JP2021098886A - Metal powder for lamination molding, and lamination molding made using the metal powder - Google Patents

Metal powder for lamination molding, and lamination molding made using the metal powder Download PDF

Info

Publication number
JP2021098886A
JP2021098886A JP2020200324A JP2020200324A JP2021098886A JP 2021098886 A JP2021098886 A JP 2021098886A JP 2020200324 A JP2020200324 A JP 2020200324A JP 2020200324 A JP2020200324 A JP 2020200324A JP 2021098886 A JP2021098886 A JP 2021098886A
Authority
JP
Japan
Prior art keywords
powder
alloy
less
balance
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020200324A
Other languages
Japanese (ja)
Inventor
澁谷 義孝
Yoshitaka Shibuya
義孝 澁谷
理 森岡
Osamu Morioka
理 森岡
佐藤 賢次
Kenji Sato
賢次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of JP2021098886A publication Critical patent/JP2021098886A/en
Pending legal-status Critical Current

Links

Abstract

To provide a metal powder suitable for forming a lamination molding having both of high conductivity and high mechanical strength, and a lamination molding made using the metal powder.SOLUTION: A metal powder for lamination molding is used that is a mixed powder obtained by mixing of two or more selected from Cu powder, Al powder, Ni powder, Cu-Al alloy powder, Cu-Ni alloy powder, and Cu-Al-Ni alloy powder. As a composition of the mixed powder, a total of Al and Ni is 0.01 at% or more and less than 1 at%, with the balance being Cu. The contents of Al and Ni are in a range of Al:Ni=1:3-3:1 in at%.SELECTED DRAWING: None

Description

本発明は、積層造形用金属粉末及び該金属粉末を用いて作製した積層造形物に関する。 The present invention relates to a metal powder for laminated modeling and a laminated model produced by using the metal powder.

近年、金属3Dプリンタ技術を用いて、複雑形状で、造形が難しいとされる立体構造の金属部品を作製する試みが行われている。3Dプリンタは積層造形法(AM)とも呼ばれ、プレート上に金属粉を薄く敷き詰めて金属粉末層を形成し、この金属粉末層に電子ビームやレーザー光を走査させて溶融、凝固させ、その上に、また新たな粉末を薄く敷き詰めて、同様に所定の部分をレーザー光で溶融、凝固させ、この工程を繰り返し行っていくことで、複雑形状の積層造形物を作製していく方法である。 In recent years, attempts have been made to produce metal parts having a complicated shape and a three-dimensional structure that are difficult to model by using metal 3D printer technology. 3D printers are also called additive manufacturing (AM), in which metal powder is thinly spread on a plate to form a metal powder layer, and the metal powder layer is scanned with an electron beam or laser beam to melt and solidify, and then melted and solidified. In addition, a new powder is spread thinly, and similarly, a predetermined portion is melted and solidified by a laser beam, and this process is repeated to produce a layered model having a complicated shape.

積層造形用の金属の1つとしては、機械強度が高く、導電率が高い銅をベースとした材料が使用されている。例えば、特許文献1には、Cr:1.1〜20質量%、Zr:0〜0.2質量%、残部がCu及び不可避的不純物からなる銅合金粉末が開示され、銅合金造形物の電気伝導率が65%IACS以上であり、0.2%耐力が150MPa上で、引張強さが300MPa以上であることが開示されている。また、特許文献2には、1.00質量%より多く2.80質量%以下のクロム、および残部の銅を含有する銅合金粉末が開示されている。 As one of the metals for laminated molding, a copper-based material having high mechanical strength and high conductivity is used. For example, Patent Document 1 discloses a copper alloy powder in which Cr: 1.1 to 20% by mass, Zr: 0 to 0.2% by mass, and the balance is Cu and unavoidable impurities. It is disclosed that the conductivity is 65% IACS or more, the 0.2% proof stress is 150 MPa or more, and the tensile strength is 300 MPa or more. Further, Patent Document 2 discloses a copper alloy powder containing chromium in an amount of more than 1.00% by mass and 2.80% by mass or less, and copper in the balance.

特開2019−70169号公報JP-A-2019-70169 特開2018−197389号公報JP-A-2018-197389

銅合金粉末を用いた造形物は、ここ最近製造できるようになりつつあるが、未だ純銅による積層造形物に匹敵する導電率を有し、かつ、純銅による積層造形物に勝る機械強度を有する積層造形物は得られていない。このようなことから、本発明は、積層造形用金属粉末であって、高い導電率と高い機械強度を兼ね備えた積層造形物の形成に適した金属粉末、及び該金属粉末を用いて作製した積層造形物を提供することを課題とする。 Molded products using copper alloy powder have recently become available for production, but they still have conductivity comparable to that of laminated products made of pure copper, and have mechanical strength superior to that of laminated products made of pure copper. No model has been obtained. For these reasons, the present invention is a metal powder for laminated modeling, which is suitable for forming a laminated model having high conductivity and high mechanical strength, and a laminate produced by using the metal powder. The subject is to provide a modeled object.

上記課題を解決するために、本発明者らは鋭意研究を行ったところ、積層造形用の金属粉末として、銅に添加する元素を適切に選定することにより、得られる積層造形物において、銅の特徴である導電性が大幅に損なうことなく、また、銅を大きく上回る機械強度が得られるとの知見が得られた。この知見に基づき、以下の実施形態を提供するものである。 1)Cu粉末、Al粉末、Ni粉末の混合粉からなり、混合粉の組成としてAlとNiの合計が0.01at%以上1at%未満、残部がCuであり、AlとNiのat%がAl:Ni=1:3〜3:1の範囲にある積層造形用金属粉末。
2)Cu−Al合金粉末、Cu−Ni合金粉末の混合粉からなり、混合粉の組成としてAlとNiの合計が0.01at%以上1at%未満、残部がCuであり、AlとNiのat%がAl:Ni=1:3〜3:1の範囲にある積層造形用金属粉末。
3)Cu−Al−Ni合金粉末からなり、合金粉の組成としてAlとNiの合計が0.01at%以上1at%未満、残部がCuであり、AlとNiのat%がAl:Ni=1:3〜3:1の範囲にある積層造形用金属粉末。
4)Cu粉末、Al粉末、Ni粉末、Cu−Al合金粉末、Cu−Ni合金粉末、Cu−Al−Ni合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてAlとNiの合計が0.01at%以上1at%未満、残部がCuであり、AlとNiのat%がAl:Ni=1:3〜3:1の範囲にある積層造形用金属粉末。
5)Cu粉末、Al粉末、P粉末の混合粉からなり、混合粉の組成としてAlとPの合計が0.01at%以上1at%未満、残部がCuであり、AlとPのat%がAl:P1:1である積層造形用金属粉末。
6)Cu−Al合金粉末、Cu−P合金粉末の混合粉からなり、混合粉の組成としてAlとPの合計が0.01at%以上1at%未満、残部がCuであり、AlとPのat%がAl:P=1:1である積層造形用金属粉末。
7)Cu−Al−P合金粉末からなり、合金粉の組成としてAlとPの合計が0.01at%以上1at%未満、残部がCuであり、AlとPのat%がAl:P=1:1である積層造形用金属粉末。
8)Cu粉末、Al粉末、P粉末、Cu−Al合金粉末、Cu−P合金粉末、Cu−Al−P合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてAlとPの合計が0.01at%以上1at%未満、残部がCuであり、AlとPのat%がAl:P=1:1である積層造形用金属粉末。
9)Cu粉末、Ga粉末、Ni粉末の混合粉からなり、混合粉の組成としてGaとNiの合計が0.01at%以上1at%未満、残部がCuであり、GaとNiのat%がGa:Ni=1:2〜7:3の範囲にある積層造形用金属粉末。
10)Cu−Ga合金粉末、Cu−Ni合金粉末の混合粉からなり、混合粉の組成としてGaとNiの合計が0.01at%以上1at%未満、残部がCuであり、GaとNiのat%がGa:Ni=1:2〜7:3の範囲にある積層造形用金属粉末。
11)Cu−Ga−Ni合金粉末からなり、合金粉の組成としてGaとNiの合計が0.01at%以上1at%未満、残部がCuであり、GaとNiのat%がGa:Ni=1:2〜7:3の範囲にある積層造形用金属粉末。
12)Cu粉末、Ga粉末、Ni粉末、Cu−Ga合金粉末、Cu−Ni合金粉末、Cu−Ga−Ni合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてGaとNiの合計が0.01at%以上1at%未満、残部がCuであり、GaとNiのat%がGa:Ni=1:2〜7:3の範囲にある積層造形用金属粉末。
13)Cu粉末、Ga粉末、P粉末の混合粉からなり、混合粉の組成としてGaとPの合計が0.01at%以上1at%未満、残部がCuであり、GaとPのat%がGa:P=1:1である積層造形用金属粉末。
14)Cu−Ga合金粉末、Cu−P合金粉末の混合粉からなり、混合粉の組成としてGaとPの合計が0.01at%以上1at%未満、残部がCuであり、GaとPのat%がGa:P=1:1である積層造形用金属粉末。
15)Cu−Ga−P合金粉末からなり、合金粉の組成としてGaとPの合計が0.01at%以上1at%未満、残部がCuであり、GaとPのat%がGa:P=1:1である積層造形用金属粉末。
16)Cu粉末、Ga粉末、P粉末、Cu−Ga合金粉末、Cu−P合金粉末、Cu−Ga−P合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてGaとPの合計が0.01at%以上1at%未満、残部がCuであり、GaとPのat%がGa:P=1:1である積層造形用金属粉末。
17)Cu粉末、Mg粉末、P粉末の混合粉からなり、混合粉の組成としてMgとPの合計が0.01at%以上1at%未満、残部がCuであり、MgとPのat%がMg:P=1:4〜3:2の範囲にある積層造形用金属粉末。
18)Cu−Mg合金粉末、Cu−P合金粉末の混合粉からなり、混合粉の組成としてMgとPの合計が0.01at%以上1at%未満、残部がCuであり、MgとPのat%がMg:P=1:4〜3:2の範囲にある積層造形用金属粉末。
19)Cu−Mg−P合金粉末からなり、合金粉の組成としてMgとPの合計が0.01at%以上1at%未満、残部がCuであり、MgとPのat%がMg:P=1:4〜3:2の範囲にある積層造形用金属粉末。
20)Cu粉末、Mg粉末、P粉末、Cu−Mg合金粉末、Cu−P合金粉末、Cu−Mg−P合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてMgとPの合計が0.01at%以上1at%未満、残部がCuであり、MgとPのat%がMg:P=1:4〜3:2の範囲にある積層造形用金属粉末。
21)Cu粉末、Mn粉末、P粉末の混合粉からなり、混合粉の組成としてMnとPの合計が0.01at%以上1at%未満、残部がCuであり、MnとPのat%がMn:P=1:4〜3:1の範囲にある積層造形用金属粉末。
22)Cu−Mn合金粉末、Cu−P合金粉末の混合粉からなり、混合粉の組成としてMnとPの合計が0.01at%以上1at%未満、残部がCuであり、MnとPのat%がMn:P=1:4〜3:1の範囲にある積層造形用金属粉末。
23)Cu−Mn−P合金粉末からなり、合金粉の組成としてMnとPの合計が0.01at%以上1at%未満、残部がCuであり、MnとPのat%がMn:P=1:4〜3:1の範囲にある積層造形用金属粉末。
24)Cu粉末、Mn粉末、P粉末、Cu−Mn合金粉末、Cu−P合金粉末、Cu−Mn−P合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてMnとPの合計が0.01at%以上1at%未満、残部がCuであり、MnとPのat%がMn:P=1:4〜3:1の範囲にある積層造形用金属粉末。
25)Cu粉末、Mn粉末、Si粉末の混合粉からなり、混合粉の組成としてMnとSiの合計が0.01at%以上1at%未満、残部がCuであり、MnとSiのat%がMn:Si=15:26〜3:1の範囲にある積層造形用金属粉末。
26)Cu−Mn合金粉末、Cu−Si合金粉末の混合粉からなり、混合粉の組成としてMnとSiの合計が0.01at%以上1at%未満、残部がCuであり、MnとSiのat%がMn:Si=15:26〜3:1の範囲にある積層造形用金属粉末。
27)Cu−Mn−Si合金粉末からなり、合金粉の組成としてMnとSiの合計が0.01at%以上1at%未満、残部がCuであり、MnとSiのat%がMn:Si=15:26〜3:1の範囲にある積層造形用金属粉末。
28)Cu粉末、Mn粉末、Si粉末、Cu−Mn合金粉末、Cu−Si合金粉末、Cu−Mn−Si合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてMnとSiの合計が0.01at%以上1at%未満、残部がCuであり、MnとSiのat%がMn:Si=15:26〜3:1の範囲にある積層造形用金属粉末。
29)Cu粉末、Ni粉末、P粉末の混合粉からなり、混合粉の組成としてNiとPの合計が0.01at%以上1at%未満、残部がCuであり、NiとPのat%がNi:P=1:3〜3:1の範囲にある積層造形用金属粉末。
30)Cu−Ni合金粉末、Cu−P合金粉末の混合粉からなり、混合粉の組成としてNiとPの合計が0.01at%以上1at%未満、残部がCuであり、NiとPのat%がNi:P=1:3〜3:1の範囲にある積層造形用金属粉末。
31)Cu−Ni−P合金粉末からなり、合金粉の組成としてNiとPの合計が0.01at%以上1at%未満、残部がCuであり、NiとPのat%がNi:P=1:3〜3:1の範囲にある積層造形用金属粉末。
32)Cu粉末、Ni粉末、P粉末、Cu−Ni合金粉末、Cu−P合金粉末、Cu−Ni−P合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてNiとPの合計が0.01at%以上1at%未満、残部がCuであり、NiとPのat%がNi:P=1:3〜3:1の範囲にある積層造形用金属粉末。
33)Cu粉末、Ni粉末、Si粉末の混合粉からなり、混合粉の組成としてNiとSiの合計が0.01at%以上1at%未満、残部がCuであり、NiとSiのat%がNi:Si=1:3〜2:1の範囲にある積層造形用金属粉末。
34)Cu−Ni合金粉末、Cu−Si合金粉末の混合粉からなり、混合粉の組成としてNiとSiの合計が0.01at%以上1at%未満、残部がCuであり、NiとSiのat%がNi:Si=1:3〜2:1の範囲にある積層造形用金属粉末。
35)Cu−Ni−Si合金粉末からなり、合金粉の組成としてNiとSiの合計が0.01at%以上1at%未満、残部がCuであり、NiとSiのat%がNi:Si=1:3〜2:1の範囲にある積層造形用金属粉末。
36)Cu粉末、Ni粉末、Si粉末、Cu−Ni合金粉末、Cu−Si合金粉末、Cu−Ni−Si合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてNiとSiの合計が0.01at%以上1at%未満、残部がCuであり、NiとSiのat%がNi:Si=1:3〜2:1の範囲にある積層造形用金属粉末。
In order to solve the above problems, the present inventors have conducted diligent research, and found that, as a metal powder for laminated molding, copper can be obtained by appropriately selecting an element to be added to copper. It was found that the mechanical strength, which is much higher than that of copper, can be obtained without significantly impairing the characteristic conductivity. Based on this finding, the following embodiments are provided. 1) Composed of a mixed powder of Cu powder, Al powder, and Ni powder. The total composition of the mixed powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and at% of Al and Ni is Al. : Ni = 1: 3 to 3: 1 metal powder for laminated molding.
2) Composed of a mixed powder of Cu-Al alloy powder and Cu-Ni alloy powder. The composition of the mixed powder is that the total of Al and Ni is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at of Al and Ni. A metal powder for laminated molding in which% is in the range of Al: Ni = 1: 3 to 3: 1.
3) Composed of Cu—Al—Ni alloy powder, the total composition of the alloy powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Al and Ni is Al: Ni = 1. : Metal powder for laminated molding in the range of 3 to 3: 1.
4) A mixed powder obtained by selecting and mixing two or more of Cu powder, Al powder, Ni powder, Cu-Al alloy powder, Cu-Ni alloy powder, and Cu-Al-Ni alloy powder. As the composition of the mixed powder, the total of Al and Ni is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Al and Ni is in the range of Al: Ni = 1: 3 to 3: 1. For metal powder.
5) Composed of a mixed powder of Cu powder, Al powder, and P powder. The total composition of the mixed powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and at% of Al and P is Al. : P1: 1 metal powder for laminated molding.
6) Composed of a mixed powder of Cu-Al alloy powder and Cu-P alloy powder. The total composition of the mixed powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at of Al and P. A metal powder for laminated molding in which% is Al: P = 1: 1.
7) Composed of Cu—Al—P alloy powder, the total composition of Al and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and at% of Al and P is Al: P = 1. A metal powder for laminated molding that is 1: 1.
8) A mixed powder obtained by selecting and mixing two or more of Cu powder, Al powder, P powder, Cu—Al alloy powder, Cu—P alloy powder, and Cu—Al—P alloy powder. The composition of the mixed powder is a metal powder for laminated molding in which the total of Al and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Al and P is Al: P = 1: 1.
9) Composed of a mixed powder of Cu powder, Ga powder, and Ni powder. The total composition of the mixed powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ga and Ni is Ga. : Ni = 1: 2 to 7: 3 metal powder for laminated molding.
10) Composed of a mixed powder of Cu-Ga alloy powder and Cu-Ni alloy powder. The total composition of the mixed powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at of Ga and Ni. A metal powder for laminated molding in which% is in the range of Ga: Ni = 1: 2 to 7: 3.
11) Composed of Cu-Ga-Ni alloy powder, the total composition of the alloy powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ga and Ni is Ga: Ni = 1. : Metal powder for laminated molding in the range of 2 to 7: 3.
12) A mixed powder obtained by selecting and mixing two or more of Cu powder, Ga powder, Ni powder, Cu-Ga alloy powder, Cu-Ni alloy powder, and Cu-Ga-Ni alloy powder. As the composition of the mixed powder, the total of Ga and Ni is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ga and Ni is in the range of Ga: Ni = 1: 2 to 7: 3. For metal powder.
13) Composed of a mixed powder of Cu powder, Ga powder, and P powder. The composition of the mixed powder is that the total of Ga and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ga and P is Ga. : Metal powder for laminated molding with P = 1: 1.
14) Composed of a mixed powder of Cu-Ga alloy powder and Cu-P alloy powder. The total composition of the mixed powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and at of Ga and P. A metal powder for laminated molding in which% is Ga: P = 1: 1.
15) Composed of Cu-Ga-P alloy powder, the total composition of the alloy powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ga and P is Ga: P = 1. Metal powder for laminated molding, which is 1: 1.
16) A mixed powder obtained by selecting and mixing two or more of Cu powder, Ga powder, P powder, Cu-Ga alloy powder, Cu-P alloy powder, and Cu-Ga-P alloy powder. The composition of the mixed powder is a metal powder for laminated molding in which the total of Ga and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ga and P is Ga: P = 1: 1.
17) Composed of a mixed powder of Cu powder, Mg powder, and P powder. The composition of the mixed powder is that the total of Mg and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mg and P is Mg. : P = 1: 4 to 3: 2 metal powder for laminated molding.
18) Composed of a mixed powder of Cu-Mg alloy powder and Cu-P alloy powder. The composition of the mixed powder is that the total of Mg and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at of Mg and P. A metal powder for laminated molding in which% is in the range of Mg: P = 1: 4 to 3: 2.
19) Composed of Cu-Mg-P alloy powder, the total composition of the alloy powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mg and P is Mg: P = 1. : Metal powder for laminated molding in the range of 4 to 3: 2.
20) A mixed powder obtained by selecting and mixing two or more of Cu powder, Mg powder, P powder, Cu-Mg alloy powder, Cu-P alloy powder, and Cu-Mg-P alloy powder. As the composition of the mixed powder, the total of Mg and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mg and P is in the range of Mg: P = 1: 4 to 3: 2. For metal powder.
21) Composed of a mixed powder of Cu powder, Mn powder, and P powder. The total composition of the mixed powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and at% of Mn and P is Mn. : Metal powder for laminated molding in the range of P = 1: 4 to 3: 1.
22) Composed of a mixed powder of Cu-Mn alloy powder and Cu-P alloy powder, the total of Mn and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at of Mn and P is composed of the mixed powder. A metal powder for laminated molding in which% is in the range of Mn: P = 1: 4 to 3: 1.
23) Composed of Cu-Mn-P alloy powder, the total composition of the alloy powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mn and P is Mn: P = 1. : Metal powder for laminated molding in the range of 4 to 3: 1.
24) A mixed powder obtained by selecting and mixing any two or more of Cu powder, Mn powder, P powder, Cu-Mn alloy powder, Cu-P alloy powder, and Cu-Mn-P alloy powder. As the composition of the mixed powder, the total of Mn and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mn and P is in the range of Mn: P = 1: 4 to 3: 1. For metal powder.
25) Composed of a mixed powder of Cu powder, Mn powder, and Si powder. The total composition of the mixed powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and at% of Mn and Si is Mn. : Si = 15:26 to 3: 1 metal powder for laminated molding.
26) Composed of a mixed powder of Cu-Mn alloy powder and Cu-Si alloy powder, the total composition of the mixed powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and at of Mn and Si. A metal powder for laminated molding in which% is in the range of Mn: Si = 15: 26 to 3: 1.
27) Composed of Cu-Mn-Si alloy powder, the total composition of the alloy powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mn and Si is Mn: Si = 15. : Metal powder for laminated molding in the range of 26 to 3: 1.
28) A mixed powder obtained by selecting and mixing two or more of Cu powder, Mn powder, Si powder, Cu-Mn alloy powder, Cu-Si alloy powder, and Cu-Mn-Si alloy powder. As the composition of the mixed powder, the total of Mn and Si is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mn and Si is in the range of Mn: Si = 15: 26 to 3: 1. For metal powder.
29) Composed of a mixed powder of Cu powder, Ni powder, and P powder. The total composition of the mixed powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and at% of Ni and P is Ni. : Metal powder for laminated molding in the range of P = 1: 3 to 3: 1.
30) Composed of a mixed powder of Cu-Ni alloy powder and Cu-P alloy powder. The composition of the mixed powder is that the total of Ni and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at of Ni and P. A metal powder for laminated molding in which% is in the range of Ni: P = 1: 3 to 3: 1.
31) Composed of Cu—Ni—P alloy powder, the total composition of the alloy powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ni and P is Ni: P = 1. : Metal powder for laminated molding in the range of 3 to 3: 1.
32) A mixed powder obtained by selecting and mixing two or more of Cu powder, Ni powder, P powder, Cu—Ni alloy powder, Cu—P alloy powder, and Cu—Ni—P alloy powder. As the composition of the mixed powder, the total of Ni and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ni and P is in the range of Ni: P = 1: 3 to 3: 1. For metal powder.
33) Composed of a mixed powder of Cu powder, Ni powder, and Si powder. The total composition of the mixed powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and at% of Ni and Si is Ni. : Si = 1: 3 to 2: 1 metal powder for laminated molding.
34) Composed of a mixed powder of Cu-Ni alloy powder and Cu-Si alloy powder. The composition of the mixed powder is that the total of Ni and Si is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at of Ni and Si. A metal powder for laminated molding in which% is in the range of Ni: Si = 1: 3 to 2: 1.
35) Composed of Cu-Ni-Si alloy powder, the total composition of the alloy powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ni and Si is Ni: Si = 1. : Metal powder for laminated molding in the range of 3 to 2: 1.
36) A mixed powder obtained by selecting and mixing two or more of Cu powder, Ni powder, Si powder, Cu—Ni alloy powder, Cu—Si alloy powder, and Cu—Ni—Si alloy powder. As the composition of the mixed powder, the total of Ni and Si is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ni and Si is in the range of Ni: Si = 1: 3 to 2: 1. For metal powder.

本発明によれば、銅に添加する元素を適切に選定した積層造形用金属粉末であって、該金属粉末を用いて作製した積層造形物は、高い導電率と高い機械強度を兼ね備えるという優れた効果を有する。 According to the present invention, it is a metal powder for laminated molding in which elements to be added to copper are appropriately selected, and the laminated molded product produced by using the metal powder is excellent in that it has both high conductivity and high mechanical strength. Has an effect.

積層造形用の金属粉末として、純銅粉末を用いた場合、レーザーの吸収率が他の元素と比較して低いため、添加元素にもよるが銅合金粉末又は混合粉末にすることで、純銅粉末よりもレーザーの吸収率が高まり、積層造形性を向上することができる。一方、積層造形物としては、高強度且つ高導電率であることが求められ、銅合金は、添加元素を析出させることで析出強化による機械強度の向上が期待できるものの、純銅の導電率は、他の元素と比較して高いため、銅合金は、添加元素の固溶により導電性が損なわれる。 When pure copper powder is used as the metal powder for laminated molding, the absorption rate of the laser is lower than that of other elements. However, the absorption rate of the laser is increased, and the laminated formability can be improved. On the other hand, laminated shaped products are required to have high strength and high conductivity, and copper alloys can be expected to improve mechanical strength by precipitation strengthening by precipitating additive elements, but the conductivity of pure copper is high. Since it is higher than other elements, the conductivity of copper alloys is impaired by the solid dissolution of additive elements.

このようなことから本発明は、銅の積層造形物において、純銅の特徴である高導電率の特性を活かしつつ、添加元素同士で安定な化合物を形成させて、添加元素の固溶を抑え、この化合物を銅(母相)に析出させることで積層造形物を析出強化し、高強度を有する積層造形物を得ようとするものである。より詳細には、積層造形物において、添加元素同士で安定な化合物を生成する基準として、Formation Energyを用い、Formation Energyが−0.3eV以下のとき、母相の銅から、添加元素の化合物が析出して、析出強化を期待できるとの知見に基づくものである。 Therefore, according to the present invention, in a laminated copper product, while taking advantage of the high conductivity characteristic of pure copper, stable compounds are formed between the additive elements to suppress the solid solution of the additive elements. By precipitating this compound on copper (matrix), the laminated model is precipitated and strengthened to obtain a laminated model having high strength. More specifically, in a laminated model, Formation Energy is used as a reference for producing a stable compound between additive elements, and when Formation Energy is −0.3 eV or less, the compound of the additive element is separated from the copper of the parent phase. It is based on the finding that precipitation can be expected to strengthen precipitation.

(添加元素の選定)
銅に対する固溶量は添加元素の固有の性質であり、一般的に「相図」と呼ばれる二つの元素の温度に対する相関係を示す図から抽出することができる。たとえば、ASM International社発行のPhase Diagrams for Binary Alloys (ISBN: 0−87170−682−2) を参考にして判断することができる。この相図から、Cu側の固溶量を参照し、高導電率を考慮して、各種添加元素を選定した。
・銅に対して、1.0wt%以上固溶する11元素(Zn、Si、Pt、Pd、Ni、Mn、Ge、Ga、Au、As、Al)を抽出した。
・銅に対して、0.1wt%以上1.0wt%未満固溶する25元素(Zr、V、Ti、Tl、Sn、Sc、Sb、Rh、Pb、P、Mg、Li、Ir、In、Hg、Hf、H、Fe、Cr、Co、Cd、Bi、Be、B、Ag)を抽出した。
・さらに、銅に対して、0.2at%以下固溶する元素を対象として、32元素(Ba、Bi、Ca、Gd、Eu、Ho、La、Lu、Mo、Nd、Nb、Os、Pb、Pm、Pu、Re、Ru、S、Se、Sr、Sm、Tb、Tc、Te、Th、Tm、U、V、W、Y、Yb、Zr)を選択し、機械強度及び導電率を両立させる観点から、前記32元素の中から、W、Zr、Nb、Nd、Y、Mo、Os、Ruの8元素を、新たな観点で抽出した。
(Selection of additive elements)
The amount of solid solution in copper is an inherent property of the added element and can be extracted from a diagram showing the phase relationship of the two elements with respect to temperature, which is generally called a "phase diagram". For example, it can be determined with reference to Phase Diagrams for Binary Alloys (ISBN: 0-87170-682-2) published by ASM International. From this phase diagram, various additive elements were selected in consideration of high conductivity with reference to the solid solution amount on the Cu side.
Eleven elements (Zn, Si, Pt, Pd, Ni, Mn, Ge, Ga, Au, As, Al) that dissolve 1.0 wt% or more with respect to copper were extracted.
25 elements (Zr, V, Ti, Tl, Sn, Sc, Sb, Rh, Pb, P, Mg, Li, Ir, In, which dissolve in 0.1 wt% or more and less than 1.0 wt% with respect to copper. Hg, Hf, H, Fe, Cr, Co, Cd, Bi, Be, B, Ag) were extracted.
-Furthermore, 32 elements (Ba, Bi, Ca, Gd, Eu, Ho, La, Lu, Mo, Nd, Nb, Os, Pb, etc. Pm, Pu, Re, Ru, S, Se, Sr, Sm, Tb, Tc, Te, Th, Tm, U, V, W, Y, Yb, Zr) are selected to achieve both mechanical strength and conductivity. From the viewpoint, eight elements of W, Zr, Nb, Nd, Y, Mo, Os, and Ru were extracted from the 32 elements from a new viewpoint.

次に、上記抽出した元素のうち、以下の観点から元素を排除し、20元素(Zr、Nd、Si、Ni、Mn、V、Ti、Sc、Fe、Cr、Co、P、Zn、Ga、Al、Sn、In、Mg、Bi、Hf)を抽出した。
・非金属元素(H)
・貴金属元素(Os、Ru、Pt、Pd、Au、Rh、Ag)
・有害性のある元素(Pb、Hg、Cd、Be、Ge、As、Tl、Sb)
・危険性のある元素(Y、Li)
・単一金属の融点が1800℃以上のアトマイズし難い元素
(W、Nb、Mo、Ir、B)
Next, among the extracted elements, the elements were excluded from the following viewpoints, and 20 elements (Zr, Nd, Si, Ni, Mn, V, Ti, Sc, Fe, Cr, Co, P, Zn, Ga, Al, Sn, In, Mg, Bi, Hf) were extracted.
-Non-metal element (H)
-Precious metal elements (Os, Ru, Pt, Pd, Au, Rh, Ag)
-Hazardous elements (Pb, Hg, Cd, Be, Ge, As, Tl, Sb)
・ Dangerous elements (Y, Li)
-Elements that are difficult to atomize (W, Nb, Mo, Ir, B) with a melting point of a single metal of 1800 ° C or higher

前記20元素に対し、Materials Projectデータベースにより、Formation Energyが−0.3eV以下の化合物を生成する添加元素の組み合わせと化合物の組成を抽出した。さらに抽出した二元系の添加元素より、それぞれの添加元素が0.1at%以上、銅に固溶するものを抽出した。その結果を以下に示す。 For the 20 elements, the combination of additive elements and the composition of the compound that produce a compound having a formation energy of −0.3 eV or less were extracted from the Material Project database. Further, from the extracted binary additive elements, those in which each additive element was dissolved in copper in an amount of 0.1 at% or more were extracted. The results are shown below.

(Cu−Al−Ni系)
Formation Energyが−0.3eV以下の化合物を生成する添加元素の組み合わせとして、AlとNiが挙げられる。AlとNiの合計含有量は、0.01at%以上1at%未満とし、AlとNiのat%がAl:Ni=1:3〜3:1の範囲とする。ここで、積層造形物がCu−Al−Ni合金になっていればよいので、造形時の電子ビーム又はレーザービームにより合金化することを考慮すれば、金属粉末として、Cu粉末、Al粉末、Ni粉末の混合粉末や、Cu−Ni合金、Cu−Al合金を適宜組み合わせて用いることもできる。その場合、合金後の組成が上記範囲となるように調整する必要がある。以下に、添加元素の濃度を変更したときのFormation Energy計算結果を示す。
(Cu-Al-Ni system)
Examples of the combination of additive elements that produce a compound having a formation energy of −0.3 eV or less include Al and Ni. The total content of Al and Ni shall be 0.01 at% or more and less than 1 at%, and the at% of Al and Ni shall be in the range of Al: Ni = 1: 3 to 3: 1. Here, since it is sufficient that the laminated model is a Cu—Al—Ni alloy, the metal powders include Cu powder, Al powder, and Ni, considering alloying with an electron beam or a laser beam at the time of modeling. A mixed powder of powder, a Cu—Ni alloy, and a Cu—Al alloy can be appropriately combined and used. In that case, it is necessary to adjust the composition after alloying so as to be within the above range. The results of the Formation Energy calculation when the concentration of the added element is changed are shown below.

Figure 2021098886
Figure 2021098886

(Cu−Al−P系)
Formation Energyが−0.3eV以下の化合物を生成する添加元素の組み合わせとして、AlとPが挙げられる。AlとPの合計含有量は、0.01at%以上1at%未満とし、AlとPのat%がAl:Ni=1:1〜1:1の範囲とする。ここで、積層造形物がCu−Al−P合金になっていればよいので、造形時の電子ビーム又はレーザービームにより合金化することを考慮すれば、金属粉末として、Cu粉末、Al粉末、P粉末の混合粉末や、Cu−P合金、Cu−Al合金を適宜組み合わせて用いることもできる。その場合、合金後の組成が上記範囲となるように調整する必要がある。以下に、添加元素の濃度を変更したときのFormation Energy計算結果を示す。
(Cu-Al-P system)
Examples of the combination of additive elements that produce a compound having a formation energy of −0.3 eV or less include Al and P. The total content of Al and P shall be 0.01 at% or more and less than 1 at%, and the at% of Al and P shall be in the range of Al: Ni = 1: 1 to 1: 1. Here, since it is sufficient that the laminated model is a Cu—Al—P alloy, the metal powders include Cu powder, Al powder, and P, considering alloying with an electron beam or a laser beam at the time of modeling. A mixed powder of powder, a Cu-P alloy, and a Cu-Al alloy can be appropriately combined and used. In that case, it is necessary to adjust the composition after alloying so as to be within the above range. The results of the Formation Energy calculation when the concentration of the added element is changed are shown below.

Figure 2021098886
Figure 2021098886

(Cu−Ga−Ni系)
Formation Energyが−0.3eV以下の化合物を生成する添加元素の組み合わせとしてGaとNiが挙げられる。GaとNiの合計含有量は、0.01at%以上1at%未満とし、GaとNiのat%がGa:Ni=1:2〜7:3の範囲とする。ここで、積層造形物がCu−Ga−Ni合金になっていればよいので、造形時の電子ビーム又はレーザービームにより合金化することを考慮すれば、金属粉末として、Cu粉末、Ga粉末、Ni粉末の混合粉末や、Cu−Ga合金、Cu−Al合金を適宜組み合わせて用いることもできる。その場合、合金後の組成が上記範囲となるように調整する必要がある。以下に、添加元素の濃度を変更したときのFormation Energy計算結果を示す。
(Cu-Ga-Ni system)
Examples of the combination of additive elements for producing a compound having a formation energy of −0.3 eV or less include Ga and Ni. The total content of Ga and Ni shall be 0.01 at% or more and less than 1 at%, and the at% of Ga and Ni shall be in the range of Ga: Ni = 1: 2 to 7: 3. Here, since it is sufficient that the laminated model is a Cu-Ga-Ni alloy, the metal powder includes Cu powder, Ga powder, and Ni, considering alloying with an electron beam or a laser beam at the time of modeling. A mixed powder of powder, a Cu—Ga alloy, and a Cu—Al alloy can be appropriately combined and used. In that case, it is necessary to adjust the composition after alloying so as to be within the above range. The results of the Formation Energy calculation when the concentration of the added element is changed are shown below.

Figure 2021098886
Figure 2021098886

(Cu−Ga−P系)
Formation Energyが−0.3eV以下の化合物を生成する添加元素の組み合わせとしてGaとPが挙げられる。GaとPの合計含有量は、0.01at%以上1at%未満とし、GaとPのat%がGa:P=1:1〜1:1の範囲とする。ここで、積層造形物がCu−Ga−P合金になっていればよいので、造形時の電子ビーム又はレーザービームにより合金化することを考慮すれば、金属粉末として、Cu粉末、Ga粉末、P粉末の混合粉末や、Cu−Ga合金、Cu−P合金を適宜組み合わせて用いることもできる。その場合、合金後の組成が上記範囲となるように調整する必要がある。以下に、添加元素の濃度を変更したときのFormation Energy計算結果を示す。
(Cu-Ga-P system)
Ga and P can be mentioned as a combination of additive elements for producing a compound having a formation energy of −0.3 eV or less. The total content of Ga and P shall be 0.01 at% or more and less than 1 at%, and the at% of Ga and P shall be in the range of Ga: P = 1: 1 to 1: 1. Here, since it is sufficient that the laminated model is a Cu-Ga-P alloy, Cu powder, Ga powder, P can be used as the metal powder in consideration of alloying with an electron beam or a laser beam at the time of modeling. A mixed powder of powder, a Cu-Ga alloy, and a Cu-P alloy can be appropriately combined and used. In that case, it is necessary to adjust the composition after alloying so as to be within the above range. The results of the Formation Energy calculation when the concentration of the added element is changed are shown below.

Figure 2021098886
Figure 2021098886

(Cu−Mg−P系)
Formation Energyが−0.3eV以下の化合物を生成する添加元素の組み合わせとしてMgとPが挙げられる。MgとPの合計含有量は、0.01at%以上1at%未満とし、MgとPのat%がMg:P=1:4〜3:2の範囲とする。ここで、積層造形物がCu−Ga−P合金になっていればよいので、造形時の電子ビーム又はレーザービームにより合金化することを考慮すれば、金属粉末として、Cu粉末、Mg粉末、P粉末の混合粉末や、Cu−Mg合金、Cu−P合金を適宜組み合わせて用いることもできる。その場合、合金後の組成が上記範囲となるように調整する必要がある。以下に、添加元素の濃度を変更したときのFormation Energy計算結果を示す。
(Cu-Mg-P system)
Examples of the combination of additive elements that produce a compound having a formation energy of −0.3 eV or less include Mg and P. The total content of Mg and P shall be 0.01 at% or more and less than 1 at%, and the at% of Mg and P shall be in the range of Mg: P = 1: 4 to 3: 2. Here, since it is sufficient that the laminated model is a Cu-Ga-P alloy, Cu powder, Mg powder, P can be used as the metal powder in consideration of alloying by an electron beam or a laser beam at the time of modeling. A mixed powder of powder, a Cu-Mg alloy, and a Cu-P alloy can be appropriately combined and used. In that case, it is necessary to adjust the composition after alloying so as to be within the above range. The results of the Formation Energy calculation when the concentration of the added element is changed are shown below.

Figure 2021098886
Figure 2021098886

(Cu−Mn−P系)
Formation Energyが−0.3eV以下の化合物を生成する添加元素の組み合わせとしてGaとPが挙げられる。MnとPの合計含有量は、0.01at%以上1at%未満とし、MnとPのat%がMn:P=1:4〜3:1の範囲とする。ここで、積層造形物がCu−Mn−P合金になっていればよいので、造形時の電子ビーム又はレーザービームにより合金化することを考慮すれば、金属粉末として、Cu粉末、Mn粉末、P粉末の混合粉末や、Cu−Mn合金、Cu−P合金を適宜組み合わせて用いることもできる。その場合、合金後の組成が上記範囲となるように調整する必要がある。以下に、添加元素の濃度を変更したときのFormation Energy計算結果を示す。
(Cu-Mn-P system)
Ga and P can be mentioned as a combination of additive elements for producing a compound having a formation energy of −0.3 eV or less. The total content of Mn and P shall be 0.01 at% or more and less than 1 at%, and the at% of Mn and P shall be in the range of Mn: P = 1: 4 to 3: 1. Here, since it is sufficient that the laminated model is a Cu-Mn-P alloy, Cu powder, Mn powder, P can be used as the metal powder in consideration of alloying with an electron beam or a laser beam at the time of modeling. A mixed powder of powder, a Cu-Mn alloy, and a Cu-P alloy can be appropriately combined and used. In that case, it is necessary to adjust the composition after alloying so as to be within the above range. The results of the Formation Energy calculation when the concentration of the added element is changed are shown below.

Figure 2021098886
Figure 2021098886

(Cu−Mn−Si系)
Formation Energyが−0.3eV以下の化合物を生成する添加元素の組み合わせとしてGaとPが挙げられる。MnとSiの合計含有量は、0.01at%以上1at%未満とし、MnとSiのat%がMn:Si=15:26〜3:1の範囲とする。ここで、積層造形物がCu−Mn−Si合金になっていればよいので、造形時の電子ビーム又はレーザービームにより合金化することを考慮すれば、金属粉末として、Cu粉末、Mn粉末、Si粉末の混合粉末や、Cu−Mn合金、Cu−Si合金を適宜組み合わせて用いることもできる。その場合、合金後の組成が上記範囲となるように調整する必要がある。以下に、添加元素の濃度を変更したときのFormation Energy計算結果を示す。
(Cu-Mn-Si system)
Ga and P can be mentioned as a combination of additive elements for producing a compound having a formation energy of −0.3 eV or less. The total content of Mn and Si shall be 0.01 at% or more and less than 1 at%, and the at% of Mn and Si shall be in the range of Mn: Si = 15: 26 to 3: 1. Here, since it is sufficient that the laminated model is a Cu-Mn-Si alloy, Cu powder, Mn powder, and Si can be used as the metal powder in consideration of alloying with an electron beam or a laser beam at the time of modeling. A mixed powder of powder, a Cu-Mn alloy, and a Cu-Si alloy can be appropriately combined and used. In that case, it is necessary to adjust the composition after alloying so as to be within the above range. The results of the Formation Energy calculation when the concentration of the added element is changed are shown below.

Figure 2021098886
Figure 2021098886

(Cu−Ni−P系)
Formation Energyが−0.3eV以下の化合物を生成する添加元素の組み合わせとしてNiとPが挙げられる。NiとPの合計含有量は、0.01at%以上1at%未満とし、NiとPのat%がNi:P=1:3〜3:1の範囲とする。ここで、積層造形物がCu−Ni−P合金になっていればよいので、造形時の電子ビーム又はレーザービームにより合金化することを考慮すれば、金属粉末として、Cu粉末、Ni粉末、P粉末の混合粉末や、Cu−Ni合金、Cu−P合金を適宜組み合わせて用いることもできる。その場合、合金後の組成が上記範囲となるように調整する必要がある。以下に、添加元素の濃度を変更したときのFormation Energy計算結果を示す。
(Cu-Ni-P system)
Examples of the combination of additive elements that produce a compound having a formation energy of −0.3 eV or less include Ni and P. The total content of Ni and P shall be 0.01 at% or more and less than 1 at%, and the at% of Ni and P shall be in the range of Ni: P = 1: 3 to 3: 1. Here, since it is sufficient that the laminated model is a Cu—Ni—P alloy, Cu powder, Ni powder, and P can be used as the metal powder in consideration of alloying with an electron beam or a laser beam at the time of modeling. A mixed powder of powder, a Cu—Ni alloy, and a Cu—P alloy can be appropriately combined and used. In that case, it is necessary to adjust the composition after alloying so as to be within the above range. The results of the Formation Energy calculation when the concentration of the added element is changed are shown below.

Figure 2021098886
Figure 2021098886

(Cu−Ni−Si系)
Formation Energyが−0.3eV以下の化合物を生成する添加元素の組み合わせとしてNiとPが挙げられる。NiとSiの合計含有量は、0.01at%以上1at%未満とし、NiとSiのat%がNi:Si=1:3〜2:1の範囲とする。ここで、積層造形物がCu−Ni−Si合金になっていればよいので、造形時の電子ビーム又はレーザービームにより合金化することを考慮すれば、金属粉末として、Cu粉末、Ni粉末、Si粉末の混合粉末や、Cu−Ni合金、Cu−Si合金を適宜組み合わせて用いることもできる。その場合、合金後の組成が上記範囲となるように調整する必要がある。以下に、添加元素の濃度を変更したときのFormation Energy計算結果を示す。
(Cu-Ni-Si system)
Examples of the combination of additive elements that produce a compound having a formation energy of −0.3 eV or less include Ni and P. The total content of Ni and Si shall be 0.01 at% or more and less than 1 at%, and the at% of Ni and Si shall be in the range of Ni: Si = 1: 3 to 2: 1. Here, since it is sufficient that the laminated model is a Cu—Ni—Si alloy, Cu powder, Ni powder, and Si can be used as the metal powder in consideration of alloying with an electron beam or a laser beam at the time of modeling. A mixed powder of powder, a Cu—Ni alloy, and a Cu—Si alloy can be appropriately combined and used. In that case, it is necessary to adjust the composition after alloying so as to be within the above range. The results of the Formation Energy calculation when the concentration of the added element is changed are shown below.

Figure 2021098886
Figure 2021098886

ここで、添加元素の含有量は、例えばSII社製SPS3500DDのICP−OES(高周波誘導結合プラズマ発光分析法)で測定することができる。 Here, the content of the additive element can be measured by, for example, ICP-OES (high frequency inductively coupled plasma emission spectrometry) of SPS3500DD manufactured by SII.

また、金属粉末の平均粒子径D50は10〜150μmであることが好ましい。平均粒子径D50を20μm以上とすることで、造形時に粉末が舞いにくくなり、粉末の取り扱いが容易になる。また、平均粒子径D50を150μm以下とすることで、粉末の溶融が円滑に進み、さらに高精細な積層造形物を製造することが可能となる。
平均粒子径D50とは、顕微鏡画像解析により得られる粒子の画像から算出した面積に相当する円の直径を粒径として、当該粒度分布において、積算値50%での粒径をいう。例えば、スペクトリス株式会社(マルバーン事業部)製の乾式粒子画像分析装置Morphologi G3により測定することができる。
The average particle size D50 of the metal powder is preferably 10 to 150 μm. By setting the average particle size D50 to 20 μm or more, the powder is less likely to fly during modeling, and the powder can be easily handled. Further, by setting the average particle size D50 to 150 μm or less, the powder melts smoothly, and it becomes possible to produce a high-definition laminated model.
The average particle size D50 refers to the particle size at an integrated value of 50% in the particle size distribution, with the diameter of a circle corresponding to the area calculated from the image of the particles obtained by microscopic image analysis as the particle size. For example, it can be measured by a dry particle image analyzer Morphologi G3 manufactured by Spectris Co., Ltd. (Malvern Division).

(金属粉末の製造方法)
金属粉末は、公知の方法によって製造された銅合金粉末を使用することができる。粒径数μm以上のサイズであれば、工業的には製造コストに優れるアトマイズ法に代表される乾式法によって製造された金属粉末を使用することが一般的ではあるが、還元法などの湿式法によって製造された金属粉末を使用することも可能である。具体的には、タンデッシュの底部から、溶融状態の合金成分を落下させながら、高圧ガスまたは高圧水と接触させ、合金成分を急冷凝固させることにより、合金成分を粉末化する。この他、たとえばプラズマアトマイズ法、遠心力アトマイズ法などによって、金属粉末を製造してもよい。これらの製造方法で得られた金属粉末を用いることにより、緻密な積層造形物が得られる傾向にある。
(Manufacturing method of metal powder)
As the metal powder, a copper alloy powder produced by a known method can be used. If the particle size is several μm or more, it is industrially common to use a metal powder produced by a dry method represented by an atomizing method, which is excellent in manufacturing cost, but a wet method such as a reduction method is used. It is also possible to use the metal powder produced by. Specifically, the alloy component is pulverized by contacting it with high-pressure gas or high-pressure water while dropping the alloy component in a molten state from the bottom of the tandesh to quench and solidify the alloy component. In addition, the metal powder may be produced by, for example, a plasma atomizing method or a centrifugal atomizing method. By using the metal powders obtained by these production methods, a dense laminated model tends to be obtained.

(積層造形物の製造方法)
本実施形態に係る金属粉末を用いる方法であれば、その具体的な手段は、特に制限されない。例えば、以下のような方法で製造することができる。まず、造形用のステージに金属粉末の薄層を形成し、この薄層に、装置に入力されたプログラムに沿って電子ビーム又はレーザービームを照射して溶解し、その後、冷却凝固させる。次に、造形用のステージをスライドさせ、再度、金属粉末の薄層を形成したのち、電子ビーム又はレーザービームを照射して溶解し、その後、冷却固化させる。これら一連の工程を繰り返し行うことによって、プログラムされた形の積層造形物を製造することができる。
(Manufacturing method of laminated model)
As long as the method uses the metal powder according to the present embodiment, the specific means thereof is not particularly limited. For example, it can be produced by the following method. First, a thin layer of metal powder is formed on a stage for modeling, and the thin layer is melted by irradiating an electron beam or a laser beam according to a program input to the apparatus, and then cooled and solidified. Next, the stage for modeling is slid to form a thin layer of metal powder again, and then irradiated with an electron beam or a laser beam to dissolve the metal powder, which is then cooled and solidified. By repeating these series of steps, it is possible to produce a laminated model having a programmed shape.

本発明に係る金属粉末は、レーザー光の吸収率が上昇し、効率良くレーザーによる溶融が可能であり、複雑形状で、高導電率や高強度が求められる金属部品(放熱を目的としたヒートシンクや熱交換器、電子部品用のコネクター材、航空宇宙用の機械部材等)を製造するための積層造形用途として、特に有用である。 The metal powder according to the present invention has an increased absorption rate of laser light, can be efficiently melted by a laser, has a complicated shape, and is a metal component that requires high conductivity and high strength (a heat sink for heat dissipation). It is particularly useful as a laminated molding application for manufacturing heat exchangers, connector materials for electronic parts, mechanical members for aerospace, etc.).

Claims (39)

Cu粉末、Al粉末、Ni粉末の混合粉からなり、混合粉の組成としてAlとNiの合計が0.01at%以上1at%未満、残部がCuであり、AlとNiのat%がAl:Ni=1:3〜3:1の範囲にある積層造形用金属粉末。 It consists of a mixed powder of Cu powder, Al powder, and Ni powder. The composition of the mixed powder is that the total of Al and Ni is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Al and Ni is Al: Ni. = 1: 3 to 3: 1 metal powder for laminated molding. Cu−Al合金粉末、Cu−Ni合金粉末の混合粉からなり、混合粉の組成としてAlとNiの合計が0.01at%以上1at%未満、残部がCuであり、AlとNiのat%がAl:Ni=1:3〜3:1の範囲にある積層造形用金属粉末。 It consists of a mixed powder of Cu-Al alloy powder and Cu-Ni alloy powder. The composition of the mixed powder is that the total of Al and Ni is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Al and Ni is Metal powder for laminated molding in the range of Al: Ni = 1: 3 to 3: 1. Cu−Al−Ni合金粉末からなり、合金粉の組成としてAlとNiの合計が0.01at%以上1at%未満、残部がCuであり、AlとNiのat%がAl:Ni=1:3〜3:1の範囲にある積層造形用金属粉末。 It is composed of Cu—Al—Ni alloy powder, and the total composition of the alloy powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Al and Ni is Al: Ni = 1: 3. Metal powder for laminated molding in the range of ~ 3: 1. Cu粉末、Al粉末、Ni粉末、Cu−Al合金粉末、Cu−Ni合金粉末、Cu−Al−Ni合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてAlとNiの合計が0.01at%以上1at%未満、残部がCuであり、AlとNiのat%がAl:Ni=1:3〜3:1の範囲にある積層造形用金属粉末。 A mixed powder obtained by selecting and mixing two or more of Cu powder, Al powder, Ni powder, Cu-Al alloy powder, Cu-Ni alloy powder, and Cu-Al-Ni alloy powder. The total of Al and Ni is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Al and Ni is in the range of Al: Ni = 1: 3 to 3: 1. Powder. Cu粉末、Al粉末、P粉末の混合粉からなり、混合粉の組成としてAlとPの合計が0.01at%以上1at%未満、残部がCuであり、AlとPのat%がAl:P=1:1である積層造形用金属粉末。 It consists of a mixed powder of Cu powder, Al powder, and P powder. The composition of the mixed powder is that the total of Al and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Al and P is Al: P. = 1: 1 metal powder for laminated molding. Cu−Al合金粉末、Cu−P合金粉末の混合粉からなり、混合粉の組成としてAlとPの合計が0.01at%以上1at%未満、残部がCuであり、AlとPのat%がAl:P=1:1である積層造形用金属粉末。 It consists of a mixed powder of Cu-Al alloy powder and Cu-P alloy powder. The composition of the mixed powder is that the total of Al and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Al and P is A metal powder for laminated molding in which Al: P = 1: 1. Cu−Al−P合金粉末からなり、合金粉の組成としてAlとPの合計が0.01at%以上1at%未満、残部がCuであり、AlとPのat%がAl:P=1:1である積層造形用金属粉末。 It is composed of Cu—Al—P alloy powder, and the total composition of Al and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Al and P is Al: P = 1: 1. Metal powder for laminated molding. Cu粉末、Al粉末、P粉末、Cu−Al合金粉末、Cu−P合金粉末、Cu−Al−P合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてAlとPの合計が0.01at%以上1at%未満、残部がCuであり、AlとPのat%がAl:P=1:1である積層造形用金属粉末。 A mixed powder obtained by selecting and mixing two or more of Cu powder, Al powder, P powder, Cu—Al alloy powder, Cu—P alloy powder, and Cu—Al—P alloy powder. A metal powder for laminated molding in which the total of Al and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Al and P is Al: P = 1: 1. Cu粉末、Ga粉末、Ni粉末の混合粉からなり、混合粉の組成としてGaとNiの合計が0.01at%以上1at%未満、残部がCuであり、GaとNiのat%がGa:Ni=1:2〜7:3の範囲にある積層造形用金属粉末。 It consists of a mixed powder of Cu powder, Ga powder, and Ni powder. The composition of the mixed powder is that the total of Ga and Ni is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ga and Ni is Ga: Ni. = Metal powder for laminated molding in the range of 1: 2 to 7: 3. Cu−Ga合金粉末、Cu−Ni合金粉末の混合粉からなり、混合粉の組成としてGaとNiの合計が0.01at%以上1at%未満、残部がCuであり、GaとNiのat%がGa:Ni=1:2〜7:3の範囲にある積層造形用金属粉末。 It consists of a mixed powder of Cu-Ga alloy powder and Cu-Ni alloy powder. The composition of the mixed powder is that the total of Ga and Ni is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ga and Ni is Metal powder for laminated molding in the range of Ga: Ni = 1: 2 to 7: 3. Cu−Ga−Ni合金粉末からなり、合金粉の組成としてGaとNiの合計が0.01at%以上1at%未満、残部がCuであり、GaとNiのat%がGa:Ni=1:2〜7:3の範囲にある積層造形用金属粉末。 It is composed of Cu-Ga-Ni alloy powder, and the total composition of the alloy powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ga and Ni is Ga: Ni = 1: 2. Metal powder for laminated molding in the range of ~ 7: 3. Cu粉末、Ga粉末、Ni粉末、Cu−Ga合金粉末、Cu−Ni合金粉末、Cu−Ga−Ni合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてGaとNiの合計が0.01at%以上1at%未満、残部がCuであり、GaとNiのat%がGa:Ni=1:2〜7:3の範囲にある積層造形用金属粉末。 A mixed powder obtained by selecting and mixing two or more of Cu powder, Ga powder, Ni powder, Cu-Ga alloy powder, Cu-Ni alloy powder, and Cu-Ga-Ni alloy powder. The total of Ga and Ni is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ga and Ni is in the range of Ga: Ni = 1: 2 to 7: 3. Powder. Cu粉末、Ga粉末、P粉末の混合粉からなり、混合粉の組成としてGaとPの合計が0.01at%以上1at%未満、残部がCuであり、GaとPのat%がGa:P=1:1である積層造形用金属粉末。 It is composed of a mixed powder of Cu powder, Ga powder, and P powder. The composition of the mixed powder is that the total of Ga and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ga and P is Ga: P. = 1: 1 metal powder for laminated molding. Cu−Ga合金粉末、Cu−P合金粉末の混合粉からなり、混合粉の組成としてGaとPの合計が0.01at%以上1at%未満、残部がCuであり、GaとPのat%がGa:P=1:1である積層造形用金属粉末。 It consists of a mixed powder of Cu-Ga alloy powder and Cu-P alloy powder. The composition of the mixed powder is that the total of Ga and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ga and P is Metal powder for laminated molding with Ga: P = 1: 1. Cu−Ga−P合金粉末からなり、合金粉の組成としてGaとPの合計が0.01at%以上1at%未満、残部がCuであり、GaとPのat%がGa:P=1:1である積層造形用金属粉末。 It is composed of Cu-Ga-P alloy powder, and the total composition of Ga and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ga and P is Ga: P = 1: 1. Metal powder for laminated molding. Cu粉末、Ga粉末、P粉末、Cu−Ga合金粉末、Cu−P合金粉末、Cu−Ga−P合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてGaとPの合計が0.01at%以上1at%未満、残部がCuであり、GaとPのat%がGa:P=1:1である積層造形用金属粉末。 A mixed powder obtained by selecting and mixing two or more of Cu powder, Ga powder, P powder, Cu-Ga alloy powder, Cu-P alloy powder, and Cu-Ga-P alloy powder. A metal powder for laminated molding in which the total of Ga and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ga and P is Ga: P = 1: 1. Cu粉末、Mg粉末、P粉末の混合粉からなり、混合粉の組成としてMgとPの合計が0.01at%以上1at%未満、残部がCuであり、MgとPのat%がMg:P=1:4〜3:2の範囲にある積層造形用金属粉末。 It consists of a mixed powder of Cu powder, Mg powder, and P powder. The composition of the mixed powder is that the total of Mg and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mg and P is Mg: P. = Metal powder for laminated molding in the range of 1: 4 to 3: 2. Cu−Mg合金粉末、Cu−P合金粉末の混合粉からなり、混合粉の組成としてMgとPの合計が0.01at%以上1at%未満、残部がCuであり、MgとPのat%がMg:P=1:4〜3:2の範囲にある積層造形用金属粉末。 It consists of a mixed powder of Cu-Mg alloy powder and Cu-P alloy powder. The composition of the mixed powder is that the total of Mg and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mg and P is A metal powder for laminated molding in the range of Mg: P = 1: 4 to 3: 2. Cu−Mg−P合金粉末からなり、合金粉の組成としてMgとPの合計が0.01at%以上1at%未満、残部がCuであり、MgとPのat%がMg:P=1:4〜3:2の範囲にある積層造形用金属粉末。 It is composed of Cu-Mg-P alloy powder, and the total composition of Mg and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mg and P is Mg: P = 1: 4. Metal powder for laminated molding in the range of ~ 3: 2. Cu粉末、Mg粉末、P粉末、Cu−Mg合金粉末、Cu−P合金粉末、Cu−Mg−P合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてMgとPの合計が0.01at%以上1at%未満、残部がCuであり、MgとPのat%がMg:P=1:4〜3:2の範囲にある積層造形用金属粉末。 A mixed powder obtained by selecting and mixing two or more of Cu powder, Mg powder, P powder, Cu-Mg alloy powder, Cu-P alloy powder, and Cu-Mg-P alloy powder. The total of Mg and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mg and P is in the range of Mg: P = 1: 4 to 3: 2. Powder. Cu粉末、Mn粉末、P粉末の混合粉からなり、混合粉の組成としてMnとPの合計が0.01at%以上1at%未満、残部がCuであり、MnとPのat%がMn:P=1:4〜3:1の範囲にある積層造形用金属粉末。 It consists of a mixed powder of Cu powder, Mn powder, and P powder. The composition of the mixed powder is that the total of Mn and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mn and P is Mn: P. = 1: 4 to 3: 1 metal powder for laminated molding. Cu−Mn合金粉末、Cu−P合金粉末の混合粉からなり、混合粉の組成としてMnとPの合計が0.01at%以上1at%未満、残部がCuであり、MnとPのat%がMn:P=1:4〜3:1の範囲にある積層造形用金属粉末。 It is composed of a mixed powder of Cu-Mn alloy powder and Cu-P alloy powder, and the total of Mn and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mn and P is at%. A metal powder for laminated molding in the range of Mn: P = 1: 4 to 3: 1. Cu−Mn−P合金粉末からなり、合金粉の組成としてMnとPの合計が0.01at%以上1at%未満、残部がCuであり、MnとPのat%がMn:P=1:4〜3:1の範囲にある積層造形用金属粉末。 It is composed of Cu-Mn-P alloy powder, and the total composition of Mn and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mn and P is Mn: P = 1: 4. Metal powder for laminated molding in the range of ~ 3: 1. Cu粉末、Mn粉末、P粉末、Cu−Mn合金粉末、Cu−P合金粉末、Cu−Mn−P合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてMnとPの合計が0.01at%以上1at%未満、残部がCuであり、MnとPのat%がMn:P=1:4〜3:1の範囲にある積層造形用金属粉末。 A mixed powder obtained by selecting and mixing two or more of Cu powder, Mn powder, P powder, Cu-Mn alloy powder, Cu-P alloy powder, and Cu-Mn-P alloy powder. The total of Mn and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mn and P is in the range of Mn: P = 1: 4 to 3: 1. Powder. Cu粉末、Mn粉末、Si粉末の混合粉からなり、混合粉の組成としてMnとSiの合計が0.01at%以上1at%未満、残部がCuであり、MnとSiのat%がMn:Si=15:26〜3:1の範囲にある積層造形用金属粉末。 It consists of a mixed powder of Cu powder, Mn powder, and Si powder. The composition of the mixed powder is that the total of Mn and Si is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mn and Si is Mn: Si. = Metal powder for laminated molding in the range of 15:26 to 3: 1. Cu−Mn合金粉末、Cu−Si合金粉末の混合粉からなり、混合粉の組成としてMnとSiの合計が0.01at%以上1at%未満、残部がCuであり、MnとSiのat%がMn:Si=15:26〜3:1の範囲にある積層造形用金属粉末。 It is composed of a mixed powder of Cu-Mn alloy powder and Cu-Si alloy powder, and the total of Mn and Si is 0.01 at% or more and less than 1 at%, the balance is Cu, and at% of Mn and Si is the composition of the mixed powder. A metal powder for laminated molding in the range of Mn: Si = 15: 26 to 3: 1. Cu−Mn−Si合金粉末からなり、合金粉の組成としてMnとSiの合計が0.01at%以上1at%未満、残部がCuであり、MnとSiのat%がMn:Si=15:26〜3:1の範囲にある積層造形用金属粉末。 It is composed of Cu-Mn-Si alloy powder, and the total composition of the alloy powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mn and Si is Mn: Si = 15: 26. Metal powder for laminated molding in the range of ~ 3: 1. Cu粉末、Mn粉末、Si粉末、Cu−Mn合金粉末、Cu−Si合金粉末、Cu−Mn−Si合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてMnとSiの合計が0.01at%以上1at%未満、残部がCuであり、MnとSiのat%がMn:Si=15:26〜3:1の範囲にある積層造形用金属粉末。 A mixed powder obtained by selecting and mixing two or more of Cu powder, Mn powder, Si powder, Cu-Mn alloy powder, Cu-Si alloy powder, and Cu-Mn-Si alloy powder. The total of Mn and Si is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Mn and Si is in the range of Mn: Si = 15: 26 to 3: 1. Powder. Cu粉末、Ni粉末、P粉末の混合粉からなり、混合粉の組成としてNiとPの合計が0.01at%以上1at%未満、残部がCuであり、NiとPのat%がNi:P=1:3〜3:1の範囲にある積層造形用金属粉末。 It consists of a mixed powder of Cu powder, Ni powder, and P powder. The composition of the mixed powder is that the total of Ni and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ni and P is Ni: P. = 1: 3 to 3: 1 metal powder for laminated molding. Cu−Ni合金粉末、Cu−P合金粉末の混合粉からなり、混合粉の組成としてNiとPの合計が0.01at%以上1at%未満、残部がCuであり、NiとPのat%がNi:P=1:3〜3:1の範囲にある積層造形用金属粉末。 It consists of a mixed powder of Cu-Ni alloy powder and Cu-P alloy powder. The composition of the mixed powder is that the total of Ni and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ni and P is Ni: P = 1: 3 to 3: 1 metal powder for laminated molding. Cu−Ni−P合金粉末からなり、合金粉の組成としてNiとPの合計が0.01at%以上1at%未満、残部がCuであり、NiとPのat%がNi:P=1:3〜3:1の範囲にある積層造形用金属粉末。 It is composed of Cu-Ni-P alloy powder, and the total composition of the alloy powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ni and P is Ni: P = 1: 3. Metal powder for laminated molding in the range of ~ 3: 1. Cu粉末、Ni粉末、P粉末、Cu−Ni合金粉末、Cu−P合金粉末、Cu−Ni−P合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてNiとPの合計が0.01at%以上1at%未満、残部がCuであり、NiとPのat%がNi:P=1:3〜3:1の範囲にある積層造形用金属粉末。 A mixed powder obtained by selecting and mixing two or more of Cu powder, Ni powder, P powder, Cu—Ni alloy powder, Cu—P alloy powder, and Cu—Ni—P alloy powder. The total of Ni and P is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ni and P is in the range of Ni: P = 1: 3 to 3: 1. Powder. Cu粉末、Ni粉末、Si粉末の混合粉からなり、混合粉の組成としてNiとSiの合計が0.01at%以上1at%未満、残部がCuであり、NiとSiのat%がNi:Si=1:3〜2:1の範囲にある積層造形用金属粉末。 It consists of a mixed powder of Cu powder, Ni powder, and Si powder. The composition of the mixed powder is that the total of Ni and Si is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ni and Si is Ni: Si. = 1: 3 to 2: 1 metal powder for laminated molding. Cu−Ni合金粉末、Cu−Si合金粉末の混合粉からなり、混合粉の組成としてNiとSiの合計が0.01at%以上1at%未満、残部がCuであり、NiとSiのat%がNi:Si=1:3〜2:1の範囲にある積層造形用金属粉末。 It consists of a mixed powder of Cu-Ni alloy powder and Cu-Si alloy powder. The composition of the mixed powder is that the total of Ni and Si is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ni and Si is Ni: Si = Metal powder for laminated molding in the range of 1: 3 to 2: 1. Cu−Ni−Si合金粉末からなり、合金粉の組成としてNiとSiの合計が0.01at%以上1at%未満、残部がCuであり、NiとSiのat%がNi:Si=1:3〜2:1の範囲にある積層造形用金属粉末。 It is composed of Cu-Ni-Si alloy powder, and the total composition of the alloy powder is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ni and Si is Ni: Si = 1: 3. Metal powder for laminated molding in the range of ~ 2: 1. Cu粉末、Ni粉末、Si粉末、Cu−Ni合金粉末、Cu−Si合金粉末、Cu−Ni−Si合金粉末のうち、いずれか2種以上を選択して混合した混合粉であって、混合粉の組成としてNiとSiの合計が0.01at%以上1at%未満、残部がCuであり、NiとSiのat%がNi:Si=1:3〜2:1の範囲にある積層造形用金属粉末。 A mixed powder obtained by selecting and mixing two or more of Cu powder, Ni powder, Si powder, Cu-Ni alloy powder, Cu-Si alloy powder, and Cu-Ni-Si alloy powder. The total of Ni and Si is 0.01 at% or more and less than 1 at%, the balance is Cu, and the at% of Ni and Si is in the range of Ni: Si = 1: 3 to 2: 1. Powder. 前記金属粉末の平均粒子径D50(メジアン径)が10〜150μmであることを特徴とする請求項1〜36のいずれか一項に記載の積層造形用金属粉末。 The metal powder for laminated molding according to any one of claims 1 to 36, wherein the average particle size D50 (median diameter) of the metal powder is 10 to 150 μm. 請求項1〜37のいずれか一項に記載の金属粉末を用いて積層造形法により積層造形物を製造する積層造形物の製造方法。 A method for manufacturing a laminated model, which manufactures a layered model by a layered manufacturing method using the metal powder according to any one of claims 1 to 37. 請求項38に記載の製造方法により製造された銅合金積層造形物。 A copper alloy laminated model produced by the production method according to claim 38.
JP2020200324A 2019-12-20 2020-12-02 Metal powder for lamination molding, and lamination molding made using the metal powder Pending JP2021098886A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019230743 2019-12-20
JP2019230743 2019-12-20

Publications (1)

Publication Number Publication Date
JP2021098886A true JP2021098886A (en) 2021-07-01

Family

ID=76540905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020200324A Pending JP2021098886A (en) 2019-12-20 2020-12-02 Metal powder for lamination molding, and lamination molding made using the metal powder

Country Status (1)

Country Link
JP (1) JP2021098886A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290231A (en) * 1988-05-18 1989-11-22 Mitsubishi Metal Corp Semiconductor device and copper allow extremely fine wire therefor
JP2007231349A (en) * 2006-02-28 2007-09-13 Matsushita Electric Works Ltd Metal powder for metal laser sintering
JP2010258346A (en) * 2009-04-28 2010-11-11 Kobe Steel Ltd DISPLAY DEVICE AND Cu ALLOY FILM USED FOR THE SAME
JP2012067327A (en) * 2010-09-21 2012-04-05 Mitsui Mining & Smelting Co Ltd Copper powder for conductive paste, and conductive paste
WO2017026077A1 (en) * 2015-08-12 2017-02-16 日鉄住金マイクロメタル株式会社 Semiconductor device bonding wire
JP2017036467A (en) * 2015-08-07 2017-02-16 株式会社Uacj Copper alloy tube
JP2017082301A (en) * 2015-10-29 2017-05-18 株式会社Uacj Manufacturing method of copper alloy tube and heat exchanger
JP2017115220A (en) * 2015-12-25 2017-06-29 株式会社ダイヘン Metal powder, method for producing laminated molding and laminated molding
JP2018035438A (en) * 2016-03-31 2018-03-08 Dowaメタルテック株式会社 Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL AND MANUFACTURING METHOD
JP2019149559A (en) * 2016-06-20 2019-09-05 日鉄マイクロメタル株式会社 Copper alloy bonding wire for semiconductor device
JP2019178399A (en) * 2018-03-30 2019-10-17 三菱マテリアル株式会社 Copper alloy for electronic and electric device, copper ally stripe material for electronic and electric device, component for electronic and electric device, terminal, and bus bar
JP2019210497A (en) * 2018-06-01 2019-12-12 山陽特殊製鋼株式会社 Cu-based alloy powder

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290231A (en) * 1988-05-18 1989-11-22 Mitsubishi Metal Corp Semiconductor device and copper allow extremely fine wire therefor
JP2007231349A (en) * 2006-02-28 2007-09-13 Matsushita Electric Works Ltd Metal powder for metal laser sintering
JP2010258346A (en) * 2009-04-28 2010-11-11 Kobe Steel Ltd DISPLAY DEVICE AND Cu ALLOY FILM USED FOR THE SAME
JP2012067327A (en) * 2010-09-21 2012-04-05 Mitsui Mining & Smelting Co Ltd Copper powder for conductive paste, and conductive paste
JP2017036467A (en) * 2015-08-07 2017-02-16 株式会社Uacj Copper alloy tube
WO2017026077A1 (en) * 2015-08-12 2017-02-16 日鉄住金マイクロメタル株式会社 Semiconductor device bonding wire
JP2017082301A (en) * 2015-10-29 2017-05-18 株式会社Uacj Manufacturing method of copper alloy tube and heat exchanger
JP2017115220A (en) * 2015-12-25 2017-06-29 株式会社ダイヘン Metal powder, method for producing laminated molding and laminated molding
JP2018035438A (en) * 2016-03-31 2018-03-08 Dowaメタルテック株式会社 Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL AND MANUFACTURING METHOD
JP2019149559A (en) * 2016-06-20 2019-09-05 日鉄マイクロメタル株式会社 Copper alloy bonding wire for semiconductor device
JP2019178399A (en) * 2018-03-30 2019-10-17 三菱マテリアル株式会社 Copper alloy for electronic and electric device, copper ally stripe material for electronic and electric device, component for electronic and electric device, terminal, and bus bar
JP2019210497A (en) * 2018-06-01 2019-12-12 山陽特殊製鋼株式会社 Cu-based alloy powder

Similar Documents

Publication Publication Date Title
JP6439683B2 (en) Flame retardant magnesium alloy and method for producing the same
US20090035171A1 (en) High-Strength And High-Toughness Magnesium Alloy And Method For Manufacturing Same
JP6650531B2 (en) Metal powder for metal additive manufacturing and molded article produced using the metal powder
JP2016053198A5 (en) Manufacturing method of metal processed products
WO2019239655A1 (en) Copper alloy powder, layered/molded product, method for producing layered/molded product, and metal parts
JP7419227B2 (en) Copper alloy powder for additive manufacturing, method for manufacturing additive manufacturing products, and additive manufacturing products
US11351601B2 (en) Copper alloy powder having excellent laser absorptivity
JP2021098886A (en) Metal powder for lamination molding, and lamination molding made using the metal powder
JP2021098887A (en) Metal powder for lamination molding, and lamination molding made using the metal powder
CN104718308B (en) Cu Ga binary base sputtering target and its manufacture method
JP6559865B1 (en) Method for producing copper alloy shaped article and copper alloy shaped article
TW201043708A (en) Method for manufacturing light-weight and strong magnesium alloy
WO2024004771A1 (en) Production method for heat dissipation component using soluble chemical salt for filling pipe, and heat dissipation component produced by same
KR101887207B1 (en) Low thermal expansion and high thermal conductivity composite, and the manufacturing method thereof
US20140127070A1 (en) Material comprising a semi-heusler alloy and process for producing such a material
TW201527544A (en) Filler material, joined structure of magnesium (mg) alloy material and filler material, method for joining mg alloy material using melt welding, mg-alloy-material joined structural body, and production method for mg-alloy-material joined structural body
WO2023063018A1 (en) Copper alloy powder for three-dimensional laminate molding, having excellent moldability and conductivity
Nahavandi et al. Microstructural Evaluation of Bi-Ag and Bi-Sb Lead-free High-temperature solder Candidates on Copper Substrate with Multiple Reflow Number
US153154A (en) Improvement in alloys to resemble silver
JP2021075740A (en) Casting alloy, method for producing master alloy powder and method for producing casting alloy
JP2023024164A (en) Copper alloy molding having excellent electrical conductivity
RU2006118767A (en) METHOD FOR PRODUCING METAL ALLOYS IN THE FORM OF POWDERS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220902

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231128