JPH07128323A - Method for measuring and controlling organic impurities - Google Patents

Method for measuring and controlling organic impurities

Info

Publication number
JPH07128323A
JPH07128323A JP5276440A JP27644093A JPH07128323A JP H07128323 A JPH07128323 A JP H07128323A JP 5276440 A JP5276440 A JP 5276440A JP 27644093 A JP27644093 A JP 27644093A JP H07128323 A JPH07128323 A JP H07128323A
Authority
JP
Japan
Prior art keywords
impurities
organic
organic impurities
water
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5276440A
Other languages
Japanese (ja)
Inventor
Motohiro Aizawa
元浩 会沢
Hiroo Igarashi
裕夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP5276440A priority Critical patent/JPH07128323A/en
Publication of JPH07128323A publication Critical patent/JPH07128323A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To prevent impurities from being mixed by decomposing organic impurities into organic carbon and inorganic ions, measuring the concentrations thereof simultaneously, and then estimating the type of impurities based on the measurements. CONSTITUTION:A sample containing impurities eluded from an anion-exchange resin and a cation-exchange resin are introduced to an organic compound decomposing section where the impurities are decomposed into organic carbon and other decomposition products. In this regard, wet oxidation or ultraviolet irradiation is employed and one kind of hydrogen peroxide, permanganate, chromate, or a combination thereof is selected as an oxidizing agent. The impurities eluted from the ion exchange resin produce ions of sulfuric, nitric, and nitrous and carbon dioxide. The carbon dioxide is purged with nitrogen, for example, and separated and then the concentration of organic carbon is measured by an infrared analyzer. Subsequently, inorganic ion impurities are concentrated from the remaining sample liquid and classified through elution before being identified by ion chromatography. The type of impurity is estimated based on the ratio between the organic carbon concentration and the inorganic ion impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力発電プラントの
冷却水あるいはLSIを製造する半導体工場の洗浄水等
に使われる超純水中の有機不純物の測定および管理方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring and managing organic impurities in ultrapure water used as cooling water for nuclear power plants or cleaning water for semiconductor factories that manufacture LSI.

【0002】[0002]

【従来の技術】原子力発電プラント及びLSIを製造す
る半導体工場では超純水が大量に製造され使用されてい
る。原子力発電プラントでは原子炉材料を腐食現象から
守るために、冷却水中の不純物濃度を極力低く維持する
運転管理を行っている。一方、半導体工場では超LSI
の信頼性を上げるために洗浄水の純度を維持する必要性
が生じている。これらの超純水を使用する設備の水質管
理は、水の清浄度が維持されていることの確認ばかりで
はなく、極微量の不純物が混入した場合にも混入源を究
明し、不純物の混入を防止する適切な処置を迅速に行う
ことが重要な役割となっている。
2. Description of the Related Art A large amount of ultrapure water is manufactured and used in a nuclear power plant and a semiconductor factory for manufacturing LSI. In nuclear power plants, operation control is performed to keep the impurity concentration in the cooling water as low as possible in order to protect the reactor materials from corrosion phenomena. On the other hand, in semiconductor factories, VLSI
There is a need to maintain the purity of the wash water in order to increase the reliability of Water quality control of equipment that uses these ultrapure water is not only to confirm that the cleanliness of water is maintained, but also to investigate the source of contamination even when a trace amount of impurities is mixed, and It is an important role to promptly take appropriate measures to prevent.

【0003】図1は、沸騰水型原子力発電プラントのプ
ラント構成を示す。原子炉1内に装荷した原子燃料の燃
焼によって発生する蒸気は主蒸気配管2を通って高圧タ
ービン3および低圧タービン4に導かれ仕事を行う。仕
事が終った蒸気は復水器5で再凝縮され、復水配管6を
通り復水ポンプ7,復水ろ過装置8,復水脱塩器9およ
び復水昇圧ポンプ10を経由して給水系に導かれる。凝
縮水は、イオン交換樹脂を用いた復水ろ過装置8および
復水脱塩器9で浄化される。さらに冷却水は、給水系で
は給水配管11および給水ポンプ12を通り、給水加熱
器13で昇温した後、再び、原子炉1に戻る。一方、原
子炉水は再循環ポンプ14および再循環系配管15で構
成される二系列の再循環系を循環する。また原子炉水の
一部は原子炉浄化系ポンプ16および原子炉浄化系配管
17を通って原子炉浄化設備18に導かれ浄化される。
その後、給水系配管11に合流して原子炉1に戻る。そ
の間、原子炉浄化設備ろ過脱塩装置18は粉末イオン交
換樹脂を使用していることにより、原子炉水を60℃以
下に冷却する必要性から、原子炉浄化系熱交換器19で
冷却している。一方、プラントの冷却水は復水貯蔵タン
ク20に蓄えられ、復水器5および原子炉1に供給され
る。また、復水貯蔵タンク20には工業用水を濾過脱塩
処理した供給水21およびプラント内の冷却水を回収,
浄化する廃棄物処理系からの回収水22が供給される。
FIG. 1 shows a plant configuration of a boiling water nuclear power plant. The steam generated by the combustion of the nuclear fuel loaded in the reactor 1 is guided to the high-pressure turbine 3 and the low-pressure turbine 4 through the main steam pipe 2 to perform work. The steam after the work is re-condensed in the condenser 5, passes through the condensate pipe 6, the condensate pump 7, the condensate filtering device 8, the condensate demineralizer 9, and the condensate booster pump 10 to supply water. Be led to. The condensed water is purified by the condensate filtering device 8 and the condensate demineralizer 9 using the ion exchange resin. Further, the cooling water passes through the water supply pipe 11 and the water supply pump 12 in the water supply system, is heated by the water supply heater 13, and then returns to the reactor 1 again. On the other hand, the reactor water circulates in two series of recirculation systems, which are composed of the recirculation pump 14 and the recirculation system pipe 15. Further, a part of the reactor water is guided to the reactor cleaning equipment 18 through the reactor cleaning system pump 16 and the reactor cleaning system piping 17 and purified.
Then, it joins the water supply system pipe 11 and returns to the reactor 1. During that time, since the reactor decontamination equipment filter desalination device 18 uses the powder ion exchange resin, it is necessary to cool the reactor water to 60 ° C. or below. There is. On the other hand, the cooling water of the plant is stored in the condensate storage tank 20 and supplied to the condenser 5 and the reactor 1. The condensate storage tank 20 collects the supply water 21 obtained by filtering and desalting industrial water and the cooling water in the plant,
Recovered water 22 from the waste treatment system to be purified is supplied.

【0004】給水から流入する不純物は、原子炉内で沸
騰濃縮されるが、原子炉水の一部は原子炉浄化系のろ過
脱塩装置で浄化されることにより、原子炉水が清浄に保
たれる。一方、有機不純物は主に復水貯蔵水からの供給
水、あるいは定期点検作業の際に使用される有機溶剤あ
るいは復水脱塩装置あるいは原子炉浄化装置に用いてい
るイオン交換樹脂の劣化等により原子炉内に流入する可
能性を持つ。
Impurities flowing in from the feed water are boiled and concentrated in the reactor, but a part of the reactor water is purified by a filter desalting device of the reactor cleaning system to keep the reactor water clean. Be drunk On the other hand, organic impurities are mainly due to the supply water from the condensate storage water, or the deterioration of the ion exchange resin used in the organic solvent or condensate desalination equipment or reactor purification equipment used during the periodic inspection work. It may flow into the reactor.

【0005】しかし、有機不純物は発生源により種々の
化学種が想定されることおよび有機不純物は熱,放射線
等により容易に分解し化学形態を変える性質を持つた
め、個々の不純物を直接測定することが困難である。従
って、現状では有機不純物の有機炭素を二酸化炭素まで
分解し、その有機炭素濃度(以下TOC;Total Organic
Carbonと示す)をもって有機不純物濃度の指標としてい
る。(例えば、坂本勉、化学技術誌MOL、昭和63年
1月号,73,(1987);特開昭60−159642
号;特開平3−21866号公報)。
However, since various chemical species of organic impurities are assumed depending on the generation source and the organic impurities have the property of being easily decomposed by heat, radiation, etc. and changing their chemical forms, individual impurities should be directly measured. Is difficult. Therefore, under the present circumstances, organic carbon, which is an organic impurity, is decomposed into carbon dioxide, and the organic carbon concentration (TOC; Total Organic)
(Indicated as Carbon) is used as an index of the concentration of organic impurities. (For example, Tsutomu Sakamoto, Chemical Technical Journal MOL, January 1988, 73, (1987); JP-A-60-159642.
No .; JP-A-3-21866).

【0006】しかし、TOC濃度が管理値あるいは通常
の値より高くなった場合には、発生源を究明したり、有
機不純物が原子炉等に流入し分解した場合原子炉水の水
質変化(導電率,pH)にどの程度影響するかの評価が
必要になる。しかし、有機不純物の有機炭素(TOC)
濃度のみの情報からは、有機物の種類および有機不純物
が分解した後におよぼす水質変化を評価することは困難
である。さらに、特開平1−219558号および特開平3−10
158 号公報に見られるように、有機不純物を熱分解ある
いは紫外線分解を行いその後に、分解生成物である無機
イオン濃度を測定する測定装置が考案されている。これ
らの分析装置を用い有機不純物を測定する場合には、有
機不純物が分解した後におよぼす水質変化が評価でき
る。しかし、有機不純物中の有機炭素濃度の情報が不足
しているため有機不純物の種類までの評価は困難であ
り、発生源の究明まで考えた水質管理は十分ではない。
However, when the TOC concentration becomes higher than the control value or the normal value, the source of the generation is investigated, and when the organic impurities flow into the reactor and decompose, the water quality of the reactor water changes (conductivity). , PH) must be evaluated. However, the organic impurity organic carbon (TOC)
It is difficult to evaluate the change in water quality after decomposition of organic substances and organic impurities based on the information of concentration alone. Further, JP-A 1-219558 and JP-A 3-10
As seen in Japanese Patent No. 158, there has been devised a measuring device for thermally decomposing or ultraviolet decomposing organic impurities and thereafter measuring the concentration of inorganic ions as decomposition products. When measuring organic impurities using these analyzers, changes in water quality after decomposition of organic impurities can be evaluated. However, since there is insufficient information on the concentration of organic carbon in organic impurities, it is difficult to evaluate the type of organic impurities, and water quality management that considers the origin of the source is not sufficient.

【0007】[0007]

【発明が解決しようとする課題】超純水を使用する原子
力発電プラントあるいは半導体プラント等において、純
水中の有機不純物の測定管理を行ってきている。しか
し、有機不純物のほとんどはイオン解離していないため
常設の導電率計あるいはpH計で検出できない。さらに
は、TOC計を用いて系統水を分析した場合にも、測定
された有機不純物が原子炉に流入し分解した際の水質変
化が推定できない。これは、有機不純物が原子炉に流入
して分解した場合、測定している有機炭素は、二酸化炭
素(CO2 )となり蒸気とともにタービン系に移行して
しまい炉水中に溶存しないためである。
In a nuclear power plant, a semiconductor plant or the like which uses ultrapure water, organic impurities in pure water have been measured and managed. However, most of organic impurities are not ion-dissociated and cannot be detected by a permanent conductivity meter or pH meter. Furthermore, even when systematic water is analyzed using a TOC meter, changes in water quality when the measured organic impurities flow into the reactor and decomposed cannot be estimated. This is because when organic impurities flow into the reactor and decompose, the measured organic carbon becomes carbon dioxide (CO 2 ) and moves to the turbine system together with the steam, and is not dissolved in the reactor water.

【0008】実際に炉水導電率およびpHの変化に影響
をもたらし炉内構造物等の金属材料の腐食を加速する要
因となる不純物の化学種は、有機不純物中に含まれる硫
黄から生成する硫酸イオン(SO4 2- ),窒素から生成
する硝酸イオン(NO3 -)亜硝酸イオン(NO2 -)ある
いは塩素から生成する塩素イオン(Cl- )等の無機イ
オンであるからである。これらの無機イオン濃度をあら
かじめ発生源近傍のサンプル水あるいは原子炉より上流
で検出することができれば、原子炉に流入した場合の水
質変化を予測することが可能となる。一方では、原子炉
への有機不純物の流入は極力少なくする必要があり、仮
に系統水への混入が確認された場合には迅速に混入源を
究明し混入防止のための適切な処置を取ることが必要と
なる。
Sulfuric acid generated from sulfur contained in organic impurities is a chemical species of impurities that actually affect the changes in the electrical conductivity and pH of the reactor water and accelerate the corrosion of metallic materials such as reactor internals. This is because it is an inorganic ion such as an ion (SO 4 2− ), a nitrate ion (NO 3 ) generated from nitrogen, a nitrite ion (NO 2 ), or a chlorine ion (Cl ) generated from chlorine. If the concentrations of these inorganic ions can be detected in advance in the sample water near the source or upstream of the reactor, it becomes possible to predict the water quality change when the water flows into the reactor. On the other hand, it is necessary to reduce the inflow of organic impurities into the reactor as much as possible, and if contamination with system water is confirmed, promptly identify the contamination source and take appropriate measures to prevent contamination. Is required.

【0009】このためには、現状測定が行われている有
機不純物濃度あるいは有機不純物の分解生成物濃度のみ
では有機不純物の分子量、あるいは種類を推定すること
が難しい。これは、有機不純物の発生源がイオン交換樹
脂なのかあるいは有機溶剤,潤滑油なのか等、発生源の
推定も困難である。さらに、有機不純物を分解した後の
無機イオンのみの測定では、分解後の水質変化は推定で
きるが有機不純物の種類(有機不純物の混入源)の推定
のためには情報量が不足している。
For this reason, it is difficult to estimate the molecular weight or the type of the organic impurity only by the concentration of the organic impurity or the concentration of the decomposition product of the organic impurity which is currently measured. It is difficult to estimate the generation source of organic impurities such as ion exchange resin, organic solvent or lubricating oil. Furthermore, although the change in water quality after decomposition can be estimated by measuring only inorganic ions after decomposing organic impurities, the amount of information is insufficient for estimating the type of organic impurities (source of mixing organic impurities).

【0010】このように有機不純物の測定は、有機炭素
濃度と有機不純物を分解した際に生成する無機不純物濃
度を同時に測定し、有機不純物の種類の推定および分解
した際の水質変化が評価できる測定および管理方法が重
要である。
As described above, the organic impurities can be measured by simultaneously measuring the concentration of organic carbon and the concentration of inorganic impurities produced when the organic impurities are decomposed, and estimating the type of the organic impurities and the water quality change when the organic impurities are decomposed. And the management method is important.

【0011】[0011]

【課題を解決するための手段】本発明者らは、有機不純
物を有機炭素と無機イオンに分解後、それらの濃度を同
じに測定する方法およびこれらの測定結果より有機不純
物の種類の推定および有機不純物分解後の水質変化を評
価する管理方法を考案した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made a method of decomposing organic impurities into organic carbon and inorganic ions, and then measuring their concentrations in the same manner. We devised a management method to evaluate the water quality change after impurity decomposition.

【0012】本発明の有機不純物の測定方法の構成を図
2に示す。図2には有機不純物の例としてアニオン交換
樹脂及びカチオン交換樹脂から溶出してくる有機不純物
の一例を示し、測定方法の説明を行う。
The structure of the method for measuring organic impurities of the present invention is shown in FIG. FIG. 2 shows an example of organic impurities eluted from an anion exchange resin and a cation exchange resin as an example of organic impurities, and the measurement method will be described.

【0013】アニオン交換樹脂及びカチオン交換樹脂か
ら溶出してくる有機不純物を含む試料を、有機物分解部
に導き有機不純物を有機炭素(TOC)とその他の分解
生成物(無機イオン不純物)に分解する。この有機不純
物の分解方法は、TOCの測定に用いられている湿式酸
化法、あるいは紫外線照射法が適用できる。ただし、従
来の有機炭素測定装置で使われている有機不純物の分解
を加速するための酸化剤ペルオキソ二硫酸塩は、分解後
硫酸イオン(SO4 2- )を生成する。硫酸イオン(SO
4 2- )は、カチオン樹脂からの溶出物である有機不純物
の分解生成物としても想定でき後述する無機イオンの測
定の際区別ができなくなる。従って、酸化剤は有機不純
物の分解生成物として想定できる硫酸イオン(S
4 2- ),硝酸イオン(NO3 -),亜硝酸イオン(NO
2 -),塩素イオン(Cl- )およびフッ素(F- )等を
含まない、過酸化水素,過マンガン酸塩あるいはクロム
酸塩のうち一種または二種類以上の組み合わせを選定す
ることが必要となる。上述の有機不純物の分解により、
図2に示したイオン交換樹脂からの溶出物は硫酸イオン
(SO4 2- ),硝酸イオン(NO3 -),亜硝酸イオン
(NO2 -)および二酸化炭素を生成する。次のステップ
として、この分解生成物中の二酸化炭素を窒素ガスある
いはアルゴンガス等で脱気して分離後、非分散型赤外線
分析計でTOC濃度を測定する。
A sample containing organic impurities eluted from the anion exchange resin and the cation exchange resin is introduced into an organic substance decomposition section to decompose the organic impurities into organic carbon (TOC) and other decomposition products (inorganic ion impurities). As a method for decomposing the organic impurities, a wet oxidation method used for measuring TOC or an ultraviolet irradiation method can be applied. However, the oxidant peroxodisulfate used to accelerate the decomposition of organic impurities used in the conventional organic carbon measuring apparatus produces sulfate ions (SO 4 2− ) after decomposition. Sulfate ion (SO
4 2− ) can also be assumed as a decomposition product of an organic impurity that is an eluate from a cation resin, and cannot be distinguished when measuring inorganic ions described later. Therefore, the oxidant is sulfate ion (S
O 4 2-), nitrate ion (NO 3 -), nitrite (NO
2 -), chloride ion (Cl - becomes exclusive), etc., hydrogen peroxide, is necessary to select one or two or more combinations of permanganate or chromate -) and fluorine (F . By the decomposition of the organic impurities mentioned above,
The eluate from the ion exchange resin shown in FIG. 2 produces sulfate ions (SO 4 2− ), nitrate ions (NO 3 ), nitrite ions (NO 2 ), and carbon dioxide. As the next step, carbon dioxide in the decomposition product is degassed with nitrogen gas or argon gas and separated, and then the TOC concentration is measured with a non-dispersive infrared analyzer.

【0014】更に、二酸化炭素を分離した試料液をイオ
ン交換樹脂を充填したカラムに導き無機イオン不純物を
濃縮後、溶離液で無機イオン不純物の種類別に溶離・分
離後導電率の変化で検出するイオンクロマト法の測定原
理を用いて無機イオン不純物を同定する。
Further, the sample liquid from which carbon dioxide has been separated is introduced into a column filled with an ion exchange resin, and after the inorganic ion impurities are concentrated, the ions to be detected by the change in conductivity after elution and separation according to the type of inorganic ion impurities by the eluent. Inorganic ion impurities are identified using the measurement principle of the chromatographic method.

【0015】上記の方法によりTOC濃度と分解後の無
機イオン不純物を同時に測定することが可能となる。こ
れらのことより、TOC濃度および無機イオン不純物の
比率等から試料中に存在する有機不純物の化学種,分子
量等の推定が可能となる。
According to the above method, the TOC concentration and the inorganic ion impurities after decomposition can be measured simultaneously. From these, it is possible to estimate the chemical species and molecular weight of the organic impurities present in the sample from the TOC concentration and the ratio of inorganic ionic impurities.

【0016】有機不純物の具体的な化学種及び分子量の
推定方法を表1に示す炭素,酸素,硫黄及び窒素を含む
有機物を例に示す。
Specific chemical species of organic impurities and a method for estimating molecular weight are shown in Table 1 by taking an organic substance containing carbon, oxygen, sulfur and nitrogen as an example.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示した有機物の分子構造よりこれら
の有機物を有機炭素と無機イオン不純物に分けて測定し
た場合には分子式に示す炭素(C),窒素(N)及び硫
黄(S)の比率で測定される。この考え方で未知の有機
不純物を測定した場合のそれぞれの原子数の比があらか
じめリストアップした有機不純物の中より原子数の比に
最も近い化合物を摘出することが可能となる。あらかじ
めリストアップする有機不純物は、そのプラントにおい
て有機不純物の発生源として想定できる、イオン交換樹
脂からの溶出物,防錆剤,潤滑油等を優先して抽出する
ことが重要である。なお、二種類以上の有機不純物が混
在するような場合は上記推定の可能性は低くなる。しか
し、従来のTOCあるいは無機不純物のみの測定結果よ
りは情報量が多く、発生源の優先順位と合わせれば発生
源の特定できる可能性は極めて高くなる。
From the molecular structure of the organic substances shown in Table 1, when these organic substances are divided into organic carbon and inorganic ion impurities and measured, the ratio of carbon (C), nitrogen (N) and sulfur (S) shown in the molecular formula Measured at. With this idea, it is possible to extract a compound having the closest atomic number ratio among the organic impurities listed in advance when unknown organic impurities are measured. It is important to prioritize extraction of organic impurities listed in advance, such as eluates from ion-exchange resins, rust preventives, and lubricating oils, which can be assumed as sources of organic impurities in the plant. Note that the possibility of the above estimation is low when two or more types of organic impurities are mixed. However, the amount of information is larger than the conventional measurement result of only TOC or inorganic impurities, and the possibility of identifying the source becomes extremely high when combined with the priority of the source.

【0019】また、無機イオン濃度の測定結果より、仮
に測定した系統水が原子炉等に流入し分解した場合のイ
オン濃度が評価できるため、導電率の上昇範囲あるいは
pHの変化範囲等の推定が可能となる。超純水を用いる
設備の水質監視は、連続測定が可能なpH計および導電
率計で行われている。このため、有機不純物の混入に伴
う水質変化はpHおよび導電率の値に換算して表すこと
が必要となる。25℃で測定される導電率及びpHの推
定値は下式に示す無機イオン濃度とそれぞれの極限イオ
ン導電率を用いた関係式で推定することができる。
Further, from the measurement result of the inorganic ion concentration, it is possible to evaluate the ion concentration when the system water that has been temporarily measured flows into the reactor or the like and is decomposed. Therefore, the range of increase in conductivity or the range of change in pH can be estimated. It will be possible. The water quality of equipment that uses ultrapure water is monitored by a pH meter and a conductivity meter that allow continuous measurement. Therefore, it is necessary to convert the change in water quality due to the mixing of organic impurities into the values of pH and conductivity. The estimated values of conductivity and pH measured at 25 ° C. can be estimated by a relational expression using the inorganic ion concentration and the respective limit ionic conductivity shown in the following formula.

【0020】[pHの推定式][Estimation formula of pH]

【0021】[0021]

【数1】 [Equation 1]

【0022】[導電率の推定式][Electrical conductivity estimation formula]

【0023】[0023]

【数2】 [Equation 2]

【0024】[0024]

【作用】本有機不純物の測定および管理方法を純水を使
うプラントにおいて採用することにより、有機不純物の
発生源の究明および迅速な混入防止を図ることが可能と
なり、有機不純物が分解した後の無機イオン不純物の生
成により影響される導電率の変化あるいはpH変化等を
予測できる。
[Operation] By adopting this method for measuring and controlling organic impurities in a plant using pure water, it becomes possible to identify the source of organic impurities and to prevent contamination quickly, and to improve the inorganic impurities after decomposition of organic impurities. It is possible to predict a change in conductivity, a change in pH, or the like that is affected by the formation of ionic impurities.

【0025】これにより、純水を使用するプラントにお
ける有機不純物濃度管理の信頼性を向上させることがで
きる。
As a result, the reliability of organic impurity concentration management in a plant using pure water can be improved.

【0026】[0026]

【実施例】以下に本発明の実施例を示す。EXAMPLES Examples of the present invention will be shown below.

【0027】図3に有機不純物の測定方法の実施例をフ
ローにして示す。測定方法の始めとして23において測
定対象の試料水をサンプリングする。次の24におい
て、試料水中の有機不純物を湿式酸化法あるいは紫外線
分解法で有機炭素と無機イオン不純物に分解する。ステ
ップ25で、分解された有機炭素と無機イオン不純物の
混合物より、窒素ガスあるいはアルゴンガス等の不活性
ガスを用いて有機炭素の生成物である二酸化炭素を分離
する。分離された二酸化炭素は非分散型赤外分析計で定
量する。一方、無機イオン不純物はステップ27でイオ
ンクロマト法により各イオン不純物毎に定量する。
FIG. 3 shows a flow chart of an embodiment of a method for measuring organic impurities. At the beginning of the measuring method, the sample water to be measured is sampled at 23. In the next 24, organic impurities in the sample water are decomposed into organic carbon and inorganic ion impurities by a wet oxidation method or an ultraviolet decomposition method. In step 25, carbon dioxide, which is a product of organic carbon, is separated from the decomposed mixture of organic carbon and inorganic ion impurities using an inert gas such as nitrogen gas or argon gas. The separated carbon dioxide is quantified with a non-dispersive infrared spectrometer. On the other hand, the inorganic ionic impurities are quantified in step 27 for each ionic impurity by the ion chromatography method.

【0028】上記方法で測定された有機炭素濃度26及
び無機イオン濃度27の情報を図3に示すフローに従っ
て計算処理するプログラムを有するコンピューターに導
く。次に、有機炭素及び無機イオン濃度を30に示すス
テップで各々の原子数に換算する(例えば、S,N,C
l,F等)。次に31のステップで各々の原子数の比を
計算する(例えば、S/C,N/C,Cl/C,F/
C,Cl/S,S/N等)。これらの各々の原子数比を
32のステップであらかじめプラント内で発生する可能
性あるいは混入する可能性が想定できる有機化合物の原
子数の組合せ情報33と対応させ、原子数比が近い有機
化合物をリストアップする。これにより、試料水中にど
んな有機不純物が共存しているかの推定が容易となる。
次に、有機不純物が分解した場合に生じるpH及び導電
率変化を無機イオン濃度データより前に示した数1及び
数2を用いてステップ34及びステップ35で計算をす
る。フローに従って測定および計算された有機不純物か
らの情報は、最終的にそれぞれの項目に分けてステップ
36において出力する。
Information on the organic carbon concentration 26 and the inorganic ion concentration 27 measured by the above method is led to a computer having a program for calculation processing according to the flow shown in FIG. Next, the organic carbon and inorganic ion concentrations are converted into the respective numbers of atoms in steps shown in 30 (for example, S, N, C
l, F, etc.). Next, the ratio of the number of each atom is calculated in 31 steps (for example, S / C, N / C, Cl / C, F /
C, Cl / S, S / N, etc.). The atomic number ratio of each of these is made to correspond to the combination information 33 of the number of atoms of the organic compound which can be assumed to be generated or mixed in the plant in 32 steps in advance, and the organic compounds having a close atomic number ratio are listed. Up. This facilitates estimation of what organic impurities coexist in the sample water.
Next, the changes in pH and conductivity that occur when the organic impurities are decomposed are calculated in steps 34 and 35 using Equations 1 and 2 shown before the inorganic ion concentration data. The information from the organic impurities measured and calculated according to the flow is finally divided into respective items and output in step 36.

【0029】図4は、有機不純物を湿式分解する方法を
行うための有機不純物測定装置に関する実施例を示した
ものである。試料水は測定を必要とする系統配管37よ
り分岐する試料採取ライン38を介して試料水を有機不
純物モニタに導く。試料水のサンプリングは、大気中の
炭酸ガスの混入およびサンプリング容器からの汚染等を
防止できることを考慮すると、オフラインサンプリング
よりオンラインサンプリングが望ましい。試料水中の固
形不純物は濾過器39にて分離する。濾過器の目づまり
は濾過器の差圧を圧力計40で監視し濾過器の差圧が高
くなった場合にはフィルタの交換あるいは逆洗等の操作
で運転許容圧内に保ちながら運転する。固形分を除いた
試料水に湿式分解を助けるために酸化剤を酸化剤貯蔵タ
ンク41及び注入ポンプ42を介して添加する。その後
無機炭素を除くために脱気器43に導き炭酸ガス等の無
機炭素を窒素ガスあるいはアルゴンガス等の不活性ガス
をガスボンベ44より供給し脱気,除去する。無機炭素
を除いた試料水を約200℃まで加温分解できる有機物
分解器45に導き有機炭素と無機イオンに分解し、その
後冷却器46を通して室温まで冷却する。有機炭素と無
機イオンを含む試料水は有機炭素分離器47に導かれ炭
酸ガス等の無機炭素を窒素ガスあるいはアルゴンガス等
の不活性ガスで有機炭素を脱気分離し非分散型赤外分析
計48で有機炭素濃度を測定する。
FIG. 4 shows an embodiment relating to an organic impurity measuring apparatus for carrying out a method of wet-decomposing organic impurities. The sample water is led to the organic impurity monitor through a sample collection line 38 branched from a system pipe 37 requiring measurement. Considering that it is possible to prevent contamination of carbon dioxide gas in the atmosphere and contamination from the sampling container, it is preferable to sample the sample water rather than offline sampling. Solid impurities in the sample water are separated by the filter 39. For clogging of the filter, the differential pressure of the filter is monitored by the pressure gauge 40, and when the differential pressure of the filter becomes high, the filter is replaced or backwashed to maintain the operating pressure within the allowable operating pressure. An oxidant is added to the sample water from which the solid content is removed via an oxidant storage tank 41 and an injection pump 42 in order to assist wet decomposition. After that, in order to remove the inorganic carbon, it is led to the deaerator 43, and the inorganic carbon such as carbon dioxide gas is degassed and removed by supplying the inert gas such as nitrogen gas or argon gas from the gas cylinder 44. The sample water excluding the inorganic carbon is introduced into an organic substance decomposer 45 capable of being decomposed by heating to about 200 ° C. and decomposed into organic carbon and inorganic ions, and then cooled to room temperature through a cooler 46. The sample water containing the organic carbon and the inorganic ions is introduced into the organic carbon separator 47, and the inorganic carbon such as carbon dioxide gas is degassed and separated with an inert gas such as nitrogen gas or argon gas to obtain a non-dispersive infrared analyzer 48. To measure the organic carbon concentration.

【0030】一方、有機炭素を除去した試料水はイオン
クロマト分析計に導かれる。イオンクロマト分析計では
試料水をイオン交換樹脂が充填された濃縮カラム49に
通し無機イオンをイオン交換樹脂に濃縮する。その後、
切り替え弁50を切り替え溶離液タンク51からポンプ
52を介して溶離液を濃縮カラムに通す。その結果、イ
オン交換樹脂に濃縮された無機イオン不純物は不純物の
種類によりイオン交換樹脂との親和力が違うため分離し
て溶出してくる。無機イオン不純物の種類による溶出の
時間遅れは既に確認されているため、溶離開始時間から
検出までの時間遅れにより不純物を同定することができ
る。また、分離された不純物の濃度は濃縮カラム下流の
サプレッサ53によりイオンを除去した後導電率計54
で検出される。導電率の測定値から不純物濃度への換算
は既知の不純物を用いた検量線を用いて行う。また、有
機炭素濃度および無機不純物の測定結果は、各々の出力
装置48および55に行っても良いが、これらを一つの
出力装置にまとめることにより、合理化が図られる。
On the other hand, the sample water from which organic carbon has been removed is introduced into an ion chromatographic analyzer. In an ion chromatographic analyzer, sample water is passed through a concentration column 49 filled with an ion exchange resin to concentrate inorganic ions in the ion exchange resin. afterwards,
The switching valve 50 is switched, and the eluent is passed through the concentration column from the eluent tank 51 via the pump 52. As a result, the inorganic ion impurities concentrated in the ion exchange resin are separated and eluted because the affinity with the ion exchange resin differs depending on the type of impurities. Since the elution time delay due to the type of inorganic ion impurities has already been confirmed, the impurities can be identified by the time delay from the elution start time to the detection. Further, the concentration of the separated impurities is measured by the conductivity meter 54 after removing the ions by the suppressor 53 downstream of the concentration column.
Detected in. Conversion from the measured conductivity value to the impurity concentration is performed using a calibration curve using known impurities. Further, the measurement results of the organic carbon concentration and the inorganic impurities may be sent to the respective output devices 48 and 55, but they can be rationalized by combining them into one output device.

【0031】図5には有機炭素の分解を紫外線を用いて
分解する場合の実施例について示す。系統構成は図4に
示した有機不純物を湿式分解法で分解する構成とほぼ同
じ構成とし、無機炭素を脱気した後の試料水を紫外線分
解器56に導き有機不純物を分解する。その後有機炭素
および無機イオン不純物の測定を行う構成とすることで
目的が達成できる。
FIG. 5 shows an embodiment in the case of decomposing organic carbon by using ultraviolet rays. The system configuration is almost the same as the configuration in which the organic impurities are decomposed by the wet decomposition method shown in FIG. 4, and the sample water after degassing inorganic carbon is introduced into the ultraviolet decomposer 56 to decompose the organic impurities. The object can be achieved by adopting a configuration in which the organic carbon and inorganic ion impurities are measured thereafter.

【0032】[0032]

【発明の効果】本発明による有機不純物の測定および管
理方法を純水を使うプラントにおいて使用することによ
って、有機不純物の種類の推定が可能となり、有機不純
物の発生源の究明、さらには迅速な混入防止処置をとる
ことが可能となる。また、原子力発電プラントの水質管
理のように有機不純物が分解した後の水質変化の情報が
必要となる場合には、本有機不純物測定方法により、分
解生成物による水質変化を推定することが可能となる。
By using the method for measuring and controlling organic impurities according to the present invention in a plant that uses pure water, it is possible to estimate the type of organic impurities, identify the source of organic impurities, and rapidly mix them. Preventive measures can be taken. In addition, when information on water quality changes after decomposition of organic impurities is required as in water quality management of nuclear power plants, it is possible to estimate water quality changes due to decomposition products by this method for measuring organic impurities. Become.

【0033】有機不純物に対して上記測定および管理が
可能となることは、有機不純物あるいは分解無機不純物
のみの水質管理に対して、水質管理の信頼性を向上させ
ることができる。
The fact that the above measurement and control can be performed on organic impurities can improve the reliability of water quality control as compared to the water quality control of only organic impurities or decomposed inorganic impurities.

【図面の簡単な説明】[Brief description of drawings]

【図1】沸騰水型原子力発電プラントの系統構成と有機
不純物の混入経路の説明図。
FIG. 1 is an explanatory diagram of a system configuration of a boiling water nuclear power plant and a mixing route of organic impurities.

【図2】有機不純物測定方法の構成を示す説明図。FIG. 2 is an explanatory diagram showing a configuration of an organic impurity measuring method.

【図3】有機不純物の測定方法および測定結果による有
機不純物の推定,分解した後のpHおよび導電率の変化
を推定する方法を示す説明図。
FIG. 3 is an explanatory diagram showing a method for measuring organic impurities and a method for estimating organic impurities based on the measurement results and a method for estimating changes in pH and conductivity after decomposition.

【図4】湿式酸化法により有機不純物を分解測定する有
機不純物モニタの実施例を示す説明図。
FIG. 4 is an explanatory diagram showing an example of an organic impurity monitor that decomposes and measures organic impurities by a wet oxidation method.

【図5】紫外線により有機不純物を分解測定する有機不
純物モニタの実施例を示す説明図。
FIG. 5 is an explanatory diagram showing an embodiment of an organic impurity monitor that decomposes and measures organic impurities by ultraviolet rays.

【符号の説明】[Explanation of symbols]

1…原子炉、8…復水濾過器、9…復水脱塩器、18…
原子炉浄化系濾過脱塩器、20…復水貯蔵タンク、43
…無機炭素脱気器、45…有機物分解器、47…有機炭
素分離器、49…無機イオン濃縮カラム、54…導電率
計、56…紫外線分解器。
1 ... Reactor, 8 ... Condensate filter, 9 ... Condensate demineralizer, 18 ...
Reactor purification system filter desalting machine, 20 ... Condensate storage tank, 43
... inorganic carbon deaerator, 45 ... organic matter decomposer, 47 ... organic carbon separator, 49 ... inorganic ion concentration column, 54 ... conductivity meter, 56 ... ultraviolet decomposer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G21D 3/08 GDB G 9117−2G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G21D 3/08 GDB G 9117-2G

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】清浄度の高い水を使用する設備の水質分析
方法において、微量混入している有機不純物を有機炭素
と無機イオンに分解後、有機炭素濃度と無機イオン濃度
を同時に測定し、測定した有機炭素と無機イオン不純物
の濃度比あるいは原子数の比より有機不純物の種類を推
定することを特徴とする有機不純物測定および管理方
法。
1. In a water quality analysis method for equipment using water of high cleanliness, after measuring minute amounts of mixed organic impurities into organic carbon and inorganic ions, the organic carbon concentration and inorganic ion concentration are simultaneously measured and measured. A method for measuring and controlling organic impurities, which comprises estimating the type of organic impurities from the concentration ratio of the organic carbon and the inorganic ion impurities or the ratio of the number of atoms.
【請求項2】請求項1において、測定した無機イオン不
純物濃度より有機不純物が分解した際の導電率及び水素
イオン濃度を推定する有機不純物測定および管理方法。
2. The method for measuring and controlling organic impurities according to claim 1, which estimates the conductivity and hydrogen ion concentration when the organic impurities are decomposed from the measured inorganic ion impurity concentration.
JP5276440A 1993-11-05 1993-11-05 Method for measuring and controlling organic impurities Pending JPH07128323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5276440A JPH07128323A (en) 1993-11-05 1993-11-05 Method for measuring and controlling organic impurities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5276440A JPH07128323A (en) 1993-11-05 1993-11-05 Method for measuring and controlling organic impurities

Publications (1)

Publication Number Publication Date
JPH07128323A true JPH07128323A (en) 1995-05-19

Family

ID=17569458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5276440A Pending JPH07128323A (en) 1993-11-05 1993-11-05 Method for measuring and controlling organic impurities

Country Status (1)

Country Link
JP (1) JPH07128323A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104413A (en) * 2012-11-27 2014-06-09 Mitsubishi Chemicals Corp Ultrapure water producing method and ultrapure water producing apparatus
CN109358128A (en) * 2018-12-03 2019-02-19 南京大学 A kind of organic nitrogen-organic carbon tandem online test method and device
CN109406705A (en) * 2018-11-29 2019-03-01 南京大学 A kind of liquid chromatogram combination type organic carbon detector and its application method
CN114660129A (en) * 2022-03-15 2022-06-24 西安热工研究院有限公司 Combined monitoring system and method for corrosive ions in water vapor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104413A (en) * 2012-11-27 2014-06-09 Mitsubishi Chemicals Corp Ultrapure water producing method and ultrapure water producing apparatus
CN109406705A (en) * 2018-11-29 2019-03-01 南京大学 A kind of liquid chromatogram combination type organic carbon detector and its application method
CN109406705B (en) * 2018-11-29 2024-04-09 南京大学 Liquid chromatography combined organic carbon detector and application method thereof
CN109358128A (en) * 2018-12-03 2019-02-19 南京大学 A kind of organic nitrogen-organic carbon tandem online test method and device
CN109358128B (en) * 2018-12-03 2024-04-09 南京大学 Organic nitrogen-organic carbon serial on-line detection method and device
CN114660129A (en) * 2022-03-15 2022-06-24 西安热工研究院有限公司 Combined monitoring system and method for corrosive ions in water vapor

Similar Documents

Publication Publication Date Title
JP4600617B2 (en) Anion exchange resin performance evaluation method and apparatus, and condensate demineralizer
Rajaković-Ognjanović et al. Improvement of chemical control in the water-steam cycle of thermal power plants
US5935441A (en) Water purification process
KR19990067293A (en) Direct extraction of metal from metal oxides
US20120178175A1 (en) CWB conductivity monitor
EP0497518A1 (en) Method for testing the soluble contents of nuclear reactor coolant water
JPH07128323A (en) Method for measuring and controlling organic impurities
Herbst et al. Improved donors for the separation of the boron isotopes by gas-liquid exchange reactions
Weerakul et al. Effects on flow-accelerated corrosion of oleylpropanediamine under single-phase water conditions pertinent to power plant feedwater
JP2005003598A (en) Desalination tower of mix bed type in pressurized water nuclear power plant, and operation method thereof
Ziemniak et al. Cobalt (II) oxide solubility and phase stability in alkaline media at elevated temperatures
JPH112623A (en) Selenium analyzing method and selenium analyzer
JP2010044022A (en) Method and apparatus for continuously monitoring test water
Filimonova et al. Physicochemical Analysis of Organic Impurities in the Coolant of Combined Heat and Power Plants Equipped with Combined-Cycle Power Installations
Kang et al. Fate of low molecular weight organic matters in reverse osmosis and vacuum ultraviolet process for high-quality ultrapure water production in the semiconductor industry
Zhu et al. Decomposition characteristics of humic acid in boiler make-up water in power plants
JPH0310158A (en) Organic-material analyzing apparatus
JPH10339724A (en) Water quality evaluating method
Hernon et al. Application of electrodeionization in ultrapure water production: performance and theory
JP2009156692A (en) Continuous monitoring method and device of test water
JP5053342B2 (en) Method and system for fractional quantitative analysis of arsenic, selenium and antimony
WO2023042723A1 (en) Method for evaluating quality of ion exchange resin, and method for producing ultrapure water
JP2772899B2 (en) Method for analyzing nitrogen oxides in sulfuric acid
JPH02134563A (en) Method and apparatus for analyzing insoluble fine particle in water
JPH04366796A (en) Primary system water quality monitoring device of boiling water reactor