JP2007229368A - 光または放射線検出装置及びこれを備えた光または放射線撮像装置 - Google Patents

光または放射線検出装置及びこれを備えた光または放射線撮像装置 Download PDF

Info

Publication number
JP2007229368A
JP2007229368A JP2006057734A JP2006057734A JP2007229368A JP 2007229368 A JP2007229368 A JP 2007229368A JP 2006057734 A JP2006057734 A JP 2006057734A JP 2006057734 A JP2006057734 A JP 2006057734A JP 2007229368 A JP2007229368 A JP 2007229368A
Authority
JP
Japan
Prior art keywords
signal
charge
ray
pass filter
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006057734A
Other languages
English (en)
Inventor
Susumu Adachi
晋 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006057734A priority Critical patent/JP2007229368A/ja
Publication of JP2007229368A publication Critical patent/JP2007229368A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Measurement Of Radiation (AREA)

Abstract

【課題】高周波ノイズがサンプルホールド回路に入力されることを低減させ、S/N比を高くすることができ、高精度な画像を得ることができる光または放射線検出装置及びこれを備えた光または放射線撮像装置を提供することを目的とする。
【解決手段】信号増幅回路32とサンプルホールド回路33との間で、かつ、サンプルホールド回路33の直前に設けられ、受動素子のみで高周波ノイズの通過を制限する第2のローパスフィルタ35を備えているので、この第2のローパスフィルタ35により、信号増幅回路32において発生した高周波ノイズの通過が制限される。また、第2のローパスフィルタ35は、受動素子のみで構成されているので、この第2のローパスフィルタ35自体から高周波ノイズは発生することがない。したがって、高周波ノイズがサンプルホールド回路33に入力することが低減する。
【選択図】図4

Description

この発明は、医療分野や非破壊検査、RI(Radio Isotope)検査、および光学検査などの産業分野などに用いられる光または放射線検出装置に係り、特に、光または放射線を検出する検出素子からの電荷信号を電圧信号に変換し、この電圧信号を増幅する技術に関する。
従来、検出された光または放射線に基づいて撮像を行う撮像装置は、光または放射線を検出する光または放射線検出器を備えている。ここで、X線検出器を例に採って説明する。X線検出器はX線感応型のX線変換層(X線変換膜)を備えており、X線の入射によりX線変換層はキャリア(電荷信号)に変換し、その変換された電荷信号を読み出すことでX線を検出する。このX線変換層としてはアモルファスセレン(a−Se)膜が用いられる(例えば、非特許文献1参照)。
被検体MにX線を照射してX線撮像を行う場合には、被検体Mを透過したX線像がアモルファスセレン膜上に投影されて、像の濃淡に比例した電荷信号が膜内に発生する。その後、膜内で生成された電荷信号が、2次元状に配列されたキャリア収集電極に収集されて、所定時間(「蓄積時間」と呼ばれる)分だけ積分された後、薄膜トランジスタ(TFT)を経由して外部に読み出される。また、このようなX線検出器を製造するには、2次元状に配列された薄膜トランジスタ(TFT)からなるスイッチング素子や上述したキャリア収集電極などをパターン形成したガラス基板(絶縁基板)上に、アモルファスセレン膜を蒸着することで得られる。
さらに、X線検出器は、例えば、X線変換層で変換された電荷信号を電圧信号に変換する電荷検出増幅回路(CSA:Charge Sensitive Amplifier)、電荷検出増幅回路からの電圧信号を増幅する信号増幅回路、信号増幅回路から出力される電圧信号をサンプリングし、所定の時間において保持するサンプルホールド回路などを備えている。また、コンデンサと抵抗とでローパスフィルタを形成している。また、電荷検出増幅回路および信号増幅回路には、演算増幅器が用いられている(例えば、特許文献1参照)。
特開2004−23750号公報(7頁,14頁、図6) W. Zhao, et al. , "A flat panel detector for digital radiology using active matrix readout of amorphous selenium," Proc. SPIE Vol. 2708, pp. 523 - 531, 1996.
しかしながら、従来の光または放射線検出装置及びこれを備えた光または放射線撮像装置では、次のような問題がある。すなわち、信号増幅回路の演算増幅器自体から高周波ノイズが発生し、この高周波ノイズがサンプルホールド回路に入力される。つまり、サンプルホールド回路では、高周波ノイズを含んだ電圧信号をサンプリングすることになり、精度の低い画像を得ることになるという問題がある。
この発明は、このような事情に鑑みてなされたものであって、高周波ノイズがサンプルホールド回路に入力されることを低減させ、S/N比を高くすることができ、高精度な画像を得ることができる光または放射線検出装置及びこれを備えた光または放射線撮像装置を提供することを目的とする。
この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、請求項1に記載の光または放射線検出装置の発明は、(A)光または放射線に感応して電荷信号を出力する検出手段と、(B)前記検出手段から出力された電荷信号を、第1の増幅素子を用いて電圧信号に変換する電荷電圧変換手段と、(C)前記電荷電圧変換手段で変換された電圧信号を、第2の増幅素子を用いて増幅する信号増幅手段と、(D)前記信号増幅手段で増幅された電圧信号を、サンプリングし所定の時間において保持する保持手段と、(E)電荷電圧変換手段と前記信号増幅手段を含む当該信号増幅手段との間に設けられ、高周波帯域成分の信号の通過を制限する第1のローパスフィルタと、(F)前記保持手段の直前に設けられ、受動素子のみで高周波帯域成分の信号の通過を制限する第2のローパスフィルタと、を備えていることを特徴とするものである。
[作用・効果]請求項1の発明の作用は次のとおりである。
まず、検出手段に光または放射線が入射された場合に、検出手段は、この入射された光または放射線に感応して電荷信号を出力する。さらに、検出手段から出力された電荷信号は、第1の増幅素子を用いた電荷電圧変換手段で電圧信号に変換される。次に、この電圧信号は第2の増幅素子を用いた信号増幅手段で増幅され、さらに、信号増幅手段で増幅された電圧信号は保持手段によりサンプリングされ、所定の時間において保持される。ここで、電荷電圧変換手段の第1の増幅素子からは、高周波ノイズが発生されるが、電荷電圧変換手段と信号増幅手段を含む当該信号増幅手段との間に設けられた、第1のローパスフィルタにより高周波ノイズ(高周波帯域成分の信号)の通過が制限されて、信号増幅手段にて増幅されることになる。また、信号増幅手段の第2の増幅素子からも高周波ノイズが発生されるが、保持手段の直前に設けられた第2のローパスフィルタにより高周波ノイズ(高周波帯域成分の信号)の通過が制限される。さらに、この第2のローパスフィルタは、受動素子のみで構成されているので、この第2のローパスフィルタ自体から高周波ノイズは発生せず、また、電力を供給する必要が無く、簡単な構成とすることができる。
したがって、高周波ノイズが保持手段に入力されることを低減させ、S/N比を高くすることができ、高精度な画像を得ることができる。
また、請求項2の発明は、請求項1に記載の光または放射線検出装置において、前記第2のローパスフィルタの時定数は、前記第1のローパスフィルタの時定数より小さいものであることを特徴とするものである。
[作用・効果]請求項2の発明によれば、第2のローパスフィルタの時定数は、第1のローパスフィルタの時定数より小さいものである。したがって、第2のローパスフィルタを挿入した場合でも、応答性がよく、第2のローパスフィルタを挿入したことによる電圧信号が遅延することを軽減させることができる。つまり、遅延した時点の不正確な電圧信号ではなく、遅延していない正確な電圧信号を保持手段に入力することができる。
また、請求項3に記載の光または放射線撮像装置の発明は、 請求項1または請求項2に記載の光または放射線検出装置と、(G)光または放射線を撮影対象に照射する照射手段と、(H)前記保持手段で保持された電圧信号をデジタルの電圧信号に変換するA/D変換手段と、(I)前記A/D変換手段で変換されたデジタルの電圧信号を処理して画像化する画像処理手段と、を備えたことを特徴とするものである。
[作用・効果]請求項3の発明によれば、照射手段から光または放射線が撮影対象に照射され、この撮影対象を透過した光または放射線が検出手段に入射された場合に、検出手段は、この入射された光または放射線に感応して電荷信号を出力する。さらに、検出手段から出力された電荷信号は、第1の増幅素子を用いた電荷電圧変換手段で電圧信号に変換される。次に、この電圧信号は第2の増幅素子を用いた信号増幅手段で増幅され、さらに、信号増幅手段で増幅された電圧信号は保持手段によりサンプリングされ、所定の時間において保持される。ここで、電荷電圧変換手段の第1の増幅素子からは、高周波ノイズが発生されるが、電荷電圧変換手段と信号増幅手段を含む当該信号増幅手段との間に設けられた、第1のローパスフィルタにより高周波ノイズ(高周波帯域成分の信号)の通過が制限されて、信号増幅手段にて増幅されることになる。また、信号増幅手段の第2の増幅素子からも高周波ノイズが発生されるが、保持手段の直前に設けられた第2のローパスフィルタにより高周波ノイズ(高周波帯域成分の信号)の通過が制限される。さらに、この第2のローパスフィルタは、受動素子のみで構成されているので、この第2のローパスフィルタ自体から高周波ノイズは発生せず、また、電力を供給する必要が無く、簡単な構成とすることができる。
さらに、A/D変換手段は、保持手段で保持された電圧信号をデジタルの電圧信号に変換する。画像処理手段は、A/D変換手段で変換されたデジタルの電圧信号を処理して画像化する。したがって、A/D変換手段は、低ノイズ、高S/N比で電圧信号をデジタル信号に変換することができ、画像処理手段により高精度な画像を得ることができる。
本発明によれば、高周波ノイズが保持手段に入力されることを低減させ、S/N比を高くすることができ、高精度な画像を得ることができる。
この実施例では、光または放射線撮像装置の一例として、X線撮像装置を用いて説明する。以下、このX線撮像装置を図面に基づいて詳細に説明する。図1はX線撮像装置の全体構成を示すブロック図である。図2はX線検出器を示すブロック図である。図3はX線検出素子の構成を示す断面図である。図4は、電荷検出部を示すブロック図である。
図1に示すように、X線撮像装置は、撮像対象である被検体MにX線を照射するX線管1と、被検体Mを載置させる天板2と、被検体Mを透過したX線量に応じた電荷信号に変換(X線を電荷信号として検出)し、さらに、この電荷信号を電圧信号に変換して出力するX線検出器3(この発明の光または放射線検出装置に相当する)と、X線検出器3から出力された電圧信号をデジタルの電圧信号に変換するA/D変換器4と、A/D変換器4で変換されたデジタルの電圧信号を処理して画像化する画像処理部5と、X線撮影に関する種々の制御を行う主制御部6と、主制御部6での制御に基づいて管電圧や管電流を発生させX線管1を制御するX線管制御部7と、X線撮影に関する入力設定を行うことが可能な入力部8、画像処理部5で処理されて得られたX線画像などを表示する表示部9、画像処理部5で処理されて得られたX線画像などを記憶する記憶部10、などを備えている。さらに、X線撮像装置の各部構成を詳細に説明する。なお、上述した、A/D変換器4は本発明におけるA/D変換手段に相当し、画像処理部5は本発明における画像処理手段に相当する。
X線管1は、天板2に載置されている被検体Mを挟んでX線検出器3と対向するように配置されている。また、X線検出器3は、図2に示すように、複数のX線検出素子11、X線検出制御部12、ゲートドライバ部13、アンプアレイ部14とが備えられている。これら複数のX線検出素子11は、ゲート線GL1〜GL5によりゲートドライバ部13と接続し、データ線DL1〜DL5によりアンプアレイ部14と接続されている。また、X線検出制御部12はゲートドライバ部13とアンプアレイ部14とに接続されている。なお、上述した、X線管1は本発明における照射手段に相当し、X線検出器3は本発明における検出手段に相当する。
X線検出素子11は、入射されたX線に感応して電荷信号を出力するものであり、X線が入射されるX線検出面Sに縦横の2次元マトリックス状に配列されている構成となっている。例えば、実際のX線検出面Sには、X線検出素子11が縦4096×横4096程度の2次元マトリックス状に配列されているものが用いられている。なお、図2においては、X線検出素子11が縦5×横5の2次元マトリックス状に配列したものを一例として図示している。また、X線検出素子11は、図3に示すように、高電圧のバイアス電圧を印加するための共通電極15と、入射したX線を電荷信号に変換するX線変換層16と、X線変換層16で変換された電荷信号を収集,蓄積,読み出し(出力)を行うアクティブマトリックス基板17と、を備えている。
X線変換層16は、X線感応型半導体からなり、例えば、アモルファスセレン(a−Se)が、このX線変換層16の表面へ面状に積層形成されている。また、X線変換層16にX線が入射すると、このX線のエネルギーに比例した所定個数のキャリア(電荷信号)が直接生成される構成(直接変換型)となっている。
アクティブマトリックス基板17は、図3に示すように、ガラス基板18が設けられ、さらに、このガラス基板18上には、共通電極15からバイアス電圧が印加されたことに基づいて、X線変換層16で変換された電荷信号を収集する収集電極19、収集電極19で収集された電荷信号を蓄積するコンデンサ20、スイッチング素子としての薄膜トランジスタ(TFT:Thin Film Transistor)21、ゲートドライバ部13から薄膜トランジスタ21を制御するためのゲート線GL1〜GL5、薄膜トランジスタ21から電荷信号が読み出されるデータ線DL1〜DL5、とを設けている。
次に、X線検出制御部12は、主制御部6から制御され、図2に示すように、ゲートドライバ部13とアンプアレイ部14とを統括制御するものであり、全X線検出素子11で検出された電荷信号を順次選択的にアンプアレイ部14から取り出す制御を行うものである。具体的にはX線検出制御部12は、ゲートドライバ部13の動作を開始させるゲート動作信号と、アンプアレイ部14の動作を開始させるアンプ動作信号とを出力する構成となっている。
次に、ゲートドライバ部13は、全X線検出素子11で検出された電荷信号を順次選択的に取り出すために、各X線検出素子11の薄膜トランジスタ21を動作させるものである。詳細には、ゲートドライバ部13は、X線検出制御部12からのゲート動作信号に基づいて、X線検出素子11の横列毎のゲート線GL1〜GL5が順次選択的に動作され、この動作された列内のX線検出素子11の薄膜トランジスタ21が一斉にスイッチオン状態になり、コンデンサ20に蓄積された電荷信号がデータ線DL1〜DL5を通りアンプアレイ部14に出力される構成となっている。
次に、アンプアレイ部14は、図2に示すように、X線検出素子11の縦列毎のデータ線DL1〜DL5に対応した数(図2では5つ)の電荷検出部30が備えられている。さらに、各電荷検出部30は、図4に示すように、各X線検出素子11から出力された電荷信号を入力し、第1の増幅素子を用いて電圧信号に変換する電荷検出増幅回路(CSA:Charge Sensitive Amplifier)31と、この電荷検出増幅回路31で変換された電圧信号を、第2の増幅素子を用いて増幅する信号増幅回路32と、この信号増幅回路32で増幅された電圧信号をサンプリングし、所定の時間において保持するサンプルホールド回路33と、電荷検出増幅回路31と信号増幅回路32との間(信号増幅回路32の一部を含む)に設けられ、高周波帯域成分の信号の通過を制限する第1のローパスフィルタ34と、サンプルホールド回路33の直前に設けられ、受動素子のみで高周波帯域成分の信号の通過を制限する第2のローパスフィルタ35と、を備えている。なお、上述した、電荷検出増幅回路31は本発明における電荷電圧変換手段に相当し、信号増幅回路32は本発明における信号増幅手段に相当し、サンプルホールド回路33は本発明における保持手段に相当する。
ここで、アンプアレイ部14内の電荷検出部30の各構成は、X線検出制御部12からのアンプ動作信号に基づいて動作する構成となっている。具体的には、X線検出制御部12からのアンプ動作信号に基づいて、電荷検出部30の電荷検出増幅回路31により電荷信号が電圧信号に変換され、さらに、信号増幅回路32で電圧信号が増幅されてサンプルホールド回路33に入力され、このサンプルホールド回路33に入力された電圧信号は、サンプリングされ所定の時間経過後に、このサンプルホールド回路33からA/D変換器4に出力するものである。
さらに、電荷検出部30の電気的構成について、図4を用いて詳細に説明する。図4に示すように、電荷検出部30の電荷検出増幅回路31は、増幅素子であり、反転入力端子がデータ線DL1〜DL5に接続された演算増幅器A1と、この演算増幅器A1の反転入力端子および出力端子の間に設けられた帰還コンデンサCf1と、この帰還コンデンサCf1に並列に設けられたスイッチSW1と、を備えている。また、演算増幅器A1の非反転入力端子には、基準電圧Vrefが印加されている。なお、基準電圧Vrefは、接地レベル(0[V])である。なお、演算増幅器A1は本発明における第1の増幅素子に相当する。
また、スイッチSW1は、X線検出制御部12からの制御に基づいて、導通状態および遮断状態に変化するものである。具体的には、スイッチSW1はX線検出制御部12からのアンプ動作信号に基づいて、所定の時間において導通状態となる。ここで、スイッチSW1が導通状態の場合には、帰還コンデンサCf1に蓄積された電荷(電荷信号)が放電され、帰還コンデンサCf1がリセットされた状態となり、電荷検出増幅回路31が初期化された状態となる。さらに、所定の時間経過後に、スイッチSW1が遮断状態、つまり、初期化状態が解除された時点以降にデータ線DL1〜DL5から入力された電荷信号が蓄積される。したがって、電荷検出増幅回路31は、初期化状態が解除された時点以降に入力された電荷信号に応じた電圧を出力する構成となっている。
第1のローパスフィルタ34は、電荷検出増幅回路31の演算増幅器A1の出力端と直列に接続された抵抗RS1と、この抵抗RS1に直列に接続された入力コンデンサCS1により形成されるものであり、この第1のローパスフィルタ34により、高周波帯域成分の信号の通過を制限した状態で電圧信号を信号増幅回路32に出力される構成である。なお、入力コンデンサCS1は、第1のローパスフィルタ34および信号増幅回路32の構成の一部である。
信号増幅回路32は、増幅素子の一つであり、コンデンサ帰還の反転増幅器である演算増幅器A2と、この演算増幅器A2の反転入力端子および出力端子の間に設けられた帰還コンデンサCf2と、この帰還コンデンサCf2に並列に設けられたスイッチSW2と、演算増幅器A2の反転入力端子に一端が接続された入力コンデンサCS1と、を備えている。また、演算増幅器A2の非反転入力端子には、基準電圧Vrefが印加されている。なお、演算増幅器A2は本発明における第2の増幅素子に相当する。
また、スイッチSW2は、X線検出制御部12からの制御に基づいて、導通状態および遮断状態に変化するものである。具体的には、スイッチSW2はX線検出制御部12からのアンプ動作信号に基づいて、所定の時間において導通状態となる。ここで、スイッチSW2が導通状態の場合には、帰還コンデンサCf2に残留された電荷が放電され、帰還コンデンサCf2がリセットされた状態となり、信号増幅回路32が初期化された状態となる。さらに、所定の時間経過後に、スイッチSW1が遮断状態になると、信号増幅回路32は、倍率MA=|CS1/Cf2|で、入力された電圧信号を反転増幅して出力する構成となっている。
第2のローパスフィルタ35は、サンプルホールド回路33の直前に設けられ、一端を信号増幅回路32の演算増幅器A2の出力端と直列に接続された抵抗RS2と、この抵抗RS2の他端と接地(Vref)との間に挿入されたコンデンサCS2とにより形成されるものである。この第2のローパスフィルタ35は、信号増幅回路32の演算増幅器A2により発生した高周波ノイズ(高周波帯域成分の信号)の通過を制限した状態、つまり、高周波ノイズを除去した状態とすることができるものである。また、この第2のローパスフィルタ35は、受動素子である抵抗RS2とコンデンサCS2のみからなるパッシブフィルタであるから高周波帯域成分の信号を発生させることがない。したがって、サンプルホールド回路33には、高周波ノイズが除去された状態の増幅された電圧信号がサンプルホールド回路33に出力される構成となっている。
ここで、第2のローパスフィルタ35の時定数は、第1のローパスフィルタ34の時定数より小さいものが用いられている。例えば、第1のローパスフィルタ34の時定数τ1=CS1S1は、第2ローパスフィルタの時定数τ2=CS2S2に対して10倍以上(τ1>=10τ2)とするように設定されている。
サンプルホールド回路33は、信号増幅回路32で増幅され、第2のローパスフィルタ35で高周波ノイズが除去された電圧信号を入力し、この電圧信号を所定の時間においてサンプリングし、所定の時間が経過した時点での電圧信号を保持(ホールド)し、安定した状態の電圧信号をA/D変換器4に出力するものである。
次に、このX線撮像装置でX線撮像が実行される場合の動作を、図1〜5を用いて説明する。図5は、X線検出器のX線検出制御部12が行う制御のタイミング示すタイミングチャートであり、時間t0からt7までの時間での動作として示すものである。
まず、図1〜2に示すように、入力部8でのX線撮像開始の指示がされると、主制御部6は、X線管制御部7とX線検出器3のX線検出制御部12とが制御される。X線管制御部7は、主制御部6からの制御に基づいて管電圧や管電流を発生させX線管1を制御し、X線管1からX線が被検体Mに照射される。さらに、被検体Mを透過したX線は、X線検出器3のX線検出素子11により被検体Mを透過したX線量に応じた電荷信号に変換され、コンデンサ20により蓄積される。
次に、図4に示すように、X線検出器3のX線検出制御部12は、主制御部6からの制御に基づいて、ゲートドライバ部13に対してゲート動作信号、アンプアレイ部14に対してアンプ動作信号が出力される。さらに、このX線検出制御部12が行う制御のタイミングを、図5を用いて説明する。
まず、X線検出制御部12は、t0からt1までの時間において、アンプアレイ部14の電荷検出増幅回路31および信号増幅回路32にアンプ動作信号(図5ではHレベルの信号)を出力し、電荷検出増幅回路31のSW1および信号増幅回路32のSW2を導通状態にすることで、電荷検出増幅回路31および信号増幅回路32の初期化(リセット)が行われる。その後、t1の時点になると、X線検出制御部12は、電荷検出増幅回路31のSW1に対しては、Lレベルのアンプ動作信号を出力し、電荷検出増幅回路31のSW1を遮断状態とさせ、初期化状態を解除される。さらに、t2の時点になると、X線検出制御部12は、電荷検出増幅回路31のSW2に対しても、Lレベルのアンプ動作信号を出力し、信号増幅回路32のSW2を遮断状態とさせ、初期化状態が解除される。つまり、電荷検出増幅回路31および信号増幅回路32は、データ線DL1〜DL5を介して入力する電荷信号を蓄積することが可能な状態となる。
次に、X線検出制御部12は、t3からt4までの時間において、ゲートドライバ部13にゲート動作信号が出力され、このゲート動作信号に基づいて、X線検出素子11の薄膜トランジスタ(TFT)21(図3参照)のゲートがオン状態(導通状態)となる(図5ではHレベルの信号が出力)。コンデンサ20(図3参照)に蓄積された電荷信号は、データ線DL1〜DL5を介してアンプアレイ部14の電荷検出増幅回路31に入力し、電荷検出増幅回路31は、コンデンサ20に蓄積された電荷信号に応じた電圧信号に変換して出力する。さらに、この電荷検出増幅回路31から出力された電圧信号は、電荷検出増幅回路31の演算増幅器A1などで発生した高周波ノイズ(高周波帯域成分の信号)を含んだものであるが、第1のローパスフィルタ34により、除去された状態で信号増幅回路32に入力される。また、信号増幅回路32は、入力された電圧信号を増幅し、この増幅された電圧信号は、第2のローパスフィルタ35により、高周波帯域成分の信号の通過を制限した状態でサンプルホールド回路33に入力される。なお、t3からt4までの時間以外については、ゲートドライバ部13は、薄膜トランジスタ21のゲートがオフ状態(遮断状態)となるLレベルの信号を出力している。
さらに、X線検出制御部12は、t5からt6までの時間において、サンプルホールド回路33に信号増幅回路32から出力される電圧信号をサンプリングさせ、t6の時点での「信号増幅回路出力」での電圧信号の値「V」をホールドさせて、A/D変換器4に出力される。なお、t4からt6までの時間は、X線検出器3に蓄積された電荷信号の全てが電荷検出増幅回路31で電圧信号に変換され、信号増幅回路32で増幅されてサンプルホールド回路33に入力され、さらに、サンプルホールド回路33が、安定した状態の電圧信号をサンプリングできる十分な時間に設定されている。
さらに、t6の時点で、サンプルホールド回路33でホールドされた電圧信号がA/D変換器4に出力された後、t7の時点で、再び、アンプアレイ部14の電荷検出増幅回路31および信号増幅回路32の初期化(リセット)が行われ、X線検出制御部12はt0からt7までの時間(T)に行う制御を繰り返して行う。
次に、A/D変換器4では、サンプルホールド回路33からのアナログの電圧信号をデジタルの電圧信号に変換する。さらに、このデジタルの電圧信号は、画像処理部5で画像化する処理がされ画像信号として主制御部6に出力し、さらに、主制御部6の制御により、画像処理部5で処理された画像信号を記憶部10に記憶し、表示部9で画像信号に基づくX線画像が表示される。
上述したようにX線検出装置(X線検出器3)によれば、X線検出器3にX線が入射された場合に、X線検出器3は、この入射されたX線に感応して電荷信号を出力する。さらに、X線検出器3から出力された電荷信号は、演算増幅器A1を用いた電荷検出増幅回路31で電圧信号に変換される。次に、この電圧信号は演算増幅器A2を用いた信号増幅回路32にて増幅され、さらに、信号増幅回路32で増幅された電圧信号はサンプルホールド回路33によりサンプリングされ、所定の時間において保持される。ここで、電荷検出増幅回路31の演算増幅器A1からは、高周波ノイズが発生されるが、電荷検出増幅回路31と信号増幅回路32を含む当該信号増幅回路32との間に設けられた、第1のローパスフィルタ34により高周波ノイズ(高周波帯域成分の信号)の通過が制限されて、信号増幅回路32にて増幅されることになる。また、信号増幅回路32の演算増幅器A2からも高周波ノイズが発生されるが、サンプルホールド回路33の直前に設けられた第2のローパスフィルタ35により高周波ノイズ(高周波帯域成分の信号)の通過が制限される。さらに、この第2のローパスフィルタ35は、抵抗RS2とコンデンサCS2とからなる受動素子のみにより形成されているので、この第2のローパスフィルタ35自体から高周波ノイズは発生せず、また、電力を供給する必要が無く、簡単な構成とすることができる。したがって、高周波ノイズがサンプルホールド回路33に入力されることを低減させ、S/N比を高くすることができ、高精度なX線画像を得ることができる。
上述したようにX線撮像装置によれば、X線管1からX線が被検体Mに照射され、この被検体Mを透過したX線がX線検出器3に入射し、このX線検出器3は、被検体Mを透過したX線量に応じた電圧信号に変換(検出)され、A/D変換器4に出力される。さらに、A/D変換器4は、サンプルホールド回路33で保持された電圧信号をデジタルの電圧信号に変換する。さらに、このデジタルの電圧信号は、画像処理部5で画像化する処理がされ画像信号として主制御部6に出力し、さらに、主制御部6の制御により、表示部9で画像信号に基づくX線画像が表示される。したがって、A/D変換器4は、低ノイズ、高S/N比でアナログの電圧信号をデジタル信号に変換し、画像処理部5により高精度なX線画像を得ることができ、この高精度なX線画像を、記憶部10で記憶し、表示部9により表示させることができる。
また、第1のローパスフィルタ34の時定数τ1=CS1S1は、第2ローパスフィルタの時定数τ2=CS2S2に対して10倍以上(τ1>=10τ2)とするように設定されている。したがって、第2のローパスフィルタ35を備えることにより電圧信号の応答性が悪くなることを防ぐ。つまり、電圧信号が遅延することを防ぎ、遅延した時点の不正確な電圧信号ではなく、遅延していない正確な電圧信号をサンプルホールド回路33に入力することができる。
この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
(1)上述した実施例において、第1のローパスフィルタ34の時定数は、第2ローパスフィルタの時定数τ2に対して10倍以上(τ1>=10τ2)とするように設定していたが、第2のローパスフィルタ35の時定数は、第1のローパスフィルタ34の時定数より小さいものとすることにより、第2のローパスフィルタ35を挿入した場合でも、応答性がよく、第2のローパスフィルタ35を挿入したことによる電圧信号が遅延することを軽減することができる。つまり、遅延した時点の不正確な電圧信号ではなく、遅延していない正確な電圧信号をサンプルホールド回路33に入力することができる。
(2)上述した実施例において、医療用の装置として説明したが、医療用以外の非破壊検査、RI(Radio Isotope)検査、および光学検査などの産業分野などについても適用することができる。
(3)上述した実施例において、光または放射線撮像装置の一例として、X線撮像装置を用いて説明したが、X線に限らず、可視光、放射線(中性子線,γ線,β線など)を用いる装置についても適用することができる。
(4)上述した実施例において、X線検出器3のX線検出素子11は、X線検出面Sに縦横の2次元マトリックス状に配列されている構成として説明したが、X線検出素子11は、単数であってもよく、また、複数のX線検出素子11を一次元に配列したものであってもよい。
(5)上述した実施例において、第2のローパスフィルタ35は、抵抗RS2とコンデンサCS2とからなるローパスフィルタを1つ備えたもの(1次)のものであったが、ローパスフィルタを複数個以上備えた(複数次)のものであってもよい。
(6)上述した実施例において、X線検出器3のX線検出素子11は、X線を直接的に電荷信号に変換する直接変換型のものとして説明したが、X線を一旦、光に変換し、光を電荷信号に変換する間接変換型であってもよい。
(7)上述した実施例において、A/D変換器4は、X線検出器3外に配設されるようにしていたが、A/D変換器4をX線検出器3内に配設するようにしてもよい。
X線撮像装置の全体構成を示すブロック図である。 X線検出器を示すブロック図である。 X線検出素子の構成を示す断面図である。 電荷検出部を示すブロック図である。 X線検出制御部が行う制御のタイミング示すタイミングチャートである。
符号の説明
1 …X線管(照射手段)
3 …X線検出器(検出手段)
4 …A/D変換器(A/D変換手段
5 …画像処理部(画像処理手段)
31…電荷検出増幅器(電荷電圧変換手段)
32…信号増幅器(信号増幅手段)
33…サンプルホールド回路(保持手段)
34…第1のローパスフィルタ
35…第2のローパスフィルタ
A1 …演算増幅器(第1の増幅素子)
A2 …演算増幅器(第2の増幅素子)

Claims (3)

  1. (A)光または放射線に感応して電荷信号を出力する検出手段と、(B)前記検出手段から出力された電荷信号を、第1の増幅素子を用いて電圧信号に変換する電荷電圧変換手段と、(C)前記電荷電圧変換手段で変換された電圧信号を、第2の増幅素子を用いて増幅する信号増幅手段と、(D)前記信号増幅手段で増幅された電圧信号を、サンプリングし所定の時間において保持する保持手段と、(E)電荷電圧変換手段と前記信号増幅手段を含む当該信号増幅手段との間に設けられ、高周波帯域成分の信号の通過を制限する第1のローパスフィルタと、(F)前記保持手段の直前に設けられ、受動素子のみで高周波帯域成分の信号の通過を制限する第2のローパスフィルタと、を備えていることを特徴とする光または放射線検出装置。
  2. 請求項1に記載の光または放射線検出装置において、前記第2のローパスフィルタの時定数は、前記第1のローパスフィルタの時定数より小さいものであることを特徴とする光または放射線検出装置。
  3. 請求項1または請求項2に記載の光または放射線検出装置と、(G)光または放射線を撮影対象に照射する照射手段と、(H)前記保持手段で保持された電圧信号をデジタルの電圧信号に変換するA/D変換手段と、(I)前記A/D変換手段で変換されたデジタルの電圧信号を処理して画像化する画像処理手段と、を備えたことを特徴とする光または放射線撮像装置。

JP2006057734A 2006-03-03 2006-03-03 光または放射線検出装置及びこれを備えた光または放射線撮像装置 Pending JP2007229368A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057734A JP2007229368A (ja) 2006-03-03 2006-03-03 光または放射線検出装置及びこれを備えた光または放射線撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057734A JP2007229368A (ja) 2006-03-03 2006-03-03 光または放射線検出装置及びこれを備えた光または放射線撮像装置

Publications (1)

Publication Number Publication Date
JP2007229368A true JP2007229368A (ja) 2007-09-13

Family

ID=38550544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057734A Pending JP2007229368A (ja) 2006-03-03 2006-03-03 光または放射線検出装置及びこれを備えた光または放射線撮像装置

Country Status (1)

Country Link
JP (1) JP2007229368A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199292A (ja) * 2000-09-07 2002-07-12 Canon Inc 信号処理装置及びそれを用いた撮像装置並びに放射線撮像システム
JP2003153095A (ja) * 2001-11-16 2003-05-23 Canon Inc 光電変換装置、その駆動方法、放射線検出装置、及び撮影装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199292A (ja) * 2000-09-07 2002-07-12 Canon Inc 信号処理装置及びそれを用いた撮像装置並びに放射線撮像システム
JP2003153095A (ja) * 2001-11-16 2003-05-23 Canon Inc 光電変換装置、その駆動方法、放射線検出装置、及び撮影装置

Similar Documents

Publication Publication Date Title
CN110623682B (zh) 放射线摄像装置及控制方法、放射线摄像系统及存储介质
US7659518B2 (en) Light or radiation image pickup apparatus
US7791032B2 (en) Multi-mode digital imaging apparatus and system
US8446495B2 (en) Image pickup apparatus and image pickup system
WO2001045392A2 (en) Image sensor
JP2014049983A (ja) 放射線撮像装置、その制御方法及びプログラム
JP4888599B2 (ja) 光または放射線撮像装置
EP2702944A1 (en) Radiation imaging apparatus and radiation imaging system
JP2010011033A (ja) 光電変換装置及び放射線検出装置
El‐Mohri et al. Active pixel imagers incorporating pixel‐level amplifiers based on polycrystalline‐silicon thin‐film transistors
JP3942793B2 (ja) 電荷量検出回路
US9239390B2 (en) Radiation imaging apparatus and radiation imaging system
JP4702147B2 (ja) 光または放射線検出装置及びこれを備えた光または放射線撮像装置
JP5120458B2 (ja) 光または放射線撮像装置
JP2004023654A (ja) 放射線撮像装置及び放射線撮像方法
JP2000206255A (ja) X線検出器
JP2007229368A (ja) 光または放射線検出装置及びこれを備えた光または放射線撮像装置
US7135681B2 (en) Signal detection method and apparatus
JP2007306481A (ja) 光または放射線撮像装置
JP2005168961A (ja) 放射線画像撮影装置
JP2006512846A (ja) イメージセンサ
US20240069222A1 (en) Radiation imaging apparatus and radiation imaging system
JP2012060511A (ja) 電荷検出回路およびその検査方法
JP2014165908A (ja) 放射線検出装置およびその動作方法
JP2005269441A (ja) 電荷検出回路およびそれを備えた画像センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301