JP2006352097A - Apparatus and method for measuring silicon concentration in phosphoric acid solution - Google Patents

Apparatus and method for measuring silicon concentration in phosphoric acid solution Download PDF

Info

Publication number
JP2006352097A
JP2006352097A JP2006136134A JP2006136134A JP2006352097A JP 2006352097 A JP2006352097 A JP 2006352097A JP 2006136134 A JP2006136134 A JP 2006136134A JP 2006136134 A JP2006136134 A JP 2006136134A JP 2006352097 A JP2006352097 A JP 2006352097A
Authority
JP
Japan
Prior art keywords
phosphoric acid
acid solution
silicon
concentration
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006136134A
Other languages
Japanese (ja)
Other versions
JP4809122B2 (en
Inventor
Haruru Totsu
はるる 渡津
Nobuhiko Izuta
信彦 伊豆田
Hideo Yada
秀雄 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MFSI Ltd
Original Assignee
MFSI Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MFSI Ltd filed Critical MFSI Ltd
Priority to JP2006136134A priority Critical patent/JP4809122B2/en
Publication of JP2006352097A publication Critical patent/JP2006352097A/en
Application granted granted Critical
Publication of JP4809122B2 publication Critical patent/JP4809122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Weting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and method for continuously and simply measuring a silicon concentration in a phosphoric acid solution of high temperature and high concentration used by circulating in an etching process at a low cost without pretreating, to manage an etching device under a condition where excellent process is always performed. <P>SOLUTION: The apparatus is used for measuring the silicon concentration in the phosphoric acid solution under use as an etching solution during operation of a semiconductor substrate processing system. The equipment is provided with at least a reaction tank and a concentration-measuring tank. The reaction tank includes a reaction unit for adding hydrofluoric acid to a fixed amount of the phosphoric acid solution drawn out of the semiconductor substrate processing system to form a silicon fluoride compound and then causing the silicon fluoride compound to evaporate. The concentration-measuring tank comprises a hydrolysis unit for aerating the silicon fluoride compound, which has evaporated from the reaction tank, to deionized water to hydrolyze the silicon fluoride compound and a measurement unit for determining a change rate of silicon concentration in the deionized water subsequent to the aerating. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体基板処理装置(以下、エッチング装置という)の稼働中にエッチング液として循環使用されている燐酸溶液中の珪素濃度を測定するための測定装置及び測定方法に関する。本発明は、半導体シリコン基板上に形成された珪素化合物膜を、当初より珪素を溶け込ませた燐酸溶液でエッチングする手法にも有用な、循環使用されている燐酸溶液中の珪素濃度を測定するための測定装置及び測定方法に関する。   The present invention relates to a measuring apparatus and a measuring method for measuring a silicon concentration in a phosphoric acid solution that is circulated and used as an etching solution during operation of a semiconductor substrate processing apparatus (hereinafter referred to as an etching apparatus). The present invention is useful for a method of etching a silicon compound film formed on a semiconductor silicon substrate with a phosphoric acid solution in which silicon is dissolved from the beginning, in order to measure the silicon concentration in a circulating phosphoric acid solution. The present invention relates to a measuring apparatus and a measuring method.

エッチング装置で半導体シリコン基板上の珪素化合物膜を除去する場合には、通常、高温且つ高濃度の燐酸溶液で珪素化合物膜をエッチング処理することが行われている。この際に使用されるエッチング薬液(燐酸溶液)は、多数回にわたり循環利用されており、それぞれのエッチング処理後の珪素成分は、不揮発性の珪素化合物として燐酸溶液中に残留し、この状態で次のエッチングが行われる。このため、燐酸溶液中に珪素化合物として含まれる珪素濃度は、エッチング処理毎に変動することになる。これに対し、下記に述べるように、エッチング薬液中の珪素濃度の変動に伴って、エッチング対象となる珪素化合物膜のエッチング特性に変動を生じる。   When the silicon compound film on the semiconductor silicon substrate is removed by an etching apparatus, the silicon compound film is usually etched with a high-temperature and high-concentration phosphoric acid solution. The etching chemical solution (phosphoric acid solution) used at this time is circulated many times, and the silicon component after each etching treatment remains in the phosphoric acid solution as a non-volatile silicon compound. Etching is performed. For this reason, the silicon concentration contained as a silicon compound in the phosphoric acid solution varies for each etching process. On the other hand, as described below, the etching characteristics of the silicon compound film to be etched vary with the variation of the silicon concentration in the etching chemical.

先ず、燐酸溶液中の珪素濃度が上昇すると、珪素化合物膜のエッチングレートは低下する。これに対して、エッチングレートの低下を抑制するため、エッチング処理に使用している燐酸溶液中の溶解物(珪素成分)を集中的に析出させて除去し、燐酸溶液の液寿命を延長させることが提案されている(例えば、特許文献1及び特許文献2)。   First, when the silicon concentration in the phosphoric acid solution increases, the etching rate of the silicon compound film decreases. On the other hand, in order to suppress the decrease in the etching rate, the dissolved matter (silicon component) in the phosphoric acid solution used in the etching process is concentrated and removed to extend the liquid life of the phosphoric acid solution. Has been proposed (for example, Patent Document 1 and Patent Document 2).

更に、本発明者らの検討によれば、上記したエッチングレートの低下は、エッチング対象となる珪素化合物膜の膜種によって、その低下率が大きく異なる場合がある。例えば、窒化珪素膜と酸化珪素膜を比較した場合には下記のような違いがある。即ち、あるエッチング処理条件において、燐酸溶液中の珪素濃度が0ppmから50ppmに増加した場合、窒化珪素膜のエッチングレートは10〜20%程度の低下であるのに対して、酸化珪素膜のエッチングレートでは、75〜85%と大幅に低下する。従って、エッチング装置でエッチング薬液として使用されている燐酸溶液中の珪素濃度を的確に把握し、珪素濃度を管理(制御)することは、均一なエッチング処理を行う上で非常に重要である。   Furthermore, according to the study by the present inventors, the decrease rate of the etching rate described above may vary greatly depending on the type of silicon compound film to be etched. For example, when a silicon nitride film and a silicon oxide film are compared, there are the following differences. That is, when the silicon concentration in the phosphoric acid solution is increased from 0 ppm to 50 ppm under certain etching conditions, the etching rate of the silicon nitride film is reduced by about 10 to 20%, whereas the etching rate of the silicon oxide film is reduced. In this case, it is greatly reduced to 75 to 85%. Therefore, accurately grasping the silicon concentration in the phosphoric acid solution used as an etching chemical solution in the etching apparatus and managing (controlling) the silicon concentration is very important in performing a uniform etching process.

従来より行われている稼働中のエッチング装置に使用されている燐酸溶液に対する管理方法は、循環使用している燐酸溶液をロット毎に定期的に交換することである。即ち、燐酸溶液を定期的に交換することで、エッチング処理に使用される燐酸溶液中の珪素濃度が許容範囲を超えるのを防いでいる。しかしながら、上記管理方法において基礎となる薬液寿命は、経験則から導き出されたものであり、本来の意味での管理、つまり、エッチング処理に使用されている燐酸溶液中の珪素濃度の管理がなされているわけではない。   The management method for the phosphoric acid solution used in the etching apparatus in operation that has been conventionally performed is to periodically replace the phosphoric acid solution that is being used for each lot. That is, by periodically replacing the phosphoric acid solution, the silicon concentration in the phosphoric acid solution used for the etching process is prevented from exceeding an allowable range. However, the chemical life that is the basis of the above management method is derived from an empirical rule, and is managed in the original sense, that is, the silicon concentration in the phosphoric acid solution used in the etching process is managed. I'm not.

上記で述べたエッチング処理方法は、珪素をあまり含まない燐酸溶液を用いてエッチングを行う方法であるが、この手法とは対照的に、多層膜処理におけるエッチング選択性を向上させる目的で、エッチング薬液に、珪素化合物膜のついたウェーハを用いて故意に珪素を溶け込ませ、当初より珪素を含む燐酸溶液を用いてエッチングするエッチング処理方法も存在する。このエッチング処理方法の場合も、上記した管理手法の場合と同様に、使用するエッチング薬液の寿命の管理は経験則によるものである。更に、このエッチング処理方法の場合における当初に燐酸溶液中に溶け込ませる珪素濃度も、上記したような方法で、経験から導き出された条件にて燐酸溶液中に珪素を溶け込ませている。即ち、このエッチング処理方法の場合においても、エッチング処理が、使用中の燐酸溶液中に所望する量の珪素が実際に溶け込んでいるか否かを管理しながら行っているわけではない。   The etching method described above is a method of performing etching using a phosphoric acid solution that does not contain much silicon. In contrast to this method, an etching chemical solution is used for the purpose of improving the etching selectivity in the multilayer film processing. There is also an etching method in which silicon is intentionally melted using a wafer having a silicon compound film and etched using a phosphoric acid solution containing silicon from the beginning. In the case of this etching method, as in the case of the management method described above, the management of the life of the etching chemical used is based on empirical rules. Furthermore, the silicon concentration initially dissolved in the phosphoric acid solution in the case of this etching method is also such that silicon is dissolved in the phosphoric acid solution under the conditions derived from experience by the above-described method. That is, even in this etching method, the etching process is not performed while managing whether or not a desired amount of silicon is actually dissolved in the phosphoric acid solution in use.

これに対し、珪素化合物膜の燐酸溶液によるエッチング処理工程において循環使用されている燐酸溶液中の珪素濃度を逐次測定すれば、本来の意味での燐酸溶液中の珪素濃度の管理(制御)が可能となる。そして、このエッチング薬液として使用されている燐酸溶液中に実際に含まれている珪素濃度を管理することは、前記した通り、エッチングレート及びエッチング選択性の管理に直結することになる。   On the other hand, if the silicon concentration in the phosphoric acid solution that is circulated and used in the etching process of the silicon compound film with the phosphoric acid solution is sequentially measured, the silicon concentration in the phosphoric acid solution can be managed (controlled) in the original sense. It becomes. And, as described above, managing the silicon concentration actually contained in the phosphoric acid solution used as the etching chemical solution directly leads to the management of the etching rate and the etching selectivity.

特開2002−299313公報JP 2002-299313 A 特開平11−293479号公報Japanese Patent Laid-Open No. 11-293479

しかしながら、前記したように、現状では、燐酸溶液の寿命の管理(燐酸溶液中の珪素濃度の管理)は、専ら経験則によって行われている。これは、半導体シリコン基板上に形成された珪素化合物膜を高温の燐酸溶液でエッチングするエッチング装置に対して、オンラインにて使用することが可能な(即ち、自動管理に使用できる)循環使用中の燐酸溶液中に存在している珪素濃度を測定する方法或いは装置が知られてないことに起因している。以下に、現状について述べる。   However, as described above, at present, the management of the life of the phosphoric acid solution (the management of the silicon concentration in the phosphoric acid solution) is performed exclusively by empirical rules. This can be used on-line (that can be used for automatic management) for an etching apparatus that etches a silicon compound film formed on a semiconductor silicon substrate with a high-temperature phosphoric acid solution. This is due to the fact that there is no known method or apparatus for measuring the silicon concentration present in the phosphoric acid solution. The current situation is described below.

燐酸溶液中の珪素濃度の分析を行う場合の一般的な手法としては、JIS−K0116に準拠したICP−AES(誘導結合プラズマ原子発光分析)やJIS−K0121に準拠した原子吸光分析といった分光分析法が挙げられる。そして、これらの分析手法を用いれば非常に高精度で正確な分析が可能である。   Spectral analysis methods such as ICP-AES (inductively coupled plasma atomic emission spectrometry) conforming to JIS-K0116 and atomic absorption spectrometry conforming to JIS-K0121 are common methods for analyzing the silicon concentration in a phosphoric acid solution. Is mentioned. If these analysis methods are used, an extremely accurate and accurate analysis is possible.

しかしながら、これらの手法を採用した場合には、分析対象物を発光させるための発光装置、その光を分光する分光器、分光された光を検出する検出器等が必要であり、複雑で、且つ、大型な装置が必要となる。又、測定対象であるエッチング装置でエッチング液として使用されている燐酸溶液は、その濃度が高く、しかも高温であるため、上記したような分析手法を用いる場合には、測定前に常温付近にまで冷却し、その後に希釈する等の、測定用試料についての前処理を行うことが必要となる。このため、上記したような分析装置をエッチング処理装置に組み込んで、連続的(経時的)な測定を行うのは非常に難しい。更に、価格面においてもこれらの装置は、装置自体の価格及び維持費共に高価であり、この点でも問題がある。   However, when these methods are adopted, a light emitting device for emitting an analysis object, a spectroscope that divides the light, a detector that detects the dispersed light, and the like are necessary, and are complicated. A large device is required. In addition, since the phosphoric acid solution used as the etching solution in the etching apparatus to be measured has a high concentration and a high temperature, when using the analysis method as described above, the phosphoric acid solution is brought to a temperature near room temperature before the measurement. It is necessary to perform a pretreatment on the measurement sample such as cooling and then diluting. For this reason, it is very difficult to perform continuous (temporal) measurement by incorporating the analyzer as described above into the etching processing apparatus. Furthermore, in terms of price, these devices are expensive both in terms of the price and maintenance cost of the devices themselves, which is problematic in this respect.

従って、本発明の目的は、エッチング液に燐酸溶液を用いるエッチング装置において有効に使用できる、通常のエッチング処理に循環使用されている高温且つ高濃度の燐酸溶液中における珪素濃度を、何らの前処理することなしに、連続的に(経時的に)、しかも、簡易に且つ安価に測定することが可能となる測定装置並びに測定方法を提供することにある。更に、本発明の目的は、エッチング装置に使用されている燐酸溶液中における珪素濃度を、常に良好なエッチング処理が行える状態に管理(制御)できるようにすることで、優れた性能の半導体基板を安定して、効率的に製造することに寄与することにある。   Accordingly, an object of the present invention is to perform any pretreatment of the silicon concentration in a high-temperature and high-concentration phosphoric acid solution that can be effectively used in an etching apparatus that uses a phosphoric acid solution as an etching solution and is circulated in a normal etching process. An object of the present invention is to provide a measuring apparatus and a measuring method that can be measured continuously (over time), easily, and inexpensively without performing the above. Furthermore, an object of the present invention is to make it possible to manage (control) the silicon concentration in the phosphoric acid solution used in the etching apparatus so that a good etching process can be performed at all times. This is to contribute to stable and efficient production.

上記の目的は、下記の本発明により達成される。即ち、半導体基板処理装置の稼働中にエッチング液として使用されている燐酸溶液中の珪素濃度を測定するための装置であって、少なくとも反応槽と濃度測定槽とを有してなり、上記反応槽は、前記半導体基板処理装置から抜き出された一定量の燐酸溶液に弗化水素酸を加えることで弗化珪素化合物を生じさせ、更に該弗化珪素化合物を蒸発させる反応ユニットを有し、且つ、上記濃度測定槽は、反応槽からの蒸発した弗化珪素化合物を脱イオン水に通気させて加水分解する加水分解ユニットと、通気した後の脱イオン水中の珪素濃度の変率を測定する測定ユニットとを有することを特徴とする燐酸溶液中の珪素濃度測定装置である。   The above object is achieved by the present invention described below. That is, an apparatus for measuring a silicon concentration in a phosphoric acid solution used as an etching solution during operation of a semiconductor substrate processing apparatus, comprising at least a reaction vessel and a concentration measurement vessel, the reaction vessel Has a reaction unit for generating a silicon fluoride compound by adding hydrofluoric acid to a certain amount of phosphoric acid solution extracted from the semiconductor substrate processing apparatus, and further evaporating the silicon fluoride compound, and The concentration measuring tank is a hydrolytic unit that hydrolyzes the evaporated silicon fluoride compound from the reaction tank by passing it through deionized water, and a measurement that measures the change rate of the silicon concentration in the deionized water after the aeration. And a unit for measuring a silicon concentration in a phosphoric acid solution.

又、本発明の別の実施形態は、稼働中の半導体基板処理装置においてエッチング液として循環使用されている燐酸溶液中の珪素濃度の測定方法であって、前記半導体基板処理装置から一定量の燐酸溶液を抜き出し、該一定量の燐酸溶液に弗化水素酸を添加して両者間の反応により弗化珪素化合物を生じさせ、更に、該一定量の燐酸溶液から該弗化珪素化合物を蒸発させる工程と、蒸発した弗化珪素化合物を脱イオン水に通気して加水分解を行い、更に、該脱イオン水中の珪素濃度の変率を測定する工程とを有することを特徴とする燐酸溶液中の珪素濃度の測定方法である。   Another embodiment of the present invention is a method for measuring a silicon concentration in a phosphoric acid solution that is circulated and used as an etching solution in an operating semiconductor substrate processing apparatus, wherein a certain amount of phosphoric acid is supplied from the semiconductor substrate processing apparatus. Extracting the solution, adding hydrofluoric acid to the predetermined amount of phosphoric acid solution to generate a silicon fluoride compound by reaction between the two, and evaporating the silicon fluoride compound from the predetermined amount of phosphoric acid solution And a step of hydrolyzing the evaporated silicon fluoride compound by passing it through deionized water, and measuring the change rate of the silicon concentration in the deionized water. This is a method for measuring concentration.

本発明によれば、従来の燐酸溶液中の珪素濃度を測定する方法に比べて格段に簡便な手法によって、連続的(経時的)に、安価に、しかもエッチング装置の稼働中に循環使用されている高温且つ高濃度の燐酸溶液中における珪素濃度を、何らの前処理することなしに測定することが可能となる。又、本発明によれば、簡易な手法で、高温の燐酸溶液を用いた珪素化合物膜のエッチング処理においてプロセス性能の向上が図れるとともに、エッチング液である燐酸溶液を効率よく使用することができるようになる。このため、燐酸の廃液量の低減にも繋がり、この点からも経済的に良好なエッチングを行うことができ、エッチングの高効率化が達成される。   According to the present invention, it is continuously and inexpensively used by a method that is much simpler than the conventional method for measuring the silicon concentration in a phosphoric acid solution, and it is circulated and used during the operation of the etching apparatus. It is possible to measure the silicon concentration in a high temperature and high concentration phosphoric acid solution without any pretreatment. In addition, according to the present invention, the process performance can be improved in the etching process of the silicon compound film using the high-temperature phosphoric acid solution by a simple method, and the phosphoric acid solution as the etching solution can be used efficiently. become. For this reason, it leads also to the reduction of the waste liquid amount of phosphoric acid, and also from this point, economically favorable etching can be performed, and the high efficiency of etching is achieved.

以下に、好ましい実施の形態を挙げて本発明を詳細に説明する。本発明にかかる燐酸溶液中の珪素濃度の測定方法における測定原理の概略は、以下の通りである。先ず、燐酸溶液がエッチング液として使用されている半導体基板処理装置から一定量の燐酸溶液を抜き出し、該燐酸溶液に弗化水素酸を加えて反応させて弗化珪素化合物を生じさせる。次に、この弗化珪素化合物を蒸発させ、蒸発したガス状の弗化珪素化合物を脱イオン水に通気して加水分解を行う。最後に、通気後の脱イオン水中の珪素濃度の変率を測定し、これによって、エッチング液として使用されている燐酸溶液中の珪素濃度を管理する。脱イオン水中の珪素濃度の変率の測定に有用な安価な装置としては、導電率計、超音波濃度計、イオンメーター等が存在するが、本発明者らの検討によれば、特に、導電率計を用いて測定することが好ましい結果を与える。以下、導電率計を用いた場合を代表例として説明するが、本発明は、これに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments. The outline of the measurement principle in the method for measuring the silicon concentration in the phosphoric acid solution according to the present invention is as follows. First, a certain amount of phosphoric acid solution is extracted from a semiconductor substrate processing apparatus in which the phosphoric acid solution is used as an etching solution, and hydrofluoric acid is added to the phosphoric acid solution and reacted to form a silicon fluoride compound. Next, the silicon fluoride compound is evaporated, and the evaporated gaseous silicon fluoride compound is passed through deionized water for hydrolysis. Finally, the change rate of the silicon concentration in the deionized water after aeration is measured, and thereby the silicon concentration in the phosphoric acid solution used as the etching solution is managed. Inexpensive devices useful for measuring the rate of change of silicon concentration in deionized water include a conductivity meter, an ultrasonic concentration meter, an ion meter, and the like. Measuring with a rate meter gives favorable results. Hereinafter, although the case where a conductivity meter is used is demonstrated as a representative example, this invention is not limited to this.

上記の測定原理を実現し得る本発明にかかる測定装置は、エッチング装置の稼働中にエッチング液として循環使用されている燐酸溶液中の珪素濃度を、簡易且つ経済的に測定することが可能である。本発明にかかる測定装置は、基本的に、反応槽と濃度測定槽と、これらに設けられた配管系とからなる。反応槽には、稼働中のエッチング装置で循環使用している燐酸溶液の一部が取り出されて供給される。そして、反応槽に供給された燐酸溶液は、反応槽内で弗化水素酸と反応させられる。この結果、反応槽内では、燐酸溶液中の珪素成分から弗化珪素化合物が生成する。   The measuring apparatus according to the present invention capable of realizing the above measurement principle can easily and economically measure the silicon concentration in a phosphoric acid solution that is circulated and used as an etching solution during operation of the etching apparatus. . The measuring apparatus according to the present invention basically includes a reaction tank, a concentration measuring tank, and a piping system provided in these. A part of the phosphoric acid solution that is circulated in the etching apparatus in operation is taken out and supplied to the reaction tank. Then, the phosphoric acid solution supplied to the reaction tank is reacted with hydrofluoric acid in the reaction tank. As a result, a silicon fluoride compound is generated from the silicon component in the phosphoric acid solution in the reaction vessel.

本発明にかかる測定装置では、更に、この反応によって生じた弗化珪素化合物を蒸発させて、反応槽から送られるガスに含めて隣接している濃度測定槽へと導入する。濃度測定槽では、反応槽から送られてくる蒸発した弗化珪素化合物を含むガスを脱イオン水中に通気させ、これによって、弗化珪素化合物を加水分解させる。そして、更に、この反応槽から送られるガスを通気した後の濃度測定槽内における脱イオン水中の珪素濃度の変率を測定する。この際のガスを脱イオン水中に通気する時間は、抜き出す、即ち、サンプリングする燐酸溶液の量、珪素濃度の変率を測定する方法等にもよるので特に限定されない。従って、通気時間は、サンプリング条件、反応条件等に応じて適宜に決定すればよい。例えば、サンプリングする燐酸溶液の量を300〜500mLとし、導電率計を用いて珪素濃度の変率を測定する場合には、ガスを脱イオン水中に通気する時間は、3〜10分程度であれば十分である。これらの一連の操作によって、エッチング装置の稼働中に循環使用されている燐酸溶液中の珪素濃度を知ることができる。   In the measuring apparatus according to the present invention, the silicon fluoride compound generated by this reaction is further evaporated and introduced into the concentration measuring tank adjacent to the gas sent from the reaction tank. In the concentration measuring tank, the gas containing the evaporated silicon fluoride compound sent from the reaction tank is passed through deionized water, thereby hydrolyzing the silicon fluoride compound. Further, the change rate of the silicon concentration in the deionized water in the concentration measuring tank after the gas sent from the reaction tank is vented is measured. The time for venting the gas in the deionized water at this time is not particularly limited because it depends on the method of extracting, that is, measuring the amount of the phosphoric acid solution to be sampled and the change rate of the silicon concentration. Therefore, the ventilation time may be appropriately determined according to sampling conditions, reaction conditions, and the like. For example, when the amount of phosphoric acid solution to be sampled is 300 to 500 mL and the change rate of silicon concentration is measured using a conductivity meter, the time for venting the gas into deionized water should be about 3 to 10 minutes. It is enough. Through this series of operations, it is possible to know the silicon concentration in the phosphoric acid solution that is circulated during the operation of the etching apparatus.

上記したような構成を有する本発明にかかる測定装置において好ましく行われる燐酸溶液中の珪素濃度の分析手法について、順を追って更に詳細に説明する。先ず、エッチング装置の燐酸溶液の循環ラインから一定量の燐酸溶液を抜き出して反応槽に供給し、該燐酸溶液に弗化水素酸を添加して反応させる。本発明においては、燐酸溶液を70〜180℃の温度範囲内に管理した状態で弗化水素酸を添加することが好ましい。通常のエッチング処理では、85%程度の濃度の燐酸溶液が150〜160℃の液温にて循環使用される。このような燐酸溶液の循環ラインから反応槽へと供給された燐酸溶液は、その過程で液温が低下する。本発明者らの検討によれば、反応槽に設けた加温手段によって燐酸溶液の液温が130℃程度となるまで昇温させることが最も好ましい。しかし、更なる検討によれば、エッチング装置から反応槽に供給した燐酸溶液の液温が70℃以上であれば、燐酸溶液中の珪素濃度を測定することは可能である。従って、この場合には特に反応槽内に加温手段を設ける必要がなくなるので、より簡便な装置とできる。但し、測定精度は燐酸溶液の液温の低下に伴って低下する傾向があるので、燐酸溶液の液温を70℃以上に温度管理した状態で弗化水素酸を添加することが好ましい。   The method for analyzing the silicon concentration in the phosphoric acid solution that is preferably performed in the measuring apparatus according to the present invention having the above-described configuration will be described in more detail later on. First, a fixed amount of phosphoric acid solution is extracted from the phosphoric acid solution circulation line of the etching apparatus and supplied to the reaction vessel, and hydrofluoric acid is added to the phosphoric acid solution to cause a reaction. In the present invention, it is preferable to add hydrofluoric acid in a state where the phosphoric acid solution is controlled within a temperature range of 70 to 180 ° C. In a normal etching process, a phosphoric acid solution having a concentration of about 85% is circulated at a liquid temperature of 150 to 160 ° C. The temperature of the phosphoric acid solution supplied from the phosphoric acid solution circulation line to the reaction vessel is lowered in the process. According to the study by the present inventors, it is most preferable to raise the temperature of the phosphoric acid solution by a heating means provided in the reaction vessel until the liquid temperature of the phosphoric acid solution becomes about 130 ° C. However, according to further studies, it is possible to measure the silicon concentration in the phosphoric acid solution if the temperature of the phosphoric acid solution supplied to the reaction vessel from the etching apparatus is 70 ° C. or higher. Accordingly, in this case, since it is not necessary to provide a heating means in the reaction vessel, the apparatus can be made simpler. However, since the measurement accuracy tends to decrease with a decrease in the temperature of the phosphoric acid solution, it is preferable to add hydrofluoric acid in a state where the temperature of the phosphoric acid solution is controlled at 70 ° C. or higher.

上記したようにして反応槽中の燐酸溶液に弗化水素酸を添加すると、燐酸溶液中の珪素化合物と弗化水素酸が反応して、燐酸溶液中の珪素化合物は、四弗化珪素ガスとなる。本発明では、この四弗化珪素ガスを、例えば、窒素ガス等の不活性ガスを媒体として燐酸溶液中から蒸発させて濃度測定槽へと送り、これらのガスを濃度測定槽内の脱イオン水中に通気することで、ガス中の四弗化珪素を加水分解してヘキサフルオロ珪酸とする。上記のようにして四弗化珪素ガスを燐酸溶液中から脱イオン水中に送って通気させる操作中においては、反応槽内の燐酸溶液の温度を一定に保つことが好ましい。例えば、反応槽に設けた前記した加温手段によって一定に保つことが好ましい。一方、反応槽に加温手段が設けられていない場合には、測定環境温度を一定に保つことで、燐酸溶液の温度低下速度を一定とするのが好ましい。本発明では、最後に、導電率計を用いて上記のようにして得られるヘキサフルオロ珪酸溶液(通気後の脱イオン水)の導電率を計測する。この結果、エッチング装置で循環使用している燐酸溶液中に含まれる珪素濃度を間接的に測定することが可能となる。   When hydrofluoric acid is added to the phosphoric acid solution in the reaction vessel as described above, the silicon compound in the phosphoric acid solution reacts with hydrofluoric acid, and the silicon compound in the phosphoric acid solution is converted into silicon tetrafluoride gas and Become. In the present invention, this silicon tetrafluoride gas is evaporated from the phosphoric acid solution using an inert gas such as nitrogen gas as a medium, and sent to the concentration measuring tank, and these gases are sent to deionized water in the concentration measuring tank. The silicon tetrafluoride in the gas is hydrolyzed to hexafluorosilicic acid. During the operation of sending the silicon tetrafluoride gas from the phosphoric acid solution to the deionized water and venting it as described above, it is preferable to keep the temperature of the phosphoric acid solution in the reaction vessel constant. For example, it is preferable to keep the temperature constant by the heating means provided in the reaction vessel. On the other hand, when no heating means is provided in the reaction tank, it is preferable to keep the temperature reduction rate of the phosphoric acid solution constant by keeping the measurement environment temperature constant. In the present invention, finally, the conductivity of the hexafluorosilicic acid solution (deionized water after aeration) obtained as described above is measured using a conductivity meter. As a result, it is possible to indirectly measure the silicon concentration contained in the phosphoric acid solution that is circulated in the etching apparatus.

上記した一連の操作は、自動的に行うことが可能である。従って、エッチング装置の燐酸溶液の循環ラインから、該燐酸溶液を一定間隔でサンプリングすることができるような状態にし、本発明にかかる測定装置をエッチング処理システム中に組み込めば、稼働するエッチング装置で使用している燐酸溶液中に含まれる珪素濃度を継続的に監視し、管理することができるようになる。   The series of operations described above can be performed automatically. Therefore, when the phosphoric acid solution circulation line of the etching apparatus is set in a state in which the phosphoric acid solution can be sampled at regular intervals and the measuring apparatus according to the present invention is incorporated in the etching processing system, it is used in an operating etching apparatus. It becomes possible to continuously monitor and control the silicon concentration contained in the phosphoric acid solution.

尚、濃度測定槽における導電率の測定において、液体の導電率は温度によっても変動するが、この変動は簡易な計算式にて補正可能であるため、濃度測定槽における温度変化による導電率変化は補償できる。   In the measurement of the conductivity in the concentration measuring tank, the conductivity of the liquid also varies depending on the temperature, but this variation can be corrected with a simple calculation formula. Can compensate.

反応槽から不活性ガスを媒体として濃度測定槽へと移送されてくるガス状物質中には、前記した四弗化珪素のみではなく、水及び弗化水素も含まれる。しかしながら、下記に述べるように、本発明においては、これらの影響は無視することができる。先ず水は、電気伝導度を持たない物質であり、濃度測定槽に移送される量も槽内に供給されている脱イオン水量と比較すると非常に少ないため、無視することができる。又、弗化水素酸は、電気伝導度はあるものの、強2塩基性であるヘキサフルオロ珪酸と比較してその導電率は小さい。更に、本発明者らの検討によれば、反応槽中の燐酸溶液に添加させる弗化水素酸の量を一定量とし、且つ温度等の反応条件を一定とした場合には、濃度測定槽に移送されてくる物質量は、反応槽での四弗化珪素の生成量に依存して変化する。このことは、一定反応条件下においては、濃度測定槽内における脱イオン水の導電率変化は、ヘキサフルオロ珪酸濃度、即ち、燐酸溶液中からの珪素濃度が支配的であり、弗化水素の影響は無視できることを意味している。   The gaseous substance transferred from the reaction vessel to the concentration measurement vessel using an inert gas as a medium contains not only silicon tetrafluoride but also water and hydrogen fluoride. However, as described below, these effects can be ignored in the present invention. First, water is a substance having no electrical conductivity, and the amount transferred to the concentration measuring tank is very small compared to the amount of deionized water supplied in the tank, and can be ignored. Hydrofluoric acid has electrical conductivity, but its conductivity is small compared with hexafluorosilicic acid, which is strongly dibasic. Further, according to the study by the present inventors, when the amount of hydrofluoric acid added to the phosphoric acid solution in the reaction tank is made constant and the reaction conditions such as temperature are made constant, the concentration measurement tank The amount of substance transferred varies depending on the amount of silicon tetrafluoride produced in the reaction vessel. This is because, under certain reaction conditions, the change in the conductivity of deionized water in the concentration measurement tank is dominated by the hexafluorosilicic acid concentration, that is, the silicon concentration in the phosphoric acid solution. Means negligible.

以下、本発明の方法を実現し得る本発明にかかる測定装置の一例を、図面を参照しながら説明する。図1に装置の概略図を示したが、図1に示したように、本発明にかかる測定装置は、その主たる構成要素として反応槽1と濃度測定槽7とが設けられてなる。これらの反応槽1及び濃度測定槽7は、いずれも、本発明にかかる測定装置による測定操作中において、密閉された状態とできる構造のものである。反応槽1は、エッチング装置の稼働中にエッチング薬液として循環使用されている燐酸溶液から引き抜かれた一定量の燐酸溶液が供給されて、該燐酸溶液中に含まれる珪素成分を弗化珪素化合物として蒸発させる反応ユニットを有するものであれば、いずれの構造のものであってもよい。一方の濃度測定槽7は、反応槽1で蒸発した弗化珪素化合物を含むガスが導入され、該ガスを脱イオン水に通気して加水分解する加水分解ユニットと、該脱イオン水の珪素濃度の変率を測定する測定ユニットを有するものであれば、いずれの構造のものであってもよい。以下、これらのユニットについて説明する。   Hereinafter, an example of a measuring apparatus according to the present invention capable of realizing the method of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic view of the apparatus. As shown in FIG. 1, the measuring apparatus according to the present invention is provided with a reaction tank 1 and a concentration measuring tank 7 as main components. Both the reaction tank 1 and the concentration measurement tank 7 have a structure that can be hermetically sealed during the measurement operation by the measurement apparatus according to the present invention. The reaction tank 1 is supplied with a certain amount of phosphoric acid solution extracted from a phosphoric acid solution that is circulated and used as an etching chemical during the operation of the etching apparatus, and the silicon component contained in the phosphoric acid solution is used as a silicon fluoride compound. Any structure having a reaction unit to be evaporated may be used. One concentration measuring tank 7 is supplied with a gas containing a silicon fluoride compound evaporated in the reaction tank 1 and passes the gas through deionized water to hydrolyze, and the silicon concentration of the deionized water. Any structure may be used as long as it has a measurement unit for measuring the change rate. Hereinafter, these units will be described.

エッチング装置の稼働中にエッチング薬液として用いられている燐酸溶液は、エッチング装置内の燐酸溶液循環ラインLを介して循環使用されている。図1に例示した装置では、このエッチング装置内の燐酸溶液循環ラインLと、反応槽1とを結ぶ供給ライン2が設けられており、この循環ラインLから燐酸溶液の一部を引き抜いて、反応槽1へと一定量の燐酸溶液が供給される。   A phosphoric acid solution used as an etching chemical during the operation of the etching apparatus is circulated through a phosphoric acid solution circulation line L in the etching apparatus. In the apparatus illustrated in FIG. 1, a supply line 2 that connects the phosphoric acid solution circulation line L in the etching apparatus and the reaction tank 1 is provided, and a part of the phosphoric acid solution is drawn from the circulation line L to react. A certain amount of phosphoric acid solution is supplied to the tank 1.

更に、反応槽1には、反応槽1に不活性ガスを供給するための不活性ガス供給ライン3に接続された状態で、弗化水素酸溶液を反応槽1内の燐酸溶液に添加できる構造を有する弗化水素酸溶液の供給ライン4が設けられている。更に、図示した反応槽1には、反応槽1内への一定量の液の供給を可能とするための液レベルセンサー15A、供給された燐酸溶液を必要に応じて加温するためのヒーター11、反応槽1内の液温を測定するための液温測定用の熱伝対12Aが設置されている。   Further, the reaction tank 1 has a structure in which a hydrofluoric acid solution can be added to the phosphoric acid solution in the reaction tank 1 while being connected to an inert gas supply line 3 for supplying an inert gas to the reaction tank 1. A hydrofluoric acid solution supply line 4 is provided. Furthermore, in the illustrated reaction tank 1, a liquid level sensor 15A for enabling supply of a certain amount of liquid into the reaction tank 1, and a heater 11 for heating the supplied phosphoric acid solution as necessary. A thermocouple 12A for measuring the liquid temperature for measuring the liquid temperature in the reaction tank 1 is installed.

一方、濃度測定槽7は、上記の通り加水分解ユニットと、測定ユニットとを有することを要する。このため、反応槽1と濃度測定槽7との間には、図1に示したように、反応槽1からの弗化珪素化合物が含有されたガスを濃度測定槽7内に供給するためのガス供給ライン6が設けられている。更に、濃度測定槽7には、脱イオン水供給ライン8と、排気ライン9及び廃液ライン10が接続されている。又、濃度測定槽7には、槽内への脱イオン水の一定量の供給を可能とするための液レベルセンサー15B、濃度測定槽7内の脱イオン水の温度測定用の熱伝対12B、濃度測定槽7内の脱イオン水の導電率センサー13が設置されている。この導電率センサー13は、図1に示したように、導電率モニター14に繋がっている。   On the other hand, the concentration measurement tank 7 needs to have a hydrolysis unit and a measurement unit as described above. For this reason, between the reaction tank 1 and the concentration measurement tank 7, as shown in FIG. 1, the gas containing the silicon fluoride compound from the reaction tank 1 is supplied into the concentration measurement tank 7. A gas supply line 6 is provided. Further, a deionized water supply line 8, an exhaust line 9 and a waste liquid line 10 are connected to the concentration measuring tank 7. The concentration measuring tank 7 includes a liquid level sensor 15B for enabling a certain amount of deionized water to be supplied into the tank, and a thermocouple 12B for measuring the temperature of the deionized water in the concentration measuring tank 7. A conductivity sensor 13 of deionized water in the concentration measuring tank 7 is installed. The conductivity sensor 13 is connected to a conductivity monitor 14 as shown in FIG.

図1中に示した16は、燐酸溶液の供給ライン2及び反応槽1、更には、ガス供給ライン6を水洗するための脱イオン水供給ラインである。又、17は、この水洗後に、パージを行うための不活性ガス供給ラインである。   Reference numeral 16 shown in FIG. 1 denotes a deionized water supply line for washing the phosphoric acid solution supply line 2 and the reaction tank 1, and further the gas supply line 6. Reference numeral 17 denotes an inert gas supply line for purging after washing with water.

次に、以上のような構成からなる測定装置の運転例を概説するが、これはあくまでも例示であって、本発明は当該運転例に限定されるものではない。先ず、稼動中のエッチング装置から反応槽1に、150〜160℃の液温にて循環使用されている85%燐酸溶液を、供給ライン2を介して350mL供給する。それと同時に、濃度測定槽7には、脱イオン水供給ライン8を介して脱イオン水を400mL供給する。尚、反応槽1内及び濃度測定槽7内に供給されるこれらの液の液量は、液レベルセンサー15A及び15Bによって制御することができる。   Next, an example of operation of the measuring apparatus having the above configuration will be outlined, but this is only an example, and the present invention is not limited to the example of operation. First, 350 mL of an 85% phosphoric acid solution that is circulated and used at a liquid temperature of 150 to 160 ° C. is supplied from an operating etching apparatus to the reaction tank 1 via a supply line 2. At the same time, 400 mL of deionized water is supplied to the concentration measuring tank 7 via the deionized water supply line 8. The amount of these liquids supplied into the reaction tank 1 and the concentration measurement tank 7 can be controlled by liquid level sensors 15A and 15B.

反応槽1内に供給された燐酸溶液の温度は、上記した供給操作時における熱量損失によって110〜130℃となっているため、液温測定用の熱伝対12Aで反応槽1内の液温を測定しながら、ヒーター11にて加温する。そして、反応槽1内の燐酸溶液が130℃となったところで、不活性ガス供給ライン3及び弗化水素酸溶液の供給ライン4を介して、窒素ガスをキャリアーとして50%弗化水素酸溶液を2mL燐酸溶液中に添加する。次に、不活性ガス供給ライン3から5L/minの窒素ガスにて燐酸溶液を5分間バブリングする。ここで、窒素ガスによるバブリング中も、ヒーター11による加温によって燐酸溶液の温度を130℃に保つようにする。   Since the temperature of the phosphoric acid solution supplied into the reaction tank 1 is 110 to 130 ° C. due to the loss of heat during the above-described supply operation, the liquid temperature in the reaction tank 1 is measured by the thermocouple 12A for liquid temperature measurement. The heater 11 is heated while measuring. Then, when the phosphoric acid solution in the reaction vessel 1 reaches 130 ° C., a 50% hydrofluoric acid solution is prepared using nitrogen gas as a carrier via an inert gas supply line 3 and a hydrofluoric acid solution supply line 4. Add into 2 mL phosphoric acid solution. Next, the phosphoric acid solution is bubbled from the inert gas supply line 3 with 5 L / min of nitrogen gas for 5 minutes. Here, even during bubbling with nitrogen gas, the temperature of the phosphoric acid solution is maintained at 130 ° C. by heating with the heater 11.

上記した弗化水素酸溶液の添加及び窒素ガスの供給が開始されるとほぼ同時に、反応槽1から濃度測定槽7へと、反応生成物である弗化珪素化合物ガスを含んだガスの移送がガス供給ライン6を介して開始する。このガス中に存在するガス状の弗化珪素化合物は、移送されたガスを濃度測定槽7中の脱イオン水中に通気した際に加水分解され、珪酸として脱イオン水中に取り込まれる。本発明では、このガス供給ライン6を介しての濃度測定槽7へのガス状の弗化珪素化合物の供給中、濃度測定槽7内の溶液(脱イオン水)温度及び導電率を、液温測定用の熱伝対12B、及び導電率センサー13に繋がっている導電率モニター14でモニタリングするように構成することが好ましい。   Almost simultaneously with the start of the addition of the hydrofluoric acid solution and the supply of nitrogen gas, the transfer of the gas containing the silicon fluoride compound gas as the reaction product from the reaction tank 1 to the concentration measurement tank 7 is performed. Start via the gas supply line 6. The gaseous silicon fluoride compound present in the gas is hydrolyzed when the transferred gas is passed through the deionized water in the concentration measuring tank 7, and is taken into the deionized water as silicic acid. In the present invention, during the supply of the gaseous silicon fluoride compound to the concentration measuring tank 7 via the gas supply line 6, the solution (deionized water) temperature and conductivity in the concentration measuring tank 7 are set to the liquid temperature. It is preferable that the measurement is performed by the conductivity monitor 14 connected to the thermocouple 12 </ b> B for measurement and the conductivity sensor 13.

下記に、反応槽1内或いは濃度測定槽7内において生じると考えられる反応を式で示した。尚、ここに示した化学式はあくまで仮定であり、本発明を何ら制限するものではない。又、燐酸溶液中の珪素化合物は多種存在するため、下記化学式では、総称してX−Siと記す。   Below, the reaction considered to occur in the reaction tank 1 or the concentration measurement tank 7 is shown by an equation. In addition, the chemical formula shown here is an assumption to the last, and does not restrict | limit this invention at all. In addition, since there are various types of silicon compounds in the phosphoric acid solution, in the following chemical formula, they are collectively referred to as X-Si.

Figure 2006352097
Figure 2006352097

上記の(1−1)式及び(1−2a)式は、燐酸溶液中における珪素化合物と弗化水素酸との反応を示している。燐酸溶液中の珪素化合物は、添加した弗化水素酸と反応して四弗化珪素ガスとなる。それを示したのが(1−1)式である。又、それと同時にヘキサフルオロ珪酸も生成される。それを示したのが(1−2a)式である。ここで生成されたヘキサフルオロ珪酸は、その後、溶解している燐酸溶液が高温であるため、気体の四弗化珪素ガスと弗化水素酸ガスに分解する。それを示したのが(1−2b)式である。反応槽1にて生成された四弗化珪素ガスは、不活性ガスを媒体として脱イオン水の入った濃度測定槽7へと移送され、(2−1)式にて示した通り、加水分解してヘキサフルオロ珪酸及びオルト珪酸となる。このとき生成されるオルト珪酸は、(2−2)式に示した通り、反応槽1から四弗化珪素と一緒に移送される弗化水素によってヘキサフルオロ珪酸となる。本発明では、先に述べたように、このヘキサフルオロ珪酸を含む溶液の導電率を計測することで、燐酸溶液中に含まれる珪素濃度を間接的に測定する。   The above formulas (1-1) and (1-2a) indicate the reaction between a silicon compound and hydrofluoric acid in a phosphoric acid solution. The silicon compound in the phosphoric acid solution reacts with the added hydrofluoric acid to form silicon tetrafluoride gas. This is shown in equation (1-1). At the same time, hexafluorosilicic acid is also produced. This is shown in equation (1-2a). The hexafluorosilicic acid produced here is then decomposed into gaseous silicon tetrafluoride gas and hydrofluoric acid gas because the dissolved phosphoric acid solution is hot. This is shown in equation (1-2b). The silicon tetrafluoride gas generated in the reaction tank 1 is transferred to a concentration measurement tank 7 containing deionized water using an inert gas as a medium, and is hydrolyzed as shown in the formula (2-1). To hexafluorosilicic acid and orthosilicic acid. The orthosilicic acid produced at this time is converted to hexafluorosilicic acid by hydrogen fluoride transferred together with silicon tetrafluoride from the reaction vessel 1 as shown in the formula (2-2). In the present invention, as described above, the concentration of silicon contained in the phosphoric acid solution is indirectly measured by measuring the conductivity of the solution containing hexafluorosilicic acid.

次に、実施例を挙げて、本発明を更に詳細に説明する。しかし、実施例はあくまで一つの事例であり、本発明は、これらの実施例によって何ら制限されるものではない。   Next, an Example is given and this invention is demonstrated further in detail. However, the examples are merely examples, and the present invention is not limited to these examples.

<実施例1>
図1に示した構成の実験装置を用い、前記した運転例と同様の条件及び手順にて、珪素濃度が、0、23、46、69ppmと既知である4種類の85%燐酸溶液の標準サンプルについて導電率測定を行った。この導電率値は、温度補償されたものである。
<Example 1>
Standard samples of four types of 85% phosphoric acid solutions with known silicon concentrations of 0, 23, 46, and 69 ppm using the experimental apparatus configured as shown in FIG. Conductivity measurement was performed on. This conductivity value is temperature compensated.

上記の濃度を有する各燐酸溶液サンプルを反応槽1へ350mL供給後、ヒーター11で加温して液温を130℃とした。次に、前記したと同様にして反応槽1内の燐酸溶液中に、図1に示したライン3からの窒素ガスをキャリアーとして50%弗化水素酸溶液を2mL添加した。その後、不活性ガス供給ライン3から5L/minの窒素ガスを送って5分間バブリングして、反応槽1内から濃度測定槽7内の400mLの脱イオン水中へと、ガス供給ライン6を介して反応槽1内のガスを移送した。このようにして、燐酸溶液中への弗化水素酸溶液の添加から5分間通気した後における濃度測定槽7内の脱イオン水の導電率値を導電率センサー(875EC−JIF(商品名)、FOXBORO社製)によって測定した。尚、上記した操作の間、ヒーター11で加温して、反応槽1内の燐酸溶液の液温を130℃に保った。表1に、各燐酸溶液サンプル中の既知の珪素濃度[ppm]と、濃度測定槽7内における通気された脱イオン水(溶液)の導電率値をそれぞれ示した。   After 350 mL of each phosphoric acid solution sample having the above concentration was supplied to the reaction vessel 1, the solution was heated by the heater 11 to adjust the liquid temperature to 130 ° C. Next, as described above, 2 mL of 50% hydrofluoric acid solution was added to the phosphoric acid solution in the reaction vessel 1 using the nitrogen gas from the line 3 shown in FIG. 1 as a carrier. Thereafter, nitrogen gas of 5 L / min is sent from the inert gas supply line 3 and bubbled for 5 minutes, and from the reaction tank 1 into 400 mL of deionized water in the concentration measuring tank 7 through the gas supply line 6. The gas in the reaction tank 1 was transferred. In this way, the conductivity value of the deionized water in the concentration measuring tank 7 after aeration for 5 minutes from the addition of the hydrofluoric acid solution to the phosphoric acid solution is measured with the conductivity sensor (875EC-JIF (trade name), FOXBORO). During the above operation, the temperature of the phosphoric acid solution in the reaction vessel 1 was maintained at 130 ° C. by heating with the heater 11. Table 1 shows the known silicon concentration [ppm] in each phosphoric acid solution sample and the conductivity value of the aerated deionized water (solution) in the concentration measuring tank 7.

Figure 2006352097
Figure 2006352097

又、図2に、得られた導電率値Gと、対応する燐酸溶液中の珪素濃度C1との関係をグラフ化して示した。これらの結果から、少なくとも、上記試験で使用した燐酸溶液中の珪素濃度範囲内においては、燐酸溶液中の珪素濃度C1の増加に伴って導電率値Gも増加する傾向にあり、しかも、その関係を一次関数式にて表すことが可能であることが確認された。 FIG. 2 is a graph showing the relationship between the obtained conductivity value G and the corresponding silicon concentration C 1 in the phosphoric acid solution. From these results, at least within the range of the silicon concentration in the phosphoric acid solution used in the above test, the conductivity value G tends to increase with an increase in the silicon concentration C 1 in the phosphoric acid solution. It was confirmed that the relationship can be expressed by a linear function equation.

更に、上記試験で用いたそれぞれの燐酸溶液中の珪素濃度C1と、濃度測定槽7内の対応する溶液の導電率値Gとの関係が、標準サンプルとして用いた各燐酸溶液中における珪素濃度の違いに起因した必然的なものであるか否かについて、下記の方法で検証した。上記試験で行った弗化水素酸溶液の添加から5分後の濃度測定槽7内のそれぞれの溶液について、ICP−AES分析(誘導結合プラズマ発光分光分析;Inductively Coupler Plasma Atomic Emission Spectroscopy)を用いて珪素濃度の分析を行った。得られた結果を表2に示した。尚、表2中に、濃度測定槽7内の各溶液の導電率値Gを併せて示した。 Furthermore, the relationship between the silicon concentration C 1 in each phosphoric acid solution used in the above test and the conductivity value G of the corresponding solution in the concentration measuring tank 7 is the silicon concentration in each phosphoric acid solution used as the standard sample. It was verified by the following method whether it was inevitable due to the difference. Using ICP-AES analysis (Inductively Coupler Plasma Atomic Emission Spectroscopy) for each solution in the concentration measuring tank 5 minutes after the addition of the hydrofluoric acid solution performed in the above test. The silicon concentration was analyzed. The obtained results are shown in Table 2. In Table 2, the conductivity value G of each solution in the concentration measuring tank 7 is also shown.

Figure 2006352097
Figure 2006352097

又、図3に、試験に用いた各標準サンプルの既知の珪素濃度C1と、反応槽1から移送したガスを脱イオン水中に5分間通気した後における濃度測定槽7内の溶液について、ICP−AES分析により測定して得られた珪素濃度C2との関係をグラフ化して示した。又、図3中に、該珪素濃度C2と、先に測定した、反応槽1から移送したガスを脱イオン水中に5分間通気した後における濃度測定槽7内の溶液の導電率値Gとの関係をグラフ化して示した。 FIG. 3 shows the ICP for the known silicon concentration C 1 of each standard sample used in the test and the solution in the concentration measuring tank 7 after the gas transferred from the reaction tank 1 was aerated for 5 minutes in deionized water. -AES shown graphed the relationship between the silicon concentration C 2 obtained by measurement by analysis. Further, in FIG. 3, the silicon concentration C 2 and the conductivity value G of the solution in the concentration measuring tank 7 after the gas measured from the reaction tank 1 previously measured and passed through the deionized water for 5 minutes. The relationship is shown in a graph.

これらの結果から、反応槽1に供給された時の燐酸溶液中の珪素濃度C1又は反応槽1内の燐酸溶液中への弗化水素酸の添加から一定時間後(5分後)の濃度測定槽7の溶液中の珪素濃度(C2)と導電率値は、その関係を一次関数式にて表すことができることが確認できた。又、上記検討により、濃度測定槽7中の珪素濃度C2と、反応槽1に供給された時の燐酸溶液中の珪素濃度C1とは比例関係にあることが確認できた。 From these results, the silicon concentration C 1 in the phosphoric acid solution when supplied to the reaction vessel 1 or the concentration after a certain time (after 5 minutes) from the addition of hydrofluoric acid to the phosphoric acid solution in the reaction vessel 1 It was confirmed that the relationship between the silicon concentration (C 2 ) and the conductivity value in the solution in the measuring tank 7 can be expressed by a linear function equation. Further, the above study, the silicon concentration C 2 of the concentration measuring tank 7, the silicon concentration C 1 of the phosphoric acid solution in when fed to the reaction vessel 1 was confirmed that a proportional relationship.

上記の通り確認できた関係から、反応槽1に供給された時の燐酸溶液中の珪素濃度C1、反応槽1への弗化水素酸添加から一定時間後の濃度測定槽7内の溶液中の珪素濃度C2、その際の濃度測定槽7内の溶液の導電率Gの間には、以下の(A−1)式及び(A−2)式が成り立つことがわかった。これらの式中の、a、b及びcは、実験値より導いた定数である。又、これらの2式から(B)式が導き出される。そして、(B)式は、反応槽1に供給された時の燐酸溶液中の珪素濃度C1は、濃度測定槽7内の対応する溶液の導電率Gを測定することで得ることができることを意味している。 From the relationship confirmed as described above, the silicon concentration C 1 in the phosphoric acid solution when supplied to the reaction vessel 1 and the solution in the concentration measurement vessel 7 after a certain time from the addition of hydrofluoric acid to the reaction vessel 1 It was found that the following formulas (A-1) and (A-2) are established between the silicon concentration C 2 and the conductivity G of the solution in the concentration measuring tank 7 at that time. In these formulas, a, b and c are constants derived from experimental values. Also, equation (B) is derived from these two equations. The formula (B) shows that the silicon concentration C 1 in the phosphoric acid solution when supplied to the reaction tank 1 can be obtained by measuring the conductivity G of the corresponding solution in the concentration measuring tank 7. I mean.

Figure 2006352097
Figure 2006352097

図3に示したグラフより、式中の定数a、b及びcは、それぞれa=0.973、b=64.5、c=−65.9と導き出される。これらを上記した(B)式に当てはめると、C1=f(G)=62.8G−64.1となることがわかる。そして、この式は、図2に示したグラフにおける一次関数式であるC1=62.7G−63.8とほぼ一致する。このことから、反応槽1に供給された燐酸溶液中の珪素濃度と、濃度測定槽7内の溶液についての導電率との関係は必然的なものであると言える。そして、反応槽1に供給される燐酸溶液、即ち、エッチング装置に使用されている燐酸溶液中の珪素濃度は、濃度測定槽7内の溶液の導電率を測定することにより導くことが可能であることがわかる。 From the graph shown in FIG. 3, the constants a, b, and c in the formula are derived as a = 0.993, b = 64.5, and c = -65.9, respectively. When these are applied to the above equation (B), it can be seen that C 1 = f (G) = 62.8G−64.1. This equation is almost coincident with C 1 = 62.7G-63.8 which is a linear function equation in the graph shown in FIG. From this, it can be said that the relationship between the silicon concentration in the phosphoric acid solution supplied to the reaction vessel 1 and the conductivity of the solution in the concentration measurement vessel 7 is inevitable. Then, the silicon concentration in the phosphoric acid solution supplied to the reaction tank 1, that is, the phosphoric acid solution used in the etching apparatus, can be derived by measuring the conductivity of the solution in the concentration measuring tank 7. I understand that.

<実施例2>
実施例1は、測定装置の反応槽内の燐酸溶液に対する加温手段(例えば、ヒーター)が設けられている場合の例であるが、本実施例は、加温手段を設けない場合或いは加温手段を使用しない場合の実施例である。図1に示した構成と同様の実験装置を用い、実施例1とほぼ同様の条件及び手順にて実験を行った。本実施例においては、反応槽1内の燐酸溶液に対する加温手段であるヒーター11を用いず、反応槽1に供給された燐酸溶液の温度が、後述する任意の温度まで低下したと同時に弗化水素酸溶液を添加し、不活性ガス供給ライン3からの窒素ガスによるバブリングを開始し、5分後に終了させた。上記した一連の測定を24〜26℃の常温雰囲気下で行うことにより、バブリング中の燐酸溶液の温度低下速度が一定となるようにした。本実施例では、反応槽1内に供給する燐酸溶液の容積を150mLとし、濃度測定槽7内の脱イオン水の容積を80mLとした。その他の実験手順及び条件は実施例1と同様とした。
<Example 2>
Example 1 is an example in the case where a heating means (for example, a heater) is provided for the phosphoric acid solution in the reaction vessel of the measuring apparatus, but in this example, no heating means is provided or heating This is an embodiment in which no means is used. Experiments were performed under substantially the same conditions and procedures as in Example 1 using the same experimental apparatus as the configuration shown in FIG. In the present embodiment, without using the heater 11 which is a heating means for the phosphoric acid solution in the reaction tank 1, the temperature of the phosphoric acid solution supplied to the reaction tank 1 is lowered to an arbitrary temperature described later and fluorinated at the same time. The hydrogen acid solution was added, and bubbling with nitrogen gas from the inert gas supply line 3 was started and ended after 5 minutes. By performing the above-described series of measurements in a normal temperature atmosphere of 24 to 26 ° C., the temperature decrease rate of the phosphoric acid solution during bubbling was made constant. In this example, the volume of the phosphoric acid solution supplied into the reaction tank 1 was 150 mL, and the volume of deionized water in the concentration measurement tank 7 was 80 mL. Other experimental procedures and conditions were the same as in Example 1.

上記した試験条件において、珪素濃度が0ppm及び69ppmの既知である2種類の85%燐酸溶液の標準サンプルを用い、弗化水素酸の添加時における燐酸溶液の液温を変化させて、実施例1で使用した液温よりも低い液温での測定の可能性について検討を行った。具体的には、弗化水素酸の添加時における燐酸溶液の液温を70、80、90及び100℃の4種類に変化させた場合について、それぞれ濃度測定槽7内の溶液の導電率の測定を行った。この導電率は、温度補償されたものである。得られた結果を表3に示した。   In the test conditions described above, Example 1 was prepared by using two known 85% phosphoric acid solution standard samples having silicon concentrations of 0 ppm and 69 ppm and changing the liquid temperature of the phosphoric acid solution when hydrofluoric acid was added. The possibility of measurement at a liquid temperature lower than the liquid temperature used in the above was investigated. Specifically, when the liquid temperature of the phosphoric acid solution at the time of addition of hydrofluoric acid is changed to four types of 70, 80, 90 and 100 ° C., the conductivity of the solution in the concentration measuring tank 7 is measured. Went. This conductivity is temperature compensated. The obtained results are shown in Table 3.

Figure 2006352097
Figure 2006352097

図4に、各珪素濃度における、弗化水素酸の添加温度の変化に伴う導電率値の変化をグラフ化して示した。この結果から、弗化水素酸の添加温度が70〜100℃である範囲においては、バブリング中の反応槽内の燐酸溶液に対して加温を行わない場合においても、燐酸溶液中の珪素濃度の違いにより導電率値が変化することがわかった。このことから、これらの条件下においても前記した燐酸溶液中での珪素化合物と弗化水素酸との反応による四弗化珪素ガスの発生があったといえる。又、このことは本発明における反応槽内の燐酸溶液を加温しない測定手法での燐酸溶液中の珪素濃度の測定が可能であることを意味する。   FIG. 4 is a graph showing the change in conductivity value accompanying the change in the addition temperature of hydrofluoric acid at each silicon concentration. From this result, when the addition temperature of hydrofluoric acid is in the range of 70 to 100 ° C., even when the phosphoric acid solution in the reaction vessel during bubbling is not heated, the silicon concentration in the phosphoric acid solution It was found that the conductivity value changes due to the difference. From this, it can be said that even under these conditions, silicon tetrafluoride gas was generated by the reaction of the silicon compound and hydrofluoric acid in the phosphoric acid solution. This also means that the silicon concentration in the phosphoric acid solution can be measured by a measurement technique in which the phosphoric acid solution in the reaction vessel in the present invention is not heated.

上記の結果は、本発明にかかる測定装置又は方法を用いれば、エッチング装置の稼働中に循環使用されている高温且つ高濃度の燐酸溶液中における珪素濃度を、何らの前処理することなしに測定できることを示している。更には、稼働中のエッチング装置で循環使用されている燐酸溶液の一部を、例えば、10〜20分毎に引き抜いてサンプリングして反応槽1に供給し、且つ、濃度測定槽7中の溶液の導電率を一定間隔でモニタリングするように本発明にかかる測定装置又は方法を構成すれば、前記燐酸溶液中の珪素濃度の状態を容易に知ることができる。又、モニタリングしている濃度測定槽7中の溶液の導電率の値によって、使用している燐酸溶液の取り替え時期を設定するようにしたり、燐酸溶液中へ珪素を溶け込ませる量を増加させたりすることができる。   The above results show that if the measuring apparatus or method according to the present invention is used, the silicon concentration in a high-temperature and high-concentration phosphoric acid solution that is circulated and used during the operation of the etching apparatus is measured without any pretreatment. It shows what you can do. Further, for example, a part of the phosphoric acid solution that is circulated in the etching apparatus in operation is extracted and sampled every 10 to 20 minutes, supplied to the reaction tank 1, and the solution in the concentration measurement tank 7 If the measuring device or method according to the present invention is configured to monitor the electrical conductivity of the phosphoric acid solution at regular intervals, the state of the silicon concentration in the phosphoric acid solution can be easily known. In addition, depending on the conductivity value of the solution in the concentration measuring tank 7 being monitored, the replacement time of the used phosphoric acid solution is set, or the amount of silicon dissolved in the phosphoric acid solution is increased. be able to.

この結果、エッチング処理に使用されている燐酸溶液中の珪素濃度を、前記燐酸溶液として珪素濃度が薄い燐酸溶液を使用する場合も、前記燐酸溶液として当初より珪素を溶け込ませた燐酸溶液を用いる場合も、常に良好なエッチング処理が行える状態に管理(制御)できるようになるため、本発明にかかる測定装置及び方法は高性能の半導体基板を安定して、効率的に製造することに寄与できる。   As a result, the silicon concentration in the phosphoric acid solution used in the etching process is the same as when the phosphoric acid solution having a low silicon concentration is used as the phosphoric acid solution, or when the phosphoric acid solution in which silicon is first dissolved is used as the phosphoric acid solution. However, since it can be managed (controlled) so that a good etching process can always be performed, the measuring apparatus and method according to the present invention can contribute to stable and efficient production of a high-performance semiconductor substrate.

本発明を適用した測定装置例を模式的に示す構成図である。It is a block diagram which shows typically the example of a measuring device to which this invention is applied. 反応槽に供給した燐酸溶液中の珪素濃度C1と、ガスを一定時間通気した後の濃度測定槽内の溶液の導電率Gとの関係を示すグラフである。A silicon concentration C 1 of the phosphoric acid solution was fed to the reaction vessel, is a graph showing the relationship between the conductivity G of a solution of a concentration measuring tank after venting predetermined time gas. 濃度測定槽内の溶液中の珪素濃度C2と、濃度測定槽内の溶液の導電率値Gとの関係を示すグラフである。The silicon concentration C 2 in the solution concentration measuring vessel is a graph showing the relationship between the conductivity values G of the solutions in a concentration measuring tank. 燐酸溶液中の珪素濃度及び弗化水素酸の添加温度の変化に伴う導電率値変化を示すグラフである。It is a graph which shows the electrical conductivity value change accompanying the change of the silicon concentration in a phosphoric acid solution, and the addition temperature of hydrofluoric acid.

符号の説明Explanation of symbols

1:反応槽
2:燐酸溶液(エッチング液)の反応槽への供給ライン
3:不活性ガス供給ライン
4:弗化水素酸供給ライン
5:廃液ライン
6:ガス供給ライン
7:濃度測定槽
8:脱イオン水供給ライン
9:測定槽排気ライン
10:測定槽廃液ライン
11:加温ヒーター
12A、12B:熱伝対
13:導電率センサー
14:導電率モニター
15A、15B:液レベルセンサー
16:装置内洗浄用脱イオン水供給ライン
17:装置内パージ用不活性ガス供給ライン
L:エッチング装置内の燐酸溶液循環ライン
1: Reaction tank 2: Supply line of phosphoric acid solution (etching solution) to reaction tank 3: Inert gas supply line 4: Hydrofluoric acid supply line 5: Waste liquid line 6: Gas supply line 7: Concentration measuring tank 8: Deionized water supply line 9: Measurement tank exhaust line 10: Measurement tank waste liquid line 11: Heating heaters 12A, 12B: Thermocouple 13: Conductivity sensor 14: Conductivity monitor 15A, 15B: Liquid level sensor 16: In the apparatus Deionized water supply line for cleaning 17: Inert gas supply line for purging in the apparatus L: Phosphoric acid solution circulation line in the etching apparatus

Claims (8)

半導体基板処理装置の稼働中にエッチング液として使用されている燐酸溶液中の珪素濃度を測定するための装置であって、少なくとも反応槽と濃度測定槽とを有してなり、上記反応槽は、前記半導体基板処理装置から抜き出された一定量の燐酸溶液に弗化水素酸を加えることで弗化珪素化合物を生じさせ、更に該弗化珪素化合物を蒸発させる反応ユニットを有し、且つ、上記濃度測定槽は、反応槽からの蒸発した弗化珪素化合物を脱イオン水に通気させて加水分解する加水分解ユニットと、通気した後の脱イオン水中の珪素濃度の変率を測定する測定ユニットとを有することを特徴とする燐酸溶液中の珪素濃度測定装置。   An apparatus for measuring a silicon concentration in a phosphoric acid solution used as an etchant during operation of a semiconductor substrate processing apparatus, comprising at least a reaction vessel and a concentration measurement vessel, wherein the reaction vessel comprises: A reaction unit for generating a silicon fluoride compound by adding hydrofluoric acid to a certain amount of phosphoric acid solution extracted from the semiconductor substrate processing apparatus, and further evaporating the silicon fluoride compound; and The concentration measuring tank includes a hydrolysis unit for hydrolyzing the evaporated silicon fluoride compound from the reaction tank through deionized water, a measurement unit for measuring a change rate of the silicon concentration in the deionized water after the aeration. An apparatus for measuring a silicon concentration in a phosphoric acid solution, comprising: 前記反応槽が、反応槽中の燐酸溶液を70〜180℃の温度範囲内に管理された状態で弗化水素酸を添加する手段と、該燐酸溶液中の珪素化合物を気体の弗化珪素化合物として燐酸溶液中から蒸発させる手段とを有する請求項1に記載の燐酸溶液中の珪素濃度測定装置。   Means for adding hydrofluoric acid in a state where the phosphoric acid solution in the reaction vessel is controlled within a temperature range of 70 to 180 ° C., and the silicon compound in the phosphoric acid solution is a gaseous silicon fluoride compound. The apparatus for measuring a silicon concentration in a phosphoric acid solution according to claim 1, further comprising: means for evaporating from the phosphoric acid solution. 前記反応槽が、反応槽の下部から、弗化水素酸を加えることで弗化珪素化合物を生じさせている燐酸溶液に不活性ガスを供給して、反応槽の上部から反応槽内のガスのみを排出する手段を有する請求項1又は2に記載の燐酸溶液中の珪素濃度測定装置。   The reaction tank supplies an inert gas from the lower part of the reaction tank to the phosphoric acid solution in which the hydrofluoric acid is added to form a silicon fluoride compound, and only the gas in the reaction tank is supplied from the upper part of the reaction tank. The apparatus for measuring the concentration of silicon in a phosphoric acid solution according to claim 1 or 2, further comprising means for discharging gas. 前記濃度測定槽が、脱イオン水中の珪素濃度の変率を導電率計を用いて測定する手段を有する請求項1〜3の何れか1項に記載の燐酸溶液中の珪素濃度測定装置。   The silicon concentration measuring device in a phosphoric acid solution according to any one of claims 1 to 3, wherein the concentration measuring tank has means for measuring a change rate of silicon concentration in deionized water using a conductivity meter. 前記反応槽に、更に、反応槽内の燐酸溶液を70〜180℃の温度範囲内に制御するための加温手段が設けられている請求項1〜4の何れか1項に記載の燐酸溶液中の珪素濃度測定装置。   The phosphoric acid solution according to any one of claims 1 to 4, wherein the reaction tank is further provided with heating means for controlling the phosphoric acid solution in the reaction tank within a temperature range of 70 to 180 ° C. Inside silicon concentration measuring device. 稼働中の半導体基板処理装置においてエッチング液として循環使用されている燐酸溶液中の珪素濃度の測定方法であって、前記半導体基板処理装置から一定量の燐酸溶液を抜き出し、該一定量の燐酸溶液に弗化水素酸を添加して両者間の反応により弗化珪素化合物を生じさせ、更に、該一定量の燐酸溶液から該弗化珪素化合物を蒸発させる工程と、蒸発した弗化珪素化合物を脱イオン水に通気して加水分解を行い、更に、該脱イオン水中の珪素濃度の変率を測定する工程とを有することを特徴とする燐酸溶液中の珪素濃度の測定方法。   A method for measuring a silicon concentration in a phosphoric acid solution that is circulated and used as an etching solution in an operating semiconductor substrate processing apparatus, wherein a predetermined amount of phosphoric acid solution is extracted from the semiconductor substrate processing apparatus, A step of adding hydrofluoric acid to produce a silicon fluoride compound by a reaction between the two, further evaporating the silicon fluoride compound from the fixed amount of phosphoric acid solution, and deionizing the evaporated silicon fluoride compound A method for measuring the silicon concentration in a phosphoric acid solution, comprising the steps of hydrolyzing by aeration in water and further measuring a change rate of the silicon concentration in the deionized water. 前記燐酸溶液と弗化水素酸との反応を、液温を70〜180℃にて管理した該一定量の燐酸溶液中に弗化水素酸を添加することで行って、該一定量の燐酸溶液中の珪素化合物を気体の弗化珪素化合物として該一定量の燐酸溶液中から蒸発させる請求項6に記載の燐酸溶液中の珪素濃度の測定方法。   The reaction between the phosphoric acid solution and hydrofluoric acid is carried out by adding hydrofluoric acid to the certain amount of phosphoric acid solution whose liquid temperature is controlled at 70 to 180 ° C. The method for measuring the silicon concentration in a phosphoric acid solution according to claim 6, wherein the silicon compound in the solution is evaporated as a gaseous silicon fluoride compound from the predetermined amount of phosphoric acid solution. 前記脱イオン水中の珪素濃度の変率の測定を、該脱イオン水の導電率を測定することで行う請求項6又は7に記載の燐酸溶液中の珪素濃度の測定方法。
The method for measuring a silicon concentration in a phosphoric acid solution according to claim 6 or 7, wherein the change rate of the silicon concentration in the deionized water is measured by measuring the conductivity of the deionized water.
JP2006136134A 2005-05-17 2006-05-16 Apparatus and method for measuring silicon concentration in phosphoric acid solution Active JP4809122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006136134A JP4809122B2 (en) 2005-05-17 2006-05-16 Apparatus and method for measuring silicon concentration in phosphoric acid solution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005144075 2005-05-17
JP2005144075 2005-05-17
JP2006136134A JP4809122B2 (en) 2005-05-17 2006-05-16 Apparatus and method for measuring silicon concentration in phosphoric acid solution

Publications (2)

Publication Number Publication Date
JP2006352097A true JP2006352097A (en) 2006-12-28
JP4809122B2 JP4809122B2 (en) 2011-11-09

Family

ID=37647558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006136134A Active JP4809122B2 (en) 2005-05-17 2006-05-16 Apparatus and method for measuring silicon concentration in phosphoric acid solution

Country Status (1)

Country Link
JP (1) JP4809122B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203252A (en) * 2010-03-25 2011-10-13 Eci Technology Inc Analysis of silicon concentration in etchant solution
JP2013206946A (en) * 2012-03-27 2013-10-07 Dainippon Screen Mfg Co Ltd Substrate processing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129588A (en) * 1995-10-31 1997-05-16 Fujitsu Ltd Concentration control method for etchant and etching apparatus
JPH11293479A (en) * 1998-04-08 1999-10-26 Nisso Engineering Kk Regeneration treatment apparatus for etchant and etching apparatus using the same
JP2003502863A (en) * 1999-06-17 2003-01-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for performing wet etching of a semiconductor wafer
JP2003297798A (en) * 2002-03-29 2003-10-17 Seiko Epson Corp Treatment device and method for manufacturing semiconductor device
JP2005064199A (en) * 2003-08-11 2005-03-10 Seiko Epson Corp Chemical liquid regenerating device, semiconductor manufacturing apparatus, chemical liquid regenerating method and method for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129588A (en) * 1995-10-31 1997-05-16 Fujitsu Ltd Concentration control method for etchant and etching apparatus
JPH11293479A (en) * 1998-04-08 1999-10-26 Nisso Engineering Kk Regeneration treatment apparatus for etchant and etching apparatus using the same
JP2003502863A (en) * 1999-06-17 2003-01-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for performing wet etching of a semiconductor wafer
JP2003297798A (en) * 2002-03-29 2003-10-17 Seiko Epson Corp Treatment device and method for manufacturing semiconductor device
JP2005064199A (en) * 2003-08-11 2005-03-10 Seiko Epson Corp Chemical liquid regenerating device, semiconductor manufacturing apparatus, chemical liquid regenerating method and method for manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203252A (en) * 2010-03-25 2011-10-13 Eci Technology Inc Analysis of silicon concentration in etchant solution
JP2016006434A (en) * 2010-03-25 2016-01-14 イーシーアイ・テクノロジー・インコーポレーテッドECI Technology,Inc. Analysis of silicon concentration in etching agent solution
JP2013206946A (en) * 2012-03-27 2013-10-07 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
US10520416B2 (en) 2012-03-27 2019-12-31 SCREEN Holdings Co., Ltd. Substrate treating method for a substrate treating apparatus that carries out etching treatment of substrates

Also Published As

Publication number Publication date
JP4809122B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
KR101054548B1 (en) Silicon concentration measuring device and measuring method in phosphoric acid solution
JP6189380B2 (en) Analysis of silicon concentration in etchant solution
JP2896268B2 (en) Semiconductor substrate surface treatment apparatus and control method thereof
KR101791490B1 (en) Method for measuring total oxidizing-substance concentration, substrate cleaning method, and substrate cleaning system
JP2012174964A (en) Method for analyzing metallic contamination of silicon wafer
JP2014041030A (en) Impurity analysis method of semiconductor substrate
US20180096856A1 (en) Substrate treating apparatus
JP2022027752A (en) Selective monitoring of multiple silicon compounds
JP4809122B2 (en) Apparatus and method for measuring silicon concentration in phosphoric acid solution
JPH05102122A (en) Etching method
WO2016114188A1 (en) Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus
US6444010B1 (en) Platinum group impurity recovery liquid and method for recovering platinum group impurity
JP2008182201A (en) Silicon etching method
WO2009113994A1 (en) Analysis of fluoride at low concentrations in acidic processing solutions
JP6265289B1 (en) Oxidant concentration measuring device and oxidant concentration measuring method
JP2002053312A (en) Device for generating caro&#39;s acid, device and method for removing resist
WO2010013586A1 (en) Apparatus for measurement of silicon concentration
JP5979328B2 (en) Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus
US9658203B2 (en) Metal collection solution and method of analyzing substrate contamination
JPH05346402A (en) Si concentration monitor in medicinal liquid
US20230011100A1 (en) Total organic carbon measurement method and total organic carbon measurement device
JP2016046265A (en) Silicon concentration-measuring device, etching device for semiconductor, and silicon concentration-measuring method
JPH11166921A (en) Method for speedily analyzing phosphorus in silicon material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4809122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250