JP2007225404A - Sampling method of impurity in water-soluble gas - Google Patents

Sampling method of impurity in water-soluble gas Download PDF

Info

Publication number
JP2007225404A
JP2007225404A JP2006046113A JP2006046113A JP2007225404A JP 2007225404 A JP2007225404 A JP 2007225404A JP 2006046113 A JP2006046113 A JP 2006046113A JP 2006046113 A JP2006046113 A JP 2006046113A JP 2007225404 A JP2007225404 A JP 2007225404A
Authority
JP
Japan
Prior art keywords
water
soluble gas
impurities
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006046113A
Other languages
Japanese (ja)
Other versions
JP4901239B2 (en
Inventor
Toshio Takeguchi
東士夫 竹口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2006046113A priority Critical patent/JP4901239B2/en
Publication of JP2007225404A publication Critical patent/JP2007225404A/en
Application granted granted Critical
Publication of JP4901239B2 publication Critical patent/JP4901239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of sampling impurities in water-soluble gas efficiently in the suitable state for analysis by a simple apparatus constitution and operation. <P>SOLUTION: In this method, a hydrolysis stage for circulating the water-soluble gas in collection liquid to hydrolyze the water-soluble gas, and thereby acquiring a trace amount of impurities into the collection liquid; and a dissolving stage for circulating the water-soluble gas continuously in the collection liquid wherein the water-soluble gas is in the saturated state, and dissolving and capturing the trace amount of impurities into the collection liquid in the supersaturated state of the water-soluble gas are performed. In addition, the temperature of the collection liquid is adjusted, to thereby adjust the saturation concentration of the water-soluble gas. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水溶性ガス中の不純物のサンプリング方法に関し、詳しくは、高純度のアンモニア、塩化水素、臭化水素等を主成分とする水溶性ガス中に含まれる微量の金属不純物等を分析する際のサンプリング方法に関する。   The present invention relates to a method for sampling impurities in a water-soluble gas, and more specifically, analyzes a trace amount of metal impurities contained in a water-soluble gas mainly composed of high-purity ammonia, hydrogen chloride, hydrogen bromide, or the like. It relates to the sampling method.

超高純度のアンモニアガス、塩化水素ガス、臭素化水素ガス等は、各種の産業や研究用等の幅広い分野で利用されているが、産業の高度化に伴って要求されるガスの純度も益々高いものになってきている。例えば、半導体製造プロセスにおいては、ガス中の不純物がデバイスの性能や歩留まりに悪影響を及ぼすと言われていることから、高集積度化が進むのに伴い、ガス中の不純物濃度がppb、あるいはpptオーダー以下の超高純度ガスの需要が増加しており、必然的に極低濃度域の不純物分析を可能とする技術が必要となってきている。   Ultra high-purity ammonia gas, hydrogen chloride gas, hydrogen bromide gas, etc. are used in a wide range of fields such as various industries and research, but the purity of the gas required as the industry becomes more sophisticated It's getting expensive. For example, in a semiconductor manufacturing process, it is said that impurities in a gas adversely affect device performance and yield. Therefore, as the degree of integration increases, the impurity concentration in the gas becomes ppb or ppt. The demand for ultra-high-purity gas below the order is increasing, and a technology that inevitably enables impurity analysis in an extremely low concentration region is required.

特にアンモニアの場合は、発光デバイス(LED)や高速デバイス(HEMT)等の極めて有用な材料として、近年数多くの研究がなされており、その中でアンモニア中の水分、金属等の不純物がデバイスの性能に悪影響を及ぼすといわれている。これらの超低濃度不純物成分の濃度管理及び濃度保証が原料ガスメーカーに求められている。   In particular, in the case of ammonia, many studies have been made in recent years as extremely useful materials such as light-emitting devices (LEDs) and high-speed devices (HEMTs). Among them, impurities such as moisture and metals in ammonia It is said to have an adverse effect on Concentration management and concentration guarantee of these ultra-low concentration impurity components are demanded from raw material gas manufacturers.

アンモニアは水溶性を示すガスであり、通常、アンモニア中の金属等不純物をサンプリングする場合には、加水分解(ハイドロリシス)法が用いられている(例えば、特許文献1参照。)。
特開2002−148156号公報
Ammonia is a water-soluble gas, and usually, when sampling impurities such as metals in ammonia, a hydrolysis method is used (see, for example, Patent Document 1).
JP 2002-148156 A

しかし、加水分解法では、飽和濃度に達するガス量以下しかサンプリングすることができず、アンモニアの場合、常温で100gの水に対して約30g、氷浴下でサンプリングを行ったとしても100gの水に対して約50g程度のガス量で飽和濃度となるため、超低濃度の不純物を分析するためにはサンプリング量が不足していた。   However, the hydrolysis method can only sample less than the amount of gas that reaches the saturation concentration, and in the case of ammonia, about 30 g of 100 g of water at room temperature, even if sampling is performed in an ice bath, 100 g of water. In contrast, since the saturation concentration is obtained with a gas amount of about 50 g, a sampling amount is insufficient to analyze an ultra-low concentration impurity.

また、サンプリング後のアンモニアが高濃度で含まれているサンプル液を直接分析機器に導入すると、分析機器へのダメージや、高濃度なマトリックスの影響で適正な分析が行えないなどの問題が生じるため、一般的にはサンプル液を希釈して用いている。サンプル液の希釈は、適当な液体、例えばアンモニアならば超純水等を加えて行うが、この希釈操作によってサンプル液中の目的不純物成分も希釈され、満足な感度が得られなかった。   In addition, if a sample solution containing a high concentration of ammonia after sampling is directly introduced into the analytical instrument, problems such as damage to the analytical instrument and the inability to perform an appropriate analysis due to the influence of the high-concentration matrix may occur. In general, a sample solution is diluted. The sample liquid is diluted by adding an appropriate liquid, for example, ultrapure water if ammonia, but the target impurity component in the sample liquid is also diluted by this dilution operation, and satisfactory sensitivity cannot be obtained.

これらのサンプル量不足、希釈のデメリットを補うため、サンプル液を非沸騰蒸発させて濃縮する方法も知られているが、蒸発法は長い時間を要し、コンタミネーションが起こりやすいため、オペレーターの技術力と、高いクリーン度を持つ空間が必要とされている。   In order to compensate for the shortage of samples and the disadvantages of dilution, it is also known to concentrate the sample liquid by non-boiling vaporization.However, the evaporation method takes a long time and is prone to contamination. A space with high power and high cleanliness is needed.

そこで本発明は、簡単な機器構成及び操作で水溶性ガス中の不純物を、分析に適した状態に効率よくサンプリングすることができる方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a method capable of efficiently sampling impurities in a water-soluble gas into a state suitable for analysis with a simple instrument configuration and operation.

上記目的を達成するため、本発明の水溶性ガス中の不純物のサンプリング方法は、水溶性ガス中に含まれている微量不純物を捕集液中に捕捉するサンプリング方法において、前記水溶性ガスを前記捕集液中に流通させて前記水溶性ガスを加水分解させることにより前記微量不純物を捕集液中に捕捉する加水分解段階と、前記水溶性ガスが飽和状態となった捕集液中に継続して水溶性ガスを流通させ、水溶性ガスの過飽和状態で前記微量不純物を捕集液中に溶解させて捕捉する溶解段階とを行うことを特徴とし、さらに、前記捕集液の温度を調節して前記水溶性ガスの飽和濃度を調節することを特徴としている。   In order to achieve the above object, the method for sampling impurities in a water-soluble gas according to the present invention is a sampling method for capturing a trace amount of impurities contained in a water-soluble gas in a collecting liquid, wherein the water-soluble gas is added to the water-soluble gas. A hydrolysis step for trapping the trace impurities in the collection liquid by circulating the water-soluble gas in the collection liquid and continuing in the collection liquid in which the water-soluble gas is saturated A water-soluble gas is circulated, and in a supersaturated state of the water-soluble gas, the trace impurities are dissolved and collected in the collected liquid, and the temperature of the collected liquid is adjusted. Then, the saturation concentration of the water-soluble gas is adjusted.

本発明の水溶性ガス中の不純物のサンプリング方法によれば、水溶性ガスの加水分解段階で不純物を捕集液中に捕捉する加水分解(ハイドロリシス)法を行った後、さらに、過飽和状態で水溶性ガスを流通させて不純物を捕集液中に溶解させて捕捉する溶解(ソルベーション)法を行うので、水溶性ガスの流通量を任意に設定することができ、捕集液中の不純物濃度を高めることができる。   According to the method for sampling impurities in a water-soluble gas of the present invention, after performing a hydrolysis (hydrolysis) method in which impurities are trapped in a collected liquid in a water-soluble gas hydrolysis step, Since a solution (solvation) method is performed in which a water-soluble gas is circulated and the impurities are dissolved and captured in the collection liquid, the flow amount of the water-soluble gas can be arbitrarily set, and the impurities in the collection liquid The concentration can be increased.

また、捕集液の温度を調節して水溶性ガスの飽和濃度を調節することにより、捕集液中のアンモニア濃度や塩化水素濃度を分析機器にダメージを与えない程度の低濃度にすることができ、希釈等の操作も不要となる。   Also, by adjusting the temperature of the collected liquid to adjust the saturation concentration of the water-soluble gas, the concentration of ammonia and hydrogen chloride in the collected liquid can be reduced to a level that does not damage the analytical instrument. The operation such as dilution is unnecessary.

図1は本発明の水溶性ガス中の不純物のサンプリング方法を実施する際の機器構成の一例を示す説明図である。   FIG. 1 is an explanatory diagram showing an example of the equipment configuration when the method for sampling impurities in a water-soluble gas according to the present invention is carried out.

水溶性ガス中の不純物をサンプリングする際には、ガス容器11から導出した水溶性ガスを、圧力調整器12,流量調節器(マスフローコントローラー)13を通して捕集容器14内の捕集液15中にバブリングする。捕集容器14には、捕集液15の温度を調節するための温度調節手段16が設けられており、捕集容器14の下流側には、捕集容器14から流出した水溶性ガスをトラップするための水17を入れたトラップ容器18が連設されている。   When sampling impurities in the water-soluble gas, the water-soluble gas derived from the gas container 11 is passed through the pressure regulator 12 and the flow rate regulator (mass flow controller) 13 into the collection liquid 15 in the collection container 14. Bubbling. The collection container 14 is provided with temperature adjusting means 16 for adjusting the temperature of the collection liquid 15, and traps water-soluble gas flowing out from the collection container 14 on the downstream side of the collection container 14. A trap container 18 containing water 17 is provided continuously.

前記水溶性ガスとしては、例えば、高純度のアンモニア、塩化水素、臭化水素等のガス、あるいは、これらを主成分とした混合ガスを挙げることができ、前記不純物としては、これらのガス中に極微量に存在している成分、例えば金属成分等を挙げることができる。前記捕集液15には、超純水あるいは超純水に任意の物質を加えた混合液を使用することができる。前記温度調節手段16には、通常は、ヒーター、温浴等の任意の加熱手段を使用することができるが、冷却機能を有するものも使用できる。   Examples of the water-soluble gas include high-purity ammonia, hydrogen chloride, hydrogen bromide, and the like, or mixed gases containing these as main components, and the impurities include those gases. The component which exists in trace amount, for example, a metal component, etc. can be mentioned. As the collection liquid 15, ultrapure water or a mixed liquid obtained by adding an arbitrary substance to ultrapure water can be used. As the temperature adjusting means 16, usually any heating means such as a heater or a warm bath can be used, but one having a cooling function can also be used.

前記捕集容器14の材質は、PFA、PTFA等のフッ素系樹脂や、PP、PE等の炭化水素系樹脂が好ましい。また、各配管や圧力調整器12,流量調節器13にも、不純物分析に対して悪影響を及ぼさない材質を選択する。   The material of the collection container 14 is preferably a fluorine resin such as PFA or PTFA, or a hydrocarbon resin such as PP or PE. In addition, a material that does not adversely affect the impurity analysis is selected for each pipe, the pressure regulator 12 and the flow rate regulator 13.

サンプリング操作は、次のようにして行うことができる。まず、捕集液15を所定量充填した捕集容器14に、ガス容器11から導出されて所定圧力、所定流量に調整された水溶性ガスを流通させて加水分解させる。このとき、温度調節手段16によって捕集液15を所定温度に調整しておくことにより、その温度に応じた飽和量に達すると、水溶性ガスは捕集容器14を通過してトラップ容器18に導入され、加水分解して水17にトラップされる。   The sampling operation can be performed as follows. First, the water-soluble gas led out from the gas container 11 and adjusted to a predetermined pressure and a predetermined flow rate is circulated through the collection container 14 filled with a predetermined amount of the collection liquid 15 to be hydrolyzed. At this time, by adjusting the collection liquid 15 to a predetermined temperature by the temperature adjusting means 16, when the saturation amount corresponding to the temperature is reached, the water-soluble gas passes through the collection container 14 and enters the trap container 18. It is introduced, hydrolyzed and trapped in water 17.

捕集液15中の水溶性ガスが飽和した後も、捕集容器14への水溶性ガスの流通を継続し、水溶性ガス中の不純物を捕集液15に溶解させる。所定量の水溶性ガスを流通させたときにサンプリング操作を終了することにより、捕集液15中に不純物が捕捉された分析用サンプル液が得られる。   Even after the water-soluble gas in the collection liquid 15 is saturated, the flow of the water-soluble gas to the collection container 14 is continued and the impurities in the water-soluble gas are dissolved in the collection liquid 15. By terminating the sampling operation when a predetermined amount of water-soluble gas is circulated, an analytical sample liquid in which impurities are trapped in the collected liquid 15 is obtained.

すなわち、捕集液15に水溶性ガスが飽和するまでは加水分解(ハイドロリシス)法でサンプリングし、飽和後は溶解(ソルベーション)法によって過飽和状態でのソルベーションを行うことにより、水溶性ガスの流通量を任意に設定することができ、水溶性ガスの流通量を増加させることによって不純物の捕捉量を分析可能な範囲まで増加させることが可能となる。   That is, until the water-soluble gas is saturated in the collected liquid 15, sampling is performed by a hydrolysis (hydrolysis) method, and after the saturation, a solution in a supersaturated state is performed by a dissolution (solvation) method. The amount of impurities trapped can be increased to an analyzable range by increasing the amount of water-soluble gas flow.

また、捕集液15の温度を適当に設定することにより、分析用サンプル液における水溶性ガス濃度を、分析機器に悪影響を与えない濃度に調整することができる。例えば、水溶性ガスがアンモニアで、捕集液15が水の場合、その飽和曲線は図2に示す通りであるから、分析用サンプル液におけるアンモニア濃度を10%にする場合には、捕集液15の温度を70℃にすればよいことが分かる。   Moreover, by setting the temperature of the collection liquid 15 appropriately, the water-soluble gas concentration in the sample liquid for analysis can be adjusted to a concentration that does not adversely affect the analytical instrument. For example, when the water-soluble gas is ammonia and the collection liquid 15 is water, the saturation curve thereof is as shown in FIG. 2. Therefore, when the ammonia concentration in the analysis sample liquid is 10%, the collection liquid It can be seen that the temperature of 15 should be 70 ° C.

アンモニアボンベから導出した高純度のアンモニアを、マスフローコントローラーにて毎分1リットルの流量に調節し、PFA製容器内の超純水100ml中に流通させた。このとき、超純水は、ヒーターによって70℃に加熱した。130分間連続してアンモニアを流通させた後、PFA製容器内から取り出した超純水(分析用サンプル液)中のアンモニアの濃度を比重で測定した。   High-purity ammonia derived from an ammonia cylinder was adjusted to a flow rate of 1 liter per minute with a mass flow controller and circulated in 100 ml of ultrapure water in a PFA container. At this time, the ultrapure water was heated to 70 ° C. by a heater. After circulating ammonia continuously for 130 minutes, the concentration of ammonia in ultrapure water (analytical sample solution) taken out from the PFA container was measured by specific gravity.

流通させたアンモニア量は約100gであり、分析用サンプル液のアンモニア濃度は、水温70℃での飽和濃度である10重量%であった。そして、この分析用サンプル液中のSi濃度を分析した結果、0.9重量ppbという結果が得られた。これにより、前記高純度アンモニアに含まれる不純物のSi量を算出することができる。   The amount of ammonia circulated was about 100 g, and the ammonia concentration of the sample solution for analysis was 10% by weight which is a saturated concentration at a water temperature of 70 ° C. As a result of analyzing the Si concentration in the sample solution for analysis, a result of 0.9 weight ppb was obtained. Thereby, the amount of Si of impurities contained in the high purity ammonia can be calculated.

一方、加水分解(ハイドロリシス)法のみでサンプリングする場合のアンモニア量は、水温70℃での飽和濃度である10重量%に相当する量、すなわち10g程度に過ぎない。このときの状態、すなわち、アンモニア10gをサンプリングした状態の分析用サンプル液を前記同様に分析したが、検出限界(0.2重量ppb)以下であってSiは検出できなかった。   On the other hand, the amount of ammonia in the case of sampling only by the hydrolysis (hydrolysis) method is only an amount corresponding to 10% by weight which is a saturated concentration at a water temperature of 70 ° C., that is, about 10 g. The sample liquid for analysis in this state, that is, a state in which 10 g of ammonia was sampled was analyzed in the same manner as described above, but Si was not detected because it was below the detection limit (0.2 weight ppb).

また、水温調整を行わずに加水分解(ハイドロリシス)法のみでサンプリングした場合も、加水分解時の温度上昇があるため、流通できるアンモニア量は17g程度が限界である。さらに、氷浴等で水温を下げてサンプリングを行った場合は、飽和濃度が約45重量%まで上昇するので45g程度のアンモニアを流通させることができるが、得られる分析用サンプル液のアンモニア濃度も45重量%と高濃度になり、分析を行う前に数倍に希釈する操作が必要となり、その分、サンプル液中の分析対象成分の濃度も低下し、正確な分析が困難になってしまう。   In addition, even when sampling is performed only by the hydrolysis (hydrolysis) method without adjusting the water temperature, the amount of ammonia that can be circulated is limited to about 17 g because of the temperature increase during the hydrolysis. Furthermore, when sampling is performed by lowering the water temperature in an ice bath or the like, the saturation concentration rises to about 45% by weight, so about 45 g of ammonia can be circulated, but the ammonia concentration of the obtained sample solution for analysis is also The concentration becomes as high as 45% by weight, and an operation of diluting several times before analysis is required, and accordingly, the concentration of the analysis target component in the sample liquid is lowered, and accurate analysis becomes difficult.

したがって、加水分解(ハイドロリシス)法と溶解(ソルベーション)法を組み合わせることにより、アンモニアの流通量を従来の10倍程度に引き上げることができ、その分、不純物を超純水等の捕集液中に捕捉することが可能となる。これにより、分析精度を向上させて、より低濃度の不純物を正確に分析できることになる。さらに、捕集液の温度を調整することにより、分析用サンプル液のアンモニア濃度を低くすることができるので、希釈操作を行わずにそのまま分析することが可能となり、作業性の向上と分析精度の向上とが図れる。   Therefore, by combining the hydrolysis (hydrolysis) method and the dissolution (solvation) method, the circulation amount of ammonia can be increased to about 10 times that of the conventional method. It becomes possible to capture inside. As a result, the analysis accuracy can be improved and a lower concentration impurity can be analyzed accurately. Furthermore, by adjusting the temperature of the collected liquid, the ammonia concentration of the sample liquid for analysis can be lowered, so that it is possible to perform the analysis as it is without performing a dilution operation, improving workability and improving analysis accuracy. It can be improved.

本発明の水溶性ガス中の不純物のサンプリング方法を実施する際の機器構成の一例を示す説明図である。It is explanatory drawing which shows an example of the apparatus structure at the time of implementing the sampling method of the impurity in the water-soluble gas of this invention. 水に対するアンモニアの飽和曲線を示す図である。It is a figure which shows the saturation curve of ammonia with respect to water.

符号の説明Explanation of symbols

11…ガス容器、12…圧力調整器、13…流量調節器、14…捕集容器、15…捕集液、16…温度調節手段、17…水、18…トラップ容器   DESCRIPTION OF SYMBOLS 11 ... Gas container, 12 ... Pressure regulator, 13 ... Flow controller, 14 ... Collection container, 15 ... Collection liquid, 16 ... Temperature control means, 17 ... Water, 18 ... Trap container

Claims (2)

水溶性ガス中に含まれている不純物を捕集液中に捕捉するサンプリング方法において、前記水溶性ガスを前記捕集液中に流通させて前記水溶性ガスを加水分解させることにより前記不純物を捕集液中に捕捉する加水分解段階と、前記水溶性ガスが飽和状態となった捕集液中に継続して水溶性ガスを流通させ、水溶性ガスの過飽和状態で前記不純物を捕集液中に溶解させて捕捉する溶解段階とを行うことを特徴とする水溶性ガス中の不純物のサンプリング方法。   In the sampling method for capturing impurities contained in a water-soluble gas in a collection liquid, the water-soluble gas is circulated in the collection liquid to hydrolyze the water-soluble gas, thereby capturing the impurities. Hydrolysis stage for capturing in the liquid collection, and continuously circulating the water-soluble gas in the collection liquid in which the water-soluble gas is saturated, and the impurities are collected in a supersaturated state of the water-soluble gas. A method for sampling impurities in a water-soluble gas, comprising: a dissolution step of dissolving and trapping in water. 前記捕集液の温度を調節して前記水溶性ガスの飽和濃度を調節することを特徴とする請求項1記載の水溶性ガス中の不純物のサンプリング方法。   The method for sampling impurities in a water-soluble gas according to claim 1, wherein the saturation concentration of the water-soluble gas is adjusted by adjusting the temperature of the collected liquid.
JP2006046113A 2006-02-23 2006-02-23 Method for sampling impurities in water-soluble gas Expired - Fee Related JP4901239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046113A JP4901239B2 (en) 2006-02-23 2006-02-23 Method for sampling impurities in water-soluble gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046113A JP4901239B2 (en) 2006-02-23 2006-02-23 Method for sampling impurities in water-soluble gas

Publications (2)

Publication Number Publication Date
JP2007225404A true JP2007225404A (en) 2007-09-06
JP4901239B2 JP4901239B2 (en) 2012-03-21

Family

ID=38547363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046113A Expired - Fee Related JP4901239B2 (en) 2006-02-23 2006-02-23 Method for sampling impurities in water-soluble gas

Country Status (1)

Country Link
JP (1) JP4901239B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076359B1 (en) 2009-05-29 2011-10-25 주식회사 에이에스피 A pretreating device for analysis of trace element
CN103033438A (en) * 2012-11-21 2013-04-10 苏州金宏气体股份有限公司 Method for detecting content of total nonvolatile matters in high-purity and ultra-pure ammonia

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117977A (en) * 1992-10-01 1994-04-28 Sharp Corp Gas collecting device
JPH06148041A (en) * 1992-10-30 1994-05-27 Sharp Corp Method and apparatus for collecting metal impurity in atmosphere
JPH06174612A (en) * 1992-12-01 1994-06-24 Mitsubishi Corp Impurity trap device
JPH0894504A (en) * 1994-09-20 1996-04-12 Mitsubishi Corp Impurity collector
JPH0989732A (en) * 1995-09-21 1997-04-04 Toshiba Corp Method and device for generating gas and vapor-phase growing device using device thereof
JPH10296031A (en) * 1997-04-25 1998-11-10 Hitachi Ltd Atmosphere sampling device
JP2000338098A (en) * 1999-05-25 2000-12-08 Shin Etsu Chem Co Ltd Continuous determination of hydrolyzable component in hydrolyzable component-containing gas material
JP2001201439A (en) * 2000-01-20 2001-07-27 Fujitsu Ltd Apparatus and method for collecting atmospheric pollutant sample
JP2002510396A (en) * 1997-07-25 2002-04-02 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for detecting metal impurities in process gas for semiconductor production
JP2002148156A (en) * 2000-11-08 2002-05-22 Nippon Sanso Corp Sampling vessel for metal impurity
JP2003302317A (en) * 2002-04-11 2003-10-24 Oki Electric Ind Co Ltd Method for collecting chemical contaminative impurity components in air

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117977A (en) * 1992-10-01 1994-04-28 Sharp Corp Gas collecting device
JPH06148041A (en) * 1992-10-30 1994-05-27 Sharp Corp Method and apparatus for collecting metal impurity in atmosphere
JPH06174612A (en) * 1992-12-01 1994-06-24 Mitsubishi Corp Impurity trap device
JPH0894504A (en) * 1994-09-20 1996-04-12 Mitsubishi Corp Impurity collector
JPH0989732A (en) * 1995-09-21 1997-04-04 Toshiba Corp Method and device for generating gas and vapor-phase growing device using device thereof
JPH10296031A (en) * 1997-04-25 1998-11-10 Hitachi Ltd Atmosphere sampling device
JP2002510396A (en) * 1997-07-25 2002-04-02 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for detecting metal impurities in process gas for semiconductor production
JP2000338098A (en) * 1999-05-25 2000-12-08 Shin Etsu Chem Co Ltd Continuous determination of hydrolyzable component in hydrolyzable component-containing gas material
JP2001201439A (en) * 2000-01-20 2001-07-27 Fujitsu Ltd Apparatus and method for collecting atmospheric pollutant sample
JP2002148156A (en) * 2000-11-08 2002-05-22 Nippon Sanso Corp Sampling vessel for metal impurity
JP2003302317A (en) * 2002-04-11 2003-10-24 Oki Electric Ind Co Ltd Method for collecting chemical contaminative impurity components in air

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076359B1 (en) 2009-05-29 2011-10-25 주식회사 에이에스피 A pretreating device for analysis of trace element
CN103033438A (en) * 2012-11-21 2013-04-10 苏州金宏气体股份有限公司 Method for detecting content of total nonvolatile matters in high-purity and ultra-pure ammonia

Also Published As

Publication number Publication date
JP4901239B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
EP1724824A2 (en) Equipment and method for measuring silicon concentration in phosphoric acid solution
JP2022027752A (en) Selective monitoring of multiple silicon compounds
JP4901239B2 (en) Method for sampling impurities in water-soluble gas
JP6640701B2 (en) Geothermal power generation steam property monitoring device, geothermal power generation system, geothermal power generation steam property monitoring method, and geothermal power generation system control method
JP2007327797A (en) High-frequency inductively coupled plasma emission spectrometric analysis method
US7387720B2 (en) Electrolytic method and apparatus for trace metal analysis
JP2010044022A (en) Method and apparatus for continuously monitoring test water
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
JP2007057371A (en) Quantitative analyzing method of gas component contained in fluorine gas and quantitative analyzer used therein
Kuo et al. A new method for sampling low-volume AMCs in a front opening unified pod
JP2001242052A (en) Method for analyzing impurity in semiconductor substrate or chemicals
JP2004109072A (en) Analysis method for metal impurity in solution
JP4200107B2 (en) Method for analyzing impurities in silicon
JP2009156692A (en) Continuous monitoring method and device of test water
JPH105553A (en) On-line decomposing method for hydrogen peroxide solution in semi-conductor production process and decomposing method thereof
JP6657851B2 (en) Determination of trace chlorine components
WO2006049239A1 (en) Method of real-time/inline detection of ultratrace metallic element contained in sample liquid and apparatus therefor
JP2004101408A (en) Sample condensing method and device and sample analyzing method and device
US20230400390A1 (en) Sampling and Testing Process Fluids from a Lithium Recovery System and Associating Process Data and Test Data of the Process Fluid Samples
JP6412734B2 (en) Silicon concentration measuring apparatus, semiconductor etching apparatus, and silicon concentration measuring method
RU2774152C1 (en) Method for determining polyorganosiloxanes by means of high-resolution atomic absorption spectrometry with a continuous spectral source in the mode of electrothermal sample atomisation
JP2772899B2 (en) Method for analyzing nitrogen oxides in sulfuric acid
JP7234202B2 (en) Apparatus and method for continuous analysis of dissolved inorganic carbon (DIC) concentration and its isotopic carbon and oxygen composition
JP2006352097A (en) Apparatus and method for measuring silicon concentration in phosphoric acid solution
JP2865265B2 (en) Primary water quality monitoring system for boiling water reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4901239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees