1) JP4640216B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215971A (en) * 2009-03-17 2010-09-30 Panasonic Electric Works Co Ltd Method of producing three-dimensional shaped article and three-dimensional shaped article obtained from the same
JP2011021218A (en) * 2009-07-14 2011-02-03 Kinki Univ Powder material for laminate molding, and powder laminate molding method
JP2013237930A (en) * 2013-07-04 2013-11-28 Panasonic Corp Method of manufacturing three-dimensionally shaped article, and the three-dimensionally shaped article obtained thereby
WO2018230421A1 (en) * 2017-06-15 2018-12-20 住友電工焼結合金株式会社 Method for manufacturing molded article, and molded article
CN109182832A (en) * 2018-11-08 2019-01-11 江苏精研科技股份有限公司 A kind of formula and a kind of powder injection molding process of carbon nanotube reinforced copper-base alloy
CN112846231A (en) * 2021-01-08 2021-05-28 河北工业大学 Method for preparing M2 high-speed steel based on selective laser melting and application thereof
JP2021098886A (en) * 2019-12-20 2021-07-01 Jx金属株式会社 Metal powder for lamination molding, and lamination molding made using the metal powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076040A (en) * 2002-08-12 2004-03-11 Kobe Steel Ltd Iron based powder material for forming iron based sintered compact, iron based sintered compact and method for producing the same
JP2004277877A (en) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd Metal powder for metal light mold molding, method of producing the same, method of producing molding with three-dimensional shape by metal light molding and metal light molding
JP2007016312A (en) * 2005-06-07 2007-01-25 Hiroshima Industrial Promotion Organization Method for forming sintered compact

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076040A (en) * 2002-08-12 2004-03-11 Kobe Steel Ltd Iron based powder material for forming iron based sintered compact, iron based sintered compact and method for producing the same
JP2004277877A (en) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd Metal powder for metal light mold molding, method of producing the same, method of producing molding with three-dimensional shape by metal light molding and metal light molding
JP2007016312A (en) * 2005-06-07 2007-01-25 Hiroshima Industrial Promotion Organization Method for forming sintered compact

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215971A (en) * 2009-03-17 2010-09-30 Panasonic Electric Works Co Ltd Method of producing three-dimensional shaped article and three-dimensional shaped article obtained from the same
JP2011021218A (en) * 2009-07-14 2011-02-03 Kinki Univ Powder material for laminate molding, and powder laminate molding method
JP2013237930A (en) * 2013-07-04 2013-11-28 Panasonic Corp Method of manufacturing three-dimensionally shaped article, and the three-dimensionally shaped article obtained thereby
KR20200019592A (en) * 2017-06-15 2020-02-24 스미또모 덴꼬 쇼오께쯔 고오낑 가부시끼가이샤 Manufacturing method and moldings
CN109963671A (en) * 2017-06-15 2019-07-02 住友电工烧结合金株式会社 Manufacture the method and model articles of model articles
WO2018230421A1 (en) * 2017-06-15 2018-12-20 住友電工焼結合金株式会社 Method for manufacturing molded article, and molded article
JPWO2018230421A1 (en) * 2017-06-15 2020-04-16 住友電工焼結合金株式会社 Manufacturing method of molded article, and molded article
JP7029623B2 (en) 2017-06-15 2022-03-04 住友電工焼結合金株式会社 Manufacturing method of modeled object and modeled object
CN109963671B (en) * 2017-06-15 2022-03-08 住友电工烧结合金株式会社 Method for producing molded article and molded article
KR102390081B1 (en) * 2017-06-15 2022-04-26 스미또모 덴꼬 쇼오께쯔 고오낑 가부시끼가이샤 Manufacturing method and sculpture
US11331850B2 (en) 2017-06-15 2022-05-17 Sumitomo Electric Sintered Alloy, Ltd. Method for manufacturing shaped article, and shaped article
CN109182832A (en) * 2018-11-08 2019-01-11 江苏精研科技股份有限公司 A kind of formula and a kind of powder injection molding process of carbon nanotube reinforced copper-base alloy
JP2021098886A (en) * 2019-12-20 2021-07-01 Jx金属株式会社 Metal powder for lamination molding, and lamination molding made using the metal powder
CN112846231A (en) * 2021-01-08 2021-05-28 河北工业大学 Method for preparing M2 high-speed steel based on selective laser melting and application thereof

Also Published As

Publication number Publication date
JP4640216B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
KR100586360B1 (en) Metal powder composition for use in selective laser sintering
JP4661842B2 (en) Method for producing metal powder for metal stereolithography and metal stereolithography
JP5579839B2 (en) Metal powder for powder sintering lamination, manufacturing method of three-dimensional shaped article using the same, and three-dimensional shaped article obtained
Gu Laser additive manufacturing of high-performance materials
Cheah et al. Rapid prototyping and tooling techniques: a review of applications for rapid investment casting
KR101076353B1 (en) Metal powder for metal-laser sintering and metal-laser sintering process using the same
JP5776004B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP4640216B2 (en) Metal powder for metal stereolithography
US8221850B2 (en) Manufacturing method of three-dimensionally shaped object
WO2010098479A1 (en) Process for producing three-dimensional shape and three-dimensional shape obtained thereby
Beal et al. The effect of scanning strategy on laser fusion of functionally graded H13/Cu materials
WO2011155568A1 (en) Method for producing three-dimensionally shaped structure, three-dimensionally shaped structure obtained by same, and method for producing molded article
CN1684786A (en) Casting process and articles for performing the same
WO2004094089A1 (en) Metal powder composition for laser sintering
JP3633607B2 (en) Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography
JP2007016312A (en) Method for forming sintered compact
JP4737007B2 (en) Metal powder for metal stereolithography
JP3687667B2 (en) Metal powder for metal stereolithography
Beal et al. Optimisation of processing parameters in laser fused H13/Cu materials using response surface method (RSM)
JP2008184623A (en) Method for producing three-dimensional molding, and material
CN105798294A (en) Rapid part prototyping method for refractory materials
CN112809022A (en) Novel method for preparing metal product by additive
Dolinšek Investigation of direct metal laser sintering process
Dewidar Direct and indirect laser sintering of metals
Mutua 3D Additive Manufacturing, Microstructure, and Mechanical Properties of High Performance Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R151 Written notification of patent or utility model registration

Ref document number: 4640216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3