JP2007230810A - Method for manufacturing single crystal gallium nitride substrate - Google Patents

Method for manufacturing single crystal gallium nitride substrate Download PDF

Info

Publication number
JP2007230810A
JP2007230810A JP2006053055A JP2006053055A JP2007230810A JP 2007230810 A JP2007230810 A JP 2007230810A JP 2006053055 A JP2006053055 A JP 2006053055A JP 2006053055 A JP2006053055 A JP 2006053055A JP 2007230810 A JP2007230810 A JP 2007230810A
Authority
JP
Japan
Prior art keywords
single crystal
gallium nitride
layer
silicon carbide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006053055A
Other languages
Japanese (ja)
Other versions
JP4756418B2 (en
Inventor
Katsutoshi Izumi
勝俊 泉
Fujio Takada
不二雄 高田
Yoshihisa Tanaka
好久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RESUKA KK
Osaka University NUC
Osaka Prefecture University
Rhesca Co Ltd
Original Assignee
RESUKA KK
Osaka University NUC
Osaka Prefecture University
Rhesca Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RESUKA KK, Osaka University NUC, Osaka Prefecture University, Rhesca Co Ltd filed Critical RESUKA KK
Priority to JP2006053055A priority Critical patent/JP4756418B2/en
Publication of JP2007230810A publication Critical patent/JP2007230810A/en
Application granted granted Critical
Publication of JP4756418B2 publication Critical patent/JP4756418B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a single crystal gallium nitride substrate supported by a polycrystalline silicon carbide layer, from which a blue light emitting element can be obtained. <P>SOLUTION: The method for manufacturing the single crystal gallium nitride substrate includes: (A) a process for converting a single crystal silicon layer into a single crystal silicon carbide layer by heat treating an SOI substrate having such a structure that the single crystal silicon layer, a buried oxide film layer and a silicon substrate are sequentially laminated and a process for thickening the single crystal silicon carbide layer by an epitaxial growth method; (B) a process for forming a single crystal gallium nitride layer on the single crystal silicon carbide layer; (C) a process for forming a polycrystalline silicon carbide layer on the single crystal gallium nitride layer by a high frequency plasma method; and (D) a process for sequentially removing the silicon substrate, the buried oxide film layer and the single crystal silicon carbide layer from the obtained stacked body under different conditions. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、単結晶窒化ガリウム基板の製造方法に関する。さらに詳しくは、本発明は、青色系発光素子を実現し得る、多結晶炭化珪素層に支持された単結晶窒化ガリウム基板の製造方法に関する。   The present invention relates to a method for manufacturing a single crystal gallium nitride substrate. More specifically, the present invention relates to a method for manufacturing a single crystal gallium nitride substrate supported by a polycrystalline silicon carbide layer that can realize a blue light emitting element.

窒化ガリウムは、LEDやレーザダイオードに代表される青色系発光素子の材料として広く使用されている。この窒化ガリウムは、MOCVD法(有機化学気相成長法)などによりサファイア基板上にその単結晶を成長させることにより得ている(例えば、特開平8−78728号公報(特許文献1)参照)。サファイアは、窒化ガリウムの格子定数に比較的近く(不整合割合15%程度)、窒化ガリウムの成長基板として用いられている。   Gallium nitride is widely used as a material for blue light-emitting elements typified by LEDs and laser diodes. This gallium nitride is obtained by growing a single crystal on a sapphire substrate by MOCVD (organic chemical vapor deposition) or the like (for example, see JP-A-8-78728 (Patent Document 1)). Sapphire is relatively close to the lattice constant of gallium nitride (mismatch ratio of about 15%) and is used as a growth substrate for gallium nitride.

しかしながら、サファイアは、電気伝導度が低い、シリコン基板のように大型化(大口径化)ができない、製造コストが高いという欠点を有している。
そこで、サファイアよりも窒化ガリウムの格子定数に近く(不整合割合5%程度)、かつ良好な耐熱性を有する炭化珪素が提案されている(例えば、特開平10−106949号公報(特許文献2)参照)。
However, sapphire has drawbacks that it has low electrical conductivity, cannot be enlarged (larger diameter) like a silicon substrate, and has a high manufacturing cost.
Therefore, silicon carbide has been proposed that is closer to the lattice constant of gallium nitride than sapphire (mismatch ratio is about 5%) and has good heat resistance (for example, Japanese Patent Laid-Open No. 10-106949 (Patent Document 2)). reference).

特開平8−78728号公報JP-A-8-78728 特開平10−106949号公報Japanese Patent Laid-Open No. 10-106949

しかしながら、窒化ガリウムとの結晶の整合性がより高く、電気伝導度が高く、大型化(大口径化)でき、かつ低コストの青色系発光素子用の基板が求められている。
本発明は、青色系発光素子を実現し得る、多結晶炭化珪素層に支持された単結晶窒化ガリウム基板の製造方法を提供することを課題とする。
However, there is a demand for a substrate for a blue light-emitting element having higher crystal matching with gallium nitride, higher electrical conductivity, larger size (larger diameter), and lower cost.
An object of the present invention is to provide a method for manufacturing a single crystal gallium nitride substrate supported by a polycrystalline silicon carbide layer, which can realize a blue light emitting element.

かくして、本発明によれば、
多結晶炭化珪素層に支持された単結晶窒化ガリウム基板の製造方法であり、
(A)面方位(111)を有する単結晶シリコン層、埋め込み酸化膜層およびシリコン基板が順次積層された構造を有するSOI基板を炭化水素系ガス雰囲気中で加熱処理して、前記単結晶シリコン層を面方位(111)を有する単結晶炭化珪素層に変成させる工程およびエピタキシャル成長法により、該単結晶炭化珪素層を増厚する工程、
(B)前記単結晶炭化珪素層上に、前記単結晶窒化ガリウム基板を構成するに足る膜厚の単結晶窒化ガリウム層を形成する工程、
(C)高周波プラズマ法により、前記単結晶窒化ガリウム層上に、前記単結晶窒化ガリウム基板を支持するに足る膜厚の多結晶炭化珪素層を形成する工程、ならびに
(D)得られた積層体から前記シリコン基板、前記埋め込み酸化膜層および前記単結晶炭化珪素層を順次異なる条件下で除去する工程
を含むことを特徴とする単結晶窒化ガリウム基板の製造方法が提供される。
また、本発明によれば、上記の製造方法により得られる単結晶窒化ガリウム基板が提供される。
Thus, according to the present invention,
A method for producing a single crystal gallium nitride substrate supported by a polycrystalline silicon carbide layer,
(A) An SOI substrate having a structure in which a single crystal silicon layer having a plane orientation (111), a buried oxide film layer, and a silicon substrate are sequentially stacked is heat-treated in a hydrocarbon-based gas atmosphere, and the single crystal silicon layer To a single crystal silicon carbide layer having a plane orientation (111) and a step of thickening the single crystal silicon carbide layer by an epitaxial growth method,
(B) forming a single crystal gallium nitride layer having a thickness sufficient to constitute the single crystal gallium nitride substrate on the single crystal silicon carbide layer;
(C) a step of forming a polycrystalline silicon carbide layer having a thickness sufficient to support the single crystal gallium nitride substrate on the single crystal gallium nitride layer by a high-frequency plasma method; and (D) the obtained laminate To the silicon substrate, the buried oxide film layer, and the single crystal silicon carbide layer are sequentially removed under different conditions.
Moreover, according to this invention, the single crystal gallium nitride substrate obtained by said manufacturing method is provided.

本発明によれば、青色系発光素子を実現し得る、多結晶炭化珪素層に支持された単結晶窒化ガリウム基板の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the single crystal gallium nitride substrate supported by the polycrystalline silicon carbide layer which can implement | achieve a blue-type light emitting element can be provided.

本発明の単結晶窒化ガリウム基板は、多結晶炭化珪素層に支持されている。
図1は、その構成を示す概略断面図であり、1は単結晶窒化ガリウム層、2は多結晶炭化珪素層を示す。
The single crystal gallium nitride substrate of the present invention is supported by a polycrystalline silicon carbide layer.
FIG. 1 is a schematic cross-sectional view showing the configuration, where 1 is a single crystal gallium nitride layer and 2 is a polycrystalline silicon carbide layer.

本発明の単結晶窒化ガリウム基板の製造方法は、上記の工程(A)〜(D)を含むことを特徴とする。
図2は、その製造方法を示す概略断面図であり、これに基づいて詳しく説明する。
しかしながら、以下の説明は本発明の一実施形態であって、これにより本発明が限定されるものではない。
The method for producing a single crystal gallium nitride substrate of the present invention includes the steps (A) to (D) described above.
FIG. 2 is a schematic sectional view showing the manufacturing method, which will be described in detail.
However, the following description is one embodiment of the present invention, and the present invention is not limited thereby.

工程(A)
まず、面方位(111)を有する単結晶シリコン層3、埋め込み酸化膜層4およびシリコン基板5が順次積層された構造を有するSOI基板6を炭化水素系ガス雰囲気中で加熱処理して、前記単結晶シリコン層3を面方位(111)を有する単結晶炭化珪素層7に変成させ、次いでエピタキシャル成長法により、単結晶炭化珪素層7を増厚する。
Process (A)
First, an SOI substrate 6 having a structure in which a single crystal silicon layer 3 having a plane orientation (111), a buried oxide film layer 4 and a silicon substrate 5 are sequentially stacked is heat-treated in a hydrocarbon gas atmosphere, and the single crystal silicon layer 3 is buried. The crystalline silicon layer 3 is transformed into a single crystal silicon carbide layer 7 having a plane orientation (111), and then the single crystal silicon carbide layer 7 is thickened by epitaxial growth.

SOI(Silicon-on-Insulator)基板6は、単結晶シリコン層3/埋め込み酸化膜層4/シリコン基板5の積層構造を有する基板であり(図2(a)参照)、公知のものを用いることができる。その各層および基板の膜厚および厚さは、上記の順に3〜15nm程度/90〜400nm程度/600〜900μm程度である。
工程(C)において単結晶窒化ガリウム層1を容易にエピタキシャル成長させるためには、その基板として面方位(111)を有する単結晶炭化珪素層7が必要であり、変成前の単結晶シリコン層3は面方位(111)を有するのが好ましい。
また、本発明の単結晶窒化ガリウム基板を用いて青色系発光素子を製造する場合の製造効率の点から、SOI基板6はより大きなものが好ましく、例えば、口径200mmが挙げられる。
An SOI (Silicon-on-Insulator) substrate 6 is a substrate having a laminated structure of single crystal silicon layer 3 / buried oxide film layer 4 / silicon substrate 5 (see FIG. 2A), and a known one is used. Can do. The thickness and thickness of each layer and substrate are about 3 to 15 nm / about 90 to 400 nm / about 600 to 900 μm in the above order.
In order to easily epitaxially grow the single crystal gallium nitride layer 1 in the step (C), a single crystal silicon carbide layer 7 having a plane orientation (111) is required as its substrate, and the single crystal silicon layer 3 before the transformation is It preferably has a plane orientation (111).
In addition, from the viewpoint of production efficiency when producing a blue light-emitting device using the single crystal gallium nitride substrate of the present invention, the SOI substrate 6 is preferably larger, for example, having a diameter of 200 mm.

炭化水素系ガスは、単結晶シリコン層3を単結晶炭化珪素層7に変成し得るガスであれば特に限定されず、その例としては、水素/プロパン混合ガス、水素/ブタン混合ガス、水素/エチレン混合ガス、水素/プロピレン混合ガス、水素/ベンゼン混合ガスが挙げられる。これらの中でも、安価で汎用性が高いという点で水素/プロパン混合ガスが特に好ましい。混合ガスの配合割合は、適宜設定すればよい。   The hydrocarbon-based gas is not particularly limited as long as it is a gas capable of transforming the single crystal silicon layer 3 into the single crystal silicon carbide layer 7, and examples thereof include hydrogen / propane mixed gas, hydrogen / butane mixed gas, hydrogen / butane mixed gas, Examples thereof include an ethylene mixed gas, a hydrogen / propylene mixed gas, and a hydrogen / benzene mixed gas. Among these, a hydrogen / propane mixed gas is particularly preferable because it is inexpensive and highly versatile. What is necessary is just to set the mixture ratio of mixed gas suitably.

加熱処理条件は適宜設定すればよく、例えば、加熱温度は1100〜1405℃程度、加熱時間は5分間〜1時間程度である。
変成された単結晶炭化珪素層の膜厚は、約10nm〜単結晶シリコン層の膜厚である。その膜厚が3nm未満であれば、次工程(B)において形成する単結晶窒化ガリウム層の結晶性が低下するおそれがあるので好ましくない。
What is necessary is just to set heat processing conditions suitably, for example, heating temperature is about 1100-1405 degreeC, and heating time is about 5 minutes-about 1 hour.
The film thickness of the modified single crystal silicon carbide layer is about 10 nm to the thickness of the single crystal silicon layer. If the film thickness is less than 3 nm, the crystallinity of the single crystal gallium nitride layer formed in the next step (B) may be lowered, which is not preferable.

エピタキシャル成長法における反応ガスは、単結晶炭化珪素層7をエピタキシャル成長させ得るガスであれば特に限定されないが、安価で安全性が高いという点でモノメチルシランが特に好ましい。
基板温度、すなわちSOI基板6の温度としては、1000〜1100℃が好ましい。
また、成長時間は、形成する単結晶炭化珪素層7の膜厚により適宜設定すればよく、例えば、30〜45分間程度である。
増厚後の単結晶炭化珪素層7の膜厚は、50〜100nm程度である。
The reactive gas in the epitaxial growth method is not particularly limited as long as it is a gas capable of epitaxially growing the single crystal silicon carbide layer 7, but monomethylsilane is particularly preferable in that it is inexpensive and highly safe.
The substrate temperature, that is, the temperature of the SOI substrate 6 is preferably 1000 to 1100 ° C.
The growth time may be appropriately set depending on the film thickness of the single crystal silicon carbide layer 7 to be formed, and is, for example, about 30 to 45 minutes.
The film thickness of the single crystal silicon carbide layer 7 after thickening is about 50 to 100 nm.

具体的には、SOI基板6を処理チャンバー内に設置し、処理チャンバー内に炭化水素系ガスを流通させながら、SOI基板6を加熱処理して、単結晶シリコン層3を変成させ、面方位(111)を有する単結晶炭化珪素層7を得、引き続いて、エピタキシャル成長法により、単結晶炭化珪素層7を増厚する。(図2(b)参照)。   Specifically, the SOI substrate 6 is installed in a processing chamber, and the SOI substrate 6 is heat-treated while flowing a hydrocarbon-based gas in the processing chamber, thereby transforming the single crystal silicon layer 3 to obtain a plane orientation ( 111) is obtained, and subsequently, the single crystal silicon carbide layer 7 is thickened by an epitaxial growth method. (See FIG. 2 (b)).

工程(B)
次に、単結晶炭化珪素層7上に、単結晶窒化ガリウム基板を構成するに足る膜厚の単結晶窒化ガリウム層1を形成する。
具体的には、単結晶炭化珪素層7上に単結晶窒化ガリウム層1をエピタキシャル成長させる。
反応ガスは、単結晶窒化ガリウム層1をエピタキシャル成長させ得るガスであれば特に限定されないが、汎用的で使用実績が高いというの点でトリメチルガリウム/アンモニア混合ガスが好ましい。混合ガスの配合割合は、適宜設定すればよい。
Process (B)
Next, the single crystal gallium nitride layer 1 having a thickness sufficient to form a single crystal gallium nitride substrate is formed on the single crystal silicon carbide layer 7.
Specifically, single crystal gallium nitride layer 1 is epitaxially grown on single crystal silicon carbide layer 7.
The reaction gas is not particularly limited as long as it is a gas capable of epitaxially growing the single crystal gallium nitride layer 1, but a trimethyl gallium / ammonia mixed gas is preferable because it is versatile and has a high use record. What is necessary is just to set the mixture ratio of mixed gas suitably.

基板温度、すなわち単結晶炭化珪素層7の温度としては、700〜1200℃が好ましく、1000〜1150℃が特に好ましい。
また、成長時間は、形成する単結晶窒化ガリウム層1の膜厚により適宜設定すればよく、例えば、15〜50分間程度である。
形成する単結晶窒化ガリウム層1の膜厚は、0.5〜10μm程度である。その膜厚が20nm未満であれば、単結晶窒化ガリウム基板として機能しないおそれがあるので好ましくない。
As substrate temperature, ie, the temperature of the single-crystal silicon carbide layer 7, 700-1200 degreeC is preferable and 1000-1150 degreeC is especially preferable.
The growth time may be set as appropriate depending on the thickness of the single crystal gallium nitride layer 1 to be formed, and is, for example, about 15 to 50 minutes.
The film thickness of the single crystal gallium nitride layer 1 to be formed is about 0.5 to 10 μm. If the film thickness is less than 20 nm, it may not function as a single crystal gallium nitride substrate, which is not preferable.

具体的には、処理チャンバー内に反応ガスを流通させながら、得られた積層体を加熱して、単結晶炭化珪素層7上に単結晶窒化ガリウム1をエピタキシャル成長させる(図2(c)参照)。   Specifically, the obtained stacked body is heated while circulating the reaction gas in the processing chamber to epitaxially grow the single crystal gallium nitride 1 on the single crystal silicon carbide layer 7 (see FIG. 2C). .

工程(C)
次に、高周波プラズマ法(「高周波プラズマ堆積法」ともいう)により、単結晶窒化ガリウム層1上に、単結晶窒化ガリウム基板を支持するに足る膜厚の多結晶炭化珪素層2を形成する。
高周波プラズマ法であれば、比較的低温、具体的には850〜1150℃の基板温度範囲で、単結晶窒化ガリウム層1を分解させることなしに、その上に多結晶炭化珪素層2を形成することができる。
他方、MOCVD(有機化学気相成長法)では、基板温度を1400℃以上、最低でも1200℃以上に加熱する必要があることから、本発明の多結晶炭化珪素層2の形成には適さない。
Process (C)
Next, a polycrystalline silicon carbide layer 2 having a thickness sufficient to support the single crystal gallium nitride substrate is formed on the single crystal gallium nitride layer 1 by a high frequency plasma method (also referred to as “high frequency plasma deposition method”).
If the high-frequency plasma method is used, the polycrystalline silicon carbide layer 2 is formed on the single-crystal gallium nitride layer 1 without being decomposed at a relatively low temperature, specifically, at a substrate temperature range of 850 to 1150 ° C. be able to.
On the other hand, MOCVD (organic chemical vapor deposition) is not suitable for forming the polycrystalline silicon carbide layer 2 of the present invention because the substrate temperature needs to be heated to 1400 ° C. or higher and at least 1200 ° C. or higher.

高周波プラズマ装置(「高周波プラズマ堆積装置」ともいう)は、基板温度を室温〜1150℃程度まで制御可能なものであれば特に限定されない。
印加する高周波の周波数は、法制上および汎用性の点で、13.56MHzが好ましい。
反応ガスは、多結晶炭化珪素層2を形成し得るガスであれば特に限定されないが、安価で安全性が高いという点でモノメチルシランが特に好ましい。
The high-frequency plasma apparatus (also referred to as “high-frequency plasma deposition apparatus”) is not particularly limited as long as the substrate temperature can be controlled from room temperature to about 1150 ° C.
The frequency of the high frequency to be applied is preferably 13.56 MHz in terms of legal and general versatility.
The reaction gas is not particularly limited as long as it is a gas that can form the polycrystalline silicon carbide layer 2, but monomethylsilane is particularly preferable in terms of low cost and high safety.

基板温度、すなわち単結晶窒化ガリウム層1の温度としては、850〜1150℃が好ましく、850〜1000℃が特に好ましい。
また、プラズマ状態を保持する時間は、堆積させる多結晶炭化珪素層2の膜厚により適宜設定すればよい。
形成する多結晶炭化珪素層2の膜厚は、100〜1000μm程度である。その膜厚が500nm未満であれば、単結晶窒化ガリウム基板の支持基板として機能しないおそれがあるので好ましくない。
The substrate temperature, that is, the temperature of the single crystal gallium nitride layer 1 is preferably 850 to 1150 ° C., and particularly preferably 850 to 1000 ° C.
Moreover, what is necessary is just to set suitably the time to hold | maintain a plasma state with the film thickness of the polycrystalline silicon carbide layer 2 to deposit.
The film thickness of the polycrystalline silicon carbide layer 2 to be formed is about 100 to 1000 μm. If the film thickness is less than 500 nm, it may not function as a support substrate for the single crystal gallium nitride substrate, which is not preferable.

具体的には、得られた積層体を高周波プラズマ装置内に設置し、反応ガスを流通させながら、得られた積層体を1000℃に加熱し、高周波を印加して高周波プラズマを発生させる。この状態を保持して、モノメチルシランの分解物を単結晶窒化ガリウム1上に堆積させて、多結晶炭化珪素層2を得る(図2(d)参照)。   Specifically, the obtained laminate is placed in a high-frequency plasma apparatus, and the obtained laminate is heated to 1000 ° C. while circulating a reaction gas, and high frequency is applied to generate high-frequency plasma. While maintaining this state, a decomposition product of monomethylsilane is deposited on single crystal gallium nitride 1 to obtain polycrystalline silicon carbide layer 2 (see FIG. 2D).

工程(D)
次に、得られた積層体から前記シリコン基板5、埋め込み酸化膜層4および単結晶炭化珪素層7を順次異なる条件下で除去する。
公知の方法、例えば、得られた積層体を硝酸/フッ酸の混合液に浸漬して、シリコン基板5を選択的に除去する(図2(e)参照)。
Process (D)
Next, the silicon substrate 5, the buried oxide film layer 4 and the single crystal silicon carbide layer 7 are sequentially removed under different conditions from the obtained laminate.
The silicon substrate 5 is selectively removed by a known method, for example, by immersing the obtained laminate in a mixed solution of nitric acid / hydrofluoric acid (see FIG. 2 (e)).

次いで、公知の方法、例えば、得られた積層体を希フッ酸液に浸漬して、埋め込み酸化膜層4を選択的に除去する(図2(f)参照)。
次いで、公知の方法、例えば、アルミナのトナーを用いた機械的研磨により、得られた積層体から単結晶炭化珪素層7を除去して、本発明の単結晶窒化ガリウム基板、すなわち多結晶炭化珪素層に支持された単結晶窒化ガリウム基板を得る(図2(g)参照)。
Next, the buried oxide film layer 4 is selectively removed by a known method, for example, by immersing the obtained laminate in a dilute hydrofluoric acid solution (see FIG. 2F).
Next, the single crystal silicon carbide layer 7 is removed from the obtained laminate by a known method, for example, mechanical polishing using alumina toner, and the single crystal gallium nitride substrate of the present invention, that is, polycrystalline silicon carbide. A single crystal gallium nitride substrate supported by the layer is obtained (see FIG. 2G).

このようにして得られた本発明の単結晶窒化ガリウム基板は、青色系発光素子を実現することができる。すなわち、本発明は、素子(トランジスタ)に言及するものではなく、あくまでも素子を実現するための基板を提供することができる。
上記のように、単結晶窒化ガリウムの膜厚は0.5〜10μm程度、多結晶炭化珪素の膜厚は、100〜1000μm程度である。
The thus obtained single crystal gallium nitride substrate of the present invention can realize a blue light emitting element. That is, the present invention does not refer to an element (transistor) but can provide a substrate for realizing the element.
As described above, the film thickness of the single crystal gallium nitride is about 0.5 to 10 μm, and the film thickness of the polycrystalline silicon carbide is about 100 to 1000 μm.

(実施例)
本発明を実施例により具体的に説明するが、この実施例により本発明が限定されるものではない。
(Example)
The present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples.

(実施例1)
図2(a)〜(g)の製造方法に基づいて、図1の単結晶窒化ガリウム基板を作製した。
面方位(111)を有する単結晶シリコン層3(7nm)/埋め込み酸化膜層4(110nm)/シリコン基板5(750μm)の積層構造を有する、口径200mmのSOI基板6を準備した(図2(a)参照)。
このSOI基板6を処理チャンバー内に設置し、処理チャンバー内に1slmの水素(H2)ガスと10sccmのプロパン(C38)の混合ガスを流通させながら、SOI基板6を1250℃で15分間加熱処理して、単結晶シリコン層3を変成させ、膜厚5nmの面方位(111)を有する単結晶炭化珪素層7を得た。
引き続いて、処理チャンバー内に1sccmのモノメチルシランのガスを流通させながら、SOI基板6を1100℃で45分間加熱して、単結晶炭化珪素層7上に単結晶炭化珪素をエピタキシャル成長させ、単結晶炭化珪素層7の膜厚を100nmに増厚させた(図2(b)参照)。
Example 1
Based on the manufacturing method of FIGS. 2A to 2G, the single crystal gallium nitride substrate of FIG. 1 was produced.
An SOI substrate 6 having a diameter of 200 mm having a laminated structure of single crystal silicon layer 3 (7 nm) / buried oxide film layer 4 (110 nm) / silicon substrate 5 (750 μm) having a plane orientation (111) was prepared (FIG. 2 ( a)).
The SOI substrate 6 is set in a processing chamber, and a mixed gas of 1 slm hydrogen (H 2 ) gas and 10 sccm propane (C 3 H 8 ) is circulated in the processing chamber at 1550 ° C. The single crystal silicon layer 3 was transformed by heat treatment for 5 minutes to obtain a single crystal silicon carbide layer 7 having a plane orientation (111) with a film thickness of 5 nm.
Subsequently, while flowing 1 sccm of monomethylsilane gas through the processing chamber, the SOI substrate 6 is heated at 1100 ° C. for 45 minutes to epitaxially grow single crystal silicon carbide on the single crystal silicon carbide layer 7, thereby producing single crystal carbonization. The film thickness of the silicon layer 7 was increased to 100 nm (see FIG. 2B).

次に、処理チャンバー内に5sccmのトリメチルガリウムと2slmのアンモニアの混合ガスを流通させながら、得られた積層体を1100℃で15分間加熱して、単結晶炭化珪素層7上に500nmの単結晶窒化ガリウム1をエピタキシャル成長させた(図2(c)参照)。次いで、得られた積層体を一旦室温まで冷却させ、処理チャンバーから取り出した。   Next, while flowing a mixed gas of 5 sccm of trimethylgallium and 2 slm ammonia in the processing chamber, the obtained laminate was heated at 1100 ° C. for 15 minutes to form a single crystal of 500 nm on the single crystal silicon carbide layer 7. Gallium nitride 1 was epitaxially grown (see FIG. 2C). Next, the obtained laminate was once cooled to room temperature and taken out from the processing chamber.

次に、得られた積層体を高周波プラズマ装置内に設置し、50sccmのモノメチルシランのガスを流通させながら、得られた積層体を1000℃に加熱し、周波数13.56MHzの高周波を印加して高周波プラズマを発生させた。この状態を2時間保持して、モノメチルシランの分解物を単結晶窒化ガリウム1上に堆積させて、500μmの多結晶炭化珪素層2を得た(図2(d)参照)。次いで、得られた積層体を一旦室温まで冷却させ、高周波プラズマ装置から取り出した。   Next, the obtained laminate is placed in a high-frequency plasma apparatus, and the obtained laminate is heated to 1000 ° C. while supplying 50 sccm of monomethylsilane gas, and a high frequency of 13.56 MHz is applied. High frequency plasma was generated. This state was maintained for 2 hours, and a decomposition product of monomethylsilane was deposited on the single crystal gallium nitride 1 to obtain a 500 μm polycrystalline silicon carbide layer 2 (see FIG. 2D). Next, the obtained laminate was once cooled to room temperature and taken out from the high-frequency plasma apparatus.

次に、得られた積層体を硝酸/フッ酸の混合液に浸漬して、シリコン基板5を選択的に除去した(図2(e)参照)。
次いで、得られた積層体を希フッ酸液に浸漬して、埋め込み酸化膜層4を選択的に除去した(図2(f)参照)。
Next, the obtained laminate was immersed in a mixed solution of nitric acid / hydrofluoric acid to selectively remove the silicon substrate 5 (see FIG. 2E).
Next, the obtained laminate was immersed in dilute hydrofluoric acid solution to selectively remove the buried oxide film layer 4 (see FIG. 2F).

次いで、アルミナのトナーを用いて、単結晶炭化珪素層7を機械的に研磨して、多結晶炭化珪素層に支持された単結晶窒化ガリウム基板を得た(図2(g)参照)。   Next, the single crystal silicon carbide layer 7 was mechanically polished using an alumina toner to obtain a single crystal gallium nitride substrate supported by the polycrystalline silicon carbide layer (see FIG. 2G).

X線回折装置を用いて、得られた単結晶窒化ガリウム基板の回折パターンを測定したところ、所望の結晶方位(0001)を有する単結晶窒化ガリウム層が形成されていることが確認できた。   When the diffraction pattern of the obtained single crystal gallium nitride substrate was measured using an X-ray diffractometer, it was confirmed that a single crystal gallium nitride layer having a desired crystal orientation (0001) was formed.

本発明の単結晶窒化ガリウム基板の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the single crystal gallium nitride substrate of this invention. 本発明の単結晶窒化ガリウム基板の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the single crystal gallium nitride substrate of this invention.

符号の説明Explanation of symbols

1 単結晶窒化ガリウム層
2 多結晶炭化珪素層
3 単結晶シリコン層
4 埋め込み酸化膜層
5 シリコン基板
6 SOI基板
7 単結晶炭化珪素層
DESCRIPTION OF SYMBOLS 1 Single crystal gallium nitride layer 2 Polycrystalline silicon carbide layer 3 Single crystal silicon layer 4 Embedded oxide film layer 5 Silicon substrate 6 SOI substrate 7 Single crystal silicon carbide layer

Claims (9)

多結晶炭化珪素層に支持された単結晶窒化ガリウム基板の製造方法であり、
(A)面方位(111)を有する単結晶シリコン層、埋め込み酸化膜層およびシリコン基板が順次積層された構造を有するSOI基板を炭化水素系ガス雰囲気中で加熱処理して、前記単結晶シリコン層を面方位(111)を有する単結晶炭化珪素層に変成させる工程およびエピタキシャル成長法により、該単結晶炭化珪素層を増厚する工程、
(B)前記単結晶炭化珪素層上に、前記単結晶窒化ガリウム基板を構成するに足る膜厚の単結晶窒化ガリウム層を形成する工程、
(C)高周波プラズマ法により、前記単結晶窒化ガリウム層上に、前記単結晶窒化ガリウム基板を支持するに足る膜厚の多結晶炭化珪素層を形成する工程、ならびに
(D)得られた積層体から前記シリコン基板、前記埋め込み酸化膜層および前記単結晶炭化珪素層を順次異なる条件下で除去する工程
を含むことを特徴とする単結晶窒化ガリウム基板の製造方法。
A method for producing a single crystal gallium nitride substrate supported by a polycrystalline silicon carbide layer,
(A) An SOI substrate having a structure in which a single crystal silicon layer having a plane orientation (111), a buried oxide film layer, and a silicon substrate are sequentially stacked is heat-treated in a hydrocarbon-based gas atmosphere, and the single crystal silicon layer To a single crystal silicon carbide layer having a plane orientation (111) and a step of thickening the single crystal silicon carbide layer by an epitaxial growth method,
(B) forming a single crystal gallium nitride layer having a thickness sufficient to constitute the single crystal gallium nitride substrate on the single crystal silicon carbide layer;
(C) a step of forming a polycrystalline silicon carbide layer having a thickness sufficient to support the single crystal gallium nitride substrate on the single crystal gallium nitride layer by a high-frequency plasma method; and (D) the obtained laminate A step of removing the silicon substrate, the buried oxide film layer and the single crystal silicon carbide layer sequentially under different conditions.
工程(A)の加熱処理における炭化水素系ガスが水素/プロパン混合ガスであり、加熱温度が1100〜1405℃であり、加熱時間が5分間〜1時間である請求項1に記載の単結晶窒化ガリウム基板の製造方法。   2. The single crystal nitriding according to claim 1, wherein the hydrocarbon gas in the heat treatment in the step (A) is a hydrogen / propane mixed gas, the heating temperature is 1100 to 1405 ° C., and the heating time is 5 minutes to 1 hour. A method for manufacturing a gallium substrate. 工程(B)が単結晶窒化ガリウム層のエピタキシャル成長であり、エピタキシャル成長における反応ガスがトリメチルガリウム/アンモニア混合ガスであり、基板としての単結晶炭化珪素層の温度が700〜1200℃である請求項1または2に記載の単結晶窒化ガリウム基板の製造方法。   The step (B) is epitaxial growth of a single crystal gallium nitride layer, the reaction gas in the epitaxial growth is a trimethyl gallium / ammonia mixed gas, and the temperature of the single crystal silicon carbide layer as a substrate is 700 to 1200 ° C. 3. A method for producing a single crystal gallium nitride substrate according to 2. 工程(C)の高周波プラズマ法における反応ガスが、モノメチルシランである請求項1〜3のいずれか1つに記載の単結晶窒化ガリウム基板の製造方法。   The method for producing a single-crystal gallium nitride substrate according to any one of claims 1 to 3, wherein the reactive gas in the high-frequency plasma method in step (C) is monomethylsilane. 工程(C)の高周波プラズマ法における基板としての単結晶窒化ガリウム層の温度が、850〜1150℃である請求項1〜4のいずれか1つに記載の単結晶窒化ガリウム基板の製造方法。   The method for producing a single crystal gallium nitride substrate according to any one of claims 1 to 4, wherein the temperature of the single crystal gallium nitride layer as the substrate in the high-frequency plasma method of step (C) is 850 to 1150 ° C. 工程(C)の高周波プラズマ法における印加する高周波の周波数が、13.56MHzである請求項1〜5のいずれか1つに記載の単結晶窒化ガリウム基板の製造方法。   The method for producing a single-crystal gallium nitride substrate according to any one of claims 1 to 5, wherein a frequency of a high frequency applied in the high frequency plasma method in step (C) is 13.56 MHz. 単結晶窒化ガリウム層の膜厚が0.5〜10μmであり、多結晶炭化珪素層の膜厚が100〜1000μmである請求項1〜6のいずれか1つに記載の単結晶窒化ガリウム基板の製造方法。   The single-crystal gallium nitride substrate according to any one of claims 1 to 6, wherein the single-crystal gallium nitride layer has a thickness of 0.5 to 10 µm, and the polycrystalline silicon carbide layer has a thickness of 100 to 1000 µm. Production method. 工程(D)が、硝酸/フッ酸の混合液によるシリコン基板の除去、フッ酸液による埋め込み酸化膜層の除去、および機械的研磨による単結晶炭化珪素層の除去である請求項1〜7のいずれか1つに記載の単結晶窒化ガリウム基板の製造方法。   The step (D) is removal of the silicon substrate with a mixed solution of nitric acid / hydrofluoric acid, removal of the buried oxide film layer with hydrofluoric acid solution, and removal of the single crystal silicon carbide layer by mechanical polishing. The manufacturing method of the single-crystal gallium nitride substrate as described in any one. 請求項1〜8のいずれか1つに記載の製造方法により得られる単結晶窒化ガリウム基板。   A single crystal gallium nitride substrate obtained by the manufacturing method according to claim 1.
JP2006053055A 2006-02-28 2006-02-28 Method for manufacturing single crystal gallium nitride substrate Expired - Fee Related JP4756418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006053055A JP4756418B2 (en) 2006-02-28 2006-02-28 Method for manufacturing single crystal gallium nitride substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053055A JP4756418B2 (en) 2006-02-28 2006-02-28 Method for manufacturing single crystal gallium nitride substrate

Publications (2)

Publication Number Publication Date
JP2007230810A true JP2007230810A (en) 2007-09-13
JP4756418B2 JP4756418B2 (en) 2011-08-24

Family

ID=38551786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053055A Expired - Fee Related JP4756418B2 (en) 2006-02-28 2006-02-28 Method for manufacturing single crystal gallium nitride substrate

Country Status (1)

Country Link
JP (1) JP4756418B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013181053A1 (en) * 2012-05-31 2013-12-05 Corning Incorporated Gallium nitride to silicon direct wafer bonding
JP2017152730A (en) * 2017-05-01 2017-08-31 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
CN109599329A (en) * 2018-12-05 2019-04-09 江西兆驰半导体有限公司 The method of nitrogen polarity Group III nitride semiconductor layer is grown on a kind of silicon substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517472A (en) * 2000-11-27 2004-06-10 エス オー イ テク シリコン オン インシュレータ テクノロジース Method for producing substrate, especially substrate for optics, electronics or electro-optics, and substrate obtained by this method
JP2005527978A (en) * 2002-05-28 2005-09-15 リュミログ Method of manufacturing a gallium nitride film separated from a substrate by epitaxy
JP2006327931A (en) * 2005-05-25 2006-12-07 Siltronic Ag Semiconductor layer structure and method for producing semiconductor layer structure
JP2007204359A (en) * 2005-12-21 2007-08-16 Freiberger Compound Materials Gmbh Process for producing free-standing iii-n layer, and free-standing iii-n substrate
JP2007243155A (en) * 2006-01-12 2007-09-20 Internatl Rectifier Corp Gan semiconductor device, and method of using gan on sapphire thin layer on polycrystalline silicon carbide substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517472A (en) * 2000-11-27 2004-06-10 エス オー イ テク シリコン オン インシュレータ テクノロジース Method for producing substrate, especially substrate for optics, electronics or electro-optics, and substrate obtained by this method
JP2005527978A (en) * 2002-05-28 2005-09-15 リュミログ Method of manufacturing a gallium nitride film separated from a substrate by epitaxy
JP2006327931A (en) * 2005-05-25 2006-12-07 Siltronic Ag Semiconductor layer structure and method for producing semiconductor layer structure
JP2007204359A (en) * 2005-12-21 2007-08-16 Freiberger Compound Materials Gmbh Process for producing free-standing iii-n layer, and free-standing iii-n substrate
JP2007243155A (en) * 2006-01-12 2007-09-20 Internatl Rectifier Corp Gan semiconductor device, and method of using gan on sapphire thin layer on polycrystalline silicon carbide substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013181053A1 (en) * 2012-05-31 2013-12-05 Corning Incorporated Gallium nitride to silicon direct wafer bonding
US8796054B2 (en) 2012-05-31 2014-08-05 Corning Incorporated Gallium nitride to silicon direct wafer bonding
JP2017152730A (en) * 2017-05-01 2017-08-31 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
CN109599329A (en) * 2018-12-05 2019-04-09 江西兆驰半导体有限公司 The method of nitrogen polarity Group III nitride semiconductor layer is grown on a kind of silicon substrate
CN109599329B (en) * 2018-12-05 2023-08-08 江西兆驰半导体有限公司 Method for growing nitrogen polar III-nitride semiconductor layer on silicon substrate

Also Published As

Publication number Publication date
JP4756418B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
CN100377306C (en) Non-polar single crystalline A-plane nitride semiconductor wafer and preparation thereof
JP5175471B2 (en) Multi-free standing gallium nitride substrate manufacturing method
CN109599329B (en) Method for growing nitrogen polar III-nitride semiconductor layer on silicon substrate
US6648966B2 (en) Wafer produced thereby, and associated methods and devices using the wafer
JP2012250868A (en) Method for growing group iii nitride layer and group iii nitride substrate
CN100547734C (en) Multilayered semiconductor substrate, semiconductor free-standing substrate and preparation method thereof and semiconductor device
US20060130745A1 (en) Domain epitaxy for thin film growth
JP4756418B2 (en) Method for manufacturing single crystal gallium nitride substrate
JP2011051849A (en) Nitride semiconductor self-supporting substrate and method for manufacturing the same
KR101386007B1 (en) Method for forming a gallium nitride material smiconductor substrate and substrate structure for gallium nitride material smiconductor substrate
CN106169497B (en) Silicon carbide substrate and method for producing silicon carbide substrate
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JP2006253617A (en) SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD
JP2004307253A (en) Method for manufacturing semiconductor substrate
KR20130035995A (en) Structural body, and method for producing semiconductor substrate
WO2014141959A1 (en) METHOD AND DEVICE FOR MANUFACTURING GALLIUM NITRIDE (GaN) FREE-STANDING SUBSTRATE
EP4118034A1 (en) A seed layer, a heterostructure comprising the seed layer and a method of forming a layer of material using the seed layer
US11107677B2 (en) Method for manufacturing SiC epitaxial substrate
JP3743013B2 (en) Epitaxial wafer manufacturing method
JP7218832B1 (en) Manufacturing method of heteroepitaxial wafer
JP2010225733A (en) Method of manufacturing semiconductor substrate
CN114277443B (en) Nitride single crystal film and preparation method and application thereof
JP2004103671A (en) METHOD OF MANUFACTURING SiC FILM THROUGH EPITAXIAL GROWTH
KR101919353B1 (en) Nitride-based semiconductor nano rod and manufacturing method of the same
JP4208078B2 (en) InN semiconductor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090311

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4756418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees