JP6559865B1 - Method for producing copper alloy shaped article and copper alloy shaped article - Google Patents

Method for producing copper alloy shaped article and copper alloy shaped article Download PDF

Info

Publication number
JP6559865B1
JP6559865B1 JP2018190335A JP2018190335A JP6559865B1 JP 6559865 B1 JP6559865 B1 JP 6559865B1 JP 2018190335 A JP2018190335 A JP 2018190335A JP 2018190335 A JP2018190335 A JP 2018190335A JP 6559865 B1 JP6559865 B1 JP 6559865B1
Authority
JP
Japan
Prior art keywords
powder
copper
copper alloy
molybdenum
shaped article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018190335A
Other languages
Japanese (ja)
Other versions
JP2020059870A (en
Inventor
蘇亜拉図
仁史 酒井
仁史 酒井
官男 樋口
官男 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Data Engineering Systems Corp
Original Assignee
NTT Data Engineering Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Data Engineering Systems Corp filed Critical NTT Data Engineering Systems Corp
Priority to JP2018190335A priority Critical patent/JP6559865B1/en
Application granted granted Critical
Publication of JP6559865B1 publication Critical patent/JP6559865B1/en
Publication of JP2020059870A publication Critical patent/JP2020059870A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Abstract

【課題】熱処理工程を行うことなく高い電気伝導性および熱伝導性が得られる銅合金造形物を付加製造によって製造するための金属粉末および製造方法を提供する。【解決手段】銅粉末とモリブデン粉末が質量基準で99.92:0.08〜94.5:5.5の割合で混合された、積層造形用の金属粉末。前記積層造形用の金属粉末の薄層を形成する第1工程と、前記薄層の所定位置に電磁波ビームを照射して前記金属粉末のうち少なくとも一部を溶解・凝固させる第2工程とを順次繰り返して積層造形物を作製する銅合金造形物の製造方法。【選択図】図1The present invention provides a metal powder and a manufacturing method for manufacturing a copper alloy shaped article that can obtain high electrical conductivity and thermal conductivity without performing a heat treatment step by additive manufacturing. A metal powder for additive manufacturing in which copper powder and molybdenum powder are mixed in a ratio of 99.92: 0.08 to 94.5: 5.5 on a mass basis. A first step of forming a thin layer of the metal powder for additive manufacturing, and a second step of irradiating an electromagnetic wave beam to a predetermined position of the thin layer to dissolve and solidify at least a part of the metal powder sequentially A method for producing a copper alloy shaped article that repeatedly produces a laminated shaped article. [Selection] Figure 1

Description

本発明は粉末床溶融結合方式による銅合金の付加製造技術に関し、より詳しくは、原料となる粉末、銅合金からなる積層造形物の製造方法、および銅合金造形物に関する。   The present invention relates to an additive manufacturing technique for a copper alloy by a powder bed fusion bonding method, and more particularly to a powder as a raw material, a method for manufacturing a layered object formed from a copper alloy, and a copper alloy shaped object.

金属の立体造形物の製造方法として、付加製造技術、いわゆる3Dプリント技術が注目されている。このうち粉末床溶融結合方式による付加製造方法は、原料となる金属粉末を造形ステージに敷き詰め、その所定位置にレーザー光や電子ビームを照射して金属粉末を溶融・凝固させて積層することを繰り返すことにより、立体形状を造形する方法である。代表的な方法として、レーザー焼結法(SLS、Selective Laser Sintering)やレーザー溶融法(SLM、Selective Laser Melting)が挙げられる。この方法により、従来の切削加工等では作れなかった複雑な形状の製品を比較的短時間で製造できるようになった。   As a method for manufacturing a metal three-dimensional model, an additional manufacturing technique, a so-called 3D printing technique, has attracted attention. Of these, the additive manufacturing method using the powder bed fusion bonding method repeatedly lays the metal powder as a raw material on the modeling stage, and irradiates the predetermined position with a laser beam or an electron beam to melt and solidify the metal powder for lamination. This is a method of modeling a three-dimensional shape. Typical methods include laser sintering (SLS, Selective Laser Sintering) and laser melting (SLM, Selective Laser Melting). By this method, a product having a complicated shape that could not be made by conventional cutting or the like can be manufactured in a relatively short time.

金属の付加製造における一つの問題点は、銅の優れた電気伝導性・熱伝導性を活かした製品の製造が難しいことであった。その主な原因は、レーザー光の波長(例えばYbファイバーレーザーでは1090nm)に対する銅のエネルギー吸収率が極めて低く融点に到達できないことや、融点に到達できても熱伝導が高いために急速に熱が拡散して十分な溶融が進まないことである。   One problem in the additive manufacturing of metals is that it is difficult to manufacture products that take advantage of the excellent electrical and thermal conductivity of copper. The main causes are that the energy absorption rate of copper with respect to the wavelength of the laser beam (for example, 1090 nm for Yb fiber laser) is extremely low and the melting point cannot be reached. It is that the diffusion does not proceed sufficiently.

これに対して、特許文献1〜3には、クロムを含有する銅合金粉末を用いて付加製造によって積層造形物を作製し、その積層造形物を300℃以上の温度で熱処理することにより導電率を向上させることが記載されている。   On the other hand, in Patent Documents 1 to 3, electrical conductivity is obtained by preparing a layered object by additive manufacturing using copper alloy powder containing chromium, and heat-treating the layered object at a temperature of 300 ° C. or higher. It is described to improve.

特開2018−070914号公報JP 2018-070914 A 特許第6389557号公報Japanese Patent No. 6389557 特許第6346983号公報Japanese Patent No. 6346683

しかしながら、特許文献1〜3に記載された方法では、積層造形後に熱処理工程が不可欠であり、コスト要因となっていた。   However, in the methods described in Patent Documents 1 to 3, a heat treatment step is indispensable after layered modeling, which has been a cost factor.

本発明は、上記を考慮してなされたものであり、付加製造によって、熱処理工程を行うことなく高い電気伝導性および熱伝導性が得られる銅合金造形物を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a copper alloy shaped article that can obtain high electrical conductivity and thermal conductivity without performing a heat treatment step by additive manufacturing.

本発明の積層造形用の金属粉末は、銅粉末とモリブデン粉末が質量基準で99.92:0.08〜94.5:5.5の割合で混合されたものである。   The metal powder for additive manufacturing of the present invention is obtained by mixing copper powder and molybdenum powder in a ratio of 99.92: 0.08 to 94.5: 5.5 on a mass basis.

本発明の他の積層造形用の金属粉末は、0.08質量%〜5.5質量%のモリブデンを含み、残部が銅および不純物からなる銅合金粉末である。   Another metal powder for additive manufacturing of the present invention is a copper alloy powder containing 0.08% by mass to 5.5% by mass of molybdenum with the balance being copper and impurities.

本発明の銅合金造形物の製造方法は、上記積層造形用の金属粉末の薄層を形成する第1工程と、前記薄層の所定位置に電磁波ビームを照射して前記金属粉末のうち少なくとも一部を溶解・凝固させる第2工程とを順次繰り返して積層造形物を作製する。   The method for producing a copper alloy shaped article of the present invention includes a first step of forming a thin layer of the metal powder for layered shaping, and at least one of the metal powders by irradiating an electromagnetic wave beam at a predetermined position of the thin layer. A layered product is produced by sequentially repeating the second step of dissolving and solidifying the part.

本発明の銅合金造形物は、銅合金の積層構造を有し、前記銅合金は0.08質量%〜5.5質量%のモリブデンを含み、残部が銅および不純物からなり、室温における電気伝導率が65%IACS以上である。   The copper alloy shaped article of the present invention has a laminated structure of a copper alloy, and the copper alloy contains 0.08% by mass to 5.5% by mass of molybdenum, and the remainder is made of copper and impurities, and conducts electricity at room temperature. The rate is 65% IACS or higher.

本発明の積層造形用の金属粉末または銅合金造形物の製造方法によれば、付加製造によって、熱処理工程を行わない造形まま材の状態で、高い電気伝導性および熱伝導性を有する銅合金造形物を製造することできる。本発明の銅合金造形物によれば、熱処理が不要であることによって、低コストで高い電気伝導性および熱伝導性が得られる。   According to the method for producing a metal powder or a copper alloy shaped article for additive manufacturing according to the present invention, copper alloy shaping having high electrical conductivity and thermal conductivity in the state of a shaped material without performing a heat treatment step by additional production. Can be manufactured. According to the copper alloy shaped article of the present invention, high electrical conductivity and thermal conductivity can be obtained at low cost because heat treatment is unnecessary.

A:銅粉末とモリブデン粉末が混合された金属粉末の走査電子顕微鏡(SEM)像、B:銅−モリブデン合金からなる積層造形物の光学顕微鏡(OM)像である。A: Scanning electron microscope (SEM) image of a metal powder in which copper powder and molybdenum powder are mixed, and B: Optical microscope (OM) image of a layered object made of a copper-molybdenum alloy. 積層造形物である引張試験片の形状を示す図である。It is a figure which shows the shape of the tension test piece which is a laminate-molded article. 銅または銅−モリブデン合金からなる積層造形物の化学エッチング後のSEM像である。It is a SEM image after chemical etching of the layered object which consists of copper or a copper-molybdenum alloy. 銅−モリブデン合金からなる積層造形物の化学エッチング後のSEM像である。It is a SEM image after chemical etching of a layered product made of a copper-molybdenum alloy. 銅または銅−モリブデン合金からなる積層造形物の引張試験結果である。It is a tension test result of the layered object which consists of copper or a copper-molybdenum alloy.

本発明の一実施形態における積層造形用の金属粉末は、銅(Cu)粉末とモリブデン(Mo)粉末が質量基準で99.92:0.08〜94.5:5.5の割合で混合されたものである。以下において、この金属粉末を「Cu・Mo混合粉末」という。   In the additive manufacturing metal powder according to an embodiment of the present invention, copper (Cu) powder and molybdenum (Mo) powder are mixed at a mass ratio of 99.92: 0.08 to 94.5: 5.5. It is a thing. Hereinafter, this metal powder is referred to as “Cu / Mo mixed powder”.

銅粉末およびモリブデン粉末としては、各種の市販の粉末を用いることができる。   Various commercially available powders can be used as the copper powder and the molybdenum powder.

モリブデン粉末を混合するのは、付加製造時にレーザー光を吸収させるためである。銅粉末とモリブデン粉末の合計に対するモリブデン粉末の割合(Mo/(Cu+Mo))は0.08質量%以上であり、好ましくは0.23質量%以上、より好ましくは0.47質量%以上である。モリブデン粉末の割合が多いほど、付加製造時のレーザー光の吸収量が増えるからである。一方、上記割合(Mo/(Cu+Mo))は5.5質量%以下である。モリブデン粉末の割合が多すぎると、積層造形物の相対密度(測定密度/理論密度)が低くなり、延性が低下するからである。   The reason why the molybdenum powder is mixed is to absorb the laser beam during the additive manufacturing. The ratio of molybdenum powder to the total of copper powder and molybdenum powder (Mo / (Cu + Mo)) is 0.08% by mass or more, preferably 0.23% by mass or more, and more preferably 0.47% by mass or more. This is because the greater the proportion of molybdenum powder, the greater the amount of laser light absorbed during additive manufacturing. On the other hand, the ratio (Mo / (Cu + Mo)) is 5.5% by mass or less. This is because when the proportion of the molybdenum powder is too large, the relative density (measured density / theoretical density) of the layered object is lowered and ductility is lowered.

銅粉末およびモリブデン粉末は不純物元素を含有していてもよい。不純物元素は不可避的に混入した元素(不可避不純物)であってもよいし、意図的に添加された元素(添加元素)であってもよい。不可避不純物としては、酸素(O)、リン(P)や各粉末製造時の原料に混入した他の金属元素が挙げられる。添加元素としては、銅やモリブデンより優先的に酸化物を形成して、熱伝導率を下げる酸素(O)の影響を抑える金属元素等が添加されることがある。添加元素の例としては、酸化物の標準生成自由エネルギーが低いジルコニウム(Zr)、チタン(Ti)、シリコン(Si)などが挙げられる。なお、これらの元素が不可避不純物として含まれる場合もある。不純物元素の含有量は好ましくは0.2質量%未満である。   Copper powder and molybdenum powder may contain an impurity element. The impurity element may be an inevitably mixed element (unavoidable impurity) or an intentionally added element (added element). Examples of inevitable impurities include oxygen (O), phosphorus (P), and other metal elements mixed in the raw materials used in manufacturing each powder. As the additive element, a metal element that forms an oxide preferentially over copper or molybdenum and suppresses the influence of oxygen (O) that lowers the thermal conductivity may be added. Examples of the additive element include zirconium (Zr), titanium (Ti), silicon (Si), and the like, which have a low standard free energy of formation of oxides. Note that these elements may be included as inevitable impurities. The content of the impurity element is preferably less than 0.2% by mass.

銅粉末およびモリブデン粉末の粒度は、付加製造方法の方式や要求される造形物の寸法精度等に応じて定めることができる。一般的なSLS法やSLM法に用いる場合、好ましくは、レーザー回折・散乱法によって測定された粒径の体積基準のメジアン値(d50)が1〜100μmである。   The particle sizes of the copper powder and the molybdenum powder can be determined according to the method of the additive manufacturing method, the required dimensional accuracy of the shaped article, and the like. When used in a general SLS method or SLM method, the volume-based median value (d50) of the particle diameter measured by a laser diffraction / scattering method is preferably 1 to 100 μm.

他の実施形態における積層造形用の金属粉末は0.08質量%〜5.50質量%のモリブデンを含み、残部が銅および不純物からなる銅合金粉末である。以下においてこの金属粉末を「Cu−Mo合金粉末」という。   The metal powder for additive manufacturing in another embodiment is a copper alloy powder containing 0.08% by mass to 5.50% by mass of molybdenum, with the balance being copper and impurities. Hereinafter, this metal powder is referred to as “Cu—Mo alloy powder”.

Cu−Mo合金粉末は、好ましくはメカニカルアロイングによって作製される。Cu−Moの2元系は偏晶反応型の状態図を示し、モリブデンの融点(2623℃)が銅の沸点(2571℃)より高く、モリブデンの液体銅への溶解度は極めて低い。そのため、Cu−Moの均一な構造の合金粉末を工業的に製造することは困難である。高エネルギーボールミル等を用いて銅とモリブデンを機械的に合金化すれば、Cu粒子の表面がMo粒子で修飾されたCu−Mo合金粉末を容易に作製できる。   The Cu—Mo alloy powder is preferably produced by mechanical alloying. The binary system of Cu—Mo shows a phase diagram of a monotectic reaction type. The melting point of molybdenum (2623 ° C.) is higher than the boiling point of copper (2571 ° C.), and the solubility of molybdenum in liquid copper is extremely low. Therefore, it is difficult to industrially manufacture an alloy powder having a uniform structure of Cu—Mo. If copper and molybdenum are mechanically alloyed using a high energy ball mill or the like, Cu—Mo alloy powder in which the surface of Cu particles is modified with Mo particles can be easily produced.

Cu−Mo合金粉末が不純物元素を含有してもよいこと、不純物元素が添加元素であっても不可避不純物であってもよいことは、上記のCu・Mo混合粉末と同様である。Cu−Mo合金粉末の粒度は、好ましくは、レーザー回折・散乱法によって測定された粒径の体積基準のメジアン値(d50)が1〜100μmであることも、上記のCu・Mo混合粉末と同様である。   The Cu—Mo alloy powder may contain an impurity element, and the impurity element may be an additive element or an inevitable impurity as in the case of the Cu / Mo mixed powder. As for the particle size of the Cu-Mo alloy powder, the volume-based median value (d50) of the particle size measured by the laser diffraction / scattering method is preferably 1 to 100 μm, similarly to the above Cu / Mo mixed powder. It is.

積層造形物の作製には、種々公知の付加製造技術を用いることができる。例えば、上記のCu・Mo混合粉末の薄層を形成する第1工程と、薄層の所定位置に電磁波ビームを照射してCu・Mo混合粉末のうち少なくとも一部を溶融・凝固させる第2工程とを順次繰り返す。モリブデン粉末がレーザー光を吸収することにより少なくとも銅粉末が溶融する。あるいは、例えば、上記のCu−Mo合金粉末の薄層を形成する第1工程と、薄層の所定位置に電磁波ビームを照射してCu−Mo合金粉末のうち少なくとも一部を溶融・凝固させる第2工程とを順次繰り返す。Cu−Mo合金粒子中のMo相がレーザー光を吸収することにより少なくともCu相が溶融する。最後に余剰の粉末を除去することにより、銅合金の積層造形物が得られる。   Various known additive manufacturing techniques can be used for producing the layered object. For example, a first step of forming a thin layer of the Cu / Mo mixed powder and a second step of irradiating an electromagnetic wave beam at a predetermined position of the thin layer to melt and solidify at least a part of the Cu / Mo mixed powder. Are repeated sequentially. When the molybdenum powder absorbs the laser light, at least the copper powder is melted. Alternatively, for example, a first step of forming a thin layer of the Cu—Mo alloy powder and a step of melting and solidifying at least a part of the Cu—Mo alloy powder by irradiating an electromagnetic wave beam to a predetermined position of the thin layer. The two steps are sequentially repeated. When the Mo phase in the Cu—Mo alloy particles absorbs laser light, at least the Cu phase is melted. Finally, by removing excess powder, a layered product of copper alloy is obtained.

以上の工程によって本実施形態の銅合金造形物が得られる。銅合金造形物の組織は、銅合金の積層構造を有する造形物であって、Cuの母相(マトリクス相)中にMo相が分散した構造を有する。   The copper alloy shaped article of the present embodiment is obtained through the above steps. The structure of the copper alloy shaped article is a shaped article having a laminated structure of copper alloys, and has a structure in which the Mo phase is dispersed in the parent phase (matrix phase) of Cu.

次に、いくつかの実験結果によって、上記実施形態をより詳細に説明する。なお、以下の各表における空欄は、実験または分析を行なわなかったこと意味する。   Next, the embodiment will be described in more detail based on some experimental results. The blank in each table below means that no experiment or analysis was performed.

Cu・Mo混合粉末を用いて、SLS法により、後述する各種特性測定用の試験片を作製した。作製はYbファイバーレーザーを用いた粉末積層造形システム(EOS GmbH、M290)を用い、積層厚0.01〜0.06mm、レーザー出力200〜400Wの条件で行った。比較のために、銅粉末のみを用いて同様なSLM法により純銅の試験片を作製した。レーザー光の走査パターンおよび速度は、下記試料Cu0.5Moが最も緻密になる条件を予め求めて、試料Cu、Cu0.1Mo、Cu0.2MoおよびCu0.5Moは同じ条件でレーザー光を照射した。モリブデン粉末の割合がそれより多い試料では、レーザー光の吸収率に合わせて、走査速度等を適宜調節した。   Using Cu / Mo mixed powder, test pieces for measuring various properties described later were prepared by the SLS method. Fabrication was performed using a powder additive manufacturing system (EOS GmbH, M290) using a Yb fiber laser under conditions of a laminate thickness of 0.01 to 0.06 mm and a laser output of 200 to 400W. For comparison, pure copper test pieces were prepared by the same SLM method using only copper powder. The scanning pattern and speed of the laser light were obtained in advance under the conditions that the following sample Cu0.5Mo was most dense, and the samples Cu, Cu0.1Mo, Cu0.2Mo, and Cu0.5Mo were irradiated with laser light under the same conditions. For samples with a higher proportion of molybdenum powder, the scanning speed and the like were appropriately adjusted according to the absorption rate of the laser beam.

表1に、積層造形物の作製に用いた銅粉末およびモリブデン粉末の不純物濃度および粒度を示す。酸素(O)および窒素(N)の濃度は酸素・窒素分析装置(LECO Corp.、ON736)を用い、酸素は非分散型赤外線吸収法、窒素は熱電導度法によって測定した。銅またはモリブデンの純度には酸素および窒素は考慮していない。粒度の測定はレーザー回折・散乱法による粒度分布測定装置(MT3200、マイクロトラック・ベル株式会社)を用いて行った。表1中のMNは個数平均径、MVは体積平均径を表す。表1中のd10、d50、d90は、全体積を100%としたときの累積カーブがそれぞれ10%、50%、90%となる点の粒子径を表す。d50はメジアン径である。   Table 1 shows the impurity concentration and the particle size of the copper powder and the molybdenum powder used for producing the layered object. The concentration of oxygen (O) and nitrogen (N) was measured by an oxygen / nitrogen analyzer (LECO Corp., ON736), oxygen was measured by a non-dispersive infrared absorption method, and nitrogen was measured by a thermal conductivity method. Oxygen and nitrogen are not considered in the purity of copper or molybdenum. The particle size was measured using a particle size distribution measuring apparatus (MT3200, Microtrac Bell Co., Ltd.) using a laser diffraction / scattering method. In Table 1, MN represents the number average diameter, and MV represents the volume average diameter. In Table 1, d10, d50, and d90 represent the particle diameters at points where the cumulative curves are 10%, 50%, and 90% when the total volume is 100%. d50 is the median diameter.

表2に作製した積層造形物の化学分析結果を示す。Mo含有量はICP発光分光分析により求めた。酸素(O)および窒素(N)の分析は原料粉末と同じ方法により行った。   Table 2 shows the chemical analysis results of the layered object produced. The Mo content was determined by ICP emission spectroscopic analysis. The analysis of oxygen (O) and nitrogen (N) was performed by the same method as the raw material powder.

図1AにCu・Mo混合粉末、図1Bに試料Cu5Mo(L)の断面の走査電子顕微鏡(SEM)像を示す。図1Aの下部にある黒いバーの長さは300μm、図1Bの下部にある淡色のバーの長さは100μmである。   FIG. 1A shows a Cu / Mo mixed powder, and FIG. 1B shows a scanning electron microscope (SEM) image of a cross section of a sample Cu5Mo (L). The length of the black bar at the bottom of FIG. 1A is 300 μm, and the length of the light bar at the bottom of FIG. 1B is 100 μm.

図1Aにおいて、色の濃い粒子がCu粒子(CU)、色の薄い粒子がMo粒子(ML)である。   In FIG. 1A, dark particles are Cu particles (CU) and light particles are Mo particles (ML).

図1Bにおいて、マトリクス相中に島状の相が分散している。エネルギー分散型X線分析(EDS)によって、マトリクス相はCuからなりMoは含まず、島状相はMoからなりCuを含まず、Cu相とMo相が完全に分離していることを確認した。また、この試料のX線回折(XRD)分析では、Cuの結晶面とMoの結晶面だけが観測された。銅粉末は完全に溶融し緻密なマトリクス相を形成している。島状相の形状から、Mo粒子は一部が溶融したものと考えられる。   In FIG. 1B, island-like phases are dispersed in the matrix phase. By energy dispersive X-ray analysis (EDS), it was confirmed that the matrix phase was made of Cu and Mo was not contained, the island-like phase was made of Mo and Cu was not contained, and the Cu phase and the Mo phase were completely separated. . Further, in the X-ray diffraction (XRD) analysis of this sample, only the crystal plane of Cu and the crystal plane of Mo were observed. The copper powder is completely melted to form a dense matrix phase. From the shape of the island phase, it is considered that a part of the Mo particles is melted.

以上の観察から、Cu・Mo混合粉末の付加製造工程は次のように進行したと考えられる。レーザー光が照射されると、Mo粒子がレーザー光を吸収して周囲のCu粒子に熱を伝える。モリブデンの融点が高く、吸収したレーザー光のエネルギーが周囲のCu粒子に放散するので、Mo粒子自体は一部が溶融して粒子形状が崩れた状態にとどまる。Cu粒子はMo粒子から伝達される熱で温度が上昇する。固体の銅は温度上昇とともにレーザー吸収率が上がり熱伝導度が下がること、さらに、銅が溶融するとレーザー吸収率が格段に上がり熱伝導率が格段に下がることが報告されている(Blomら, "Process spread reduction of laser micro-spot welding of thin copper parts using real-time control", 2003年10月, Proc. SPIE 4977, p.497)。そのため、Cu粒子の一部が一旦溶融すると、レーザー光のエネルギーを直接吸収して、熱の放散も抑制されるので、溶融が加速される。Cu粒子が溶融すると、Mo粒子と液体のCu相との界面熱抵抗が下がり、Mo粒子からCu相への熱伝達量が増え、Mo粒子の「冷却」が促進される。さらに、モリブデンの液体銅への溶解度が極めて低いことから、Mo粒子は一部溶融した状態でCu相中に分散して残る。   From the above observation, it is considered that the additive manufacturing process of the Cu / Mo mixed powder proceeded as follows. When the laser beam is irradiated, the Mo particles absorb the laser beam and transmit heat to the surrounding Cu particles. Molybdenum has a high melting point and the energy of the absorbed laser light is dissipated to the surrounding Cu particles, so that the Mo particles themselves are partially melted and remain in a broken particle shape. The temperature of the Cu particles rises due to the heat transferred from the Mo particles. Solid copper has been reported to increase its laser absorptivity and decrease its thermal conductivity with increasing temperature, and further, when copper melts, its laser absorptivity increases dramatically and its thermal conductivity decreases dramatically (Blom et al., " Process spread reduction of laser micro-spot welding of thin copper parts using real-time control ", October 2003, Proc. SPIE 4977, p.497). Therefore, once a part of the Cu particles is melted, the energy of the laser beam is directly absorbed and heat dissipation is also suppressed, so that melting is accelerated. When the Cu particles melt, the interfacial thermal resistance between the Mo particles and the liquid Cu phase decreases, the amount of heat transfer from the Mo particles to the Cu phase increases, and the “cooling” of the Mo particles is promoted. Furthermore, since the solubility of molybdenum in liquid copper is extremely low, the Mo particles remain dispersed in the Cu phase in a partially molten state.

次に、作製した積層造形物の各種特性を評価した。   Next, various characteristics of the manufactured layered product were evaluated.

熱伝導率測定用の試験片は、直径10mm、厚さ3mmのコイン型で、1つの直径の方向に積層して作製した。熱伝導率の測定は、室温で、レーザーフラッシュ法を用いて真空中で行った。   A test piece for measuring thermal conductivity was produced by laminating coins having a diameter of 10 mm and a thickness of 3 mm in the direction of one diameter. The thermal conductivity was measured at room temperature in a vacuum using a laser flash method.

電気伝導率は熱伝導率から推算した。なお、本明細書中で、電気伝導率は焼鈍標準軟銅に対する比(%IACS)で示す。焼鈍標準軟銅の電気抵抗率は、1.7241×10−2μΩ・mである。 The electrical conductivity was estimated from the thermal conductivity. In addition, in this specification, electrical conductivity is shown by ratio (% IACS) with respect to annealing standard annealed copper. The electrical resistivity of the annealed standard annealed copper is 1.7241 × 10 −2 μΩ · m.

金属の電気伝導率と熱伝導率の間には次式の関係があり、ウィーデマン・フランツの法則として知られている。
K/σ=LT
ここで、K:熱伝導率、σ:電気伝導率、L:ローレンツ数、T:絶対温度。ローレンツ数(L)は理論的には次式で与えられる。
L=(π/3)・(k/e)
=2.44×10−8WΩK−2
ここで、k:ボルツマン定数、e:電気素量。
There is a relationship of the following equation between the electrical conductivity and thermal conductivity of a metal, which is known as Wiedemann-Franz law.
K / σ = LT
Here, K: thermal conductivity, σ: electrical conductivity, L: Lorentz number, T: absolute temperature. The Lorentz number (L) is theoretically given by the following equation.
L = (π 2/3) · (k B / e) 2
= 2.44 × 10 −8 WΩK −2
Here, k B : Boltzmann constant, e: elementary electric charge.

機械特性測定用の試験片は、長さ50mm×幅6mm×高さ11mmの直方体を高さ方向に積層して作製し、図2に示す形状をワイヤー放電加工により3枚切り出し、表面を研磨して作製した。機械特性の測定は、オートグラフを用い、室温で、ひずみ速度0.001/sの引張試験により行った。ひずみ測定はビデオ式非接触伸び計(株式会社島津製作所、TRView X120S)を用いて行った。   Test specimens for measuring mechanical properties were prepared by stacking rectangular parallelepipeds 50 mm long x 6 mm wide x 11 mm high in the height direction, cutting out the three shapes shown in FIG. 2 by wire electric discharge machining, and polishing the surface. Made. The measurement of mechanical properties was performed by a tensile test at a room temperature and a strain rate of 0.001 / s using an autograph. Strain measurement was performed using a video non-contact extensometer (Shimadzu Corporation, TRView X120S).

相対密度は、銅の密度(8.89g/cm)、モリブデンの密度(10.28g/cm)および両者の組成比から求めた計算値で、実測値を除して求めた。 The relative density was obtained by dividing the measured value by a calculated value obtained from the density of copper (8.89 g / cm 3 ), the density of molybdenum (10.28 g / cm 3 ), and the composition ratio of both.

表3に作製した積層造形物の特性を示す。また、図3および図4に積層造形物の断面を濃硝酸(60%水溶液)で化学エッチングした後のSEM像を示す。各像の下にある黒いバーの長さは300μmである。   Table 3 shows the characteristics of the layered object produced. Moreover, the SEM image after carrying out the chemical etching of the cross section of a laminate-molded article with concentrated nitric acid (60% aqueous solution) in FIG. 3 and FIG. 4 is shown. The length of the black bar under each image is 300 μm.

表3から、積層造形物の相対密度は、CuにMoを加えることで大きくなり、Mo含有量が約0.5質量%〜約1質量%で最大となった。   From Table 3, the relative density of the layered object was increased by adding Mo to Cu, and the maximum Mo content was about 0.5% by mass to about 1% by mass.

このことは図3および図4のSEM像でも確認できる。試料Cuでは大きなポアが目立つ。このように、銅粉末CUのみでは、Cuの融点が1084℃であるにもかかわらず、レーザー積層造形によって緻密な組織を得ることはできない。なお、モリブデン粉末のみを用いた場合は、モリブデンの融点が高いにもかかわらず、レーザー積層造形によって緻密な組織が得られる。これに対して、Moを約0.1質量%から約5質量%含有する試料ではCuのマトリクス相は緻密であった。ただし、試料Cu0.1Moでは大きなポアはないものの粗大な界面が存在した。また、Moを約2質量%以上含有する試料ではMo粒子の凝集が見られ、試料Cu10Moでは再び大きなポアが見られ、このことが相対密度低下の原因と考えられる。   This can also be confirmed from the SEM images of FIGS. A large pore is conspicuous in the sample Cu. As described above, with the copper powder CU alone, a dense structure cannot be obtained by laser additive manufacturing even though the melting point of Cu is 1084 ° C. In addition, when only molybdenum powder is used, a dense structure can be obtained by laser additive manufacturing even though molybdenum has a high melting point. On the other hand, in the sample containing about 0.1 mass% to about 5 mass% of Mo, the matrix phase of Cu was dense. However, the sample Cu0.1Mo did not have a large pore, but there was a coarse interface. Further, in the sample containing about 2% by mass or more of Mo, aggregation of Mo particles is observed, and in the sample Cu10Mo, a large pore is observed again, which is considered to be a cause of a decrease in relative density.

表3から、造形物の熱伝導度および電気伝導度は、CuにMoを加えることで向上し、Mo含有量が約0.5質量%で最大となり、Mo含有量が約5質量%に至るまで試料Cuより高い値を示した。これはマトリクスのCu相が緻密化したことと、MoがCu相に溶解せずCu相の熱伝導性および電気伝導性を損なわないことによると考えられる。   From Table 3, the thermal conductivity and electrical conductivity of the shaped object are improved by adding Mo to Cu, the Mo content reaches a maximum at about 0.5% by mass, and the Mo content reaches about 5% by mass. The value was higher than that of the sample Cu. This is considered due to the fact that the Cu phase of the matrix is densified and that Mo does not dissolve in the Cu phase and does not impair the thermal conductivity and electrical conductivity of the Cu phase.

図5に積層造形体の引張試験結果を示す。表3と図5から、積層造形物の0.2%耐力と引張強さは、CuにMoを加えることで緩やかに上昇し、Mo含有量が約5質量%に至るまで試料Cuより高い値を示した。試料Cu10Moは積層造形物が脆く、試験片作製時の研磨工程でクラックが入ったため、引張試験のデータが得られなかった。   FIG. 5 shows the tensile test result of the layered object. From Table 3 and FIG. 5, the 0.2% proof stress and tensile strength of the layered product increase gradually by adding Mo to Cu, and are higher than the sample Cu until the Mo content reaches about 5 mass%. showed that. Sample Cu10Mo was brittle with a layered product, and cracks were generated in the polishing process during the preparation of the test piece, so data on a tensile test could not be obtained.

図5から、試料Cuは延性に乏しく、引張強さを通過した直後に破断している。表3と図5から、積層造形物の破断伸びはCuにMoを加えることで向上し、特に、Mo含有量が約0.2質量%、約0.5質量%へと増えるに従って著しく向上している。一方、Mo含有量をさらに増やすと、破断伸びは試料Cu5Mo(K)およびCu5Mo(L)でCu0.1MoやCu0.2Moと同程度にまで小さくなった。なお、試料Cu10Moのデータが得られなかったことは上記のとおりである。表3において、破断伸びと相対密度との間には一定の相関があり、積層造形体の組織の緻密性が延性に影響していると考えられる。このことから、Mo含有量が大きくなると、図3および図4で示したMo粒子の凝集が影響していると考えられる。   From FIG. 5, the sample Cu is poor in ductility and is broken immediately after passing through the tensile strength. From Table 3 and FIG. 5, the elongation at break of the layered object is improved by adding Mo to Cu, and in particular, it is remarkably improved as the Mo content increases to about 0.2 mass% and about 0.5 mass%. ing. On the other hand, when the Mo content was further increased, the breaking elongation of the samples Cu5Mo (K) and Cu5Mo (L) was reduced to the same level as Cu0.1Mo and Cu0.2Mo. In addition, it was as above-mentioned that the data of sample Cu10Mo were not obtained. In Table 3, there is a certain correlation between the elongation at break and the relative density, and it is considered that the denseness of the structure of the layered object affects the ductility. From this, when Mo content becomes large, it is thought that aggregation of Mo particle | grains shown in FIG. 3 and FIG. 4 has influenced.

上記破断伸びの実験結果からは、積層造形物の機械特性、特に破断伸びが指標となる延性を向上させるには、Cu相中のMo粒子が凝集することなく、均一に分散していることが重要であるとの知見が得られた。この点から、積層造形用の金属粉末として、メカニカルアロイングによって作製されたCu−Mo合金粉末を用いることにより、積層造形物の機械特性を向上できると考えられる。   From the experimental results of the elongation at break, it is found that the Mo particles in the Cu phase are uniformly dispersed without agglomeration in order to improve the mechanical properties of the layered object, particularly the ductility whose index is the elongation at break. The knowledge that it was important was obtained. From this point, it is considered that the mechanical properties of the layered object can be improved by using Cu-Mo alloy powder produced by mechanical alloying as the metal powder for layered object modeling.

表3には、700℃×30分、500℃×2時間の熱処理を行い、空冷した積層造形物の熱伝導率の値を併せて示した。表3から、熱伝導率は熱処理によって余り変化していないが、わずかに上昇しているようにも見える。モリブデンは銅に固溶せず、熱処理によってモリブデンが拡散するとは考えにくい。熱処理によって熱伝導率が向上したとすれば、Cuマトリクス相の構造緩和や、酸素(O)等の不純物が酸化物等として析出したことが原因と考えられる。   Table 3 also shows the thermal conductivity values of the layered objects that were heat-treated at 700 ° C. for 30 minutes and 500 ° C. for 2 hours and then air-cooled. From Table 3, it can be seen that the thermal conductivity is not significantly changed by the heat treatment, but is slightly increased. Molybdenum does not dissolve in copper, and it is unlikely that molybdenum will diffuse through heat treatment. If the thermal conductivity is improved by the heat treatment, it is considered that the structure relaxation of the Cu matrix phase and impurities such as oxygen (O) are precipitated as oxides.

本発明は、上記の実施形態や実施例に限定されるものではなく、その技術的思想の範囲内で変形が可能である。   The present invention is not limited to the above-described embodiments and examples, and can be modified within the scope of the technical idea.

例えば、上記実施形態と実施例では付加製造時の熱源がレーザー光であったが、熱源として電子ビームを用いてもよい。   For example, in the above-described embodiments and examples, the heat source at the time of additional manufacture is laser light, but an electron beam may be used as the heat source.

Claims (4)

レーザー回折・散乱法によって測定された粒径の体積基準のメジアン値(d50)がいずれも1〜100μmである銅粉末およびモリブデン粉末が、質量基準で99.92:0.08〜94.5:5.5の割合で混合された金属粉末の薄層を形成する第1工程と、
前記薄層の所定位置に前記モリブデン粉末がエネルギーを吸収して溶融可能なレーザー光を照射して前記金属粉末のうち少なくとも一部を溶解・凝固させる第2工程とを順次繰り返して積層造形物を作製する、
銅合金造形物の製造方法。
Copper powder and molybdenum powder each having a volume-based median value (d50) of the particle diameter measured by the laser diffraction / scattering method of 1 to 100 μm are 99.92: 0.08 to 94.5: A first step of forming a thin layer of metal powder mixed in a proportion of 5.5 ;
By irradiating meltable laser beam the molybdenum powder absorbs energy at a predetermined position of the thin layer, sequentially and repeatedly layered manufacturing in the second step of melting and solidifying at least part, the one of the metal powder Make things,
A method for producing a copper alloy shaped article.
前記銅粉末および前記モリブデン粉末が混合された前記金属粉末は、全体の粒子の個数に占めるモリブデン粒子の個数の割合が13%以上である、In the metal powder in which the copper powder and the molybdenum powder are mixed, the ratio of the number of molybdenum particles to the total number of particles is 13% or more.
請求項1に記載の銅合金造形物の製造方法。The manufacturing method of the copper alloy modeling thing of Claim 1.
銅粉末とモリブデン粉末を質量基準で99.92:0.08〜94.5:5.5の割合で用いてメカニカルアロイングによって作製され、レーザー回折・散乱法によって測定された粒径の体積基準のメジアン値(d50)が1〜100μmである銅合金粉末の薄層を形成する第1工程と、
前記薄層の所定位置にエネルギーを吸収して溶融可能なレーザー光を照射して前記銅合金粉末のうち少なくとも一部を溶解・凝固させる第2工程とを順次繰り返して積層造形物を作製する、
銅合金造形物の製造方法。
Volumetric basis of particle size, measured by laser diffraction / scattering method, prepared by mechanical alloying using copper powder and molybdenum powder at a ratio of 99.92: 0.08 to 94.5: 5.5 by mass A first step of forming a thin layer of copper alloy powder having a median value (d50) of 1 to 100 μm ;
By irradiating meltable laser beam absorbs energy in a predetermined position of the thin layer, producing a multilayer molded article and a second step of melting and solidifying at least a portion of said copper alloy powder, sequentially repeating the To
A method for producing a copper alloy shaped article.
銅合金の積層構造を有し、
前記銅合金は0.08質量%〜5.5質量%のモリブデンを含み、残部が銅および0.2質量%以下であってモリブデンより少ない量の不純物からなり、
銅からなるマトリクス相中にモリブデンからなる島状相が分散した組織を有し、
相対密度が93.1%以上であり、
室温における電気伝導率が65%IACS以上である、
銅合金造形物。
It has a laminated structure of copper alloy,
The copper alloy contains 0.08% by mass to 5.5% by mass of molybdenum, with the balance being copper and less than 0.2% by mass of impurities less than molybdenum ,
It has a structure in which island-like phases made of molybdenum are dispersed in a matrix phase made of copper,
The relative density is 93.1% or more,
The electrical conductivity at room temperature is 65% IACS or higher,
Copper alloy molding.
JP2018190335A 2018-10-05 2018-10-05 Method for producing copper alloy shaped article and copper alloy shaped article Active JP6559865B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018190335A JP6559865B1 (en) 2018-10-05 2018-10-05 Method for producing copper alloy shaped article and copper alloy shaped article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018190335A JP6559865B1 (en) 2018-10-05 2018-10-05 Method for producing copper alloy shaped article and copper alloy shaped article

Publications (2)

Publication Number Publication Date
JP6559865B1 true JP6559865B1 (en) 2019-08-14
JP2020059870A JP2020059870A (en) 2020-04-16

Family

ID=67614817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018190335A Active JP6559865B1 (en) 2018-10-05 2018-10-05 Method for producing copper alloy shaped article and copper alloy shaped article

Country Status (1)

Country Link
JP (1) JP6559865B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127422B1 (en) 2021-09-27 2024-05-31 Addup Additive manufacturing process for a copper object

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304600A (en) * 1979-11-01 1981-12-08 Bell Telephone Laboratories, Incorporated Manufacture of high-strength metallic articles
JPH11204702A (en) * 1998-01-09 1999-07-30 Tokyo Tungsten Co Ltd High heat conductive heat dissipating substrate and its manufacture
JP5862695B2 (en) * 2014-01-23 2016-02-16 株式会社明電舎 Method for producing electrode material
JP2016160523A (en) * 2015-03-05 2016-09-05 学校法人同志社 Copper-molybdenum composite material and method for producing the same
WO2016185966A1 (en) * 2015-05-15 2016-11-24 コニカミノルタ株式会社 Powder material, method for producing three-dimensional molded article, and three-dimensional molding device
US10472709B2 (en) * 2015-12-11 2019-11-12 Apple Inc. High strength, high conductivity electroformed copper alloys and methods of making
WO2018062527A1 (en) * 2016-09-29 2018-04-05 Jx金属株式会社 Surface treatment metal powder for laser sintering

Also Published As

Publication number Publication date
JP2020059870A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP6566169B2 (en) Alloy member, method for manufacturing the alloy member, and product using the alloy member
JP6346983B1 (en) Copper alloy powder, heat treatment method of layered object, manufacturing method of copper alloy object, and copper alloy object
JP5962707B2 (en) Copper alloy for electronic / electric equipment, copper alloy plastic working material for electronic / electric equipment, manufacturing method of copper alloy plastic working material for electronic / electric equipment, electronic / electric equipment parts and terminals
WO2017098848A1 (en) High entropy alloy member, method for producing alloy member, and product using alloy member
WO2019239655A1 (en) Copper alloy powder, layered/molded product, method for producing layered/molded product, and metal parts
JP6803021B2 (en) Manufacturing method of laminated model and laminated model
JP6496072B1 (en) Method for producing metal powder for additive manufacturing and copper alloy shaped article
KR20210118131A (en) How to make aluminum alloy parts
JP2016053198A (en) Metal molded product and metal powder for metal molded product
JP2017115220A (en) Metal powder, method for producing laminated molding and laminated molding
JP5983589B2 (en) Rolled copper alloy for electronic and electrical equipment, electronic and electrical equipment parts and terminals
WO2022080319A1 (en) Metal powder for additive manufacturing, method for manufacturing additive-manufactured article using same, and additive-manufactured article
KR20190075987A (en) Copper alloy powder, method of producing laminated molding, and laminated molding
JP2019203197A (en) Method for heat-treating lamination-molded object and method for manufacturing copper alloy molded object
JP6975888B2 (en) Heat treatment method for laminated model and manufacturing method for copper alloy model
JP6221471B2 (en) Copper alloy for electronic / electric equipment, copper alloy plastic working material for electronic / electric equipment, manufacturing method of copper alloy plastic working material for electronic / electric equipment, electronic / electric equipment parts and terminals
JP2021143384A (en) Cu-based alloy powder
JP6559865B1 (en) Method for producing copper alloy shaped article and copper alloy shaped article
JP6248388B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP2022160961A (en) Lamination molding copper alloy powder excellent in conductivity
US11351601B2 (en) Copper alloy powder having excellent laser absorptivity
JP6248389B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP2022148139A (en) MOLDED BODY MADE OF Cu-BASED ALLOY
WO2023181329A1 (en) Copper alloy powder for additive layer manufacturing, production method and evaluation method therefor, method for producing additive layer-manufactured copper alloy article, and additive layer-manufactured copper alloy article
WO2023063018A1 (en) Copper alloy powder for three-dimensional laminate molding, having excellent moldability and conductivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181122

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190717

R150 Certificate of patent or registration of utility model

Ref document number: 6559865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250