JPH0310158A - Organic-material analyzing apparatus - Google Patents

Organic-material analyzing apparatus

Info

Publication number
JPH0310158A
JPH0310158A JP14610589A JP14610589A JPH0310158A JP H0310158 A JPH0310158 A JP H0310158A JP 14610589 A JP14610589 A JP 14610589A JP 14610589 A JP14610589 A JP 14610589A JP H0310158 A JPH0310158 A JP H0310158A
Authority
JP
Japan
Prior art keywords
liquid
ions
organic
ion chromatography
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14610589A
Other languages
Japanese (ja)
Other versions
JPH0752187B2 (en
Inventor
Nobuhiro Oda
信博 織田
Yoshihiko Obata
嘉修 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP1146105A priority Critical patent/JPH0752187B2/en
Publication of JPH0310158A publication Critical patent/JPH0310158A/en
Publication of JPH0752187B2 publication Critical patent/JPH0752187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform analysis highly sensitively and highly accurately by supplying a sample which is obtained by the thermal decomposition of sample liquid into an ion chromatography device. CONSTITUTION:Sample liquid is sent into a thermal decomposing device from tank 2 for the sample liquid through a liquid feeding pipe 3 with a high pressure pump 4. Thermal decomposition is performed under high temperature and high pressure. Then, the organic material in the sample liquid is decomposed with dissolved oxygen, and carbon dioxide gas is generated. Organic ions are generated from the organic material containing inorganic elements. The thermally decomposed liquid is taken out of an taking-out pipe 6 through a back pressure valve 7. The liquid is cooled in a cooling tank 8 and sent into an ion chromatography device 11 through a linking pipe 10. Here, the ion chromatography device 11 has an enriching column 15 and a separating column 20. Dialysis is performed through a strong-acid cation exchange film in a suppressor 21. Various kinds of the ions which are separated in the column 20 are sequentially made to flow out, and the conductivity is detected by a detector 22. Thus, the amount of the ions and the amount of the organic material containing the original inorganic elements can be computed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超純水、原子力発電用ボイラ給水等の有機
物を含む被検液中の有機物を高感度で分析するための有
機物分析装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an organic substance analyzer for highly sensitively analyzing organic substances in a sample liquid containing organic substances such as ultrapure water or boiler feed water for nuclear power generation. It is something.

〔従来の技術〕[Conventional technology]

半導体製造用の超純水や、原子力発電用ボイラ給水など
の高純度水に、無機元素を含む有機物が混入すると、半
導体製造用超純水の場合、ウニ八−にじみが発生し、ま
た原子力発電用ボイラ給水の場合、ボイラ(スチームジ
ェネレータ)内でCQイオンやS04イオン等が生じ、
錆の発生、孔食の原因となる。
If organic substances containing inorganic elements are mixed into ultrapure water for semiconductor manufacturing or boiler feed water for nuclear power generation, smudges may occur in the ultrapure water for semiconductor manufacturing, and In the case of boiler water supply, CQ ions, S04 ions, etc. are generated in the boiler (steam generator),
It causes rust and pitting corrosion.

従来、前記高純度水に含まれる有機物の分析方法として
は、TOC(全有機性炭素)を測定する方法がある。こ
の方法は被検液に過硫酸ナトリウム等の過酸化物を添加
して加熱分解するか、紫外線を照射して分解し、発生し
た炭酸ガスを赤外光の吸収により測定するか、あるいは
純水に吸収させて導電率の変化からTOCを測定してい
る。しかしながら、このような分析方法では、検出感度
が悪く、50〜I PPbが限度であり、 またハロゲ
ンその他の無機元素が有機物に含まれる場合に、これら
の元素を分析することができない。このためしみ発生。
Conventionally, as a method for analyzing organic substances contained in the high-purity water, there is a method of measuring TOC (total organic carbon). This method involves adding a peroxide such as sodium persulfate to the sample solution and decomposing it by heating, irradiating it with ultraviolet rays to decompose it, and measuring the generated carbon dioxide gas by absorption of infrared light, or using pure water. The TOC is measured from the change in conductivity. However, such analysis methods have poor detection sensitivity and are limited to 50 to IPPb, and cannot analyze halogens and other inorganic elements when they are contained in organic matter. This causes stains.

スチームジェネレータの孔食に対する危険の予知ができ
ない。
The danger of pitting corrosion in the steam generator cannot be predicted.

また上記高純度水の水質は一般に比抵抗により評価され
ているが、この方法ではイオン性の物質が測定の対象と
なり、前記障害の原因となる非イオン性の有機物が被検
液中に含まれる場合、このような有機物は水質として評
価することができない。
In addition, the quality of the above-mentioned high-purity water is generally evaluated by resistivity, but in this method, ionic substances are measured, and non-ionic organic substances that cause the above-mentioned disturbances are included in the test liquid. In such cases, such organic matter cannot be evaluated as water quality.

一般に、非イオン性の有機ハロゲン化合物、有機イオウ
化合物などの無機元素を含む非イオン性の有機物はガス
グロマトグラフィで分析されているが、CQ用、S用、
N用などのそれぞれ別の検出器が必要であり、操作が煩
雑であった。またガス状にならないものは測定できない
し、物質によっては、感度が異なるため、同定しないと
定量できないなどの問題点があった。
Generally, nonionic organic substances containing inorganic elements such as nonionic organic halogen compounds and organic sulfur compounds are analyzed by gas chromatography.
Separate detectors, such as for N, were required, and the operation was complicated. In addition, it is impossible to measure substances that do not become gaseous, and since the sensitivity varies depending on the substance, there are problems in that it cannot be quantified unless it is identified.

C発明が解決しようとする課題) 本発明の目的は、上記問題点を解決するため、無機元素
を含む非イオン性の有機物が微盆含まれる場合でも、簡
単な操作により、高感度かつ高精度で分析することがで
きる有機物分析装置を提供することである。
Problem to be Solved by the Invention) The purpose of the present invention is to solve the above-mentioned problems by providing high-sensitivity and high-precision processing using simple operations even when non-ionic organic substances including inorganic elements are included. It is an object of the present invention to provide an organic substance analyzer that can perform analysis using the following methods.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、被検液中の有機物を高温高圧下に熱分解する
熱分解装置と、この熱分解装置から得られる熱分解液を
導入して、前記有機物の分解により生成したイオンを分
析するイオンクロマトグラフィとを備えたことを特徴と
する有機物分析装置である。
The present invention provides a pyrolysis device that thermally decomposes organic matter in a sample liquid under high temperature and high pressure, and an ion system that introduces a pyrolysis liquid obtained from this pyrolysis device and analyzes ions generated by the decomposition of the organic matter. This is an organic substance analysis device characterized by being equipped with chromatography.

本発明において分析を行う被検液としては、有機物を含
む水等の液体であるが、前記半導体製造用超純水や、原
子力発電用ボイラ給水などの、微量の有機物を含む高純
度水が適している。
The test liquid to be analyzed in the present invention is a liquid such as water containing organic matter, but highly purified water containing trace amounts of organic matter, such as the ultrapure water for semiconductor manufacturing or boiler feed water for nuclear power generation, is suitable. ing.

分析対象となる有機物としては、ハロゲン、イオウ、窒
素、リン等の無機元素を含む非イオン性の有機物があげ
られるが、イオン性の有機物であってもよく、またこれ
らに無機元素を含まない有獲物が混在していてもよい、
このような有機化合物としては、トリハロメタン等の有
機ハロゲン化合物、ポリスルホン等の有機イオウ化合物
、ニトロベンゼン等の有機窒素化合物、フェニルホスホ
ン酸ジメチルエステル等の有機リン化合物などがあげら
れる。
Examples of organic substances to be analyzed include nonionic organic substances containing inorganic elements such as halogen, sulfur, nitrogen, and phosphorus, but they may also be ionic organic substances, and organic substances that do not contain inorganic elements may be used. Prey may be mixed,
Examples of such organic compounds include organic halogen compounds such as trihalomethane, organic sulfur compounds such as polysulfone, organic nitrogen compounds such as nitrobenzene, and organic phosphorus compounds such as phenylphosphonic acid dimethyl ester.

熱分解装置における有機物の分解温度は100〜SOO
℃、好ましくは300〜400℃、圧力は1〜400k
g/aJG、好ましくは80〜250kg/a#G程度
が好ましい。
The decomposition temperature of organic matter in the pyrolysis equipment is 100~SOO
℃, preferably 300-400℃, pressure 1-400k
g/aJG, preferably about 80 to 250 kg/a#G.

熱分解には、白金や酸化ニッケル等の触媒を用いてもよ
い。
A catalyst such as platinum or nickel oxide may be used for thermal decomposition.

イオンクロマトグラフィは、熱分解により生成するイオ
ンに対する吸着力を有するイオン交換体を充填した分離
カラムを用いる。
Ion chromatography uses a separation column filled with an ion exchanger that has adsorption power for ions generated by thermal decomposition.

〔作 用〕[For production]

本発明の有機物分析装置においては、まず超純水、原子
力発電用ボイラ給水等の被検液を熱分解装置に供給して
、高温、高圧下で熱分解を行うと、被検液に含まれてい
る有機物が被検液中の溶存酸素等により分解され、CQ
イオン、S04イオン、NO。
In the organic substance analyzer of the present invention, a test liquid such as ultrapure water or nuclear power boiler feed water is first supplied to a pyrolysis device and thermally decomposed at high temperature and high pressure. The organic matter in the test liquid is decomposed by dissolved oxygen, etc. in the test liquid, and the CQ
ion, S04 ion, NO.

イオン、PO,イオン等のイオンが生成する8次に被検
液を冷却してイオンクロマトグラフィ分析用のサンプル
を得る。上記熱分解においては、ガス状になりにくい化
合物や、ハロゲン、イオウ、窒素等の無機元素を含む有
機物も添加剤等を用いることなく分解できる。
The 8th step sample liquid in which ions such as ions, PO, and ions are generated is cooled to obtain a sample for ion chromatography analysis. In the above thermal decomposition, compounds that are difficult to become gaseous and organic substances containing inorganic elements such as halogen, sulfur, and nitrogen can also be decomposed without using additives or the like.

このようにして得られたサンプルをイオンクロマトグラ
フィに供給して分析を行うことにより、被検液中の有機
物の熱分解により生成したイオンの測定が行われる。そ
して測定されたイオン量から熱分解前の有機物の量が算
出される。
By supplying the sample thus obtained to ion chromatography and performing analysis, ions generated by thermal decomposition of organic matter in the test liquid are measured. Then, the amount of organic matter before thermal decomposition is calculated from the measured ion amount.

〔実施例〕〔Example〕

以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は実施例の有機物分析装置の系統図である。FIG. 1 is a system diagram of an organic substance analyzer according to an embodiment.

図において、1は熱分解装置で、被検液貯槽2から給液
管3を通して高圧で送液する高圧ポンプ4と、高圧ポン
プ4により送液される被検液を高温高圧下に熱分解する
熱分解器5と、熱分解器5から熱分解液を取出す取出管
6に設けられた背圧弁7および冷却槽8とからなり、連
絡管10によりイオンクロマトグラフィ11に連絡して
いる。
In the figure, 1 is a pyrolysis device, which includes a high-pressure pump 4 that sends liquid at high pressure from a test liquid storage tank 2 through a liquid supply pipe 3, and a pyrolysis device that thermally decomposes the test liquid sent by the high-pressure pump 4 under high temperature and high pressure. It consists of a pyrolyzer 5, a back pressure valve 7 provided in a take-out pipe 6 for taking out pyrolysis liquid from the pyrolyzer 5, and a cooling tank 8, and is connected to an ion chromatography 11 through a connecting pipe 10.

イオンクロマトグラフィ11は、2個のサンプリング流
路a、bを有するサンプルインジェクタ12と、サンプ
ルインジェクタ12の一方のサンプリング流路aに接続
する給液管13および排液管14と、給液管13および
排液管14に接続する濃縮カラム15と、サンプリング
インジェクタ12の他方のサンプリング流路すに接続す
る給液管16および送液管17と、送液管17に設けら
れた分離溶媒貯槽18および定流量ポンプ19と、送液
管17にシリーズに設けられた分離カラム20、サプレ
ッサ21、検出器22と、検出器22に接続する記録器
23および排液管24とを有する。25.26.27は
弁である。濃縮カラム15には交換容量の大きい陰イオ
ン交換体、分離カラム20には交換容量の小さい陰イオ
ン交換体が充填されている。サプレッサ21は強酸性陽
イオン交換膜により透析が行われるようになっており、
検出器22は電導塵を検出するようになっている。
The ion chromatography 11 includes a sample injector 12 having two sampling channels a and b, a liquid supply pipe 13 and a drain pipe 14 connected to one sampling channel a of the sample injector 12, and a liquid supply pipe 13 and a liquid discharge pipe 14. A concentration column 15 connected to the drain pipe 14, a liquid supply pipe 16 and a liquid sending pipe 17 connected to the other sampling flow path of the sampling injector 12, and a separation solvent storage tank 18 and a liquid supply pipe 17 provided in the liquid sending pipe 17. It has a flow rate pump 19, a separation column 20 provided in series on the liquid sending pipe 17, a suppressor 21, a detector 22, a recorder 23 connected to the detector 22, and a drain pipe 24. 25.26.27 are valves. The concentration column 15 is filled with an anion exchanger with a large exchange capacity, and the separation column 20 is filled with an anion exchanger with a small exchange capacity. The suppressor 21 is designed to perform dialysis using a strongly acidic cation exchange membrane.
The detector 22 is designed to detect conductive dust.

上記のように構成された有機物分析装置による分析操作
は次の通りである。
The analysis operation using the organic matter analyzer configured as described above is as follows.

まず熱分解装置1に被検液貯槽2から被検液を送液し、
被検液中の有機物を熱分解する。このとき給液管3から
高圧ポンプ4により熱分解器5に送液し、ここで高温、
高圧下に熱分解を行うと、被検液中の有機物が溶存酸素
により分解されて炭酸ガスが発生し、無機元素を含有す
る有機物からは、有機ハロゲン化合物の場合CQイオン
、有機イオウ化合物の場合SO4イオン、有機窒素化合
物の場合NO,イオン、有機リン化合物の場合P04イ
オンのように無機イオンが生成する。熱分解液は取出管
6から背圧弁7を通して取出し、冷却槽8で冷却して連
絡管10からイオンクロマトグラフィ11に送液する。
First, the test liquid is sent from the test liquid storage tank 2 to the pyrolysis device 1,
Thermal decomposition of organic matter in the test liquid. At this time, the liquid is sent from the liquid supply pipe 3 to the pyrolyzer 5 by the high-pressure pump 4, where it is heated to a high temperature.
When thermal decomposition is carried out under high pressure, organic substances in the test liquid are decomposed by dissolved oxygen and carbon dioxide gas is generated, and from organic substances containing inorganic elements, CQ ions in the case of organic halogen compounds and CQ ions in the case of organic sulfur compounds. Inorganic ions are generated such as SO4 ions, NO ions in the case of organic nitrogen compounds, and P04 ions in the case of organic phosphorus compounds. The pyrolysis liquid is taken out from the take-out pipe 6 through the back pressure valve 7, cooled in the cooling tank 8, and sent to the ion chromatography 11 through the communication pipe 10.

イオンクロマトグラフィ11では、熱分解液中のイオン
濃度が高い場合は、弁25〜27を開いてそのまま給液
管13からサンプルインジェクタ12に給液し、サンプ
リング流路aにサンプリングする。
In the ion chromatography 11, when the ion concentration in the pyrolysis liquid is high, the valves 25 to 27 are opened and the liquid is directly supplied from the liquid supply pipe 13 to the sample injector 12, and sampled into the sampling channel a.

サンプリング後サンプリング流路aを180度切換えて
、分離溶媒貯槽18から定流量ポンプ19により給液管
16を通して分離溶媒を給液し、サンプリング流路a中
のサンプルを押出して、送液管17がら分離カラム20
にインジェクトする。その後分離溶媒の送液を継続して
分離を行うと、−サンプル中の各イオンはイオン交換体
との親和力の差により分離される。熱分解液中のイオン
濃度が低い場合は、弁26を閉じて濃縮カラム15に通
液してイオンを濃縮し、サンプルインジェクタの流路を
90度切換えて流路c、dにより分離溶媒貯槽18から
分離溶媒を濃縮カラム15、分離カラム20に直列に給
液し、分離を行う。
After sampling, the sampling flow path a is switched 180 degrees, and the separation solvent is supplied from the separation solvent storage tank 18 through the liquid supply pipe 16 by the constant flow pump 19, and the sample in the sampling flow path a is pushed out and removed from the liquid supply pipe 17. Separation column 20
inject into. After that, when the separation solvent is continued to be fed and separation is performed, each ion in the sample is separated due to the difference in affinity with the ion exchanger. If the ion concentration in the pyrolysis solution is low, close the valve 26 and pass the solution through the concentration column 15 to concentrate the ions, then switch the flow path of the sample injector by 90 degrees and use the flow paths c and d to connect the separation solvent storage tank 18. The separation solvent is supplied in series to the concentration column 15 and the separation column 20 for separation.

サプレッサ21では、クロマトグラムのベースラインを
高くするNaイオン等を除去して、ベースラインを下げ
るとともに、S/N比を向上させる。
The suppressor 21 removes Na ions and the like that raise the baseline of the chromatogram, thereby lowering the baseline and improving the S/N ratio.

サプレッサ21を出た分離液は検出器22で経時的に電
導塵を検出して5記録器23に記録する。
A detector 22 detects electrically conductive dust over time in the separated liquid that has exited the suppressor 21, and the detected conductive dust is recorded in a recorder 23.

こうして分離カラム20で分離された各種イオンは順次
流出して検出器22で検出され、検出型導度からイオン
量および元の無機元素含有有機物量が算出される。
The various ions thus separated by the separation column 20 sequentially flow out and are detected by the detector 22, and the amount of ions and the amount of original organic matter containing inorganic elements are calculated from the detection type conductivity.

上記の分析は有機物を分解してイオンとし、そのイオン
量をクロマトグラフィにより分析するので、分析操作が
簡単で、高感度で分析を行うことができる。特に分解に
際して酸化剤等の添加剤を使用しなくてもよいから、妨
害イオンは少なく、また濃縮カラム15による濃縮が可
能であるため、分析精度は高くなる。
In the above analysis, organic matter is decomposed into ions and the amount of ions is analyzed by chromatography, so the analysis operation is simple and the analysis can be performed with high sensitivity. In particular, since there is no need to use additives such as oxidizing agents during decomposition, there are fewer interfering ions, and since concentration using the concentration column 15 is possible, the accuracy of analysis is increased.

なお、上記実施例において、背圧弁7の代りに背圧ルー
プ等の他の手段を用いてもよい。また濃縮カラム15は
必ずしも必要ではなく、検出器22の検出方法も比色等
の方法であってもよい。
In the above embodiment, other means such as a back pressure loop may be used instead of the back pressure valve 7. Further, the concentration column 15 is not necessarily necessary, and the detection method of the detector 22 may also be a method such as colorimetry.

試験例 °第1図の有機物分析装置を使用し、有機物を含まない
超純水に 溶かしたものを加熱分解し、イオンクロマトグラフィに
て分析した。そのクロマトグラムを第2図に示した。
Test Example ° Using the organic matter analyzer shown in Figure 1, a solution dissolved in ultrapure water containing no organic matter was thermally decomposed and analyzed by ion chromatography. The chromatogram is shown in FIG.

なお、有機物分析装置の機器仕様等は、次のとおりであ
る。
The specifications of the organic matter analyzer are as follows.

(1)熱分解装置 圧 力   約80kg/a#G 温度 約300℃ 流量 約2.5+sQ/win (2)イオンクロ7トグラフイ DIONEX社製型弐
 社製型 力ラム   濃縮カラム  TAC−1ガードカラム 
HPIC−AG4A 分離カラム  1(PIC−AS4A サプレッサー AMMS (3)分析条件 濃縮カラムへのサンプル注入量 約70mM(=2.5mfl/分×28分)溶離液  
 0.75mM−NaHCO3+ 2.0mM−Na2
ColI溶離液流量 約1.4mfi/分 第2図から従・来TOCとして一括して測定されていた
無機元素を含む有機物は、熱分解により生成したイオン
として測定できることがわかる。
(1) Thermal decomposition equipment pressure: Approximately 80 kg/a#G Temperature: Approximately 300°C Flow rate: Approximately 2.5+sQ/win (2) Ion chromatography 7 Type 2 manufactured by DIONEX Co., Ltd. Model 2 Condensation column TAC-1 guard column
HPIC-AG4A Separation Column 1 (PIC-AS4A Suppressor AMMS (3) Analysis Conditions Sample injection volume to concentration column: approx. 70mM (=2.5mfl/min x 28min) Eluent
0.75mM-NaHCO3+ 2.0mM-Na2
ColI eluent flow rate: approximately 1.4 mfi/min From FIG. 2, it can be seen that organic substances containing inorganic elements, which were previously measured collectively as TOC, can be measured as ions generated by thermal decomposition.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、被検液中の有機物を熱分解した後、イ
オンクロマトグラフィにより分析を行うようにしたので
、無機元素を含む非イオン性の有機物が微量含まれる場
合でも、簡単な操作により。
According to the present invention, the analysis is performed by ion chromatography after thermally decomposing the organic matter in the test liquid, so even when a small amount of nonionic organic matter including inorganic elements is contained, it can be easily analyzed.

高感度かつ高精度で有機物の分析を行うことができる。Organic matter can be analyzed with high sensitivity and precision.

このため、半導体製造におけるウェハーのしみ発生や、
スチームジェネレーターの孔食に対する危険の予知がで
きる。
For this reason, stains on wafers in semiconductor manufacturing,
It is possible to predict the danger of pitting corrosion in steam generators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の有機物分析装置を示す系統図、第2図
は試験例の、クロマトグラムである。 図中、1は熱分解装置、2は被検液貯槽、5は熱分解器
、8は冷却槽、11はイオンクロマトグラフィ、12は
サンプルインジェクタ、 15は濃縮カラム、18は分
離溶媒貯槽、20は分離カラム、21はサプレッサ、2
2は検出器、23は記録器である。
FIG. 1 is a system diagram showing an organic substance analyzer according to an example, and FIG. 2 is a chromatogram of a test example. In the figure, 1 is a pyrolysis device, 2 is a sample liquid storage tank, 5 is a pyrolyzer, 8 is a cooling tank, 11 is an ion chromatography machine, 12 is a sample injector, 15 is a concentration column, 18 is a separation solvent storage tank, and 20 is a Separation column, 21 is a suppressor, 2
2 is a detector, and 23 is a recorder.

Claims (1)

【特許請求の範囲】[Claims] (1)被検液中の有機物を高温高圧下に熱分解する熱分
解装置と、この熱分解装置から得られる熱分解液を導入
して、前記有機物の分解により生成したイオンを分析す
るイオンクロマトグラフィとを備えたことを特徴とする
有機物分析装置。
(1) Ion chromatography, which introduces a thermal decomposition device that thermally decomposes organic matter in a test liquid under high temperature and high pressure, and the thermal decomposition liquid obtained from this thermal decomposition device, and analyzes the ions generated by the decomposition of the organic matter. An organic matter analyzer characterized by comprising:
JP1146105A 1989-06-08 1989-06-08 Organic substance analyzer Expired - Fee Related JPH0752187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1146105A JPH0752187B2 (en) 1989-06-08 1989-06-08 Organic substance analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1146105A JPH0752187B2 (en) 1989-06-08 1989-06-08 Organic substance analyzer

Publications (2)

Publication Number Publication Date
JPH0310158A true JPH0310158A (en) 1991-01-17
JPH0752187B2 JPH0752187B2 (en) 1995-06-05

Family

ID=15400264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1146105A Expired - Fee Related JPH0752187B2 (en) 1989-06-08 1989-06-08 Organic substance analyzer

Country Status (1)

Country Link
JP (1) JPH0752187B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557664U (en) * 1992-01-09 1993-07-30 栗田工業株式会社 Trace organic matter analyzer
KR100445521B1 (en) * 2000-08-02 2004-08-21 토소가부시키가이샤 Ion chromatography system for exchanging an ion exchanger in a suppressor and a suppressor means
WO2008133325A1 (en) * 2007-04-26 2008-11-06 Sumitomo Electric Industries, Ltd. Method of analyzing inorganic phosphorus in organic material and apparatus therefor
JP2008275327A (en) * 2007-04-25 2008-11-13 Mitsubishi Chemical Analytech Co Ltd Analyzer for nitrogen, sulfur and/or halogen in sample

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866497A (en) * 1971-12-10 1973-09-12
JPS6010170A (en) * 1983-06-30 1985-01-19 Hitachi Ltd Method and apparatus for measuring concentration of ammonia and hydrogen peroxide in ammonia-oriented hydrogen peroxide liquid
JPS61134664A (en) * 1984-12-05 1986-06-21 Toyoda Gosei Co Ltd Holding body for pyrolysis gas chromatography
JPH0287062A (en) * 1988-09-22 1990-03-27 Shimadzu Corp Analyzing method of element in resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866497A (en) * 1971-12-10 1973-09-12
JPS6010170A (en) * 1983-06-30 1985-01-19 Hitachi Ltd Method and apparatus for measuring concentration of ammonia and hydrogen peroxide in ammonia-oriented hydrogen peroxide liquid
JPS61134664A (en) * 1984-12-05 1986-06-21 Toyoda Gosei Co Ltd Holding body for pyrolysis gas chromatography
JPH0287062A (en) * 1988-09-22 1990-03-27 Shimadzu Corp Analyzing method of element in resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557664U (en) * 1992-01-09 1993-07-30 栗田工業株式会社 Trace organic matter analyzer
KR100445521B1 (en) * 2000-08-02 2004-08-21 토소가부시키가이샤 Ion chromatography system for exchanging an ion exchanger in a suppressor and a suppressor means
JP2008275327A (en) * 2007-04-25 2008-11-13 Mitsubishi Chemical Analytech Co Ltd Analyzer for nitrogen, sulfur and/or halogen in sample
WO2008133325A1 (en) * 2007-04-26 2008-11-06 Sumitomo Electric Industries, Ltd. Method of analyzing inorganic phosphorus in organic material and apparatus therefor

Also Published As

Publication number Publication date
JPH0752187B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
US5443991A (en) Method for the determination of dissolved carbon in water
Legrand et al. Field investigation of major and minor ions along Summit (Central Greenland) ice cores by ion chromatography
US5798271A (en) Apparatus for the measurement of dissolved carbon in deionized water
US5032721A (en) Acid gas monitor based on ion mobility spectrometry
US5095206A (en) Method and apparatus for improving the specificity of an ion mobility spectrometer utillizing sulfur dioxide dopant chemistry
EP0871877A1 (en) Method and apparatus for the measurement of dissolved carbon
JP2002048776A (en) Performance evaluation method and device of anion- exchange resin and condensate demineralizer
US6526811B2 (en) Analytical apparatus for measurement of low concentration constituent, method of measurement and calibration using the same
CA1129325A (en) Analytical method and apparatus for the determination of total nitrogen contents in aqueous systems
US6228325B1 (en) Methods and apparatus for measurement of the carbon and heteroorganic content of water including single-cell instrumentation mode for same
EP0777120B1 (en) Apparatus for detecting anions in water
JPH04361196A (en) Testing method of soluble matter in nuclear reactor cooling water
CN114910518A (en) Method and system for detecting content of dissolved carbon dioxide in water vapor
JPH0310158A (en) Organic-material analyzing apparatus
US6804989B2 (en) Method and apparatus for measuring ultralow water permeation
KR101495005B1 (en) Method and System for Detecting Trace Boron for SG Tube Leakage On-line Monitoring in Mixed Solution
US5073502A (en) Method and apparatus for analyzing total organic halogens
CN113899822A (en) Method for determining purity of lithium hexafluorophosphate based on ion chromatography technology
Liu et al. Determination of trace-level anions in high-purity water samples by ion chromatography with an automated on-line eluent generation system
KR101441610B1 (en) Method for evaluating of anion exchange resin performance and Online performance evaluation instrument
US3704097A (en) Total mercury monitor
WO2000057165A1 (en) Method and apparatus for detecting negative ion in water
Bezrukov et al. Large-scale conductance fluctuations in solutions of strong electrolytes
EP0543608B1 (en) Automated analyzer for monitoring the chloride content of a process stream
JPH07128323A (en) Method for measuring and controlling organic impurities

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees