JP2865265B2 - Primary water quality monitoring system for boiling water reactor - Google Patents

Primary water quality monitoring system for boiling water reactor

Info

Publication number
JP2865265B2
JP2865265B2 JP3141548A JP14154891A JP2865265B2 JP 2865265 B2 JP2865265 B2 JP 2865265B2 JP 3141548 A JP3141548 A JP 3141548A JP 14154891 A JP14154891 A JP 14154891A JP 2865265 B2 JP2865265 B2 JP 2865265B2
Authority
JP
Japan
Prior art keywords
condensate
reactor
water
water quality
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3141548A
Other languages
Japanese (ja)
Other versions
JPH04366796A (en
Inventor
一郎 稲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3141548A priority Critical patent/JP2865265B2/en
Publication of JPH04366796A publication Critical patent/JPH04366796A/en
Application granted granted Critical
Publication of JP2865265B2 publication Critical patent/JP2865265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

[発明の目的] [Object of the invention]

【0001】[0001]

【産業上の利用分野】本発明は、沸騰水型原子力発電所
(以下、BWR原子力発電所という。)において復水中
の有機物による炉水の水質変化を予測し監視する一次系
水質監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a primary water quality monitoring apparatus for predicting and monitoring changes in reactor water quality due to condensed organic matter in a boiling water nuclear power plant (hereinafter referred to as a BWR nuclear power plant).

【0002】[0002]

【従来の技術】一般に、BWR原子力発電所の一次冷却
水のインライン水質監視は炉水の導電率、pH、溶存酸
素濃度、および給・復水の導電率、溶存酸素濃度に限ら
れており、導電率の異常が起こると、その水をサンプリ
ングし、イオン濃度およ有機体炭素(TOC)濃度を分
析している。
2. Description of the Related Art In general, in-line water quality monitoring of primary cooling water of a BWR nuclear power plant is limited to the conductivity of reactor water, pH, dissolved oxygen concentration, and the conductivity of feed water and condensate, and dissolved oxygen concentration. When a conductivity abnormality occurs, the water is sampled and analyzed for ion concentration and organic carbon (TOC) concentration.

【0003】ところで、復水中に有機物が不純物として
存在した場合、このような有機不純物は原子炉に入って
から分解しイオンとなって炉水導電率の上昇をもたらす
が、これを前もって復水採取分析系におけるイオン分析
およびTOC分析で予測することはできない。
[0003] If organic matter is present as impurities in the condensate, such organic impurities are decomposed into ions after entering the reactor, resulting in an increase in the reactor water conductivity. It cannot be predicted by ion analysis and TOC analysis in the analysis system.

【0004】[0004]

【発明が解決しようとする課題】このように従来技術で
は、復水中に有機物が不純物として存在した場合、この
有機不純物が原子炉内でどのような挙動を示すか予測す
ることができないため、炉水の導電率異常が生じてか
ら、その原因を究明するにとどまっていた。すなわち、
予防措置がとれるような水質監視システムになっていな
かった。
As described above, in the prior art, when organic matter is present as an impurity in condensate, it is impossible to predict how the organic impurity will behave in the reactor. After the occurrence of an abnormality in the conductivity of water, it was only necessary to investigate the cause. That is,
There was no water quality monitoring system that could take precautionary measures.

【0005】本発明は、このような点に対処してなされ
たもので、復水中の有機不純物が炉内で分解し、炉水水
質にいかなる影響を及ぼすかを、復水採取分析系におい
て事前に検出・予測する一次系水質監視装置を提供する
ことを目的とする。 [発明の構成]
[0005] The present invention has been made in view of such a point, and in the condensate sampling and analysis system, it is determined in advance how condensate organic impurities are decomposed in the furnace and what effect on the reactor water quality. It is an object of the present invention to provide a primary water quality monitoring device for detecting and predicting water quality. [Configuration of the Invention]

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の一次
系水質監視装置は、沸騰水型原子炉の復水浄化系出口の
復水を採取する復水サンプリングラインと、この復水サ
ンプリングラインを介して採取した復水試料中の有機不
純物を分解する有機物分解処理部と、この有機物分解処
理部において生じた分解生成物を分析しその濃度を測定
する分解生成物分析部と、この分解生成物分析部の分析
結果に基づいて有機不純物による炉水の水質変化を予測
する分析データ処理部とを具備することを特徴とする。
That is, a primary water quality monitoring device of the present invention comprises a condensate sampling line for collecting condensate at an outlet of a condensate purification system of a boiling water reactor, and a condensate sampling line for collecting condensate. An organic matter decomposing section for decomposing organic impurities in the condensate sample collected through the reactor, a decomposition product analyzing section for analyzing decomposition products generated in the organic substance decomposing section and measuring the concentration thereof; An analysis data processor for predicting a change in reactor water quality due to organic impurities based on an analysis result of the analyzer is provided.

【0007】[0007]

【作用】復水中の有機不純物のうち、分子中にイオウや
窒素を含むものは炉内で分解し、硫酸や硝酸に変化する
ため導電率の上昇に寄与するが、分解前の有機物の状態
では、導電率に対する影響は小さく、また化合物として
一定していないため検出が難しい。
[Function] Of the organic impurities in the condensate, those containing sulfur or nitrogen in the molecules are decomposed in the furnace and converted into sulfuric acid or nitric acid, which contributes to an increase in electrical conductivity. The effect on conductivity is small, and it is difficult to detect the compound because it is not constant as a compound.

【0008】そこで、本発明では、復水浄化系出口の復
水を採取して炉内環境を模擬した有機物分解処理部に導
入し、ここで有機物を硫酸イオンや硝酸イオンなどの無
機イオンに変換する。無機イオンは有機物に比べて分析
が容易でかつ感度も高い。ついで、分解生成物分析部に
おいて有機物分解処理後の復水の導電率を測定し、イオ
ン種およびイオン濃度を測定する。分析データ処理部に
おいて、それらの測定値を、炉水量(原子炉水位)、復
水流量、炉水浄化系流量、炉水浄化系除去率といったプ
ロセス値とともにマスバランス式に入力し、炉水のイオ
ン濃度および導電率の変化を計算によって予測する。
Therefore, in the present invention, the condensate at the outlet of the condensate purification system is collected and introduced into an organic matter decomposition treatment section simulating the furnace environment, where the organic matter is converted into inorganic ions such as sulfate ions and nitrate ions. I do. Inorganic ions are easier to analyze and have higher sensitivity than organic substances. Then, the conductivity of the condensed water after the organic substance decomposition treatment is measured in the decomposition product analysis section, and the ion species and ion concentration are measured. In the analysis data processing unit, these measured values are input to the mass balance method together with process values such as reactor water volume (reactor water level), condensate flow rate, reactor water purification system flow rate, and reactor water purification system removal rate. Changes in ion concentration and conductivity are predicted by calculation.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1は、本発明の一実施例の一次系水質監
視装置をブロック図で示すものである。図において、一
次冷却水の流れを実線で示すように、原子炉1で発生し
た主蒸気はタービンに導かれ仕事をした後、復水器2に
おいて復水となり脱塩塔などからなる復水浄化系3を経
て復水ライン4にて再び原子炉1内に給水される。ま
た、炉水は炉水浄化系5を設けた炉水浄化系ループにて
再循環されている。復水ライン4には分岐してサンプリ
ングライン6が設けられており、このサンプリングライ
ン6に、紫外線照射装置を備えた有機物分解処理部7
と、導電率計8およびイオンクロマトグラフ装置9を備
えた分解生成物分析部10と,分解生成物分析部10の
分析結果から炉水のイオン濃度および導電率の変化を算
出する分析データ処理部11とが設置され、これらによ
り一次系水質監視装置が構成されている。
FIG. 1 is a block diagram showing a primary water quality monitoring device according to an embodiment of the present invention. In the figure, as shown by the solid line, the main steam generated in the reactor 1 is guided to the turbine and performs work, and then condensed in the condenser 2 to be condensed and purified by a desalination tower. Water is supplied again into the reactor 1 via the condensing line 4 via the system 3. Further, the reactor water is recirculated in a reactor water purification system loop provided with the reactor water purification system 5. The condensing line 4 is branched and provided with a sampling line 6. The sampling line 6 is provided with an organic matter decomposition processing unit 7 having an ultraviolet irradiation device.
A decomposition product analyzer 10 having a conductivity meter 8 and an ion chromatograph device 9, and an analysis data processor for calculating a change in ion concentration and conductivity of reactor water from the analysis result of the decomposition product analyzer 10. 11 are installed, and these constitute a primary water quality monitoring device.

【0011】このような構成において、復水浄化系3出
口の復水が試料としてサンプリングライン6により採取
され、まず有機物分解処理部7に導入される。この有機
物分解処理部7で復水中に存在する有機物は紫外線照射
により分解され、炭酸ガス、水および硫酸イオンや硝酸
イオンなどの無機イオンに変わる。例えば、カチオン樹
脂からの主溶出物である芳香族スルホン酸は、次のよう
な化学式 R−SO3 H→nCO2 ↑+mH2 O+H2 SO4 で示すように、硫酸に変換される。
In such a configuration, the condensate purification system 3
Mouth condensate sampled by sampling line 6
Then, it is first introduced into the organic matter decomposition processing section 7. This organic
Organic matter present in the condensed water in the material decomposition processing section 7 is irradiated with ultraviolet rays
Decomposed by carbon dioxide, water and sulfate ions and nitric acid
Turns into inorganic ions such as ions. For example, the cationic tree
Aromatic sulfonic acid, which is the main eluate from fat, is as follows:
Chemical formula R-SOThreeH → nCOTwo↑ + mHTwoO + HTwoSOFour  Is converted to sulfuric acid.

【0012】有機物の分解生成物である硫酸などの無機
イオン成分は、次の分解生成物分析部10においてイオ
ンクロマトグラフ装置9で容易に同定・定量され、導電
率も測定される。
An inorganic ion component such as sulfuric acid, which is a decomposition product of an organic substance, is easily identified and quantified by an ion chromatograph device 9 in a decomposition product analyzing section 10, and the conductivity is also measured.

【0013】これらの測定値は、分析データ処理部11
において、分解生成物が硫酸の場合、H+ の当量イオン
導電率λ+ =349.8 S.cm2 .mol-1および 1/2SO4 2-
当量イオン導電率λ- =80S.cm2 .mol-1からクロスチェ
ックされ、さらに原子炉水位12、復水流量13、炉水
浄化系流量14、炉水浄化系除去率といった値も導入さ
れて、次式により炉水硫酸濃度、炉水導電率が予測され
る。 Vo dC/ dt=C1 1 −CF2 +C2 2 ここで、Vo :炉水量 C :炉水硫酸濃度 C1 :復水中不純物濃度(硫酸換算) C2 :炉水浄化系出口硫酸濃度 F1 :復水流量 F2 :炉水浄化系流量 t :時間
These measured values are stored in the analysis data processing unit 11.
In the case where the decomposition product is sulfuric acid,+ Equivalent ion of
Conductivity λ+= 349.8 S.cmTwo .mol-1And 1 / 2SOFour 2-of
Equivalent ion conductivity λ-= 80S.cmTwo .mol-1From Crossche
Reactor water level 12, condensate flow rate 13, reactor water
Values such as purification system flow rate 14 and reactor water purification system removal rate were also introduced.
Then, the reactor water sulfuric acid concentration and reactor water conductivity are predicted by the following equations.
You. Vo dC / dt = C1F1-CFTwo+ CTwoFTwo  Where Vo: Furnace water amount C: Furnace water sulfuric acid concentration C1: Concentration of impurities in condensate (converted to sulfuric acid) CTwo: Sulfuric acid concentration at outlet of reactor water purification system F1: Condensate flow rate FTwo: Flow rate of reactor water purification system t : Time

【0014】例えば、1100MW級のBWRの復水(復水脱
塩塔出口)中より、上記分解生成物分析部11において
硫酸濃度10 ppbが検出された場合、炉水量 235トン、復
水流量6200トン/h、炉水浄化系流量 122トン/h、炉
水浄化系除去率 100%として、炉水硫酸濃度がどこまで
上昇するかを予測すると、上記マスバランスから、C=
510ppbとなる。これに当量イオン導電率を用いて炉水導
電率を計算すると、2.3 μS/cmに上昇することが分か
る。
For example, when a sulfuric acid concentration of 10 ppb is detected in the decomposition product analysis section 11 from the condensate of a 1100 MW BWR (outlet of the condensate desalination tower), a reactor water volume of 235 tons and a condensate flow rate of 6200 Ton / h, reactor water purification system flow rate 122 ton / h, reactor water purification system removal rate 100%, and assuming how much the sulfuric acid concentration in the reactor water increases, from the above mass balance, C =
It becomes 510ppb. When the reactor water conductivity is calculated using the equivalent ionic conductivity, it is found that the reactor water conductivity increases to 2.3 μS / cm.

【0015】なお、上記実施例では有機物分解手段とし
て紫外線照射装置を用いているが、この他に熱分解装置
を用いることもできる。また、分解生成物分析部10に
は、イオンクロマトグラフ装置9、導電率計8の他に必
要に応じてpH計、TOC計などを追加してもよい。
In the above embodiment, an ultraviolet irradiation device is used as the organic substance decomposing means. However, a thermal decomposition device may be used instead. Further, in addition to the ion chromatograph device 9 and the conductivity meter 8, a pH meter, a TOC meter, and the like may be added to the decomposition product analyzer 10 as necessary.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、有
機物の混入による炉水の水質変動を、それが起こる前に
復水系の水質監視から予測することができ、予防措置を
とることによってBWR一次冷却水の水質を常時高純度
に維持することが可能になる。
As described above, according to the present invention, fluctuations in the water quality of the reactor water due to the contamination of organic matter can be predicted from the water quality monitoring of the condensate system before it occurs, and by taking preventive measures, The quality of the BWR primary cooling water can be constantly maintained at a high purity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一次系水質監視装置の一実施例を示す
ブロック図である。
FIG. 1 is a block diagram showing one embodiment of a primary water quality monitoring device of the present invention.

【符号の説明】 1………原子炉 2………復水器 3………復水浄化系 4………復水ライン 5………炉水浄化系 6………サンプリングライン 10………分解生成物分析部 11………分析データ処理部 12………原子炉水位 13………復水流量 14………炉水浄化系流量[Description of Signs] 1 ... Reactor 2 ... Condenser 3 ... Condensate purification system 4 ... Condensation line 5 ... Reactor water purification system 6 ... Sampling line 10 ... Decomposition product analyzer 11 Analysis data processor 12 Reactor water level 13 Condensate flow rate 14 Reactor water purification system flow rate

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 沸騰水型原子炉の復水浄化系出口の復水
を採取する復水サンプリングラインと、この復水サンプ
リングラインを介して採取した復水試料中の有機不純物
を分解する有機物分解処理部と、この有機物分解処理部
において生じた分解生成物を分析しその濃度を測定する
分解生成物分析部と、この分解生成物分析部の分析結果
に基づいて前記有機不純物による炉水の水質変化を予測
する分析データ処理部とを具備することを特徴とする沸
騰水型原子炉の一次系水質監視装置。
1. A condensate sampling line for collecting condensate at the outlet of a condensate purification system of a boiling water reactor, and an organic matter decomposing unit for decomposing organic impurities in a condensate sample collected through the condensate sample line. Processing section, a decomposition product analysis section for analyzing the decomposition products generated in the organic substance decomposition processing section and measuring the concentration thereof, and water quality of the reactor water due to the organic impurities based on the analysis result of the decomposition product analysis section. An apparatus for monitoring primary water quality of a boiling water reactor, comprising: an analysis data processor for predicting a change.
JP3141548A 1991-06-13 1991-06-13 Primary water quality monitoring system for boiling water reactor Expired - Lifetime JP2865265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3141548A JP2865265B2 (en) 1991-06-13 1991-06-13 Primary water quality monitoring system for boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3141548A JP2865265B2 (en) 1991-06-13 1991-06-13 Primary water quality monitoring system for boiling water reactor

Publications (2)

Publication Number Publication Date
JPH04366796A JPH04366796A (en) 1992-12-18
JP2865265B2 true JP2865265B2 (en) 1999-03-08

Family

ID=15294530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3141548A Expired - Lifetime JP2865265B2 (en) 1991-06-13 1991-06-13 Primary water quality monitoring system for boiling water reactor

Country Status (1)

Country Link
JP (1) JP2865265B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618517A (en) * 1991-12-24 1994-01-25 Ebara Corp Water quality monitoring method
JP3341868B2 (en) * 1995-01-23 2002-11-05 株式会社堀場製作所 Purification method of blank water in water quality measurement device

Also Published As

Publication number Publication date
JPH04366796A (en) 1992-12-18

Similar Documents

Publication Publication Date Title
CN105424836A (en) Method for detecting content of ammonia in fly ash
KR101813362B1 (en) Method and system for monitoring boron concentration
CN108956815A (en) The test method of chloride ion content in a kind of sea sand
JPH04361196A (en) Testing method of soluble matter in nuclear reactor cooling water
JP2865265B2 (en) Primary water quality monitoring system for boiling water reactor
Lin Chemical behavior of radioiodine in BWR systems
CN103760273A (en) Analysis method for trace oxalic acid root in mother liquor of plutonium oxalate precipitation
CN112539978A (en) Method for obtaining absorption efficiency of nuclear island chimney C-14 sampling device of nuclear power station
SE462303B (en) PREPARED TEST PREPARATION BY ANALYSIS OF PARTICULATE SOCIETIES IN A FLOW OF WATER
JP3526172B2 (en) Water quality evaluation method and device
JP3794603B2 (en) Method for analyzing the amount of impurities eluted from ion exchange resin
JP4233179B2 (en) Determination of nitrogen in organic compounds by Kjeldahl method
JPH05188051A (en) Organic substance monitor system
KR20030033902A (en) Method for monitoring of impurities in water with high sensitivity and apparatus using the same
JP3144066B2 (en) Determination of boron in sulfuric acid
JP3144065B2 (en) Determination of boron in sulfuric acid
JPH0643156A (en) Method of testing water containing organic compound having resolution
JPS6350752A (en) On-line moisture analyzer
JP3824158B2 (en) Urea detection method
EP4376972A1 (en) Capillary electrophoresis analysis of lithium in brine
JPH07159583A (en) Water quality analyzing method and device therefor
JP4200109B2 (en) Condensate drainage concentration and solidification method for nuclear power generation facilities, etc.
JPH0310158A (en) Organic-material analyzing apparatus
Lund et al. The application of electrodeposition techniques to flameless atomic absorption spectrometry: Part III. The determination of cadmium in urine
Ryle Gamma Density Controls Extraction Column