JP2007327797A - High-frequency inductively coupled plasma emission spectrometric analysis method - Google Patents

High-frequency inductively coupled plasma emission spectrometric analysis method Download PDF

Info

Publication number
JP2007327797A
JP2007327797A JP2006157911A JP2006157911A JP2007327797A JP 2007327797 A JP2007327797 A JP 2007327797A JP 2006157911 A JP2006157911 A JP 2006157911A JP 2006157911 A JP2006157911 A JP 2006157911A JP 2007327797 A JP2007327797 A JP 2007327797A
Authority
JP
Japan
Prior art keywords
arsenic
inductively coupled
coupled plasma
frequency inductively
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006157911A
Other languages
Japanese (ja)
Inventor
Yoichi Nagai
陽一 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2006157911A priority Critical patent/JP2007327797A/en
Publication of JP2007327797A publication Critical patent/JP2007327797A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-frequency inductively coupled plasma emission spectrometric analysis method of high analytical accuracy and high reliability for arsenic-containing solutions. <P>SOLUTION: The high-frequency inductively coupled plasma emission spectrometric analysis method for arsenic-containing solution is a composition-analyzing method, where the concentration of arsenic in the arsenic-containing solution is measured in a photometric time that brings the measurement dispersion of arsenic to 0.025 mg/l or smaller. According to this method, high-accuracy and reliable analysis becomes possible. Furthermore, higher accuracy and reliability analysis becomes possible, by making a liquid with a pH of 6-8 pass through the measuring sample inlet part, through which the measuring sample is passed, of the high-frequency inductively coupled plasma emission spectrometric analyzer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

製品の中間製品の組成分析を行い、その分析結果を用いて、次工程の作成条件を選択し、最終製品の組成の調整、製品異常を検出していた。その中間製品の分析は、製造ラインの高速化に伴い、分析精度を低下させず、かつ分析期間の短い分析が求められている。 The composition analysis of the intermediate product of the product was performed, the preparation result of the next process was selected by using the analysis result, the composition of the final product was adjusted, and the product abnormality was detected. The analysis of the intermediate product requires an analysis with a short analysis period without reducing the analysis accuracy as the production line speeds up.

特許文献1には、試料条件、分析条件の変化をあらかじめ把握し、その情報を元に、高速液体クロマトグラフィーの分析条件を設定することによる測定値の安定化方法が開示されている。 Patent Document 1 discloses a method of stabilizing measurement values by grasping changes in sample conditions and analysis conditions in advance and setting analysis conditions for high performance liquid chromatography based on the information.

特開平6−18504JP-A-6-18504

しかし、引用文献1の高速クロマトグラフィー法による分析条件を決めるためには、試料の組成を把握する必要があり、また、それぞれの試料により分析条件を算出するため分析時間に時間を要し、高精度で再現性の良い測定を行うことが困難であった。 However, in order to determine the analysis conditions by the high-speed chromatography method of Cited Document 1, it is necessary to grasp the composition of the sample, and it takes time for the analysis time to calculate the analysis conditions for each sample. It was difficult to measure with high accuracy and reproducibility.

本発明者は鋭意研究を重ねた結果、高周波誘導結合プラズマ発光分光分析方法(以下ICPという)において、高精度、高信頼性の分析を行うことができるという知見をえた。 As a result of intensive studies, the present inventor has obtained the knowledge that high-frequency inductively coupled plasma emission spectroscopy (hereinafter referred to as ICP) can be analyzed with high accuracy and high reliability.

上記課題を解決するため、本発明に係る砒素を含む溶液の高周波誘導結合プラズマ発光分光分析方法は、砒素の測定ばらつきを0.025mg/l以下となる測光時間で、前記砒素を含む溶液の砒素濃度を測定することを特徴とする。
上記方法により、高精度・高信頼性の分析を行うことが可能となる。
In order to solve the above-mentioned problems, the high frequency inductively coupled plasma optical emission spectrometry method for an arsenic-containing solution according to the present invention provides a arsenic solution containing the arsenic in a photometric time in which the measurement variation of arsenic is 0.025 mg / l or less It is characterized by measuring the concentration.
By the above method, it becomes possible to perform highly accurate and highly reliable analysis.

また、上記砒素を含む溶液の高周波誘導結合プラズマ発光分光分析方法において、高周波誘導結合プラズマ発光分光分析装置の測定試料を通液する測定試料導入部内をpHが6以上、8以下の液体を通液し、砒素の測定ばらつきを0.025mg/l以下となる測光時間で、前記砒素を含む溶液の砒素濃度を測定することを特徴とする。   Further, in the high frequency inductively coupled plasma emission spectroscopic analysis method for a solution containing arsenic, a liquid having a pH of 6 or more and 8 or less is passed through the measurement sample introduction part through which the measurement sample of the high frequency inductively coupled plasma emission spectrometer is passed. The arsenic concentration of the solution containing arsenic is measured at a photometric time in which the measurement variation of arsenic is 0.025 mg / l or less.

上記方法により、試料導入部内に残存した残留試料を効率的に除去することが可能となる、特に砒素(As)を効率的に除去することが可能となり、精度が高く、高信頼性の分析を可能とすることができる。   By the above method, it is possible to efficiently remove the residual sample remaining in the sample introduction part, in particular, it is possible to efficiently remove arsenic (As), and a highly accurate and highly reliable analysis can be performed. Can be possible.

砒素を含む溶液の分析精度を向上させ、高信頼性の分析が可能な高周波誘導結合プラズマ発光分光分析方法を提供する。   Provided is a high frequency inductively coupled plasma emission spectroscopic analysis method capable of improving the analysis accuracy of a solution containing arsenic and enabling highly reliable analysis.

以下、本発明の実施形態について説明する。図1にICPで分析を行う試料の作成手順フロー図を示す。まずビーカー内に分析試料が溶解した溶液50mlと、硝酸を1〜2ml添加して分析試料を完全に溶解させる。その後、溶液を過熱し、溶媒分を揮発させて濃縮する。その濃縮した溶液を室温まで冷却した後、50mlメスフラスコに移液し、純水を加えて50mlに定容し、分析試料とした。その測定試料は0.1〜1.0mg/Lの濃度の試料であると精度良く分析することが可能となり好ましい。   Hereinafter, embodiments of the present invention will be described. Fig. 1 shows a flowchart of the procedure for preparing a sample to be analyzed by ICP. First, 50 ml of the solution in which the analysis sample is dissolved in the beaker and 1-2 ml of nitric acid are added to completely dissolve the analysis sample. Thereafter, the solution is heated, and the solvent is evaporated and concentrated. The concentrated solution was cooled to room temperature, transferred to a 50 ml volumetric flask, added with pure water to make a constant volume of 50 ml, and used as an analytical sample. The measurement sample is preferably a sample having a concentration of 0.1 to 1.0 mg / L because it enables analysis with high accuracy.

その分析試料を用いて、ICPにより分析を行う。分析試料を高周波誘導結合プラズマ発光分光分析装置の試料導入部に通液し、プラズマ発光させる。そのプラズマ化した測定試料が発光する光を一定時間測光し、1測光値とする。このとき、測光を行った時間を測光時間とする。この測光を数回行った後にその測光値の平均を1測定値とする。ここで、1測光時間を4秒以上、7秒以下とすることで、十分な光量を受光することが可能となり、かつ外乱のノイズを抑えられるため、測定バラツキが小さくなり好ましい。その測光回数は同一試料で3回以上測光を行い、その平均値を測定値とすることで、さらに測定バラツキを低減することができるため好ましい。また、測光回数が多いほどバラツキを低減させることができるが、測光回数が多くなると、測定値の算出等に時間がかかるため10回以下とすることが好ましい。 The analysis sample is used for analysis by ICP. The analysis sample is passed through the sample introduction part of the high-frequency inductively coupled plasma emission spectroscopic analyzer to emit plasma. The light emitted from the plasma measurement sample is measured for a predetermined time to obtain one photometric value. At this time, the time when the photometry is performed is set as the photometry time. After performing this photometry several times, the average of the photometric values is taken as one measurement value. Here, it is preferable that one photometry time is 4 seconds or more and 7 seconds or less because a sufficient amount of light can be received and disturbance noise can be suppressed. The number of photometry is preferably 3 or more times with the same sample, and the average value is taken as the measurement value, which can further reduce measurement variation. Further, the variation can be reduced as the number of times of photometry is increased. However, when the number of times of photometry is increased, it takes time to calculate a measured value and the like.

また、分析測定前、分析測定後に測定試料導入部中に、pHが6以上8以下で、金属元素を含有しない溶液を通液させることで測定試料導入部中に残留した試料を効率的に除去できるため好ましい。特に純水を使用することで、以降の測定に含まれるAs量を定量下限以下と小さくすることができ、好ましい。
その洗浄時間は20秒以上とする好ましい。洗浄時間が20秒以下では残留不純物の洗浄が不十分で、測定試料導入部中に残留した試料によりシグナルが発生してしまう。
In addition, the sample remaining in the measurement sample introduction part can be efficiently removed by passing a solution containing no metal element in the measurement sample introduction part before and after the analysis measurement. This is preferable because it is possible. In particular, the use of pure water is preferable because the amount of As contained in the subsequent measurements can be reduced below the lower limit of quantification.
The washing time is preferably 20 seconds or longer. If the cleaning time is 20 seconds or less, the residual impurities are not sufficiently cleaned, and a signal is generated by the sample remaining in the measurement sample introduction part.

(参考例)
純度70%の濃硝酸を50倍に薄めたブランク溶液を用いて、測光時間5秒、測光回数3回の測定値の平均を1測定とし、これを10測定行ってその時の標準偏差を算出し、その標準偏差を10倍して定量下限を算出した。その定量下限は、砒素(As)、カドミウム(Cd)、銅(Cu)、鉄(Fe)、鉛(Pb)、セレン(Se)、亜鉛(Zn)の定量下限はそれぞれ0.018mg/L、0.0004mg/L、0.011mg/L、0.002mg/L、0.01mg/L、0.025mg/L、0.005mg/Lであった。
(Reference example)
Using a blank solution in which concentrated nitric acid with a purity of 70% was diluted 50 times, the average of the measured values for 5 seconds of photometry and 3 times of photometry was taken as 1 measurement, and 10 measurements were taken to calculate the standard deviation at that time. The lower limit of quantification was calculated by multiplying the standard deviation by 10. The lower limit of quantification is arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), selenium (Se), zinc (Zn), and the lower limit of quantification is 0.018 mg / L, They were 0.0004 mg / L, 0.011 mg / L, 0.002 mg / L, 0.01 mg / L, 0.025 mg / L, and 0.005 mg / L.

(実施例1)
分析試料100mgを溶解した分析溶液50mlに、硝酸2mlを添加し、溶質を完全に溶解させる。その溶液を加熱して約30mlに濃縮し、放熱冷却させた後、さらに純水を加えて総液量を50mlとした。
その試料を用いて高周波誘導結合プラズマ発光分光分析装置で測定した。
本試料の測定条件として、測光時間を5秒、測光回数を3回、5回、10回とした際の測定値のばらつきを図3に示す。測定ばらつきは、それぞれの回数測定を行い、その時の標準偏差を算出し、その標準偏差を3倍して算出した。As、Cd、Cu、Pb、Se、Znの測定ばらつきはそれぞれ、測光回数3回で0.006mg/l、0.005mg/l、0.006mg/l、0.009mg/l、0.009mg/l、0.006mg/l、測光回数5回で0.014mg/l、0.009mg/l、0.006mg/l、0.009mg/l、0.022mg/l、0.009mg/l、測光回数10回で0.007mg/l、0.004mg/l、0.005mg/l、0.007mg/l、0.008mg/l、0.005mg/lであった。
Example 1
2 ml of nitric acid is added to 50 ml of the analysis solution in which 100 mg of the analysis sample is dissolved to completely dissolve the solute. The solution was heated and concentrated to about 30 ml, cooled by heat dissipation, and then pure water was added to make the total liquid volume 50 ml.
The sample was used for measurement with a high frequency inductively coupled plasma optical emission spectrometer.
As measurement conditions for this sample, the measurement value variation when the photometry time is 5 seconds, the photometry times are 3, 5, and 10 is shown in FIG. The measurement variation was calculated by measuring each number of times, calculating the standard deviation at that time, and multiplying the standard deviation by three. The measurement variations of As, Cd, Cu, Pb, Se, and Zn are 0.006 mg / l, 0.005 mg / l, 0.006 mg / l, 0.009 mg / l, and 0.009 mg / l when the number of photometry is three times, respectively. l, 0.006 mg / l, 0.014 mg / l, 0.009 mg / l, 0.006 mg / l, 0.009 mg / l, 0.022 mg / l, 0.009 mg / l, photometry at 5 times of photometry The number of times was 0.007 mg / l, 0.004 mg / l, 0.005 mg / l, 0.007 mg / l, 0.008 mg / l, and 0.005 mg / l at 10 times.

(比較例1)
実施例1と同様の試料を、測光時間を3秒、測光回数を3回、5回、10回とした際の高周波誘導結合プラズマ発光分光分析装置で測定した測定値のばらつきを図2に示す。測定ばらつきは実施例1と同様の方法で算出した。As、Cd、Cu、Pb、Se、Znの測定ばらつきはそれぞれ、測光回数3回で0.018mg/l、0.014mg/l、0.012mg/l、0.009mg/l、0.027mg/l、0.012mg/l、測光回数5回で0.044mg/l、0.032mg/l、0.027mg/l、0.045mg/l、0.044mg/l、0.033mg/l、測光回数10回で0.027mg/l、0.024mg/l、0.023mg/l、0.026mg/l、0.035mg/l、0.024mg/lであった。
(Comparative Example 1)
FIG. 2 shows variations in measured values of the same sample as in Example 1 measured with the high frequency inductively coupled plasma emission spectrometer when the photometry time is 3 seconds, the photometry frequency is 3, 5, and 10 times. . The measurement variation was calculated by the same method as in Example 1. The measurement variations of As, Cd, Cu, Pb, Se, and Zn are 0.018 mg / l, 0.014 mg / l, 0.012 mg / l, 0.009 mg / l, and 0.027 mg / l, respectively, at three photometry times. l, 0.012 mg / l, 0.044 mg / l, 0.032 mg / l, 0.027 mg / l, 0.045 mg / l, 0.044 mg / l, 0.033 mg / l, photometry at 5 times of photometry The number of times was 0.027 mg / l, 0.024 mg / l, 0.023 mg / l, 0.026 mg / l, 0.035 mg / l, and 0.024 mg / l at 10 times.

(比較例2)
実施例1と同様の試料を、測光時間を10秒とし、測光回数を3回とした際の測定値のばらつきを測定した結果を図2に示す。測定ばらつきは実施例1と同様の方法で算出した。As、Cd、Cu、Pb、Se、Znの測定ばらつきはそれぞれ、測光回数3回で0.024mg/l、0.018mg/l、0.021mg/l、0.021mg/l、0.028mg/l、0.022mg/lであった。
(Comparative Example 2)
FIG. 2 shows the results of measuring the variation in measured values of a sample similar to Example 1 when the photometric time is 10 seconds and the number of photometry is three. The measurement variation was calculated by the same method as in Example 1. The measurement variations of As, Cd, Cu, Pb, Se, and Zn are 0.024 mg / l, 0.018 mg / l, 0.021 mg / l, 0.021 mg / l, and 0.028 mg / l, respectively, at three photometry times. l, 0.022 mg / l.

図2より、比較例1の3秒測光、比較例2の10秒測光における測定のばらつきに対し、実施例1の5秒測光においては、測定ばらつきの小さい高信頼性の測定となっている。特に3回測光10回測光は測定バラツキが0.01mg以下となり、さらに信頼性の高い分析が可能であることが分かる。 As shown in FIG. 2, in contrast to the measurement variations in the 3-second photometry in Comparative Example 1 and the 10-second photometry in Comparative Example 2, the 5-second photometry in Example 1 is a highly reliable measurement with a small measurement variation. In particular, 3 times and 10 times metering shows a measurement variation of 0.01 mg or less, indicating that a more reliable analysis is possible.

(実施例2)
実施例1の測定後に純度70%の濃硝酸を50倍に薄めたブランク溶液(pH≒0.5)を高周波誘導結合プラズマ発光分光分析装置の測定試料導入部内に通液させて、装置内の残留物の洗浄を行った。そのブランク溶液での通液中に測光時間5秒で測光を行い、装置内の残留不純物の確認を行った。その測光した結果を図3に示す。図より、硝酸を用いた洗浄液では90秒洗浄した後Cd、Cu、Pb、Se、Znの元素は定量下限値以下となり、装置内から洗浄除去されていることが分かるが、Asは90秒後においても定量下限値以上の値を示し、完全に除去できていないことがわかる。
(Example 2)
After the measurement in Example 1, a blank solution (pH≈0.5) in which concentrated nitric acid with a purity of 70% was diluted 50 times was passed through the measurement sample introduction part of the high-frequency inductively coupled plasma emission spectrometer, and the residue in the apparatus Was washed. While passing through the blank solution, photometry was performed with a photometry time of 5 seconds to confirm residual impurities in the apparatus. The photometric results are shown in FIG. From the figure, it can be seen that the elements of Cd, Cu, Pb, Se, and Zn are below the lower limit of quantification after being washed for 90 seconds with a cleaning solution using nitric acid, and As is washed and removed from the apparatus. Also, the value above the lower limit of quantification is shown, and it can be seen that it has not been completely removed.

(実施例3)
実施例2において、装置内の残留不純物の多かった、Asを1mg/L含む標準溶液の分析後、純度70%の濃硝酸を約16倍に希釈した硝酸溶液(pH≒0)、50倍に薄めた硝酸溶液(pH≒0.5)、純水(pH=8)を用いて30秒間洗浄した後、測光時間5秒で測定を行った。その測定結果を図4に示す。図より、16倍に希釈した硝酸溶液では0.04mg/L、50倍に薄めた硝酸溶液では、0.03mg/Lと定量下限値以上の高い値を示したのに対し、純水で洗浄した際に洗浄液中のAs濃度を定量下限値である0.018mg/L以下の濃度に低減させることができ、信頼性の高い分析が可能となり、洗浄にかかる時間も短縮されるため分析に要する時間も短縮させることが出来た。
(Example 3)
In Example 2, after analyzing a standard solution containing 1 mg / L of As, which contained a large amount of residual impurities in the apparatus, a nitric acid solution (pH≈0) in which concentrated nitric acid having a purity of 70% was diluted about 16 times, 50 times After washing with a diluted nitric acid solution (pH≈0.5) and pure water (pH = 8) for 30 seconds, the measurement was performed at a photometric time of 5 seconds. The measurement results are shown in FIG. From the figure, the nitric acid solution diluted 16 times showed 0.04 mg / L, and the nitric acid solution diluted 50 times showed 0.03 mg / L, which was higher than the lower limit of quantification, but when washed with pure water. In addition, the concentration of As in the cleaning solution can be reduced to a concentration lower than the lower limit of quantification of 0.018 mg / L, enabling highly reliable analysis and reducing the time required for analysis because the time required for cleaning is reduced. I was able to.

本発明の実施例におけるICPの測定試料作成手順であるIt is a measurement sample preparation procedure of ICP in the embodiment of the present invention 実施例1、比較例1、比較例2における、測光条件による測定元素のばらつきを示すグラフである。(sec)は秒をあらわす。6 is a graph showing variations in measurement elements according to photometric conditions in Example 1, Comparative Example 1, and Comparative Example 2. (sec) represents seconds. ブランク溶液洗浄における残留不純物の経時変化を表すグラフである。(sec)は秒をあらわす。It is a graph showing the time-dependent change of the residual impurity in blank solution washing | cleaning. (sec) represents seconds. 実施例3における、洗浄液による装置内の残留不純物濃度を示す図である。In Example 3, it is a figure which shows the residual impurity density | concentration in the apparatus by the washing | cleaning liquid.

Claims (2)

砒素を含む溶液の高周波誘導結合プラズマ発光分光分析方法において、砒素の測定ばらつきを0.025mg/l以下となる測光時間で、前記砒素を含む溶液の砒素濃度を測定することを特徴とする、分析方法。 In the high-frequency inductively coupled plasma emission spectroscopic analysis method for a solution containing arsenic, the arsenic concentration of the solution containing arsenic is measured at a photometric time in which measurement variation of arsenic is 0.025 mg / l or less. Method. 砒素を含む溶液の高周波誘導結合プラズマ発光分光分析方法において、高周波誘導結合プラズマ発光分光分析装置の測定試料を通液する測定試料導入部内をpHが6以上、8以下の液体を通液し、砒素の測定ばらつきを0.025mg/l以下となる測光時間で、前記砒素を含む溶液の砒素濃度を測定することを特徴とする、分析方法。
In the high frequency inductively coupled plasma optical emission spectrometry method for a solution containing arsenic, a liquid having a pH of 6 or more and 8 or less is passed through the measurement sample introduction part through which the measurement sample of the high frequency inductively coupled plasma emission spectrometer is passed. And measuring the arsenic concentration of the solution containing arsenic for a photometric time in which the measurement variation is 0.025 mg / l or less.
JP2006157911A 2006-06-06 2006-06-06 High-frequency inductively coupled plasma emission spectrometric analysis method Pending JP2007327797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157911A JP2007327797A (en) 2006-06-06 2006-06-06 High-frequency inductively coupled plasma emission spectrometric analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157911A JP2007327797A (en) 2006-06-06 2006-06-06 High-frequency inductively coupled plasma emission spectrometric analysis method

Publications (1)

Publication Number Publication Date
JP2007327797A true JP2007327797A (en) 2007-12-20

Family

ID=38928367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157911A Pending JP2007327797A (en) 2006-06-06 2006-06-06 High-frequency inductively coupled plasma emission spectrometric analysis method

Country Status (1)

Country Link
JP (1) JP2007327797A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832917A (en) * 2010-06-13 2010-09-15 武汉钢铁(集团)公司 Method for measuring arsenic in sulfate slag
CN101865848A (en) * 2010-05-21 2010-10-20 北京泰科诺科技有限公司 Method and device for measuring monobromethane concentration in fumigation tank by plasma emission spectroscopy
CN103163119A (en) * 2013-04-02 2013-06-19 天津虹炎科技有限公司 Method for measuring arsenic content of environmental samples
CN103344628A (en) * 2013-06-26 2013-10-09 天津虹炎科技有限公司 ICP-AES (inductively coupled plasma-atomic emission spectrometer) measurement method for content of arsenic in steel
CN104236966A (en) * 2013-06-21 2014-12-24 北京服装学院 Method for detecting content of extractable arsenic in textile

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865848A (en) * 2010-05-21 2010-10-20 北京泰科诺科技有限公司 Method and device for measuring monobromethane concentration in fumigation tank by plasma emission spectroscopy
CN101865848B (en) * 2010-05-21 2012-05-30 北京泰科诺科技有限公司 Method and device for measuring monobromethane concentration in fumigation tank by plasma emission spectroscopy
CN101832917A (en) * 2010-06-13 2010-09-15 武汉钢铁(集团)公司 Method for measuring arsenic in sulfate slag
CN103163119A (en) * 2013-04-02 2013-06-19 天津虹炎科技有限公司 Method for measuring arsenic content of environmental samples
CN103163119B (en) * 2013-04-02 2016-01-20 天津虹炎科技有限公司 Arsenic for Environmental Samples content detection method
CN104236966A (en) * 2013-06-21 2014-12-24 北京服装学院 Method for detecting content of extractable arsenic in textile
CN103344628A (en) * 2013-06-26 2013-10-09 天津虹炎科技有限公司 ICP-AES (inductively coupled plasma-atomic emission spectrometer) measurement method for content of arsenic in steel
CN103344628B (en) * 2013-06-26 2016-01-20 天津虹炎科技有限公司 The ICP-AES of Determination of Arsenic In Iron And Steel measures

Similar Documents

Publication Publication Date Title
AU2009354555B2 (en) Method for analyzing and detecting calcium element in ore
US8222038B2 (en) Method for analyzing metal specimen
Bücker et al. Spectrometric analysis of process etching solutions of the photovoltaic industry—Determination of HNO3, HF, and H2SiF6 using high-resolution continuum source absorption spectrometry of diatomic molecules and atoms
JP2007327797A (en) High-frequency inductively coupled plasma emission spectrometric analysis method
JP5522584B2 (en) ICP emission spectroscopy method
Aguirre et al. Hyphenation of single-drop microextraction with laser-induced breakdown spectrometry for trace analysis in liquid samples: a viability study
JP2022027752A (en) Selective monitoring of multiple silicon compounds
JP6416807B2 (en) Silicon quantitative analysis method
JP3290982B2 (en) Determination of inorganic electrolytes for semiconductor processing
JP4512605B2 (en) Determination of trace impurity elements using inductively coupled plasma mass spectrometer
JP5046963B2 (en) Hazardous metal analysis method for silver plating layer
JP2006234752A (en) Method and device for quantifying aluminum in metallic material
Kang et al. Determination of trace chlorine dioxide based on the plasmon resonance scattering of silver nanoparticles
JP2006208125A (en) Isotope ratio analysis method using plasma ion source mass spectroscope
JP2006329687A (en) Analytical method for trace element in metal sample
JP2006184109A (en) Method for analyzing ultratrace metal in polymer
KR101639527B1 (en) Analysis apparatus, analysis method for concentration of contaminants in a treatment solution, data modeling method therefor, and analysis system for concentration of contaminants in a treatment solution
JP2005069746A (en) Back extraction method of silicomolybdic acid and silicon quantifying method using silicomolybdic acid (blue) absorptiometric method
JPH06230002A (en) Concentrating determination method of metal ion
JP3200904B2 (en) Quantitative analysis method of trace alkaline earth metals in salt water
JP3200903B2 (en) Quantitative analysis of trace alkaline earth metals in salt water
JP2010014513A (en) Metal component analysis method in solder flux
JP5585786B2 (en) Measuring method of total organic carbon
JPH07263242A (en) Method and apparatus for diagnosing lifetime of oil immersed electric machine
Isoe et al. Determination of trace silica in highly purified water based on delayed quenching of Rhodamine B through nanoparticle formation with molybdosilicate