JP2007228425A - Multiple optical axis photoelectric sensor - Google Patents

Multiple optical axis photoelectric sensor Download PDF

Info

Publication number
JP2007228425A
JP2007228425A JP2006049046A JP2006049046A JP2007228425A JP 2007228425 A JP2007228425 A JP 2007228425A JP 2006049046 A JP2006049046 A JP 2006049046A JP 2006049046 A JP2006049046 A JP 2006049046A JP 2007228425 A JP2007228425 A JP 2007228425A
Authority
JP
Japan
Prior art keywords
light
optical axis
photoelectric sensor
axis photoelectric
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006049046A
Other languages
Japanese (ja)
Other versions
JP5010835B2 (en
Inventor
Yoshiyuki Watanabe
義幸 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2006049046A priority Critical patent/JP5010835B2/en
Publication of JP2007228425A publication Critical patent/JP2007228425A/en
Application granted granted Critical
Publication of JP5010835B2 publication Critical patent/JP5010835B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple optical axis photoelectric sensor capable of speedily detecting abnormality of mismatching between the number of projection means and the number of light-reception means. <P>SOLUTION: A projection element for detection as a terminal projection means which is driven for projection finally among projection elements for detection at a projector side, is driven for projection in a mode different from that of other projection elements for detection. If a waveform corresponding to the projection mode of the terminal projection element for detection can not be detected in a light reception signal Slr, a judgement circuit as a detection means then judges abnormality of mismatching that the number of light-reception elements for detection is less than the number of the projection elements for detection. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多光軸光電センサに関するものである。   The present invention relates to a multi-optical axis photoelectric sensor.

従来、直線状に整列配置された複数の投光手段を有する投光器と、各投光手段と対向配置された複数の受光手段を有する受光器とを備え、これら対向する各投光手段及び各受光手段間に形成される各光軸が遮光状態にあるか否かを検出する多光軸光電センサがある(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a light projector having a plurality of light projecting means arranged in a straight line and a light receiver having a plurality of light receiving means arranged to face each of the light projecting means, each of the light projecting means and each light receiving facing each other. There is a multi-optical axis photoelectric sensor that detects whether or not each optical axis formed between means is in a light-shielded state (see, for example, Patent Document 1).

このような多光軸光電センサにおいては、通常、各投光手段は、所定の投光タイミングで順次投光駆動され、各受光手段は、各投光手段の投光タイミングに同期して順次受光可能となるように切り替えられる。尚、上記特許文献1に記載の多光軸光電センサは、所謂光同期式の多光軸光電センサであり、受光可能な受光手段の切替は、投光器側から送信される同期用光信号を受光することにより受光器側で内部的に生成された同期信号に基づいて行われる。そして、投光中の投光手段と対をなすもののみを受光検出可能とすることにより、隣接する受光手段間の誤検出を回避するように構成されている。
特開2003−158448号公報
In such a multi-optical axis photoelectric sensor, each light projecting means is normally driven to project light sequentially at a predetermined light projecting timing, and each light receiving means receives light sequentially in synchronization with the light projecting timing of each light projecting means. Switchable as possible. The multi-optical axis photoelectric sensor described in Patent Document 1 is a so-called optical-synchronous multi-optical axis photoelectric sensor, and switching of the light-receiving means capable of receiving light is performed by receiving a synchronization optical signal transmitted from the projector side. This is performed based on the synchronization signal generated internally on the light receiver side. And it is configured to avoid erroneous detection between adjacent light receiving means by making it possible to detect and detect only light that forms a pair with the projecting light projecting means.
JP 2003-158448 A

ところで、こうした多光軸光電センサには、その高い設置自由度、並びに設置作業性の容易性が強く求められる。このため、従来、受光器側に遮光検出手段としての機能を持たせることにより投光器と受光器との独立性を高めたもの、更には、複数の投光ユニット及び受光ユニットを連結することにより一対の投光器及び受光器を形成可能なものが利用されている。   By the way, such a multi-optical axis photoelectric sensor is strongly required to have high installation flexibility and easy installation workability. For this reason, conventionally, the light receiving side is provided with a function as a light blocking detection means to increase the independence of the light projector and the light receiver, and a plurality of light projecting units and a light receiving unit are connected to form a pair. What can form a projector and a light receiver is used.

しかしながら、このような多光軸光電センサは、その設置自由度の高さ故に、投光器及び受光器の組み合わせ、或いは連結数を間違える可能性があり、これにより、投光手段数と受光手段数とが一致しなくなるおそれがある。そして、特に、受光手段数が不足する場合には、この不足する領域が遮光状態の判定を行うことのできない判定不能領域となってしまうという問題がある。   However, such a multi-optical axis photoelectric sensor has a high degree of freedom in installation, so there is a possibility that the combination of projectors and light receivers or the number of connections will be wrong. May not match. In particular, when the number of light receiving means is insufficient, there is a problem that this insufficient area becomes a non-determinable area where the determination of the light shielding state cannot be performed.

即ち、図6に示すように、例えば、受光器31側に遮光検出手段の機能が統合された多光軸光電センサ32において、その受光手段数が「4」である場合、投光器33側の投光手段数も「4」であると認識し、同受光器31は、4番目の光軸を受光した段階で、一連の受光検出が完了したものと判定する(図7参照)。尚、一連の受光検出操作の後には、信号処理操作が行われるが、これに要する信号処理時間は、受光検出時間よりも十分に長く設定されるのが一般的であり、このような投光手段数と受光手段数との不一致が発生した場合であってもその同期がずれることはない。従って、投光ユニット34及び受光ユニット35の連結数を間違え、投光器33側の投光手段数が「8」、投光器33側の受光手段数が「4」となっている場合、5番〜8番目の光軸に相当する領域が判定不能領域となるのである。   That is, as shown in FIG. 6, for example, in the multi-optical axis photoelectric sensor 32 in which the function of the light-shielding detection means is integrated on the light receiver 31 side, when the number of light-receiving means is “4”, the light projection on the light projector 33 side. Recognizing that the number of light means is “4”, the light receiver 31 determines that a series of light reception detection is completed at the stage of receiving the fourth optical axis (see FIG. 7). Note that a signal processing operation is performed after a series of light reception detection operations. The signal processing time required for this is generally set sufficiently longer than the light reception detection time. Even if a mismatch between the number of means and the number of light receiving means occurs, the synchronization does not shift. Therefore, when the number of connection between the light projecting unit 34 and the light receiving unit 35 is wrong, the number of light projecting means on the light projector 33 side is “8”, and the number of light receiving means on the light projector 33 side is “4”. The region corresponding to the second optical axis is the undecidable region.

尚、投光手段数よりも受光手段数が多い場合には、対向する投光手段の存在しない、即ち受光不能な受光手段が発生することで、当該領域が遮光状態にあると判定されることになる。このため、その遮光判定結果に基づいて投光手段数と受光手段数とが不一致と推定することは可能である。しかしながら、こうした不一致異常は、やはり速やかに且つ自動的に検知されることがより望ましい。   When the number of light receiving means is larger than the number of light projecting means, it is determined that there is no facing light projecting means, that is, a light receiving means that cannot receive light is generated, so that the region is determined to be in a light shielding state. become. For this reason, it is possible to estimate that the number of light projecting means and the number of light receiving means are inconsistent based on the light shielding determination result. However, it is more desirable that such anomaly is detected promptly and automatically.

本発明は、上記問題点を解決するためになされたものであって、その目的は、投光手段数と受光手段数との不一致異常を速やかに検知することのできる多光軸光電センサを提供することにある。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a multi-optical axis photoelectric sensor capable of quickly detecting an inconsistency between the number of light projecting means and the number of light receiving means. There is to do.

上記問題点を解決するために、請求項1に記載の発明は、直線状に整列配置された複数の投光手段を有する投光器と、前記各投光手段と対向配置される複数の受光手段を有する受光器と、対向する前記各投光手段及び各受光手段間に形成される各光軸が遮光状態にあるか否かを判定する判定手段とを備え、前記各投光手段は、所定の投光タイミングで順次投光駆動されるとともに、前記受光器は、前記各投光手段の前記投光タイミングに同期して受光検出可能な前記受光手段を順次切り替える多光軸光電センサであって、前記受光器は、投光手段数と受光手段数との不一致異常を検知する検知手段を備えること、を要旨とする。   In order to solve the above problems, the invention described in claim 1 includes a projector having a plurality of light projecting means arranged in a straight line, and a plurality of light receiving means arranged to face each of the light projecting means. Each of the light projecting units facing each other and a determination unit that determines whether or not each optical axis formed between the light receiving units is in a light-shielded state. The multi-optical axis photoelectric sensor is sequentially driven at a light projection timing, and the light receiver sequentially switches the light receiving means that can detect and receive light in synchronization with the light projection timing of each light projecting means, The gist of the invention is that the light receiver includes a detecting means for detecting a mismatch abnormality between the number of light projecting means and the number of light receiving means.

上記構成によれば、投光手段数と受光手段数とが一致しない不一致異常を検知することができる。その結果、遮光判定を行うことのできない判定不能領域の発生を未然に防止して、より高い安全性を確保することができる。   According to the above configuration, it is possible to detect a mismatch abnormality in which the number of light projecting means and the number of light receiving means do not match. As a result, it is possible to prevent the occurrence of a non-determinable area where the light-shielding determination cannot be performed, thereby ensuring higher safety.

請求項2に記載の発明は、末端投光手段は、他の各投光手段と異なる態様で投光駆動されるとともに、前記受光器は、前記異なる態様の投光を受光検出可能な受光検出手段を備え、前記検知手段は、前記末端投光手段の投光態様に対応する前記受光検出ができない場合に、前記不一致異常であると判定すること、を要旨とする。   According to a second aspect of the present invention, the terminal light projecting means is driven to project light in a different manner from the other light projecting means, and the light receiver is capable of receiving and detecting the different forms of light projection. And the detection means determines that the mismatch is abnormal when the light reception detection corresponding to the light projection mode of the terminal light projection means cannot be performed.

請求項3に記載の発明は、前記受光器は、前記投光器側から入力される同期信号に基づき前記受光検出可能な前記受光手段を順次切り替えるものであって、前記検知手段には、前記同期信号が入力されるとともに、該同期信号は、末端投光手段の投光作動を示す末端識別波形を含み、前記検知手段は、所定タイミングにおいて前記同期信号中に前記末端識別波形を検出できない場合に、前記不一致異常であると判定すること、を要旨とする。   According to a third aspect of the present invention, the light receiver sequentially switches the light receiving means capable of detecting light reception based on a synchronization signal input from the projector side, and the detection means includes the synchronization signal. Is input, and the synchronization signal includes a terminal identification waveform indicating the light projection operation of the terminal light projecting means, and the detection means is unable to detect the terminal identification waveform in the synchronization signal at a predetermined timing, The gist of determining that the discrepancy is inconsistent.

上記各構成によれば、一連の投受光操作を通じて、不一致異常を検知するための識別情報の送受信を行うことができる。これにより、簡素な構成にて確実に同識別情報を伝達し、不一致異常を検知することができる。   According to each of the above configurations, identification information for detecting a discrepancy abnormality can be transmitted and received through a series of light projecting and receiving operations. Thereby, the same identification information can be reliably transmitted with a simple configuration, and a mismatch abnormality can be detected.

請求項4に記載の発明は、前記末端投光手段は、他の前記各投光手段の投光タイミングと異なる投光タイミングで投光駆動されること、を要旨とする。
上記構成によれば、簡素な構成にて他の各投光手段と異なる態様での末端投光手段の投光駆動が可能となる。また、その同期信号に特徴的な末端識別波形を含ませることができる。
The gist of the invention described in claim 4 is that the terminal light projecting unit is driven to project at a light projecting timing different from the light projecting timing of each of the other light projecting units.
According to the above configuration, the light projecting drive of the terminal light projecting unit in a different configuration from the other light projecting units can be performed with a simple configuration. In addition, a characteristic end identification waveform can be included in the synchronization signal.

請求項5に記載の発明は、前記投光器は、前記識別情報として前記投光手段数が含まれた識別信号を送信可能な送信手段を備えるとともに、前記受光器は、前記識別信号を受信する受信手段を備え、前記検知手段は、前記受信された識別信号に基づいて前記不一致異常を検知すること、を要旨とする。   According to a fifth aspect of the present invention, the light projector includes a transmission unit capable of transmitting an identification signal including the number of light projection units as the identification information, and the light receiver receives the identification signal. And the detecting means detects the inconsistency abnormality based on the received identification signal.

上記構成によれば、より確実に投光手段数と受光手段数とが一致しない不一致異常を検知することができる。
請求項6に記載の発明は、同期信号を生成するための同期用投光手段及び同期用受光手段を備えること、を要旨とする。
According to the above configuration, it is possible to more reliably detect a mismatch abnormality in which the number of light projecting means and the number of light receiving means do not match.
The gist of the invention described in claim 6 is that it comprises synchronization light projecting means and synchronization light receiving means for generating a synchronization signal.

即ち、上記構成のような、投光器と受光器との間に同期線が介在されない光同期式の多光軸光電センサにおいては、投光器及び受光器の設置自由度が高く、それ故に投光器及び受光器の組み合わせ過誤により上記不一致異常の発生する可能性が高くなる。従って、このようなものに適用することで、より顕著な効果を得ることができる。   That is, in the optically synchronized multi-optical axis photoelectric sensor in which the synchronization line is not interposed between the projector and the receiver as in the above configuration, the degree of freedom of installation of the projector and the receiver is high. There is a high possibility that the above mismatch abnormality will occur due to the combination error. Therefore, a more remarkable effect can be acquired by applying to such a thing.

請求項7に記載の発明は、前記同期用投光手段は、前記投光器に設けられた前記投光手段と兼用されるとともに、前記同期用受光手段は、前記受光器に設けられた前記受光手段と兼用されること、を要旨とする。   According to a seventh aspect of the present invention, the synchronizing light projecting means is also used as the light projecting means provided in the projector, and the synchronizing light receiving means is the light receiving means provided in the light receiver. The gist is to be used together.

上記構成によれば、専用の同期用投光手段及び同期用受光手段を廃することで部品点数を削減することができるとともに、当該領域を遮光検出領域とすることで、その有効検出領域の拡大を図ることができる。   According to the above configuration, the number of parts can be reduced by eliminating the dedicated light projecting means and light receiving means for synchronization, and the effective detection area can be expanded by making the area a light-shielding detection area. Can be achieved.

請求項8に記載の発明は、前記投光器は、少なくとも一の前記投光手段を有する複数の投光ユニットを連結してなり、前記受光器は、少なくとも一の前記受光手段を有する複数の受光ユニットを連結してなること、を要旨とする。   According to an eighth aspect of the present invention, the light projector is formed by connecting a plurality of light projecting units having at least one light projecting unit, and the light receiver has a plurality of light receiving units having at least one light receiving unit. The gist is that they are connected.

即ち、上記構成のような、ユニット型の多光軸光電センサにおいては、その設置自由度が高いが故に、連結ユニット数の過誤により上記不一致異常の発生する可能性が高くなる。従って、このようなものに適用することで、より顕著な効果を得ることができる。更に、上記請求項4の構成を適用する場合、末端投光手段を独立した投光ユニットとすることで、容易に末端投光手段の投光タイミングを他の投光手段と異なるものとすることが可能であり、これにより、本発明を容易に具現化することができる。   That is, in the unit-type multi-optical axis photoelectric sensor having the above-described configuration, since the degree of freedom of installation is high, there is a high possibility that the mismatch abnormality occurs due to an error in the number of connected units. Therefore, a more remarkable effect can be acquired by applying to such a thing. Furthermore, when applying the configuration of the above-mentioned claim 4, by making the terminal light projecting unit an independent light projecting unit, the light projecting timing of the terminal light projecting unit can be easily different from other light projecting units. This makes it possible to easily embody the present invention.

請求項9に記載の発明は、前記不一致異常の検知を報知する報知手段を備えること、を要旨とする。
上記構成によれば、不一致異常の検知を作業者に知らしめて、その速やかなる是正を促すことができる。
The gist of the invention described in claim 9 is that it comprises an informing means for informing the detection of the inconsistency abnormality.
According to the above configuration, it is possible to notify the operator of the detection of the mismatch abnormality and prompt the prompt correction.

本発明によれば、投光手段数と受光手段数との不一致異常を速やかに検知することが可能な多光軸光電センサを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the multi-optical axis photoelectric sensor which can detect rapidly the mismatch abnormality between the number of light projection means and the number of light reception means can be provided.

以下、本発明を光同期式の多光軸光電センサに具体化した一実施形態を図面に従って説明する。
図1に示すように、多光軸光電センサ1は、複数の投光素子2を有する投光器3と、各投光素子2と対向配置された複数の受光素子4を有する受光器5とにより構成されている。
Hereinafter, an embodiment in which the present invention is embodied in an optical synchronous multi-optical axis photoelectric sensor will be described with reference to the drawings.
As shown in FIG. 1, the multi-optical axis photoelectric sensor 1 includes a projector 3 having a plurality of light projecting elements 2 and a light receiver 5 having a plurality of light receiving elements 4 arranged to face each of the light projecting elements 2. Has been.

本実施形態の多光軸光電センサ1は、光同期式の多光軸光電センサであり、投光器3は、投光素子2として、検出用投光素子6a〜6n及び同期用投光素子7を備えるとともに、これら各投光素子2を投光駆動する投光回路8を備えている。そして、投光回路8は、所定の投光タイミングで各検出用投光素子6a〜6nを順次投光駆動するとともに、これら各検出用投光素子6a〜6nの投光タイミングと同期した光信号(同期用光信号)を送信すべく同期用投光素子7を投光駆動する。尚、この同期用光信号を送信するための同期用投光素子7の投光駆動は、各検出用投光素子6a〜6nのそれぞれの投光駆動に先立って行われる。   The multi-optical axis photoelectric sensor 1 of this embodiment is a light-synchronous multi-optical axis photoelectric sensor, and the projector 3 includes detection light projecting elements 6 a to 6 n and a synchronous light projecting element 7 as the light projecting element 2. And a light projecting circuit 8 for projecting and driving each of the light projecting elements 2. The light projecting circuit 8 sequentially drives the light projecting elements 6a to 6n for detection at a predetermined light projecting timing, and the optical signal is synchronized with the light projecting timing of each of the light projecting elements for detection 6a to 6n. The synchronizing light projecting element 7 is driven to transmit (synchronizing optical signal). The light projecting drive of the synchronization light projecting element 7 for transmitting the synchronization light signal is performed prior to the light projecting drive of each of the light projecting elements for detection 6a to 6n.

一方、受光器5は、受光素子4として、投光器3側の各検出用投光素子6a〜6n及び同期用投光素子7に対応する検出用受光素子9a〜9n及び同期用受光素子10を備えるとともに、これら各受光素子4に接続された受光回路11を備えている。同期用受光素子10は、同期信号生成回路12を介して受光回路11と接続されており、同期用受光素子10の出力する上記同期用光信号を検出(受光)した旨の信号は、この同期信号生成回路12において、その受光タイミング、即ち各検出用投光素子6a〜6nの投光タイミングと同期した同期信号Ssyに変換されて受光回路11へと入力される。そして、受光回路11は、この同期信号Ssyに基づいて、受光検出可能(ON状態)な検出用受光素子9a〜9nを順次切り替えることにより、投光中の検出用投光素子6a〜6nと対をなす検出用受光素子9a〜9nのみを受光検出可能とし、そのタイミングで各検出用受光素子9a〜9nの出力信号を繋ぎ合せることにより受光信号Slrを生成する。   On the other hand, the light receiver 5 includes, as the light receiving element 4, detection light receiving elements 9 a to 9 n and a synchronization light receiving element 10 corresponding to the respective detection light projecting elements 6 a to 6 n and the synchronization light projecting element 7 on the projector 3 side. In addition, a light receiving circuit 11 connected to each light receiving element 4 is provided. The synchronization light receiving element 10 is connected to the light receiving circuit 11 via the synchronization signal generating circuit 12, and a signal indicating that the synchronization optical signal output from the synchronization light receiving element 10 is detected (received) is the synchronization signal. In the signal generation circuit 12, the light reception timing, that is, the synchronization signal Ssy synchronized with the light projection timing of each of the detection light projecting elements 6 a to 6 n is converted and input to the light reception circuit 11. Then, the light receiving circuit 11 sequentially switches the detection light receiving elements 9a to 9n that can detect light reception (ON state) based on the synchronization signal Ssy, thereby pairing with the detection light projecting elements 6a to 6n that are projecting light. Only the detection light-receiving elements 9a to 9n forming the above can be received and detected, and the light-receiving signal Slr is generated by connecting the output signals of the detection light-receiving elements 9a to 9n at the timing.

また、本実施形態では、受光器5には、対向する各検出用投光素子6a〜6n及び各検出用受光素子9a〜9n間に形成される各光軸Lが遮光状態にあるか否かを判定する判定回路13が内蔵されており、受光回路11において生成された受光信号Slrは、この判定回路13に入力される。そして、判定手段としての判定回路13は、その入力される受光信号Slrの信号レベルに基づいて、対向する各投光素子2及び各受光素子4間に形成される各光軸Lが遮光状態にあるか否かを判定する。   Further, in the present embodiment, whether or not the optical axis L formed between each of the opposing detection light projecting elements 6a to 6n and each of the detection light receiving elements 9a to 9n is in a light-shielded state in the light receiver 5. The light receiving signal Slr generated in the light receiving circuit 11 is input to the determining circuit 13. Then, the determination circuit 13 as the determination means sets the light axes L formed between the light projecting elements 2 and the light receiving elements 4 facing each other in a light-shielding state based on the signal level of the input light reception signal Slr. It is determined whether or not there is.

即ち、図2に示すように、各検出用受光素子9a〜9nがその対応する各投光素子2の発光を検出した状態においては、受光回路11の出力する受光信号Slrは、各検出用投光素子6a〜6nの投光タイミングと同期したタイミングでその信号レベルがHiとなるパルス状波形を有する。これに対し、各検出用受光素子9a〜9nの何れかがその対応する検出用投光素子6a〜6nの発光を検出できかった場合には、当該検出用受光素子に対応するタイミング(検出区間)において、その信号レベルがLoのままとなる。そして、判定回路13は、入力されるSlrに、こうした信号レベルがLoのままとなる区間がある場合には、その区間に対応する光軸Lが遮光状態にあるものと判定する(例えば、同図中、第X光軸)。   That is, as shown in FIG. 2, in a state where each detection light receiving element 9a to 9n detects the light emission of each corresponding light projecting element 2, the light reception signal Slr output from the light receiving circuit 11 is detected. It has a pulse-like waveform whose signal level becomes Hi at timing synchronized with the light projection timing of the optical elements 6a to 6n. On the other hand, if any of the detection light receiving elements 9a to 9n cannot detect the light emission of the corresponding detection light projecting elements 6a to 6n, the timing corresponding to the detection light receiving element (detection section). ), The signal level remains Lo. Then, when there is a section where the signal level remains Lo in the input Slr, the determination circuit 13 determines that the optical axis L corresponding to the section is in a light shielding state (for example, the same X-th optical axis in the figure).

尚、判定回路13は、その遮光判定の結果を示す受光検出信号Sseを出力する。そして、本実施形態では、判定回路13は、遮光状態にある光軸Lを検出できなかった場合に、その受光検出信号Sseの出力をONとするように構成されている。   The determination circuit 13 outputs a light reception detection signal Sse indicating the result of the light shielding determination. In this embodiment, the determination circuit 13 is configured to turn on the output of the light reception detection signal Sse when the optical axis L in the light shielding state cannot be detected.

(不一致異常検知機能)
次に、本実施形態の多光軸光電センサにおける投光手段数と受光手段数との不一致異常検知機能について説明する。
(Disagreement abnormality detection function)
Next, the mismatch detection function between the number of light projecting means and the number of light receiving means in the multi-optical axis photoelectric sensor of this embodiment will be described.

本実施形態の多光軸光電センサ1において、受光器5は、投光器3側から送信される識別情報に基づいて、検出用投光素子6a〜6nの数と各検出用受光素子9a〜9nの数とが一致しない不一致異常を検知する。   In the multi-optical axis photoelectric sensor 1 of the present embodiment, the light receiver 5 includes the number of the detection light projecting elements 6a to 6n and the detection light receiving elements 9a to 9n based on the identification information transmitted from the light projector 3 side. Detect a discrepancy error that does not match the number.

詳述すると、図2及び図3に示すように、本実施形態では、投光器3側の各検出用投光素子6a〜6nのうち、最後に投光駆動される末端の検出用投光素子6nは、その他検出用投光素子(6a〜6n−1)と異なる態様で投光駆動される。そして、検知手段としての判定回路13は、受光信号Slr中に、末端の検出用投光素子6nの投光形態に対応する波形を検出することができない場合には、検出用投光素子6a〜6nの数よりも各検出用受光素子9a〜9nの数が少ない上記不一致異常であると判定する。   Specifically, as shown in FIGS. 2 and 3, in the present embodiment, among the detection light projecting elements 6a to 6n on the light projector 3 side, the terminal light projecting element 6n at the end that is driven to perform light projection lastly. Are projected and driven in a manner different from the other detection light projecting elements (6a to 6n-1). Then, the determination circuit 13 serving as the detection means cannot detect the waveform corresponding to the light projection form of the terminal detection light projecting element 6n in the light reception signal Slr, and detects the light projecting elements 6a to 6a. The number of the light receiving elements 9a to 9n for detection is smaller than the number of 6n, and it is determined that the above-mentioned mismatch abnormality is present.

即ち、本実施形態では、不一致異常を検知するための識別情報は、末端投光手段としての末端の検出用投光素子6nの投光駆動を通じて投光器3側から受光器5側へと送信され、受光器5は、一連の受光検出を通じてその識別情報を受信する。そして、検知手段としての判定回路13は、受光信号Slr中に埋め込まれたその識別情報、つまりは異なる態様で駆動された末端の検出用投光素子6nの投光に対応する末端識別波形の有無を判定することにより、上記不一致異常を検知する。   That is, in this embodiment, the identification information for detecting the inconsistency abnormality is transmitted from the light projector 3 side to the light receiver 5 side through the light projection drive of the terminal detection light projecting element 6n as the terminal light projecting means, The light receiver 5 receives the identification information through a series of light detection. Then, the determination circuit 13 serving as a detecting means has the identification information embedded in the received light signal Slr, that is, the presence / absence of the terminal identification waveform corresponding to the light projection of the terminal detection light projecting element 6n driven in a different manner. By detecting this, the above-mentioned mismatch abnormality is detected.

さらに詳述すると、本実施形態では、末端の検出用投光素子6n以外の各検出用投光素子(6a〜6n−1)は、一定の投光間隔「t0」で周期的に投光駆動されるのに対し、末端の一つ前の検出用投光素子(6n−1)と末端の検出用投光素子6nとの投光間隔は「t1」に設定されている。即ち、末端の検出用投光素子6nは、その他検出用投光素子(6a〜6n−1)と異なる投光タイミングで投光駆動される。そして、判定回路13は、受光信号Slr中に、この投光間隔「t1」で受光検出したことを示す波形が検出できない場合に不一致異常であると判定する。   More specifically, in the present embodiment, each of the detection light projecting elements (6a to 6n-1) other than the terminal detection light projecting element 6n is periodically projected at a constant light projecting interval “t0”. On the other hand, the light projection interval between the detection light projecting element (6n-1) immediately before the end and the detection light projecting element 6n at the end is set to "t1". That is, the terminal detection light projecting element 6n is driven to project at a different light projection timing from the other detection light projecting elements (6a to 6n-1). Then, the determination circuit 13 determines that there is a discrepancy abnormality when a waveform indicating that light reception is detected at the light projection interval “t1” cannot be detected in the light reception signal Slr.

例えば、不一致異常により、投光器3側の投光素子数が「N」であるのに対し、受光器5側の受光素子数が「M」しかない場合(M<N)であっても、受光器5側(判定回路13)は、投光器3側の投光素子数もまた「M」と認識することになる。ここで、本実施形態では、判定回路13は、受光信号Slr中に、同判定回路13が「末端光軸」と認識する第M番目の受光素子とその一つ前の第M−1番目の受光素子と間の受光検出間隔、即ち上記投光間隔が「t1」であることを示す波形があるか否かを判定する。そして、その波形を検出できない場合(この例においては投光間隔は「t0」で一定となる)には、検出用投光素子6a〜6nの数よりも各検出用受光素子9a〜9nの数が少ない上記不一致異常であると判定する。尚、本実施形態では、判定回路13は、不一致異常を検知した場合、受光検出信号Sseの出力をOFFのままとするように構成されている。   For example, even if the number of light projecting elements on the light projector 3 side is “N” due to a mismatch error, the number of light receiving elements on the light receiver 5 side is only “M” (M <N). The device 5 side (determination circuit 13) recognizes that the number of light projecting elements on the light projector 3 side is also “M”. Here, in the present embodiment, the determination circuit 13 includes the Mth light receiving element that the determination circuit 13 recognizes as the “terminal optical axis” in the light reception signal Slr and the M−1th previous one. It is determined whether or not there is a waveform indicating that the light reception detection interval between the light receiving elements, that is, the light projection interval is “t1”. When the waveform cannot be detected (in this example, the light projection interval is constant at “t0”), the number of the detection light receiving elements 9a to 9n is larger than the number of the detection light projection elements 6a to 6n. It is determined that the above-mentioned inconsistency abnormality is small. In the present embodiment, the determination circuit 13 is configured to leave the output of the light reception detection signal Sse OFF when a mismatch abnormality is detected.

以上、上記構成によれば、簡素な構成にて確実に検出用投光素子6a〜6nの数と各検出用受光素子9a〜9nの数とが一致しない不一致異常を検知することができる。その結果、遮光判定を行うことのできない判定不能領域の発生を未然に防止して、より高い安全性を確保することができる。   As described above, according to the above configuration, it is possible to reliably detect a mismatch abnormality in which the number of the detection light projecting elements 6a to 6n and the number of the respective detection light receiving elements 9a to 9n do not match with a simple configuration. As a result, it is possible to prevent the occurrence of a non-determinable area where the light-shielding determination cannot be performed, thereby ensuring higher safety.

なお、本実施形態は以下のように変更してもよい。
・本実施形態では、末端の検出用投光素子6nの投光駆動を通じて不一致異常を検知するための識別情報を投光器3側から受光器5側へと送信し、受光器5は、一連の受光検出を通じてその識別情報を受信する。そして、判定回路13は、受光信号Slr中に、末端の検出用投光素子6nの投光形態に対応する波形(末端識別波形)があるか否かの判定により、上記不一致異常の検知を行うこととした。しかし、これに限らず、同期信号Ssyに末端の検出用投光素子6nの投光作動を示す末端識別波形を含ませ、所定タイミングにおいて、その末端識別波形を検出できるか否により上記不一致異常の検知を行うこととしてもよい。
In addition, you may change this embodiment as follows.
In the present embodiment, identification information for detecting a discrepancy abnormality is transmitted from the light projector 3 side to the light receiver 5 side through the light projection drive of the terminal detection light projecting element 6n, and the light receiver 5 receives a series of light receiving operations. The identification information is received through detection. Then, the determination circuit 13 detects the inconsistency abnormality by determining whether or not there is a waveform (terminal identification waveform) corresponding to the light projection form of the terminal detection light projecting element 6n in the light reception signal Slr. It was decided. However, the present invention is not limited to this. The terminal identification waveform indicating the projection operation of the terminal detection light projecting element 6n is included in the synchronization signal Ssy, and the above-mentioned mismatch abnormality is determined depending on whether the terminal identification waveform can be detected at a predetermined timing. It is good also as detecting.

即ち、上記実施例のように、末端の検出用投光素子6nが、その他検出用投光素子(6a〜6n−1)と異なる投光タイミング(投光間隔「t1」)で投光駆動される場合、同期信号Ssyもまた、これに対応してパルス間隔が「t1」となる末端識別波形を有することになる(図2及び図3参照)。従って、同期信号Ssy中に、この末端識別波形を所定タイミング、図3に示す例では、判定回路13が「末端光軸」と認識する第M−1光軸及び第M光軸の受光検出を行うタイミングで検出できない場合には、上記不一致異常であると判定することができる。   That is, as in the above embodiment, the terminal detection light projecting element 6n is driven to project at a light projecting timing (light projecting interval "t1") different from the other detection light projecting elements (6a to 6n-1). In this case, the synchronization signal Ssy also has a terminal identification waveform having a pulse interval of “t1” corresponding thereto (see FIGS. 2 and 3). Accordingly, in the synchronization signal Ssy, the terminal identification waveform is detected at a predetermined timing, and in the example shown in FIG. 3, the light receiving detection of the M-1th optical axis and the Mth optical axis, which the determination circuit 13 recognizes as the “terminal optical axis”. If it cannot be detected at the timing to be performed, it can be determined that the above-mentioned mismatch is abnormal.

尚、この場合における末端識別波形は、上例に示すようにパルス間隔を変化させる他、図4(a)に示すように末端の検出用投光素子6n(第N光軸)に対応するパルス幅を他よりも長くする、或いは図4(b)に示すように末端の検出用投光素子6n(第N光軸)に対応するパルス形状をバースト状とする等、その他の方法により表現してもよい。そして、更には、図4(c)に示すように、同期信号Ssyが、末端の検出用投光素子6nに対応する(第N光軸)に対応するパルス波形の後に、更に各検出用投光素子6a〜6nの順次投光が終了した旨の波形を含む構成としてもよい。   The terminal identification waveform in this case changes the pulse interval as shown in the above example, and also corresponds to the pulse corresponding to the terminal detecting light projecting element 6n (Nth optical axis) as shown in FIG. It can be expressed by other methods such as making the width longer than others, or making the pulse shape corresponding to the terminal detection light projecting element 6n (Nth optical axis) into a burst shape as shown in FIG. May be. Further, as shown in FIG. 4 (c), the synchronization signal Ssy further includes each detection projection after a pulse waveform corresponding to the Nth optical axis corresponding to the terminal detection projection element 6n. It is good also as a structure containing the waveform to the effect that the sequential light projection of optical element 6a-6n was complete | finished.

・また、本実施形態と同様、受光信号Slr中に、末端の検出用投光素子6nの投光形態に対応する波形があるか否かに基づき不一致異常判定を行う場合においては、受光信号Slr中に図4(a)(b)に示すものと同様の波形が含まれるように、即ち、特徴的な態様で末端の検出用投光素子6nを投光駆動する構成としてもよい。尚、この場合、受光検出手段としての受光回路11は、その異なる態様の投光を検出可能に構成されることは言うまでもない。   Similarly to the present embodiment, in the case of performing the mismatch abnormality determination based on whether or not the light receiving signal Slr has a waveform corresponding to the light projecting form of the terminal detecting light projecting element 6n, the light receiving signal Slr 4A and 4B may be included, that is, the terminal detection light projecting element 6n may be driven to project in a characteristic manner. In this case, it goes without saying that the light receiving circuit 11 as the light receiving detecting means is configured to be able to detect the light projection of the different mode.

・更に、受光検出操作に続く信号処理操作を一周期とする複数のスキャン周期に亘って、受光信号Slr中に、末端の検出用投光素子6nの投光形態に対応する波形がない場合(上記別例においては、同期信号Ssy中に末端の検出用投光素子6nの投光作動を示す末端識別波形が含まれない場合)に上記不一致異常であると判定する構成としてもよい。このような構成とすれば、誤判定を回避して、より精度よく不一致異常を検知することができる。   Furthermore, when there is no waveform corresponding to the light projecting form of the terminal detecting light projecting element 6n in the light receiving signal Slr over a plurality of scanning periods in which the signal processing operation following the light receiving detection operation is one cycle ( In the another example, the synchronization signal Ssy may be configured to determine that the inconsistency abnormality is present when the terminal identification waveform indicating the light projection operation of the terminal detection light projecting element 6n is not included. With such a configuration, it is possible to avoid misjudgment and detect a mismatch abnormality more accurately.

・投光器側に識別情報として投光素子数が含まれた識別信号を送信可能な送信手段を設けるとともに、受光側にこれを受信可能な受信手段を設ける。そして、検知手段は、その受信した識別信号に基づいて上記不一致異常を検知する構成としてもよい。このような構成とすれば、より確実に不一致異常を検知することができる。尚、このような構成は、起動時に投光器側から起動信号(スタートパルス)が送信される際、所定期間の間、識別信号として、投光素子数を示すパルス信号を出力させる。そして、受光器側において、そのパルス信号を検出することで容易に具現化することができる。また、この場合、投光器側及び受光器側に専用の送信手段及び受信手段を設ける構成としてもよく、同期信号Ssy中に投光素子数を示す識別情報を含ませる構成であってもよい。   A transmitting unit capable of transmitting an identification signal including the number of light projecting elements as identification information is provided on the light projector side, and a receiving unit capable of receiving this is provided on the light receiving side. And a detection means is good also as a structure which detects the said discrepancy abnormality based on the received identification signal. With such a configuration, a mismatch abnormality can be detected more reliably. In this configuration, when an activation signal (start pulse) is transmitted from the projector side at the time of activation, a pulse signal indicating the number of light projecting elements is output as an identification signal for a predetermined period. And it can implement easily by detecting the pulse signal in the light receiver side. In this case, dedicated transmission means and reception means may be provided on the light projector side and the light receiver side, and identification information indicating the number of light projecting elements may be included in the synchronization signal Ssy.

・本実施形態では、投光器3及び受光器5は、それぞれ検出用受光素子9a〜9n及び検出用投光素子6a〜6nとは別に、同期用投光手段としての同期用投光素子7及び同期用受光手段としての同期用受光素子10を備えることとした。しかし、これに限らず、同期用投光素子7は、検出用受光素子9a〜9nと兼用されるとともに、同期用受光素子10は検出用投光素子6a〜6nと兼用される構成としてもよい。   In this embodiment, the light projector 3 and the light receiver 5 are separated from the light receiving elements 9a to 9n for detection and the light projecting elements 6a to 6n for detection, respectively, The synchronization light receiving element 10 is provided as a light receiving means. However, the present invention is not limited to this, and the synchronization light projecting element 7 may be used also as the detection light receiving elements 9a to 9n, and the synchronization light receiving element 10 may be used as the detection light projecting elements 6a to 6n. .

・本実施形態では、本発明を光同期式の多光軸光電センサ1に具体化したが、投光器と受光器とが同期線で接続されたものに具体化してもよい。
・更に、図5に示す多光軸光電センサ21のように、投光器23及び受光器25が、それぞれ少なくとも一の投光素子26を有する投光ユニット27及び少なくとも一の受光素子28を有する受光ユニット29を連結することにより形成されるものに具体化してもよい。
In the present embodiment, the present invention is embodied in the optically synchronized multi-optical axis photoelectric sensor 1, but may be embodied in a configuration in which a projector and a light receiver are connected by a synchronization line.
Further, like the multi-optical axis photoelectric sensor 21 shown in FIG. 5, the light projector 23 and the light receiver 25 each have a light projecting unit 27 having at least one light projecting element 26 and a light receiving unit having at least one light receiving element 28. You may embody in what is formed by connecting 29.

即ち、このようなユニット型の多光軸光電センサ21においては、設置時の過誤により投光素子数と受光素子数との不一致異常が発生しやすくなる。従って、このようなものに本発明を適用することで、より顕著な効果を得ることができる。更に、末端の投光素子26nを独立した投光ユニット27nとすることで、容易に末端の投光素子26nの投光タイミングを他の投光素子26と異なるものとすることが可能であり、これにより、本発明を容易に具現化することができる。   That is, in such a unit-type multi-optical axis photoelectric sensor 21, an error in mismatch between the number of light projecting elements and the number of light receiving elements tends to occur due to an error in installation. Therefore, a more remarkable effect can be obtained by applying the present invention to such a configuration. Furthermore, by making the terminal light projecting element 26n an independent light projecting unit 27n, it is possible to easily make the light projecting timing of the terminal light projecting element 26n different from the other light projecting elements 26, Thereby, the present invention can be easily realized.

・本実施形態では、判定回路13が判定手段及び検知手段としての機能を有することとした。しかし、これに限らず、独立した検知手段を設ける構成としてもよい。
・更に、不一致異常の発生を報知する報知手段を設けても良く、その具体的構成は、ウォーニングランプの点灯や警告音の出力等、どのようなものでもよい。
In the present embodiment, the determination circuit 13 has functions as a determination unit and a detection unit. However, the configuration is not limited to this, and an independent detection unit may be provided.
Further, a notification means for notifying the occurrence of a mismatch abnormality may be provided, and the specific configuration thereof may be anything such as lighting of a warning lamp or output of a warning sound.

次に、以上の実施形態から把握することのできる請求項以外の技術的思想を記載する。
(付記1)請求項2に記載の多光軸光電センサにおいて、前記各投光手段は、所定のスキャン周期で繰り返し前記順次投光駆動されるものであり、前記検知手段は、連続する複数の前記スキャン周期に亘って前記末端投光手段の投光態様に対応する受光検出ができない場合に、前記不一致異常であると判定すること、を特徴とする多光軸光電センサ。
Next, technical ideas other than the claims that can be understood from the above embodiments will be described.
(Appendix 1) In the multi-optical axis photoelectric sensor according to claim 2, each of the light projecting means is repeatedly driven by the sequential light with a predetermined scan period, and the detecting means includes a plurality of continuous light sensors. A multi-optical axis photoelectric sensor, wherein when the received light detection corresponding to the light projection mode of the terminal light projecting unit cannot be performed over the scan period, it is determined that the mismatch is abnormal.

(付記2)請求項3に記載の多光軸光電センサにおいて、前記各投光手段は、所定のスキャン周期で繰り返し前記順次投光駆動されるものであり、前記検知手段は、連続する複数の前記スキャン周期に亘って前記末端識別波形を検出できない場合に、前記不一致異常であると判定すること、を特徴とする多光軸光電センサ。上記各構成によれば、誤判定を回避して、より精度よく不一致異常を検知することができる。   (Supplementary note 2) In the multi-optical axis photoelectric sensor according to claim 3, each of the light projecting means is driven to emit light sequentially and repeatedly at a predetermined scan period, and the detecting means includes a plurality of continuous light sensors. A multi-optical axis photoelectric sensor characterized in that, when the terminal identification waveform cannot be detected over the scan period, it is determined that the mismatch is abnormal. According to each of the above configurations, misjudgment abnormality can be detected with higher accuracy while avoiding erroneous determination.

本実施形態の多光軸光電センサの概略構成図。The schematic block diagram of the multi-optical axis photoelectric sensor of this embodiment. 本実施形態の遮光検出の態様を説明する波形図。The wave form diagram explaining the aspect of the light-shielding detection of this embodiment. 本実施形態の不一致異常検知の態様を説明する波形図。The wave form diagram explaining the aspect of the mismatch abnormality detection of this embodiment. (a)(b)(c)別例の不一致異常検知の態様を説明する波形図。(A) (b) (c) The wave form diagram explaining the aspect of the mismatch abnormality detection of another example. 本実施形態の多光軸光電センサの概略構成図。The schematic block diagram of the multi-optical axis photoelectric sensor of this embodiment. 不一致異常及びその発生要因の説明図。Explanatory drawing of a mismatch abnormality and its cause. 不一致異常の発生原因を説明する波形図。The waveform diagram explaining the cause of the occurrence of the discrepancy abnormality.

符号の説明Explanation of symbols

1,21…多光軸光電センサ、2,26,26n…投光素子、3,23…投光器、4,28…受光素子、5,25…受光器、6a〜6n…検出用投光素子、7…同期用投光素子、8…投光回路、9a〜9n…検出用受光素子、10…同期用受光素子、11…受光回路、12…同期信号生成回路、27,27n…投光ユニット、29…受光ユニット。   DESCRIPTION OF SYMBOLS 1,21 ... Multi-optical axis photoelectric sensor, 2, 26, 26n ... Light projecting element, 3, 23 ... Light projector, 4, 28 ... Light receiving element, 5, 25 ... Light receiver, 6a-6n ... Light projecting element for detection, 7: Light projecting element for synchronization, 8: Light projecting circuit, 9a to 9n: Light receiving element for detection, 10: Light receiving element for synchronization, 11: Light receiving circuit, 12: Sync signal generating circuit, 27, 27n: Light projecting unit, 29. Light receiving unit.

Claims (9)

直線状に整列配置された複数の投光手段を有する投光器と、前記各投光手段と対向配置される複数の受光手段を有する受光器と、対向する前記各投光手段及び各受光手段間に形成される各光軸が遮光状態にあるか否かを判定する判定手段とを備え、前記各投光手段は、所定の投光タイミングで順次投光駆動されるとともに、前記受光器は、前記各投光手段の前記投光タイミングに同期して受光検出可能な前記受光手段を順次切り替える多光軸光電センサであって、
前記受光器は、前記投光器側から送信される識別情報に基づいて投光手段数と受光手段数との不一致異常を検知する検知手段を備えること、を特徴とする多光軸光電センサ。
A light projector having a plurality of light projecting means arranged in a straight line, a light receiver having a plurality of light receiving means arranged to face each of the light projecting means, and between each of the light projecting means and each light receiving means facing each other. Determining means for determining whether or not each optical axis to be formed is in a light-shielded state, each light projecting means is sequentially projected at a predetermined light project timing, and the light receiver A multi-optical axis photoelectric sensor for sequentially switching the light receiving means capable of receiving and detecting light in synchronization with the light projection timing of each light projecting means,
The multi-optical axis photoelectric sensor, wherein the light receiver includes a detecting unit that detects a mismatch abnormality between the number of light projecting units and the number of light receiving units based on identification information transmitted from the projector side.
請求項1に記載の多光軸光電センサにおいて、
末端投光手段は、他の各投光手段と異なる態様で投光駆動されるとともに、前記受光器は、前記異なる態様の投光を受光検出可能な受光検出手段を備え、
前記検知手段は、前記末端投光手段の投光態様に対応する前記受光検出ができない場合に、前記不一致異常であると判定すること、を特徴とする多光軸光電センサ。
The multi-optical axis photoelectric sensor according to claim 1,
The terminal light projecting unit is driven to project light in a mode different from each of the other light projecting units, and the light receiver includes a light receiving detection unit capable of receiving and detecting the light projection of the different mode
The multi-optical axis photoelectric sensor, wherein the detection unit determines that the mismatch is abnormal when the received light detection corresponding to the light projection mode of the terminal light projection unit cannot be performed.
請求項1に記載の多光軸光電センサにおいて、
前記受光器は、前記投光器側から入力される同期信号に基づき前記受光検出可能な前記受光手段を順次切り替えるものであって、
前記検知手段には、前記同期信号が入力されるとともに、該同期信号は、末端投光手段の投光作動を示す末端識別波形を含み、
前記検知手段は、所定タイミングにおいて前記同期信号中に前記末端識別波形を検出できない場合に、前記不一致異常であると判定すること、を特徴とする多光軸光電センサ。
The multi-optical axis photoelectric sensor according to claim 1,
The light receiver sequentially switches the light receiving means capable of detecting and receiving light based on a synchronization signal input from the projector side,
The detection means is supplied with the synchronization signal, and the synchronization signal includes a terminal identification waveform indicating the light projection operation of the terminal light projection means,
The multi-optical axis photoelectric sensor, wherein the detection unit determines that the mismatch is abnormal when the terminal identification waveform cannot be detected in the synchronization signal at a predetermined timing.
請求項2又は請求項3に記載の多光軸光電センサにおいて、
前記末端投光手段は、他の前記各投光手段の投光タイミングと異なる投光タイミングで投光駆動されること、を特徴とする多光軸光電センサ。
The multi-optical axis photoelectric sensor according to claim 2 or 3,
The terminal light projecting means is driven to project light at a light projection timing different from the light projection timing of each of the other light projecting means.
請求項1に記載の多光軸光電センサにおいて、
前記投光器は、前記識別情報として前記投光手段数が含まれた識別信号を送信可能な送信手段を備えるとともに、前記受光器は、前記識別信号を受信する受信手段を備え、
前記検知手段は、前記受信された識別信号に基づいて前記不一致異常を検知すること、
を特徴とする多光軸光電センサ。
The multi-optical axis photoelectric sensor according to claim 1,
The light projector includes a transmission unit capable of transmitting an identification signal including the number of light projection units as the identification information, and the light receiver includes a reception unit that receives the identification signal.
The detecting means detects the inconsistency abnormality based on the received identification signal;
A multi-optical axis photoelectric sensor.
請求項1〜請求項5の何れか一項に記載の多光軸光電センサにおいて、
同期信号を生成するための同期用投光手段及び同期用受光手段を備えること、
を特徴とする多光軸光電センサ。
In the multi-optical axis photoelectric sensor according to any one of claims 1 to 5,
A synchronization light projecting unit and a synchronization light receiving unit for generating a synchronization signal;
A multi-optical axis photoelectric sensor.
請求項6に記載の多光軸光電センサにおいて、
前記同期用投光手段は、前記投光器に設けられた前記投光手段と兼用されるとともに、前記同期用受光手段は、前記受光器に設けられた前記受光手段と兼用されること、
を特徴とする多光軸光電センサ。
The multi-optical axis photoelectric sensor according to claim 6,
The synchronizing light projecting means is also used as the light projecting means provided in the projector, and the synchronizing light receiving means is also used as the light receiving means provided in the light receiver;
A multi-optical axis photoelectric sensor.
請求項1〜請求項7の何れか一項に記載の多光軸光電センサにおいて、
前記投光器は、少なくとも一の前記投光手段を有する複数の投光ユニットを連結してなり、前記受光器は、少なくとも一の前記受光手段を有する複数の受光ユニットを連結してなること、を特徴とする多光軸光電センサ。
In the multi-optical axis photoelectric sensor according to any one of claims 1 to 7,
The light projector is formed by connecting a plurality of light projecting units having at least one light projecting unit, and the light receiver is formed by connecting a plurality of light receiving units having at least one light receiving unit. Multi-optical axis photoelectric sensor.
請求項1〜請求項8の何れか一項に記載の多光軸光電センサにおいて、
前記不一致異常の検知を報知する報知手段を備えること、
を特徴とする多光軸光電センサ。
In the multi-optical axis photoelectric sensor according to any one of claims 1 to 8,
Providing an informing means for informing detection of the inconsistency abnormality;
A multi-optical axis photoelectric sensor.
JP2006049046A 2006-02-24 2006-02-24 Multi-axis photoelectric sensor Active JP5010835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049046A JP5010835B2 (en) 2006-02-24 2006-02-24 Multi-axis photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049046A JP5010835B2 (en) 2006-02-24 2006-02-24 Multi-axis photoelectric sensor

Publications (2)

Publication Number Publication Date
JP2007228425A true JP2007228425A (en) 2007-09-06
JP5010835B2 JP5010835B2 (en) 2012-08-29

Family

ID=38549759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049046A Active JP5010835B2 (en) 2006-02-24 2006-02-24 Multi-axis photoelectric sensor

Country Status (1)

Country Link
JP (1) JP5010835B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035743A (en) * 2012-08-10 2014-02-24 Nohmi Bosai Ltd Photoelectric separation type sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010789A1 (en) * 1993-10-12 1995-04-20 The Nippon Signal Co., Ltd. Fail-safe multiple optical-axis light beam sensor
JP2002232285A (en) * 2001-01-31 2002-08-16 Sunx Ltd Multiple optical axis photoelectric sensor, flood light device, flood light element unit flood light control unit, light receiving device, light receiving element unit, light receiving control unit and method for setting number of flood light and receiving elements to be driven
JP2004007233A (en) * 2002-05-31 2004-01-08 Sunx Ltd Multi optical axis photoelectric sensor
JP2005049172A (en) * 2003-07-31 2005-02-24 Sunx Ltd Multi-optical-axis photoelectric switch
JP2006112982A (en) * 2004-10-15 2006-04-27 Keyence Corp Multi-axis photoelectric sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010789A1 (en) * 1993-10-12 1995-04-20 The Nippon Signal Co., Ltd. Fail-safe multiple optical-axis light beam sensor
JP2002232285A (en) * 2001-01-31 2002-08-16 Sunx Ltd Multiple optical axis photoelectric sensor, flood light device, flood light element unit flood light control unit, light receiving device, light receiving element unit, light receiving control unit and method for setting number of flood light and receiving elements to be driven
JP2004007233A (en) * 2002-05-31 2004-01-08 Sunx Ltd Multi optical axis photoelectric sensor
JP2005049172A (en) * 2003-07-31 2005-02-24 Sunx Ltd Multi-optical-axis photoelectric switch
JP2006112982A (en) * 2004-10-15 2006-04-27 Keyence Corp Multi-axis photoelectric sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035743A (en) * 2012-08-10 2014-02-24 Nohmi Bosai Ltd Photoelectric separation type sensor

Also Published As

Publication number Publication date
JP5010835B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
US9530309B2 (en) Object detection system
JP2012068242A (en) Light grating and object recognition method
JP5010835B2 (en) Multi-axis photoelectric sensor
JP2008277163A (en) Multiple optical-axis photoelectric sensor
JP4846325B2 (en) Multi-optical axis photoelectric sensor, projector, and light receiver
JP4783128B2 (en) Multi-optical axis photoelectric switch, basic unit of multi-optical axis photoelectric switch, and extension unit of multi-optical axis photoelectric switch
JP4860323B2 (en) Photoelectric sensor and photoelectric sensor system
JPH1032479A (en) Photoelectric sensor and synchronization control system therefor
JP4047710B2 (en) Multi-axis photoelectric sensor
WO2011068080A1 (en) Clock signal error detection system
JP4576065B2 (en) Photoelectric sensor
JP7010189B2 (en) Multi-optical axis photoelectric sensor
JP4211719B2 (en) Multi-axis photoelectric sensor
JP4823702B2 (en) Multi-axis photoelectric sensor
JP5000554B2 (en) Train detector
WO2019102801A1 (en) Multi-optical axis photoelectric sensor
JP4170925B2 (en) Multi-optical axis photoelectric sensor and collision prevention sensor
JP3851817B2 (en) Photoelectric sensor system and photoelectric sensor
JP4808291B1 (en) Sensor head structure
JP4394591B2 (en) Multi-axis photoelectric sensor
JP2002217703A (en) Multi-optical axis photoelectric sensor
JP5134926B2 (en) Monitoring system and controller
JP4278567B2 (en) Multi-axis photoelectric sensor
JP2007324898A (en) Multi-optical-axis photoelectric sensor, its phototransmitter, and its photoreceiver
JP3899422B2 (en) Photoelectric sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5010835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250