JP2019203197A - Method for heat-treating lamination-molded object and method for manufacturing copper alloy molded object - Google Patents

Method for heat-treating lamination-molded object and method for manufacturing copper alloy molded object Download PDF

Info

Publication number
JP2019203197A
JP2019203197A JP2019108316A JP2019108316A JP2019203197A JP 2019203197 A JP2019203197 A JP 2019203197A JP 2019108316 A JP2019108316 A JP 2019108316A JP 2019108316 A JP2019108316 A JP 2019108316A JP 2019203197 A JP2019203197 A JP 2019203197A
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
copper alloy
mass
treatment temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019108316A
Other languages
Japanese (ja)
Inventor
蘇亜拉図
Yalatu Su
仁史 酒井
Hitoshi Sakai
仁史 酒井
官男 樋口
Norio Higuchi
官男 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ntt Data Eng Systems Corp
NTT Data Engineering Systems Corp
Original Assignee
Ntt Data Eng Systems Corp
NTT Data Engineering Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Data Eng Systems Corp, NTT Data Engineering Systems Corp filed Critical Ntt Data Eng Systems Corp
Priority to JP2019108316A priority Critical patent/JP2019203197A/en
Publication of JP2019203197A publication Critical patent/JP2019203197A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Abstract

To provide a method for heat-treating a lamination-molded object allowing for manufacturing a copper alloy molded object having a higher mechanical strength and/or electrical/thermal conductivity.SOLUTION: A method for heat-treating a lamination-molded object additionally manufactured uses a copper alloy powder consisting of Cr:1.1-20 mass%, Zr:0-0.2 mass%, and a remainder of Cu and inevitable impurities. The method for heat-treating a lamination-molded object has a first heat treatment step that holds the lamination-molded object at a first heat treatment temperature of 500-800°C and a second heat treatment step that holds it at a second heat treatment temperature that is a temperature of 400°C or higher and 50°C or more lower than the first heat treatment temperature after the first heat treatment step.SELECTED DRAWING: Figure 2

Description

本発明は粉末床溶融結合方式による金属の付加製造技術に関し、より詳しくは、原料となる銅合金粉末、付加製造によって作製された積層造形物の熱処理方法、当該熱処理工程を含む銅合金造形物の製造方法、および銅合金造形物に関する。   TECHNICAL FIELD The present invention relates to a metal additive manufacturing technique using a powder bed fusion bonding method, and more specifically, a copper alloy powder as a raw material, a heat treatment method for a layered object manufactured by additive manufacturing, and a copper alloy shaped object including the heat treatment step. The present invention relates to a manufacturing method and a copper alloy shaped article.

金属の立体造形物の製造方法として、付加製造技術、いわゆる3Dプリント技術が注目されている。このうち粉末床溶融結合方式による付加製造方法は、原料となる金属粉末を造形ステージに敷き詰め、その所定位置にレーザー光や電子ビームを照射して金属粉末を溶融・凝固させて積層することを繰り返すことにより、立体形状を造形する方法である。代表的な方法として、レーザー焼結法(SLS、Selective Laser Sintering)やレーザー溶融法(SLM、Selective Laser Melting)が挙げられる。この方法により、従来の切削加工等では作れなかった複雑な形状の製品を比較的短時間で製造できるようになった。   As a method for manufacturing a metal three-dimensional model, an additional manufacturing technique, a so-called 3D printing technique, has attracted attention. Of these, the additive manufacturing method using the powder bed fusion bonding method repeatedly lays the metal powder as a raw material on the modeling stage, and irradiates the predetermined position with a laser beam or an electron beam to melt and solidify the metal powder for lamination. This is a method of modeling a three-dimensional shape. Typical methods include laser sintering (SLS, Selective Laser Sintering) and laser melting (SLM, Selective Laser Melting). By this method, a product having a complicated shape that could not be made by conventional cutting or the like can be manufactured in a relatively short time.

金属の付加製造における一つの問題点は、銅の優れた電気伝導性・熱伝導性を活かした製品の製造が難しいことであった。その主な原因は、レーザー光の波長(例えばYbファイバーレーザーでは1090nm)に対する銅のエネルギー吸収率が極めて低く融点に到達できないことや、融点に到達できても熱伝導が高いために急速に熱が拡散して十分な溶融が進まないことである。   One problem in the additive manufacturing of metals is that it is difficult to manufacture products that take advantage of the excellent electrical and thermal conductivity of copper. The main causes are that the energy absorption rate of copper with respect to the wavelength of the laser beam (for example, 1090 nm for Yb fiber laser) is extremely low and the melting point cannot be reached. It is that the diffusion does not proceed sufficiently.

これに対して、特許文献1には、クロムおよび珪素の少なくともいずれかを0.10質量%以上1.00質量%以下含有し、前記クロムおよび前記珪素の合計量が1.00質量%以下であり、残部が銅からなる、積層造形(付加製造)用の銅合金粉末が記載されている。この銅合金粉末を用いることにより、機械強度および導電率(電気伝導率)を両立できる積層造形物が製造可能とされる。また、特許文献1には、積層造形物に熱処理を施すことにより、その機械的性質および導電率を向上させることが記載されている。   On the other hand, Patent Document 1 contains at least one of chromium and silicon of 0.10% by mass or more and 1.00% by mass or less, and the total amount of chromium and silicon is 1.00% by mass or less. Yes, a copper alloy powder for additive manufacturing (additional manufacturing) is described in which the balance is made of copper. By using this copper alloy powder, it is possible to manufacture a layered object that can achieve both mechanical strength and electrical conductivity (electrical conductivity). Further, Patent Document 1 describes that the mechanical properties and conductivity are improved by performing heat treatment on the layered object.

特許第6030186号公報Japanese Patent No. 6030186

特許文献1の実施例によれば、クロムまたは珪素の配合により、引張強さが186.74〜281.41MPa、導電率が23.59〜60.42%IACSである積層造形まま材が得られている。また、導電率は窒素雰囲気下、300℃×3時間の熱処理によって、26.25〜64.27%IACSまで向上している。   According to the example of Patent Document 1, an additive material with a tensile strength of 186.74 to 281.41 MPa and conductivity of 23.59 to 60.42% IACS can be obtained by blending chromium or silicon. ing. Further, the conductivity is improved to 26.25 to 64.27% IACS by heat treatment at 300 ° C. for 3 hours under a nitrogen atmosphere.

しかしながら、特許文献1に記載された造形物では、機械強度および導電率のいずれについても、さらなる改善の余地があった。また、300℃×3時間の熱処理によって導電率がわずかに向上しているが、熱処理の効果は十分ではなかった。また、導電率が高い試料(表5)では引張強さが小さく、引張強さが大きい試料(表6、7)では導電率が23.59〜38.12%と低く、機械強度と電気伝導性をより高いレベルで両立することが望まれた。   However, the shaped article described in Patent Document 1 has room for further improvement in both mechanical strength and electrical conductivity. Further, although the electrical conductivity was slightly improved by the heat treatment at 300 ° C. for 3 hours, the effect of the heat treatment was not sufficient. In addition, samples with high electrical conductivity (Table 5) have low tensile strength, and samples with high tensile strength (Tables 6 and 7) have low electrical conductivity of 23.59 to 38.12%. It was desired to achieve a higher level of sex.

本発明は、上記を考慮してなされたものであり、付加製造による従来のものより高い機械強度および/または電気伝導性・熱伝導性を有する銅合金造形物を提供することを目的とする。また、本発明は、かかる銅合金造形物を製造可能とする銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a copper alloy shaped article having higher mechanical strength and / or electrical conductivity / thermal conductivity than conventional ones by additive manufacturing. Moreover, an object of this invention is to provide the copper alloy powder which can manufacture this copper alloy molded object, the heat processing method of a laminated molded object, and the manufacturing method of a copper alloy molded object.

本発明者らは鋭意研究の結果、以下の知見を得た。銅(Cu)に対するクロム(Cr)の飽和固溶量は小さく、約1070℃の共晶温度で0.7質量%未満、温度低下により急減して500℃や室温では0.1質量未満といわれている。そこで、この0.1質量%以上のCrを含むCu合金を用いて付加製造を行うと、純銅(純Cu)よりも熱伝導率が低いため造形が容易となる。付加製造時の急冷により積層造形まま材はCu相中に過飽和のCrを含む。この積層造形物を適切に熱処理すると、Cuの母相中にCr相が析出し、母相のCr濃度が下がることにより電気伝導性および熱伝導性が向上する。同時に、Cr相析出による析出硬化作用により、造形物の機械強度も向上する。なお、当初のCu合金中のCr濃度がある程度高い場合は、積層造形まま材の段階でCr相が析出するが、この場合でも熱処理によって母相のCr濃度が下がることによって電気伝導性および熱伝導性が向上する。   As a result of intensive studies, the present inventors have obtained the following knowledge. It is said that the amount of saturated solid solution of chromium (Cr) with respect to copper (Cu) is small, less than 0.7% by mass at the eutectic temperature of about 1070 ° C, suddenly decreases due to temperature drop and less than 0.1% at 500 ° C and room temperature. ing. Then, when addition manufacture is performed using this Cu alloy containing 0.1 mass% or more of Cr, modeling becomes easy because the thermal conductivity is lower than that of pure copper (pure Cu). Due to the rapid cooling at the time of additive manufacturing, the material containing the superposed structure contains supersaturated Cr in the Cu phase. When this layered object is appropriately heat-treated, a Cr phase is precipitated in the parent phase of Cu and the electrical conductivity and thermal conductivity are improved by decreasing the Cr concentration of the parent phase. At the same time, the mechanical strength of the shaped article is also improved by the precipitation hardening action by Cr phase precipitation. When the Cr concentration in the initial Cu alloy is high to some extent, the Cr phase precipitates at the stage of the material as it is laminated, but even in this case, the electrical conductivity and heat conduction are reduced by the decrease in the Cr concentration of the parent phase due to heat treatment. Improves.

この知見に基づき、本発明では、付加製造と得られた積層造形物の熱処理に適したCu−Cr合金粉末、積層造形物の熱処理方法、付加製造と熱処理を組み合わせた銅合金造形物の製造方法、高い機械強度や電気伝導性・熱伝導性を有する銅合金造形物を提供することが可能となった。   Based on this knowledge, in the present invention, Cu-Cr alloy powder suitable for addition manufacturing and heat treatment of the obtained layered object, heat treatment method of layered object, method of manufacturing copper alloy shaped object that combines addition manufacturing and heat treatment It became possible to provide a copper alloy shaped article having high mechanical strength, electrical conductivity, and thermal conductivity.

具体的には、本発明の銅合金粉末は、積層造形用の銅合金粉末であって、Cr:1.1〜20質量%、Zr:0〜0.2質量%、残部がCuおよび不可避的不純物からなる。   Specifically, the copper alloy powder of the present invention is a copper alloy powder for additive manufacturing, Cr: 1.1-20% by mass, Zr: 0-0.2% by mass, the balance being Cu and inevitable Consists of impurities.

本発明の積層造形物熱処理方法は、上記銅合金粉末を用いて付加製造された積層造形物の熱処理方法であって、前記積層造形物を300〜800℃で保持する熱処理工程を有する。好ましくは、前記熱処理工程は、前記積層造形物を500〜800℃の第1熱処理温度で保持する第1熱処理工程と、前記第1熱処理工程の後に、400℃以上で前記第1熱処理温度以下である第2熱処理温度で保持する第2熱処理工程とを有する。   The layered object heat treatment method of the present invention is a heat treatment method for a layered object that is additionally manufactured using the copper alloy powder, and includes a heat treatment step of holding the layered object at 300 to 800 ° C. Preferably, the heat treatment step includes a first heat treatment step for holding the layered object at a first heat treatment temperature of 500 to 800 ° C. and a temperature of 400 ° C. or more and the first heat treatment temperature after the first heat treatment step. A second heat treatment step of holding at a second heat treatment temperature.

本発明の他の積層造形物熱処理方法は、銅合金からなる積層造形物の熱処理方法であって、前記銅合金は、Cr:0.1〜20質量%、Zr:0〜0.2質量%、Crの含有量がZrの含有量より多く、残部がCuおよび不可避的不純物からなり、前記積層造形物を410〜800℃で保持する熱処理工程を有する。好ましくは、前記熱処理工程は、前記積層造形物を500〜800℃の第1熱処理温度で保持する第1熱処理工程と、前記第1熱処理工程の後に、410℃以上で前記第1熱処理温度以下である第2熱処理温度で保持する第2熱処理工程とを有する。   Another layered object heat treatment method of the present invention is a heat treatment method of a layered object made of a copper alloy, and the copper alloy contains Cr: 0.1 to 20% by mass, Zr: 0 to 0.2% by mass. The content of Cr is larger than the content of Zr, the balance is made of Cu and inevitable impurities, and the heat treatment step of holding the layered object at 410 to 800 ° C. is included. Preferably, the heat treatment step includes a first heat treatment step of holding the layered object at a first heat treatment temperature of 500 to 800 ° C. and a temperature of 410 ° C. or more and the first heat treatment temperature or less after the first heat treatment step. A second heat treatment step of holding at a second heat treatment temperature.

本発明の銅合金造形物製造方法は、上記本発明の銅合金粉末の薄層を形成する第1工程と、前記薄層の所定位置に電磁波ビームを照射して前記銅合金粉末を溶融・凝固させる第2工程とを順次繰り返して積層造形物を作製する造形工程と、前記積層造形物を300〜800℃で保持する熱処理工程とを有する。好ましくは、前記熱処理工程は、前記積層造形物を500〜800℃の第1熱処理温度で保持する第1熱処理工程と、前記第1熱処理工程の後に、400℃以上で前記第1熱処理温度以下である第2熱処理温度で保持する第2熱処理工程とを有する。   The method for producing a copper alloy shaped article of the present invention includes a first step of forming a thin layer of the copper alloy powder of the present invention, and melting and solidifying the copper alloy powder by irradiating an electromagnetic wave beam at a predetermined position of the thin layer. And a second heat treatment step that sequentially repeats the second step to produce a layered object, and a heat treatment step of holding the layered object at 300 to 800 ° C. Preferably, the heat treatment step includes a first heat treatment step for holding the layered object at a first heat treatment temperature of 500 to 800 ° C. and a temperature of 400 ° C. or more and the first heat treatment temperature after the first heat treatment step. A second heat treatment step of holding at a second heat treatment temperature.

本発明の他の銅合金造形物製造方法は、Cr:0.1〜20質量%、Zr:0〜0.2質量%、Crの含有量がZrの含有量より多く、残部がCuおよび不可避的不純物からなる銅合金粉末の薄層を形成する第1工程と、前記薄層の所定位置に電磁波ビームを照射して前記銅合金粉末を溶解・凝固させる第2工程とを順次繰り返して積層造形物を作製する造形工程と、前記積層造形物を410〜800℃で保持する熱処理工程とを有する。好ましくは、前記熱処理工程は、前記積層造形物を500〜800℃の第1熱処理温度で保持する第1熱処理工程と、前記第1熱処理工程の後に、410℃以上で前記第1熱処理温度以下である第2熱処理温度で保持する第2熱処理工程とを有する。   In another method for producing a copper alloy shaped article of the present invention, Cr: 0.1 to 20% by mass, Zr: 0 to 0.2% by mass, the Cr content is larger than the Zr content, and the balance is Cu and inevitable. Additive manufacturing by sequentially repeating a first step of forming a thin layer of copper alloy powder composed of mechanical impurities and a second step of irradiating an electromagnetic wave beam at a predetermined position of the thin layer to melt and solidify the copper alloy powder A modeling process for manufacturing an object, and a heat treatment process for holding the layered model at 410 to 800 ° C. Preferably, the heat treatment step includes a first heat treatment step of holding the layered object at a first heat treatment temperature of 500 to 800 ° C. and a temperature of 410 ° C. or more and the first heat treatment temperature or less after the first heat treatment step. A second heat treatment step of holding at a second heat treatment temperature.

上記銅合金造形物製造方法のいずれにおいても、好ましくは、前記電磁波ビームがレーザー光である。   In any of the above-described copper alloy shaped article manufacturing methods, the electromagnetic wave beam is preferably laser light.

本発明の銅合金造形物は、銅合金の積層構造を有する造形物であって、前記銅合金はCr:0.1〜20質量%、Zr:0〜0.2質量%、残部がCuおよび不可避的不純物からなる。そして、室温における電気伝導率が65%IACS以上であるか、または0.2%耐力が150MPa以上で引張強さが300MPa以上である。   The copper alloy shaped article of the present invention is a shaped article having a laminated structure of copper alloys, wherein the copper alloy is Cr: 0.1 to 20% by mass, Zr: 0 to 0.2% by mass, the balance is Cu and Consists of inevitable impurities. And the electrical conductivity in room temperature is 65% IACS or more, or 0.2% yield strength is 150 MPa or more, and tensile strength is 300 MPa or more.

本発明の銅合金粉末はCrを含むことにより、付加製造時には熱伝導率が下がって造形が容易になる。さらに付加製造の凝固時や熱処理時にCr相が析出して、機械強度と電気伝導性・熱伝導性に優れる銅合金造形物が製造可能となる。本発明の積層造形物熱処理方法または銅合金造形物製造方法によれば、適切な銅合金組成と熱処理条件との組み合わせにより、機械強度、電気伝導性・熱伝導性に優れる銅合金造形物が製造可能となる。本発明の銅合金造形物によれば、従来のものより高い機械強度および/または電気伝導性・熱伝導性が得られる。   When the copper alloy powder of the present invention contains Cr, the thermal conductivity is lowered during addition production, and the modeling becomes easy. Furthermore, a Cr phase precipitates during solidification or heat treatment in addition production, and a copper alloy shaped article excellent in mechanical strength, electrical conductivity and thermal conductivity can be produced. According to the layered object heat treatment method or the copper alloy shaped object manufacturing method of the present invention, a copper alloy shaped article excellent in mechanical strength, electrical conductivity and thermal conductivity is produced by a combination of an appropriate copper alloy composition and heat treatment conditions. It becomes possible. According to the copper alloy shaped article of the present invention, higher mechanical strength and / or electrical conductivity / thermal conductivity than the conventional one can be obtained.

積層造形物である引張試験片の形状を示す図である。It is a figure which shows the shape of the tension test piece which is a laminate-molded article. 熱処理による電気伝導率の低下を示す図である。It is a figure which shows the fall of the electrical conductivity by heat processing. 実施例のCu1.4Cr試料断面の走査電子顕微鏡(SEM)像である。It is a scanning electron microscope (SEM) image of the Cu1.4Cr sample cross section of an Example. 2段階熱処理実験の結果を示す図である。It is a figure which shows the result of a two-step heat treatment experiment.

本実施形態の銅合金(Cu合金)粉末は粉末床溶融結合方式による付加製造に用いられる。Cu合金は合金元素としてCrを含む。また、質量%基準で、Cr含有量より少ないZrを含んでいてもよい。そして、残部がCuおよび不可避的不純物である。   The copper alloy (Cu alloy) powder of this embodiment is used for addition production by a powder bed fusion bonding method. The Cu alloy contains Cr as an alloy element. Moreover, Zr less than Cr content may be included on the mass% basis. The balance is Cu and inevitable impurities.

Crは付加製造過程おける合金融液の凝固時、または後の熱処理工程で析出し、析出硬化によってCu合金の強度を向上させる。Crが析出するためには、Cr含有量は、室温または後の熱処理温度におけるCuへの飽和固溶量より多い必要があり、具体的には0.1質量%以上である。Cr含有量は、好ましくは0.50質量%以上、より好ましくは1.00質量%以上、特に好ましくは1.10質量%以上である。Cr含有量が多いほど熱伝導率が低くなり、付加製造時の造形が容易になるからである。また、Cr含有量は好ましくは20質量%以下である。Cr含有量が多すぎると、熱処理時に析出相が粗大化しやすく、機械特性を損なうからである。一方、電気伝導率に関しては、Cr含有量が小さいほど好ましい。この点からは、Cr含有量は、好ましくは20質量%以下、より好ましくは7.5質量%以下、特に好ましくは5.0質量%以下である。   Cr is precipitated at the time of solidification of the combined financial liquid in the addition manufacturing process or in a subsequent heat treatment step, and improves the strength of the Cu alloy by precipitation hardening. In order for Cr to precipitate, the Cr content needs to be larger than the saturated solid solution amount in Cu at room temperature or the subsequent heat treatment temperature, and specifically 0.1 mass% or more. The Cr content is preferably 0.50% by mass or more, more preferably 1.00% by mass or more, and particularly preferably 1.10% by mass or more. This is because the greater the Cr content, the lower the thermal conductivity and the easier the modeling during additive manufacturing. Moreover, Cr content becomes like this. Preferably it is 20 mass% or less. This is because if the Cr content is too large, the precipitated phase tends to be coarsened during the heat treatment and the mechanical properties are impaired. On the other hand, regarding electrical conductivity, the smaller the Cr content, the better. From this point, the Cr content is preferably 20% by mass or less, more preferably 7.5% by mass or less, and particularly preferably 5.0% by mass or less.

Zrは微量の添加によりCu合金の中間温度脆性が改善させることが知られており、また、熱伝導率を下げる酸素(O)等の不純物と化合物を形成して不純物の影響を抑える目的で使用されることがある。Zr含有量は好ましくは0.010質量%以上である。ただし、Zr含有量は質量%基準でCr含有量より小さいことを要する。Crの析出過程に影響を及ぼさないためである。また、Zr含有量は0.20質量%以下である。Zr含有量が0.20質量%以上であると、CrZr等の金属間化合物の粗大な析出物を形成しやすく、機械特性を損なうからである。 Zr is known to improve the intermediate temperature brittleness of Cu alloys by adding a small amount, and is used for the purpose of suppressing the influence of impurities by forming a compound with impurities such as oxygen (O) that lower the thermal conductivity. May be. The Zr content is preferably 0.010% by mass or more. However, the Zr content needs to be smaller than the Cr content on a mass% basis. This is because the Cr precipitation process is not affected. Moreover, Zr content is 0.20 mass% or less. This is because if the Zr content is 0.20% by mass or more, coarse precipitates of intermetallic compounds such as Cr 2 Zr are likely to be formed, and mechanical properties are impaired.

本実施形態のCu合金粉末は、不可避的不純物として他の元素を含んでいてもよい。しかし、不純物元素が多くなると、Cu合金の導電率が低下し、Crの析出過程に影響するおそれがあり、予期しない析出相を形成して機械特性を損なうおそれがある。したがって、不可避的不純物の含有量は、合計で0.1質量%以下であることが好ましい。   The Cu alloy powder of this embodiment may contain other elements as inevitable impurities. However, when the amount of impurity elements increases, the conductivity of the Cu alloy decreases, which may affect the Cr precipitation process, and may cause an unexpected precipitation phase to impair mechanical properties. Therefore, the content of inevitable impurities is preferably 0.1% by mass or less in total.

Cu合金粉末の粒度は、付加製造方法の方式や要求される造形物の寸法精度等に応じて定めることができる。一般的なSLS法やSLM法に用いる場合、好ましくは、レーザー回折・散乱法によって測定された粒径の体積基準のメジアン値(d50)が5〜200μmである。   The particle size of the Cu alloy powder can be determined according to the method of the additive manufacturing method, the required dimensional accuracy of the modeled object, and the like. When used in a general SLS method or SLM method, the volume-based median value (d50) of the particle diameter measured by a laser diffraction / scattering method is preferably 5 to 200 μm.

積層造形物の作製には、種々公知の付加製造技術を用いることができる。例えばSLS法では、Cu合金粉末を造形ステージに敷き詰めて薄層を形成する第1工程と、薄層の所定位置にレーザー光を照射して照射されたCu合金粉末を溶解・凝固させる第2工程とを順次繰り返す。最後に余剰の粉末を除去することにより、Cu合金の積層造形物が得られる。   Various known additive manufacturing techniques can be used for producing the layered object. For example, in the SLS method, a first step of forming a thin layer by spreading Cu alloy powder on a modeling stage, and a second step of melting and solidifying the irradiated Cu alloy powder by irradiating a predetermined position of the thin layer with laser light. Are repeated sequentially. Finally, a surplus powder is removed to obtain a layered product of Cu alloy.

積層造形物の熱処理は、上記積層造形物を所定温度で所定時間保持することによって実施される。熱処理は例えば空気中で行ってもよいし、熱間等方圧加圧法(HIP)によってもよい。熱処理によって、Cu母相中に過飽和に含まれるCr相が析出し、機械強度および電気伝導率・熱伝導率が向上する。   The heat treatment of the layered object is performed by holding the layered object at a predetermined temperature for a predetermined time. The heat treatment may be performed in the air, for example, or may be performed by a hot isostatic pressing method (HIP). By heat treatment, a Cr phase contained in supersaturation is precipitated in the Cu matrix, and mechanical strength, electrical conductivity and thermal conductivity are improved.

熱処理温度は300℃以上、好ましくは350℃以上、より好ましくは400℃以上、さらに好ましくは410℃以上である。熱処理温度が低すぎると効果が得られないからである。熱処理温度は、電気伝導率を向上させるという点からは、特に好ましくは450℃以上であり、機械強度を向上させるという点からは、特に好ましくは500℃以上である。一方、熱処理温度はCuとCrの共晶温度(約1070℃)より低いことを要する。さらに、熱処理温度が共晶温度より低くても、共晶温度の差が小さいと積層造形物が軟化して変形することがあるので、熱処理温度は好ましくは800℃以下である。また、機械強度に関して、熱処理温度はより好ましくは600℃以下、特に好ましくは550℃以下である。熱処理温度が高すぎると析出相が粗大化し、0.2%耐力や引張強さが低下するからである。   The heat treatment temperature is 300 ° C. or higher, preferably 350 ° C. or higher, more preferably 400 ° C. or higher, and still more preferably 410 ° C. or higher. This is because the effect cannot be obtained if the heat treatment temperature is too low. The heat treatment temperature is particularly preferably 450 ° C. or higher from the viewpoint of improving electrical conductivity, and particularly preferably 500 ° C. or higher from the viewpoint of improving mechanical strength. On the other hand, the heat treatment temperature needs to be lower than the eutectic temperature of Cu and Cr (about 1070 ° C.). Furthermore, even if the heat treatment temperature is lower than the eutectic temperature, if the difference in the eutectic temperature is small, the layered object may be softened and deformed, so the heat treatment temperature is preferably 800 ° C. or lower. Regarding the mechanical strength, the heat treatment temperature is more preferably 600 ° C. or less, particularly preferably 550 ° C. or less. This is because if the heat treatment temperature is too high, the precipitated phase becomes coarse and the 0.2% proof stress and tensile strength decrease.

熱処理時間は好ましくは5分以上である。熱処理時間が5分未満では十分な効果が得られないからである。また、熱処理時間は、機械強度の点からは、より好ましくは10分以上であり、電気伝導率の点からは、より好ましくは30分以上である。一方、熱処理時間が長すぎるとコスト要因となるので、熱処理時間は好ましくは10時間以下である。また、機械強度の点からは、熱処理時間が長すぎると0.2%耐力や引張強さが低下するので、熱処理時間はより好ましくは5時間以下である。なお、電気伝導率に関しては、熱処理時間が長いほどCu母相のCr含有量が下がるので好ましい。   The heat treatment time is preferably 5 minutes or longer. This is because a sufficient effect cannot be obtained when the heat treatment time is less than 5 minutes. The heat treatment time is more preferably 10 minutes or more from the viewpoint of mechanical strength, and more preferably 30 minutes or more from the viewpoint of electrical conductivity. On the other hand, if the heat treatment time is too long, it becomes a cost factor, so the heat treatment time is preferably 10 hours or less. Further, from the viewpoint of mechanical strength, if the heat treatment time is too long, the 0.2% proof stress and the tensile strength are lowered. Therefore, the heat treatment time is more preferably 5 hours or less. In terms of electrical conductivity, the longer the heat treatment time, the lower the Cr content of the Cu matrix, which is preferable.

熱処理の効果は理論的には熱処理温度と熱処理時間の組み合わせで決まるが、合金中のCrの拡散速度は温度上昇に対して指数関数的に大きくなるので、実用的には熱処理温度を適切に設定することがより重要である。   The effect of heat treatment is theoretically determined by the combination of heat treatment temperature and heat treatment time, but the diffusion rate of Cr in the alloy increases exponentially with increasing temperature, so the heat treatment temperature is set appropriately in practice. It is more important to do.

以上の工程によって本実施形態のCu合金造形物が得られる。Cu合金造形物の組織は、Cu合金の積層構造を有する造形物であって、かつCuの母相中にCr相が析出した構造を有する。   The Cu alloy shaped article of the present embodiment is obtained through the above steps. The structure of the Cu alloy shaped article is a shaped article having a laminated structure of Cu alloy, and has a structure in which a Cr phase is precipitated in a parent phase of Cu.

次に、いくつかの実験結果によって、上記実施形態をより詳細に説明する。   Next, the embodiment will be described in more detail based on some experimental results.

表1に、実験に用いたCu−Cr合金粉末の組成を、比較のための純CuおよびCu−Ni合金粉末とともに示す。分析はICP発光分光分析法により行った。成分のうちZrとTiは他の不純物を除去する目的で、熱処理効果を阻害しない範囲で、微量を添加したものである。表中に示した元素以外の残部はCuおよび意図しない不可避的不純物である。   Table 1 shows the composition of the Cu—Cr alloy powder used in the experiment together with pure Cu and Cu—Ni alloy powder for comparison. Analysis was performed by ICP emission spectroscopy. Among the components, Zr and Ti are added for the purpose of removing other impurities in a range that does not inhibit the heat treatment effect. The balance other than the elements shown in the table is Cu and unintended inevitable impurities.

各Cu合金を用いて、SLS法により、後述する各種特性測定用の試験片を作製した。作製はYbファイバーレーザーを用いた粉末積層造形システム(EOS GmbH、M290)を用い、積層厚0.02〜0.06mm、レーザー出力200〜400Wの条件で行った。ただし、比較のための純Cuの試験片は、同様なSLM法により作製した。   Using each Cu alloy, test pieces for measuring various properties described later were produced by the SLS method. Fabrication was performed using a powder additive manufacturing system (EOS GmbH, M290) using a Yb fiber laser under conditions of a laminate thickness of 0.02 to 0.06 mm and a laser output of 200 to 400W. However, a pure Cu test piece for comparison was produced by the same SLM method.

電気伝導率測定用の試験片は、3mm×3mm×80mmの角柱状で、厚さ3mmの方向に積層して作製した。電気伝導率は、電気抵抗測定装置(株式会社アグネ技術センター、ARC−TER−1型)を用い、直流四端子法で測定した電気抵抗率から算出した。測定は室温で、または後述する各設定温度に保持しながら、アルゴン(Ar)雰囲気中で行った。なお、本明細書中で、電気伝導率は焼鈍標準軟銅に対する比(%IACS)で示す。焼鈍標準軟銅の電気抵抗率は、1.7241×10−2μΩ・mである。 A test piece for measuring electrical conductivity was formed in a prismatic shape of 3 mm × 3 mm × 80 mm and laminated in the direction of 3 mm thickness. The electrical conductivity was calculated from the electrical resistivity measured by the DC four-terminal method using an electrical resistance measuring device (Agne Technical Center, Inc., ARC-TER-1 type). The measurement was performed in an argon (Ar) atmosphere at room temperature or while maintaining each set temperature described later. In addition, in this specification, electrical conductivity is shown by ratio (% IACS) with respect to annealing standard annealed copper. The electrical resistivity of the annealed standard annealed copper is 1.7241 × 10 −2 μΩ · m.

熱伝導率測定用の試験片は、直径10mm、厚さ3mmのコイン型で、1つの直径の方向に積層して作製した。熱伝導率の測定は、レーザーフラッシュ法を用いて真空中で行った。いくつかの試料については、熱伝導率から下記ウィーデマン・フランツの法則を用いて電気伝導率を推算した。   A test piece for measuring thermal conductivity was produced by laminating coins having a diameter of 10 mm and a thickness of 3 mm in the direction of one diameter. The thermal conductivity was measured in a vacuum using a laser flash method. For some samples, the electrical conductivity was estimated from the thermal conductivity using the following Weedmann-Franz law.

金属の電気伝導率と熱伝導率の間には次式の関係があり、ウィーデマン・フランツの法則として知られている。
K/σ=LT
ここで、K:熱伝導率、σ:電気伝導率、L:ローレンツ数、T:絶対温度。ローレンツ数(L)は理論的には次式で与えられる。
L=(π/3)・(k/e)
=2.44×10−8WΩK−2
ここで、k:ボルツマン定数、e:電気素量。
There is a relationship of the following equation between the electrical conductivity and thermal conductivity of a metal, which is known as Wiedemann-Franz law.
K / σ = LT
Here, K: thermal conductivity, σ: electrical conductivity, L: Lorentz number, T: absolute temperature. The Lorentz number (L) is theoretically given by the following equation.
L = (π 2/3) · (k B / e) 2
= 2.44 × 10 −8 WΩK −2
Here, k B : Boltzmann constant, e: elementary electric charge.

機械特性測定用の試験片は、図2に示した形状を有し、その長手方向に積層して作製した。機械特性の測定は、オートグラフを用い、室温で、ひずみ速度0.001/sの引張試験により行った。ひずみ測定はビデオ式非接触伸び計(株式会社島津製作所、TRView X120S)を用いて行った。引張試験は、各合金条件(合金組成および熱処理条件の組み合わせ)毎に3本の試験片について実施し、その平均を測定結果とした。   A test piece for measuring mechanical properties had the shape shown in FIG. 2 and was laminated in the longitudinal direction. The measurement of mechanical properties was performed by a tensile test at a room temperature and a strain rate of 0.001 / s using an autograph. Strain measurement was performed using a video non-contact extensometer (Shimadzu Corporation, TRView X120S). The tensile test was performed on three test pieces for each alloy condition (combination of alloy composition and heat treatment condition), and the average was taken as the measurement result.

積層造形物への熱処理の影響を調べるため、電気伝導率測定用のサンプルを用いて、温度を段階的に50℃ずつ上げながら、Ar雰囲気中で電気抵抗率を測定した。各設定温度間の昇温速度は60℃/分とし、各設定温度に到達後、試料内の温度分布が一様になるまで数分〜10分待って測定を行った。結果を表2に導電率(%IACS)に換算して示す。温度は表2の上から下に向かって600℃まで変化させ、最後に室温(最下段)に冷却した。また、同じ結果を図2にプロットして示す。図2では測定された電気抵抗率をそのまま示した。   In order to investigate the influence of the heat treatment on the layered object, the electrical resistivity was measured in an Ar atmosphere while increasing the temperature stepwise by 50 ° C. using a sample for electrical conductivity measurement. The temperature rising rate between the set temperatures was 60 ° C./min. After reaching each set temperature, the measurement was performed after waiting for several minutes to 10 minutes until the temperature distribution in the sample became uniform. The results are shown in Table 2 in terms of conductivity (% IACS). The temperature was changed from the top to the bottom of Table 2 to 600 ° C., and finally cooled to room temperature (bottom stage). The same result is plotted in FIG. FIG. 2 shows the measured electrical resistivity as it is.

表2と図2において、純Cuの電気抵抗率は温度上昇とともに直線的に大きくなっている。Cu−Cr合金の試料ではいずれも、室温からの温度上昇とともに電気抵抗率が大きくなるが、300℃以上で傾きが小さくなって熱処理の効果が認められた。400℃以上では、熱処理の効果が明確であった。特にCu0.6CrとCu1.4Crの試料では、500℃で純Cuと同等の電気抵抗率が得られた。Cu2.4Niでは、温度上昇とともに電気抵抗率が直線的に高くなり続け、600℃までの範囲では熱処理の効果が見られなかった。   In Table 2 and FIG. 2, the electrical resistivity of pure Cu increases linearly with increasing temperature. In all the Cu—Cr alloy samples, the electrical resistivity increased with increasing temperature from room temperature, but the slope decreased at 300 ° C. or higher, and the effect of heat treatment was recognized. Above 400 ° C., the effect of heat treatment was clear. In particular, in the samples of Cu0.6Cr and Cu1.4Cr, an electrical resistivity equivalent to that of pure Cu was obtained at 500 ° C. In Cu2.4Ni, the electrical resistivity continued to increase linearly with increasing temperature, and no heat treatment effect was observed in the range up to 600 ° C.

合金元素としてのCrとNiの違いは、CuへのCrの飽和固溶量が小さいのに対して、CuとNiは全域で固溶体を形成することである。そのためCu2.4Niでは、熱処理をしても析出相が形成されなかったためと考えられる。   The difference between Cr and Ni as alloy elements is that the saturated solid solution amount of Cr in Cu is small, whereas Cu and Ni form a solid solution in the entire region. Therefore, it is considered that Cu2.4Ni did not form a precipitated phase even after heat treatment.

また、特許文献1では合金元素としてSiを用いても同様の効果があるとされる。特許文献1はどのようなメカニズムによって特性が改善されるのかを説明しないが、SiのCuへの飽和固溶量が4〜5質量%であることを考慮すると、本実施例とはメカニズムが異なると思われる。   Further, in Patent Document 1, it is considered that the same effect can be obtained even if Si is used as an alloy element. Patent Document 1 does not explain what kind of mechanism improves the characteristics. However, considering that the amount of saturated solid solution of Si in Cu is 4 to 5% by mass, the mechanism is different from this example. I think that the.

次に、熱処理の他の特性への効果を見るために、3種類の試験片を準備して、熱処理前(積層造形まま材)と、500℃で2時間、Ar気流中で保持した後に電気伝導率測定、熱伝導率測定および引張試験を行った。結果を表3に示す。   Next, in order to see the effect on the other properties of the heat treatment, three types of test pieces were prepared, and before the heat treatment (as a layered material) and after being held in an Ar stream for 2 hours at 500 ° C. Conductivity measurements, thermal conductivity measurements and tensile tests were performed. The results are shown in Table 3.

表3から、Cu−Cr合金の試料ではいずれも、500℃×2時間の熱処理によって電気伝導率および熱伝導率が向上したことが分かる。また、0.2%耐力と引張強さが大きくなるとともに破断伸びが小さくなっており、機械特性の変化が析出硬化によることが示唆された。Cu−Ni合金では、Cu2.4Niの電気伝導率が熱処理によって向上しないことを表2および図2の結果で説明したが、Cu20Niについても、500℃×2時間の熱処理によって機械強度が向上しないことが確認できた。なお、純Cuの熱処理は行わなかったが、市販の焼鈍材の引張強さは約200MPaである。   From Table 3, it can be seen that the electrical conductivity and the thermal conductivity were improved by heat treatment at 500 ° C. for 2 hours in all the Cu—Cr alloy samples. In addition, the 0.2% proof stress and tensile strength increased and the elongation at break decreased, suggesting that the change in mechanical properties was due to precipitation hardening. In the Cu-Ni alloy, the electrical conductivity of Cu2.4Ni is not improved by the heat treatment, as explained in the results of Table 2 and FIG. 2, but the mechanical strength of Cu20Ni is not improved by the heat treatment at 500 ° C. for 2 hours. Was confirmed. In addition, although heat processing of pure Cu was not performed, the tensile strength of a commercially available annealing material is about 200 MPa.

次に、熱処理温度の影響を見るために、Cu1.4Crについて、熱処理温度を400、500、600、800℃と変えて、熱伝導率と機械特性の測定を行った。処理時間はいずれも2時間である。結果を表4に示す。表4には参考のために、ウィーデマン・フランツの法則を用いて熱伝導率から算出した電気伝導率を併せて示した。表4の最も左の欄は熱処理しない試料(積層造形まま材)の結果である。表4の最も右の欄は、800℃で2時間熱の処理後、水冷し、さらに500℃で2時間熱処理した試料の結果である。   Next, in order to see the influence of the heat treatment temperature, the thermal conductivity and mechanical properties of Cu1.4Cr were measured while changing the heat treatment temperature to 400, 500, 600, and 800 ° C. Both processing times are 2 hours. The results are shown in Table 4. For reference, Table 4 also shows the electrical conductivity calculated from the thermal conductivity using the Wiedemann-Franz law. The leftmost column of Table 4 shows the results of the sample that is not heat-treated (as it is a layered material). The rightmost column of Table 4 shows the results of samples that were heat-treated at 800 ° C. for 2 hours, then water-cooled, and further heat-treated at 500 ° C. for 2 hours.

表4から、熱伝導率は400〜800℃×2時間の熱処理によって顕著に向上し、特に600℃×2時間の熱処理では、積層造形まま材の約4倍に向上した。0.2%耐力は400〜600℃×2時間の熱処理によって顕著に向上し、特に500℃×2時間の熱処理では、積層造形まま材の約3倍に向上した。引張強さは400〜800℃×2時間の熱処理によって顕著に向上し、特に500℃×2時間の熱処理では、積層造形まま材の約2.5倍に向上した。破断伸びは、熱処理によって小さくなっており、これらの機械特性の変化が析出硬化によることが示唆された。800℃×2時間+500℃×2時間の熱処理を行った試料は、機械特性は800℃×2時間の熱処理と同様の値を示し、熱伝導率は最も高い値を示した。なお、熱伝導率から算出した電気伝導率の計算値は、実測値とよく一致した。   From Table 4, the thermal conductivity was remarkably improved by the heat treatment at 400 to 800 ° C. × 2 hours, and in particular, the heat treatment at 600 ° C. × 2 hours was improved to about 4 times that of the laminate-molded material. The 0.2% proof stress was remarkably improved by the heat treatment at 400 to 600 ° C. × 2 hours, and in particular, the heat treatment at 500 ° C. × 2 hours was improved to about 3 times that of the material with the layered molding. The tensile strength was remarkably improved by the heat treatment at 400 to 800 ° C. × 2 hours, and in particular, the heat treatment at 500 ° C. × 2 hours was improved about 2.5 times as much as that of the laminate molding. The elongation at break was reduced by heat treatment, suggesting that changes in these mechanical properties were due to precipitation hardening. The sample subjected to the heat treatment of 800 ° C. × 2 hours + 500 ° C. × 2 hours showed the same mechanical properties as those of the heat treatment of 800 ° C. × 2 hours, and the highest thermal conductivity. In addition, the calculated value of the electrical conductivity calculated from the thermal conductivity was in good agreement with the actually measured value.

次に、熱処理時間の影響を見るために、Cu1.4Crについて、熱処理温度を500℃として、時間を5分から10時間まで変えて、熱伝導率と機械特性の測定を行った。結果を表5に示す。表5には参考のために、ウィーデマン・フランツの法則を用いて熱伝導率から算出した電気伝導率を併せて示した。表5の最も左の欄は熱処理しない試料(積層造形まま材)の結果である。   Next, in order to see the influence of the heat treatment time, the thermal conductivity and mechanical properties of Cu1.4Cr were measured by changing the heat treatment temperature to 500 ° C. and changing the time from 5 minutes to 10 hours. The results are shown in Table 5. For reference, Table 5 also shows electrical conductivity calculated from thermal conductivity using Weedmann-Franz law. The leftmost column of Table 5 is the result of the sample (a laminate-molded material) that is not heat-treated.

表5から、5分間の熱処理によって、すでに効果が表れている。熱伝導率は500℃×5分〜10時間の熱処理によって顕著に向上し、30分で約3倍に達し、熱処理時間が長くなるほど向上している。0.2%耐力は500℃×5分〜10時間の熱処理によって顕著に向上し、特に500℃×30分の熱処理では、積層造形まま材の3倍以上に向上した。引張強さは500℃×5分〜10時間の熱処理によって顕著に向上し、特に500℃×30分の熱処理では、積層造形まま材の2.5倍以上に向上した。破断伸びは、熱処理によって小さくなっており、熱処理による機械特性の変化が析出硬化によることが示唆された。   From Table 5, the effect has already appeared by the heat treatment for 5 minutes. The thermal conductivity is remarkably improved by heat treatment at 500 ° C. × 5 minutes to 10 hours, reaches about 3 times in 30 minutes, and is improved as the heat treatment time is increased. The 0.2% proof stress was remarkably improved by the heat treatment at 500 ° C. for 5 minutes to 10 hours, and in particular, the heat treatment at 500 ° C. for 30 minutes was improved to 3 times or more of the material with the layered molding. The tensile strength was remarkably improved by the heat treatment at 500 ° C. × 5 minutes to 10 hours, and particularly at the heat treatment of 500 ° C. × 30 minutes, the tensile strength was improved to 2.5 times or more of the material as a layered product. The elongation at break decreased with heat treatment, suggesting that the change in mechanical properties due to heat treatment is due to precipitation hardening.

次に、Cu5Cr、Cu10Cr、Cu20Crについて、熱処理の機械特性への影響を調べた。結果を表6〜表8に示す。それぞれ最も左の欄は熱処理しない試料(積層造形まま材)の結果である。また、それぞれの最も右の欄は、800℃で2時間熱の処理後、水冷し、さらに500℃で2時間熱処理した試料の結果である。   Next, the effect of heat treatment on the mechanical properties of Cu5Cr, Cu10Cr, and Cu20Cr was examined. The results are shown in Tables 6-8. Each leftmost column is a result of a sample (a laminate-molded material) that is not heat-treated. Further, each rightmost column shows the results of the samples that were heat-treated at 800 ° C. for 2 hours, then water-cooled, and further heat-treated at 500 ° C. for 2 hours.

表6〜8の結果をCu0.6CrおよびCu1.4Crと比較すると、Cr含有量が多い試料は、積層造形まま材の段階ですでに高い機械強度を有している。これは、Cr含有量が多いと、付加製造過程における合金融液の凝固時に、すでにCr相が析出するためと考えられる。また、表6〜8のいずれにおいても、500℃での熱処理によって機械強度は0.2%耐力、引張強さともに向上するが、800℃での熱処理によって機械強度はむしろ低下している。一方、破断伸びは800℃での熱処理によって少し大きくなっている。800℃×2時間+500℃×2時間の熱処理後の機械特性が800℃×2時間の熱処理後と変わらなかったことは、Cu1.4Crについての表4の結果と同様である。Cu5Cr、Cu10Cr、Cu20Crのいずれも同様の傾向を示しており、付加製造と熱処理により同じメカニズムで機械特性が変化したものと考えられる。したがって、この熱処理方法は幅広い組成範囲に適用できることが分かった。   When the results of Tables 6 to 8 are compared with Cu0.6Cr and Cu1.4Cr, the sample having a large Cr content already has high mechanical strength at the stage of the material as a layered model. This is considered to be because when the Cr content is large, the Cr phase is already precipitated during the solidification of the combined financial liquid in the addition manufacturing process. In any of Tables 6 to 8, the mechanical strength is improved by 0.2% proof stress and tensile strength by the heat treatment at 500 ° C, but the mechanical strength is rather lowered by the heat treatment at 800 ° C. On the other hand, the elongation at break is slightly increased by heat treatment at 800 ° C. The mechanical properties after the heat treatment at 800 ° C. × 2 hours + 500 ° C. × 2 hours were not different from those after the heat treatment at 800 ° C. × 2 hours, which is the same as the results in Table 4 for Cu1.4Cr. All of Cu5Cr, Cu10Cr, and Cu20Cr show the same tendency, and it is considered that the mechanical characteristics are changed by the same mechanism by addition manufacturing and heat treatment. Therefore, it was found that this heat treatment method can be applied to a wide composition range.

次に、いくつかの試料について、断面の走査電子顕微鏡(SEM)像を撮影した。図3に、Cu1.4CrのSEM像を示す。各像の下にある白いバーの長さが100nmである。   Next, cross-sectional scanning electron microscope (SEM) images of several samples were taken. FIG. 3 shows an SEM image of Cu1.4Cr. The length of the white bar under each image is 100 nm.

図3より、積層造形まま材では析出物が観察されず、500℃×5分でCr相が析出している。このことは表5の結果と整合する。また、積層造形まま材の組織は、純Cu(図示せず)のそれとよく似ていた。また、Cu5Crでは、積層造形まま材でも径が数十〜100nm程度の析出物が観察された(図示せず)。   From FIG. 3, no precipitates are observed in the material as it is laminated, and the Cr phase is precipitated at 500 ° C. for 5 minutes. This is consistent with the results in Table 5. Moreover, the structure of the as-built material was very similar to that of pure Cu (not shown). Further, in Cu5Cr, a precipitate having a diameter of about several tens to 100 nm was observed even with the material being layered (not shown).

次に、2段階熱処理の効果を見るために、Cu1.5Crについて、1段目の熱処理の温度および時間を変えて、熱伝導率と機械特性の測定を行った。試料は、1段目の熱処理として所定温度で所定時間保持した後、水冷し、2段目の熱処理として500℃で2時間保持した。結果を表9に示す。表9には参考のために、ウィーデマン・フランツの法則を用いて熱伝導率から算出した電気伝導率を併せて示した。表9の最も左の欄は熱処理しない試料(積層造形まま材)の結果である。なお、以下において、1段目の熱処理を「第1熱処理」、第1熱処理の温度および保持時間をそれぞれ「第1熱処理温度」、「第2熱処理時間」といい、2段目の熱処理についても、同様に「第2熱処理」、「第2熱処理温度」、「第2熱処理時間」という。   Next, in order to see the effect of the two-stage heat treatment, the thermal conductivity and mechanical properties of Cu1.5Cr were measured by changing the temperature and time of the first-stage heat treatment. The sample was held at a predetermined temperature for a predetermined time as the first heat treatment, then cooled with water, and held at 500 ° C. for 2 hours as the second heat treatment. The results are shown in Table 9. For reference, Table 9 also shows the electrical conductivity calculated from the thermal conductivity using the Wiedemann-Franz law. The leftmost column of Table 9 shows the results of the sample that is not heat-treated (as it is a layered material). In the following, the first heat treatment is referred to as “first heat treatment”, and the temperature and holding time of the first heat treatment are referred to as “first heat treatment temperature” and “second heat treatment time”, respectively. Similarly, they are referred to as “second heat treatment”, “second heat treatment temperature”, and “second heat treatment time”.

表9の結果の内、いくつかの試料の熱伝導率と0.2%耐力を図4に示した。各プロットの脇の数字のうち、上段が熱伝導率、下段が0.2%耐力である。図4には参考のために、組成の近いCu1.4Crを800℃で2時間の熱処理後、水冷し、さらに500℃で2時間熱処理した試料の結果を表4から再掲した。   Among the results in Table 9, the thermal conductivity and 0.2% proof stress of some samples are shown in FIG. Of the numbers on the side of each plot, the upper row is the thermal conductivity and the lower row is the 0.2% yield strength. For reference, FIG. 4 shows the results of a sample obtained by heat-treating Cu1.4Cr having a similar composition at 800 ° C. for 2 hours, water-cooling, and further heat-treated at 500 ° C. for 2 hours.

表9および図4から、第1熱処理温度が600℃以上の試料で高い熱伝導率が得られた。2段階熱処理ではない単純な熱処理では、表5から、500℃での保持時間が長いほど熱伝導率が高く、500℃×10時間の熱処理で熱伝導率は300W/m・Kであった。これに対して、第2熱処理を500℃×2時間とする2段階熱処理では、第1熱処理温度が600℃以上であれば、第1熱処理時間が短くても500℃×10時間の単純熱処理と同等以上の熱伝導率が得られた。また、第1熱処理温度が700℃および800℃の場合は、第1熱処理時間が10分でそれぞれ365、376W/m・Kと、非常に高い熱伝導率が得られた。   From Table 9 and FIG. 4, high thermal conductivity was obtained for the sample having the first heat treatment temperature of 600 ° C. or higher. In simple heat treatment that is not two-stage heat treatment, it can be seen from Table 5 that the longer the holding time at 500 ° C., the higher the thermal conductivity, and the heat conductivity at 300 ° C. × 10 hours was 300 W / m · K. On the other hand, in the two-stage heat treatment in which the second heat treatment is 500 ° C. × 2 hours, if the first heat treatment temperature is 600 ° C. or higher, the simple heat treatment of 500 ° C. × 10 hours is possible even if the first heat treatment time is short. The same or higher thermal conductivity was obtained. When the first heat treatment temperature was 700 ° C. and 800 ° C., the first heat treatment time was 10 minutes, and 365 and 376 W / m · K, respectively, which were very high thermal conductivities were obtained.

2段階熱処理によって高い熱伝導率、したがって高い電気伝導率が得られる理由は必ずしも明らかではないが、第1熱処理によってCr相が析出し、第2熱処理によって母相であるCu相中のCrが析出相へ拡散することで熱伝導率および電気伝導率(以下において「熱伝導率等」という)が向上すると考えられる。このことから、第1熱処理はCr相の核生成を促進するためにより高温で行い、第2熱処理はCu相へのCrの飽和固溶量が小さいより低温で行うことが好ましい。   The reason why high thermal conductivity and therefore high electrical conductivity can be obtained by the two-stage heat treatment is not necessarily clear, but Cr phase is precipitated by the first heat treatment, and Cr in the Cu phase as the parent phase is precipitated by the second heat treatment. It is considered that the thermal conductivity and electrical conductivity (hereinafter referred to as “thermal conductivity etc.”) are improved by diffusing into the phase. Therefore, the first heat treatment is preferably performed at a higher temperature in order to promote nucleation of the Cr phase, and the second heat treatment is preferably performed at a lower temperature than the amount of saturated solid solution of Cr in the Cu phase is small.

具体的には、第2熱処理温度の好ましい範囲は、表4の結果から、次のとおりである。第2熱処理温度は、好ましくは400℃以上、さらに好ましくは410℃以上、特に好ましくは450℃以上である。実用的な時間で良好な熱伝導率等が得られるからである。一方、第2熱処理温度は、好ましくは800℃以下であり、0.2%耐力および引張強さという機械強度が重要な用途では好ましくは600℃以下である。また、第2熱処理温度は、処理コストの点からは好ましくは600℃以下、特に好ましくは550℃以下である。これらの温度で処理しても十分な熱伝導率等が得られるからである。   Specifically, the preferred range of the second heat treatment temperature is as follows from the results of Table 4. The second heat treatment temperature is preferably 400 ° C. or higher, more preferably 410 ° C. or higher, and particularly preferably 450 ° C. or higher. This is because good thermal conductivity and the like can be obtained in a practical time. On the other hand, the second heat treatment temperature is preferably 800 ° C. or lower, and preferably 600 ° C. or lower in applications where mechanical strength such as 0.2% proof stress and tensile strength is important. The second heat treatment temperature is preferably 600 ° C. or less, particularly preferably 550 ° C. or less from the viewpoint of treatment cost. This is because sufficient thermal conductivity and the like can be obtained even if the treatment is performed at these temperatures.

第2熱処理時間の好ましい範囲は、表5の結果から、次のとおりである。第2熱処理時間は、好ましくは10分以上であり、より好ましくは30分以上である。一方、第2熱処理時間は、好ましくは5時間以下であり、より好ましくは2時間以下である。第2熱処理時間が短いほど処理コストが低減できるからであり、また、2段階熱処理によって、第2熱処理時間が短くても高い熱伝導率等が得られるからである。   From the results in Table 5, the preferred range of the second heat treatment time is as follows. The second heat treatment time is preferably 10 minutes or more, more preferably 30 minutes or more. On the other hand, the second heat treatment time is preferably 5 hours or less, more preferably 2 hours or less. This is because the treatment cost can be reduced as the second heat treatment time is shortened, and high thermal conductivity can be obtained by the two-stage heat treatment even if the second heat treatment time is short.

第1熱処理温度は、好ましくは第2熱処理温度より高く、さらに好ましくは第2処理温度より50℃以上高い。あるいは、表9の結果からは、第1熱処理温度は好ましくは600℃以上、より好ましくは650℃以上である。短時間でCr相の生成を促進するためである。一方、第1熱処理温度は、好ましくは800℃以下である。   The first heat treatment temperature is preferably higher than the second heat treatment temperature, more preferably 50 ° C. or more higher than the second heat treatment temperature. Or from the result of Table 9, 1st heat processing temperature becomes like this. Preferably it is 600 degreeC or more, More preferably, it is 650 degreeC or more. This is to promote the generation of Cr phase in a short time. On the other hand, the first heat treatment temperature is preferably 800 ° C. or lower.

第1熱処理時間は、積層造形物が第1熱処理温度に達すればその温度で保持する必要は特になく、すなわち0分であってもよい。第1熱処理時間は好ましくは5分以上である。Cr相を確実に生成させるためである。一方、第1熱処理時間は、好ましくは30分以下であり、より好ましくは15分以下である。短い時間でも十分に高い熱伝導率等が得られるからである。例えば、表9において第1熱処理温度が700℃および800℃の場合、第1熱処理時間が10分のときに最大の熱伝導率が得られた。   If the layered object reaches the first heat treatment temperature, the first heat treatment time does not need to be maintained at that temperature, and may be 0 minutes. The first heat treatment time is preferably 5 minutes or longer. This is because the Cr phase is reliably generated. On the other hand, the first heat treatment time is preferably 30 minutes or less, more preferably 15 minutes or less. This is because a sufficiently high thermal conductivity and the like can be obtained even in a short time. For example, in Table 9, when the first heat treatment temperature was 700 ° C. and 800 ° C., the maximum thermal conductivity was obtained when the first heat treatment time was 10 minutes.

次に、Cu1.5Crについて、第1熱処理から第2熱処理への移行条件を変えて、熱伝導率と機械特性の測定を行った。結果を表10に示す。表10最上段の記号は熱処理条件に対して付与したもので、各記号について、前述のとおり熱伝導率測定用および機械特性測定用の試験片を作製して、同時に熱処理した。記号10−1の試験片は、600℃×30分の第1熱処理後に水冷した結果を表9から再掲した。記号10−2の試験片は、実験上の問題により第1熱処理温度が585℃と605℃の間で変動し、第1熱処理後に炉内で100℃まで冷却した。その際、約300℃までは約3分で降温したが、100℃まで降温するには約120分かかった。記号10−3の試験片は、第1熱処理後に炉内で300℃まで約3分で冷却した後、300℃で10分間保持した。記号10−4の試験片は、第1熱処理後に炉内で500℃まで約2分で冷却した後、引き続いて500℃で第2熱処理を行った。表10には参考のために、ウィーデマン・フランツの法則を用いて熱伝導率から算出した電気伝導率を併せて示した。   Next, for Cu1.5Cr, the thermal conductivity and mechanical properties were measured by changing the transition conditions from the first heat treatment to the second heat treatment. The results are shown in Table 10. The symbols at the top of Table 10 were given to the heat treatment conditions. For each symbol, test pieces for measuring thermal conductivity and measuring mechanical properties were prepared as described above, and heat-treated at the same time. The test piece of the symbol 10-1 reprinted from Table 9 the result of water cooling after the first heat treatment at 600 ° C. for 30 minutes. In the specimen 10-2, the first heat treatment temperature fluctuated between 585 ° C. and 605 ° C. due to experimental problems, and was cooled to 100 ° C. in the furnace after the first heat treatment. At that time, the temperature was lowered to about 300 ° C. in about 3 minutes, but it took about 120 minutes to lower the temperature to 100 ° C. The test piece of symbol 10-3 was cooled to 300 ° C. in about 3 minutes in the furnace after the first heat treatment, and then held at 300 ° C. for 10 minutes. The specimen 10-4 was cooled to 500 ° C. in about 2 minutes in the furnace after the first heat treatment, and subsequently subjected to the second heat treatment at 500 ° C. For reference, Table 10 also shows electrical conductivity calculated from thermal conductivity using Weedmann-Franz law.

表10から、記号10−2の試験片を除き、ほぼ同じ特性が得られた。このことから、第1熱処理から第2熱処理への移行の際の温度変化は特に重要でないことが分かった。例えば、本実験のように急速な冷却が可能な場合は、第1熱処理温度から第2熱処理温度まで降温して、そのまま第2熱処理を行うことができる。あるいは、例えば、積層造形品の熱容量が大きく降温に時間がかかる場合は、積層造形品を一旦炉から取り出して水冷することができる。   From Table 10, almost the same characteristics were obtained except for the specimen 10-2. From this, it was found that the temperature change during the transition from the first heat treatment to the second heat treatment is not particularly important. For example, when rapid cooling is possible as in this experiment, the temperature can be lowered from the first heat treatment temperature to the second heat treatment temperature, and the second heat treatment can be performed as it is. Alternatively, for example, when the layered product has a large heat capacity and takes time to cool down, the layered product can be once taken out of the furnace and water-cooled.

本発明は、上記の実施形態や実施例に限定されるものではなく、その技術的思想の範囲内で変形が可能である。   The present invention is not limited to the above-described embodiments and examples, and can be modified within the scope of the technical idea.

例えば、上記実施形態と実施例では付加製造時の熱源がレーザー光であったが、熱源として電子ビームを用いてもよい。   For example, in the above-described embodiments and examples, the heat source at the time of additional manufacture is laser light, but an electron beam may be used as the heat source.

Claims (5)

Cr:1.1〜20質量%、Zr:0〜0.2質量%、残部がCuおよび不可避的不純物からなる銅合金粉末を用いて付加製造された積層造形物の熱処理方法であって、
前記積層造形物を500〜800℃の第1熱処理温度で保持する第1熱処理工程と、
前記第1熱処理工程の後に、400℃以上で、前記第1熱処理温度より50℃以上低い温度である第2熱処理温度で保持する第2熱処理工程とを有する、
積層造形物の熱処理方法。
Cr: 1.1 to 20% by mass, Zr: 0 to 0.2% by mass, the balance is a heat treatment method of a layered object that is additionally manufactured using a copper alloy powder composed of Cu and inevitable impurities,
A first heat treatment step of holding the layered object at a first heat treatment temperature of 500 to 800 ° C .;
After the first heat treatment step, there is a second heat treatment step of holding at a second heat treatment temperature that is 400 ° C. or more and lower than the first heat treatment temperature by 50 ° C. or more.
Heat treatment method for layered objects.
Cr:0.1〜20質量%、Zr:0〜0.2質量%、Crの含有量がZrの含有量より多く、残部がCuおよび不可避的不純物からなる銅合金からなる積層造形物の熱処理方法であって、
前記積層造形物を500〜800℃の第1熱処理温度で保持する第1熱処理工程と、
前記第1熱処理工程の後に、410℃以上で、前記第1熱処理温度より50℃以上低い温度である第2熱処理温度で保持する第2熱処理工程とを有する、
積層造形物の熱処理方法。
Heat treatment of a layered object made of a copper alloy consisting of Cr: 0.1 to 20% by mass, Zr: 0 to 0.2% by mass, Cr content greater than Zr content, the balance being Cu and inevitable impurities A method,
A first heat treatment step of holding the layered object at a first heat treatment temperature of 500 to 800 ° C .;
After the first heat treatment step, there is a second heat treatment step of holding at a second heat treatment temperature of 410 ° C. or more and 50 ° C. or more lower than the first heat treatment temperature.
Heat treatment method for layered objects.
Cr:1.1〜20質量%、Zr:0〜0.2質量%、残部がCuおよび不可避的不純物からなる銅合金粉末の薄層を形成する第1工程と、前記薄層の所定位置に電磁波ビームを照射して前記銅合金粉末を溶融・凝固させる第2工程とを順次繰り返して積層造形物を作製する造形工程と、
前記積層造形物を500〜800℃の第1熱処理温度で保持する第1熱処理工程と、
前記第1熱処理工程の後に、400℃以上で、前記第1熱処理温度より50℃以上低い温度である第2熱処理温度で保持する第2熱処理工程とを有する、
銅合金造形物の製造方法。
Cr: 1.1 to 20% by mass, Zr: 0 to 0.2% by mass, the first step of forming a thin layer of copper alloy powder consisting of Cu and inevitable impurities, and at a predetermined position of the thin layer A modeling process for producing a layered object by sequentially repeating a second process of irradiating an electromagnetic wave to melt and solidify the copper alloy powder;
A first heat treatment step of holding the layered object at a first heat treatment temperature of 500 to 800 ° C .;
After the first heat treatment step, there is a second heat treatment step of holding at a second heat treatment temperature that is 400 ° C. or more and lower than the first heat treatment temperature by 50 ° C. or more.
A method for producing a copper alloy shaped article.
Cr:0.1〜20質量%、Zr:0〜0.2質量%、Crの含有量がZrの含有量より多く、残部がCuおよび不可避的不純物からなる銅合金粉末の薄層を形成する第1工程と、前記薄層の所定位置に電磁波ビームを照射して前記銅合金粉末を溶解・凝固させる第2工程とを順次繰り返して積層造形物を作製する造形工程と、
前記積層造形物を500〜800℃の第1熱処理温度で保持する第1熱処理工程と、
前記第1熱処理工程の後に、410℃以上で、前記第1熱処理温度より50℃以上低い温度である第2熱処理温度で保持する第2熱処理工程とを有する、
銅合金造形物の製造方法。
Cr: 0.1 to 20% by mass, Zr: 0 to 0.2% by mass, Cr content is greater than Zr content, and the remainder forms a thin layer of copper alloy powder consisting of Cu and inevitable impurities A modeling process for producing a layered object by sequentially repeating a first process and a second process of irradiating an electromagnetic wave beam at a predetermined position of the thin layer to melt and solidify the copper alloy powder;
A first heat treatment step of holding the layered object at a first heat treatment temperature of 500 to 800 ° C .;
After the first heat treatment step, there is a second heat treatment step of holding at a second heat treatment temperature of 410 ° C. or more and 50 ° C. or more lower than the first heat treatment temperature.
A method for producing a copper alloy shaped article.
前記電磁波ビームがレーザー光である、
請求項3または4のいずれか一項に記載の銅合金造形物の製造方法。
The electromagnetic beam is a laser beam,
The manufacturing method of the copper alloy molded article as described in any one of Claim 3 or 4.
JP2019108316A 2019-06-11 2019-06-11 Method for heat-treating lamination-molded object and method for manufacturing copper alloy molded object Pending JP2019203197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019108316A JP2019203197A (en) 2019-06-11 2019-06-11 Method for heat-treating lamination-molded object and method for manufacturing copper alloy molded object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019108316A JP2019203197A (en) 2019-06-11 2019-06-11 Method for heat-treating lamination-molded object and method for manufacturing copper alloy molded object

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018563741A Division JP6541901B1 (en) 2017-09-04 2018-05-25 Heat treatment method for laminate shaped article and method for producing shaped copper alloy article

Publications (1)

Publication Number Publication Date
JP2019203197A true JP2019203197A (en) 2019-11-28

Family

ID=68726256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019108316A Pending JP2019203197A (en) 2019-06-11 2019-06-11 Method for heat-treating lamination-molded object and method for manufacturing copper alloy molded object

Country Status (1)

Country Link
JP (1) JP2019203197A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394608A (en) * 2020-03-31 2020-07-10 金川集团股份有限公司 Preparation method of copper alloy powder for selective laser melting additive manufacturing
JP2021098887A (en) * 2019-12-20 2021-07-01 Jx金属株式会社 Metal powder for lamination molding, and lamination molding made using the metal powder
JP7545257B2 (en) 2020-08-06 2024-09-04 東邦チタニウム株式会社 Hearthstone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021098887A (en) * 2019-12-20 2021-07-01 Jx金属株式会社 Metal powder for lamination molding, and lamination molding made using the metal powder
CN111394608A (en) * 2020-03-31 2020-07-10 金川集团股份有限公司 Preparation method of copper alloy powder for selective laser melting additive manufacturing
JP7545257B2 (en) 2020-08-06 2024-09-04 東邦チタニウム株式会社 Hearthstone

Similar Documents

Publication Publication Date Title
JP6346983B1 (en) Copper alloy powder, heat treatment method of layered object, manufacturing method of copper alloy object, and copper alloy object
JP4213134B2 (en) Cu-Cr alloy and method for producing Cu-Cr alloy
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
WO2015016218A1 (en) Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment
JP2019203197A (en) Method for heat-treating lamination-molded object and method for manufacturing copper alloy molded object
JP5060625B2 (en) Cu-Zr-based copper alloy plate and manufacturing method thereof
CN103228804A (en) Copper alloy for electronic devices, method for producing copper alloy for electronic devices, and copper alloy rolled material for electronic devices
JP6975888B2 (en) Heat treatment method for laminated model and manufacturing method for copper alloy model
JP4527198B1 (en) Method for producing copper alloy for electronic equipment
JP6496072B1 (en) Method for producing metal powder for additive manufacturing and copper alloy shaped article
JP4642119B2 (en) Copper alloy and method for producing the same
JP7155456B2 (en) Aluminum alloy compact and method for producing the same
JP2013100571A (en) Electronics copper alloy, method for production thereof, electronics copper alloy plastic-forming material, and electronics component
CN101784684B (en) High-strength high-electroconductivity copper alloy possessing excellent hot workability
JP6559865B1 (en) Method for producing copper alloy shaped article and copper alloy shaped article
JP6248389B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
TWI639163B (en) Cu-Co-Ni-Si alloy for electronic parts, and electronic parts
JP2016176105A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP2009263690A (en) Copper alloy sheet for electrical/electronic component excellent in heat resistance
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
JP7179226B2 (en) Aluminum compact and method for producing the same
WO2024204150A1 (en) Copper alloy and component for electronic/electric devices
JP6085146B2 (en) Method for producing copper-titanium-hydrogen alloy

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200824