JP2009156692A - Continuous monitoring method and device of test water - Google Patents

Continuous monitoring method and device of test water Download PDF

Info

Publication number
JP2009156692A
JP2009156692A JP2007334561A JP2007334561A JP2009156692A JP 2009156692 A JP2009156692 A JP 2009156692A JP 2007334561 A JP2007334561 A JP 2007334561A JP 2007334561 A JP2007334561 A JP 2007334561A JP 2009156692 A JP2009156692 A JP 2009156692A
Authority
JP
Japan
Prior art keywords
water
concentration
analyte
concentrated
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007334561A
Other languages
Japanese (ja)
Other versions
JP5092735B2 (en
Inventor
Shigeyuki Hoshi
重行 星
Hitoshi Hotta
等 堀田
Tetsuo Mizuniwa
哲夫 水庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007334561A priority Critical patent/JP5092735B2/en
Publication of JP2009156692A publication Critical patent/JP2009156692A/en
Application granted granted Critical
Publication of JP5092735B2 publication Critical patent/JP5092735B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous monitoring method and a device of test water capable of enriching an analysis object material to a target concentration continuously by a small-sized device, and monitoring continuously the concentration of the enriched analysis object material, even in the case of an extremely small amount of the analysis object material in the test water. <P>SOLUTION: The test water is subjected to RO membrane separation processing to be separated into enriched water wherein the analysis object material is enriched and permeated water wherein the analysis object material concentration is reduced, and a part of the enriched water is subjected to circulation processing by an RO membrane module. Then, the analysis object material concentration is measured relative to residual enriched water, and the analysis object material concentration in the test water is operated based on the result. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は検水の連続モニタリング方法および装置に係り、特に供給された検水を分析対象物質濃度が高められた濃縮水と、分析対象物質濃度が低減された水とに連続的に分離しつつ、分析対象物質が濃縮された濃縮水中の分析対象物質濃度を連続的に測定する連続モニタリング方法および装置に関する。   The present invention relates to a method and apparatus for continuous monitoring of test water, and in particular, while separating the supplied test water into concentrated water with an increased concentration of the analyte and water with a reduced concentration of the analyte. The present invention relates to a continuous monitoring method and apparatus for continuously measuring the concentration of an analysis target substance in concentrated water in which the analysis target substance is concentrated.

本発明の検水の連続モニタリング方法および装置は、半導体産業、電力・原子力産業、医薬産業、その他あらゆる産業分野において、超純水等の分析対象物質を極微量含む検水の連続モニタリング分析に有用である。   INDUSTRIAL APPLICABILITY The sample monitoring method and apparatus of the present invention are useful for continuous monitoring analysis of sample water containing trace amounts of analytes such as ultrapure water in the semiconductor industry, electric power / nuclear power industry, pharmaceutical industry, and all other industrial fields. It is.

半導体製造工場では、不純物を高度に除去して純度を高めた超純水が使用されている。この超純水の水質管理項目としては、抵抗率、微粒子、生菌、TOC(Total Organic Carbon;有機物の指標)、溶存酸素、シリカ、カチオンイオン、アニオンイオン、重金属等が挙げられる。   In semiconductor manufacturing plants, ultrapure water is used that has been highly purified by removing impurities. Examples of water quality management items for ultrapure water include resistivity, fine particles, viable bacteria, TOC (Total Organic Carbon), dissolved oxygen, silica, cation ions, anion ions, heavy metals, and the like.

現在、超純水の連続分析装置(オンラインモニター)には、抵抗率計、微粒子計、TOC計、シリカ計、溶存酸素計、金属分析計などが使用されている。これらの分析計には、測定可能な下限値が存在し、例えば金属元素モニターでは、測定可能な下限値は、Na、Caについては0.1〜400μg/L程度、Feについては10ng/L程度である。   Currently, ultra-pure water continuous analyzers (online monitors) use resistivity meters, fine particle meters, TOC meters, silica meters, dissolved oxygen meters, metal analyzers, and the like. These analyzers have measurable lower limit values. For example, in a metal element monitor, the measurable lower limit values are about 0.1 to 400 μg / L for Na and Ca, and about 10 ng / L for Fe. It is.

一方で、半導体産業、電力・原子力産業、医薬産業等で使用される超純水については、近年益々その要求水質が高められている。従って、極微量の金属イオンなどの分析対象物質を含む超純水を検水として、前記の分析装置で水質管理を行うためには、超純水中の分析対象物質を分析装置の測定下限値以上の濃度にまで濃縮する必要がある。また、測定下限値以上に含まれる分析対象物質であっても、より高精度な分析結果を得るために、分析対象物質を濃縮することが必要とされる場合もある。   On the other hand, the required water quality of ultrapure water used in the semiconductor industry, the electric power / nuclear power industry, the pharmaceutical industry, etc. has been increasing in recent years. Therefore, in order to perform water quality management with the above-described analyzer using ultrapure water containing an analyte such as a trace amount of metal ions as the test water, the analyte lower limit value of the analyzer is used for the analysis of the analyte in ultrapure water. It is necessary to concentrate to the above concentration. In addition, even in the case of an analysis target substance that is contained above the measurement lower limit value, it may be necessary to concentrate the analysis target substance in order to obtain a more accurate analysis result.

従来、超純水中の分析対象物質を連続的に濃縮してモニタリングする方法としては、特開2004−77299号公報に記載されるように、逆浸透膜装置や電気脱イオン装置を多段に設けることにより、分析対象物質を高度に濃縮する方法が提案されている。
特開2004−77299号公報
Conventionally, as a method for continuously concentrating and monitoring a substance to be analyzed in ultrapure water, as described in JP-A-2004-77299, a reverse osmosis membrane device and an electrodeionization device are provided in multiple stages. Therefore, a method for highly concentrating the substance to be analyzed has been proposed.
JP 2004-77299 A

しかしながら、特開2004−77299号公報の方法では、逆浸透膜装置等を少なくとも2段に設けることから、装置が大型化してしまうため、モニタリング装置としては実用化に耐えない。また、各金属イオン濃度が1ng/L以下という極微量しか含まれていない超純水を濃縮対象にする場合、目的の濃度にまで濃縮するには2段では不足であり、より多段に装置を設けなければ目的の濃度にまで濃縮できないことから、装置は更に大型化してしまう。   However, in the method of Japanese Patent Application Laid-Open No. 2004-77299, since the reverse osmosis membrane device and the like are provided in at least two stages, the device is increased in size, and thus cannot be put into practical use as a monitoring device. In addition, when ultrapure water containing only a very small amount of each metal ion concentration of 1 ng / L or less is to be concentrated, two stages are insufficient for concentrating to the target concentration, and more devices are used. Since it cannot be concentrated to the target concentration unless it is provided, the apparatus is further increased in size.

本発明は上記従来の問題点を解決し、検水中の分析対象物質が極微量であっても、小型の装置によって分析対象物質を目的の濃度まで連続的に濃縮し、濃縮された分析対象物質の濃度を連続的にモニタリングすることが可能な検水の連続モニタリング方法および装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and even if the amount of the analyte to be analyzed is extremely small, the analyte is continuously concentrated to the target concentration by a small device, and the concentrated analyte It aims at providing the continuous monitoring method and apparatus of the sample water which can monitor the density | concentration of water continuously.

本発明(請求項1)の検水の連続モニタリング方法は、検水中の分析対象物質の濃度を連続的にモニタリングする方法において、検水を逆浸透膜分離処理することにより分析対象物質が濃縮された濃縮水と分析対象物質濃度が低減された透過水とに分離する濃縮工程と、該濃縮工程からの濃縮水の一部を該濃縮工程前に返送する返送工程と、残部の濃縮水中の分析対象物質濃度を測定する分析工程と、該分析工程の分析結果に基づいて検水中の分析対象物質濃度を演算する演算工程とを含むことを特徴とする。   The continuous monitoring method for sample water of the present invention (Claim 1) is a method for continuously monitoring the concentration of a substance to be analyzed in the sample water, and the substance to be analyzed is concentrated by subjecting the sample water to reverse osmosis membrane separation treatment. Concentration process for separating the concentrated water and permeated water having a reduced concentration of the analyte, a return process for returning a part of the concentrated water from the concentration process before the concentration process, and analysis of the remaining concentrated water An analysis step for measuring the concentration of the target substance and a calculation step for calculating the concentration of the target substance in the test water based on the analysis result of the analysis step are characterized.

請求項2の検水の連続モニタリング方法は、請求項1において、前記返送工程において、濃縮工程における逆浸透膜の膜面流速が25〜600m/Hrとなるように前記濃縮水を返送することを特徴とする。   The continuous water monitoring method according to claim 2 is the method according to claim 1, wherein in the returning step, the concentrated water is returned so that the membrane surface flow velocity of the reverse osmosis membrane in the concentration step is 25 to 600 m / Hr. Features.

請求項3の検水の連続モニタリング方法は、請求項1又は2において、前記濃縮工程に先立ち、前記逆浸透膜分離処理される水のpHが3.0〜6.95の範囲となるように調整するpH調整工程を含むことを特徴とする。   The continuous monitoring method of sample water according to claim 3 is the method according to claim 1 or 2, wherein the pH of the water subjected to the reverse osmosis membrane separation treatment is in the range of 3.0 to 6.95 prior to the concentration step. It includes a pH adjusting step for adjusting.

請求項4の検水の連続モニタリング方法は、請求項1ないし3のいずれか1項において、前記検水は、個々の金属の金属イオン濃度が1ng/L以下の超純水であり、前記分析対象物質が金属イオンであることを特徴とする。   The continuous monitoring method of sample water according to claim 4 is the method according to any one of claims 1 to 3, wherein the sample water is ultrapure water having a metal ion concentration of each metal of 1 ng / L or less. The target substance is a metal ion.

本発明(請求項5)の検水の連続モニタリング装置は、検水中の分析対象物質の濃度を連続的にモニタリングする装置において、検水を逆浸膜分離処理することにより分析対象物質が濃縮された濃縮水と分析対象物質濃度が低減された透過水とに分離する逆浸透膜分離手段と、該濃縮水の一部を該逆浸透膜分離手段の上流側に返送する返送手段と、残部の濃縮水中の分析対象物質濃度を測定する分析手段と、該分析手段の分析結果に基づいて検水中の分析対象物質濃度を演算する演算手段とを含むことを特徴とする。   The continuous monitoring apparatus for test water of the present invention (Claim 5) is an apparatus for continuously monitoring the concentration of the analyte in the test water, and the analyte is concentrated by subjecting the test water to reverse osmosis separation. Reverse osmosis membrane separation means for separating the concentrated water into permeated water having a reduced analyte concentration, a return means for returning a part of the concentrated water to the upstream side of the reverse osmosis membrane separation means, An analysis unit that measures the concentration of the analysis target substance in the concentrated water and a calculation unit that calculates the concentration of the analysis target substance in the test water based on the analysis result of the analysis unit are characterized.

請求項6の検水の連続モニタリング装置は、請求項5において、前記返送手段において、逆浸透膜分離手段における膜面流速が25〜600m/Hrとなるように前記濃縮水を返送することを特徴とする。   The continuous water monitoring apparatus according to claim 6 is characterized in that, in claim 5, in the return means, the concentrated water is returned so that the membrane surface flow rate in the reverse osmosis membrane separation means is 25 to 600 m / Hr. And

請求項7の検水の連続モニタリング装置は、請求項5又は6において、前記逆浸透膜分離手段に導入される水のpHが3.0〜6.95の範囲となるように調整するpH調整手段を含むことを特徴とする。   The continuous monitoring apparatus for sample detection according to claim 7 is the pH adjustment according to claim 5 or 6, wherein the pH of water introduced into the reverse osmosis membrane separation means is adjusted to be in the range of 3.0 to 6.95. Means.

請求項8の検水の連続モニタリング装置は、請求項5ないし7のいずれか1項において、前記検水は、個々の金属の金属イオン濃度が1ng/L以下の超純水であり、前記分析対象物質が金属イオンであることを特徴とする。   The continuous water monitoring device according to claim 8, wherein the water sample is ultrapure water in which the metal ion concentration of each metal is 1 ng / L or less. The target substance is a metal ion.

本発明では、濃縮手段としての逆浸透膜分離手段が1段であっても、濃縮水の一部を循環して逆浸透膜の膜面流速を大きくすることにより、検水中の極微量の分析対象物質を高濃縮率で濃縮することができる。また、その濃縮に際して、検水中の分析対象物質の形態変化を起こすこともなく、また汚染の問題も殆どない。このため、従来法では分析困難であった極微量成分について、小型装置で的確に連続モニタリングすることが可能となる。   In the present invention, even if the reverse osmosis membrane separation means as the concentration means is a single stage, a trace amount analysis in the sample water is performed by circulating a part of the concentrated water and increasing the membrane surface flow velocity of the reverse osmosis membrane. The target substance can be concentrated at a high concentration rate. Further, during the concentration, there is no change in the form of the analyte in the test water, and there is almost no problem of contamination. For this reason, it is possible to accurately and continuously monitor a very small amount of component, which is difficult to analyze by the conventional method, with a small apparatus.

本発明によれば、超純水のように測定下限値未満の極微量の分析対象物質を含む検水を、分析対象物質の形態変化や検水の汚染を引き起こすことなく、小型の装置で容易かつ効率的に連続濃縮し、さらに連続分析することが可能となり、分析効率が格段に向上すると共に、分析に要する時間を大幅に短縮して、分析結果を運転管理等に早期に反映させることが可能となる。   According to the present invention, sample water containing an extremely small amount of an analyte to be analyzed that is less than the lower limit of measurement, such as ultrapure water, can be easily obtained with a small device without causing a change in the form of the analyte and contamination of the sample. In addition, it is possible to continuously concentrate and efficiently perform continuous analysis, greatly improving the analysis efficiency, greatly reducing the time required for analysis, and reflecting the analysis results to operation management etc. at an early stage. It becomes possible.

特に、本発明では、検水に酸を添加し、pHを下げた状態で、濃縮水側を高速循環させる工夫により、検水中の極微量成分を高度に濃縮して精度の良い分析結果を得ることができ、その工業的有用性は極めて大きい。   In particular, in the present invention, by adding an acid to the test water and lowering the pH, it is possible to obtain a highly accurate analysis result by highly concentrating trace components in the test water at a high speed through the concentrated water side. And its industrial utility is extremely large.

以下に本発明の実施の形態を図面を参照して詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1は、本発明の検水の連続モニタリング装置の実施の形態を示す系統図である。   FIG. 1 is a system diagram showing an embodiment of a continuous sample monitoring apparatus of the present invention.

この連続モニタリング装置では、検水に酸を添加してpH調整した後、逆浸透(RO)膜モジュール1に透過させて、分析対象物質が濃縮された濃縮水と分析対象物質濃度が低減された透過水とに分離し、得られた濃縮水の一部を、循環ポンプPでRO膜モジュール1の入口側に返送する。また、濃縮水の残部を分析手段(図1においては、イオンクロマトグラフ2と分光光度計3)に送給して、濃縮水中の分析対象物質濃度を測定し、この結果に基いて検水中の分析対象物質濃度を演算する。   In this continuous monitoring device, after adjusting the pH by adding an acid to the test water, it is permeated through the reverse osmosis (RO) membrane module 1 to reduce the concentration of the analyte and the concentration of the analyte. A part of the concentrated water obtained by separating into permeated water is returned to the inlet side of the RO membrane module 1 by the circulation pump P. Further, the remainder of the concentrated water is fed to an analysis means (in FIG. 1, an ion chromatograph 2 and a spectrophotometer 3), and the concentration of the analyte in the concentrated water is measured. Calculate the analyte concentration.

検水に添加する酸としては、塩酸、硫酸、硝酸等の無機酸が挙げられる。検水は、このような酸を添加して、RO膜に流入する水(以下「RO膜給水」と称す場合がある。)のpHが3.0〜6.95、特に6〜6.95となるように調整される。このように、RO膜給水のpHを3.0〜6.95の弱酸性とすることにより、RO膜において、検水中の極微量の分析対象物質を高濃縮率で濃縮することが可能となる。これは、弱酸性であることにより、水酸化物を形成して沈着しやすい金属をイオン化させて沈着を防止する効果による。この調整pH値が上記上限値を超えると上記効果を十分に得ることができず、上記下限値未満ではRO膜の構成部材の性能劣化を引き起こす可能性がある。   Examples of the acid added to the test water include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid. In the test water, such an acid is added, and the pH of water flowing into the RO membrane (hereinafter sometimes referred to as “RO membrane water supply”) is 3.0 to 6.95, particularly 6 to 6.95. It is adjusted to become. Thus, by setting the pH of the RO membrane water supply to a weak acidity of 3.0 to 6.95, it is possible to concentrate a very small amount of analyte in the test water at a high concentration rate in the RO membrane. . This is due to the effect of preventing deposition by ionizing a metal that is easily deposited by forming a hydroxide due to weak acidity. If this adjusted pH value exceeds the above upper limit value, the above effect cannot be sufficiently obtained, and if it is less than the above lower limit value, there is a possibility of causing performance deterioration of the constituent members of the RO membrane.

RO膜における濃縮倍率は大きい程、検水中の分析対象物質が濃縮水中に高濃縮されるため、後段の分析手段での分析精度が上がるが、過度に高濃縮することは濃縮水中の分析対象物質濃度が大きくなり、分析対象物質が膜面へ沈着して回収できない可能性がある。そのため、系外へ排出される濃縮水量(図1ではイオンクロマトグラフ2及び分光光度計3へ送給される濃縮水量)に対する系内に導入される検水量の比で表されるRO膜の濃縮倍率は2〜2000倍、特に10〜100倍程度とし、濃縮水中の分析対象物質濃度が、分析手段の測定下限値の2〜3倍となるようにすることが好ましい。   The higher the concentration factor in the RO membrane, the higher the concentration of the analyte in the test water in the concentrated water. Therefore, the analysis accuracy in the subsequent analysis means increases, but excessively high concentration means the analyte in the concentrated water. There is a possibility that the concentration becomes high and the analyte is deposited on the membrane surface and cannot be recovered. Therefore, the concentration of RO membrane expressed by the ratio of the amount of test water introduced into the system with respect to the amount of concentrated water discharged out of the system (the amount of concentrated water supplied to the ion chromatograph 2 and spectrophotometer 3 in FIG. 1). The magnification is preferably 2 to 2000 times, particularly about 10 to 100 times, and the concentration of the substance to be analyzed in the concentrated water is preferably 2 to 3 times the measurement lower limit value of the analysis means.

本発明では、RO膜の濃縮水の一部をRO膜モジュール1の上流側に返送することを特徴とし、このように濃縮水を循環することにより、1段のRO膜での検水中の極微量の分析対象物質を高濃縮で濃縮することを可能とする。この濃縮水の返送量は、多い程分析対象物質の高濃縮化のためには好ましいが、循環水量が過度に多いことは、系内の保有水量が多く、従って、装置容量が大きくなることにつながり、好ましくない。高濃縮化と装置の小型化の面から、濃縮水は、RO膜での膜面流速が25〜600m/Hr、特に400〜450m/Hrとなるように循環することが好ましい。このように濃縮水の一部を循環して、RO膜での膜面流速を大きくすることにより濃縮効率が向上するのは、膜面の濃度分極を減らし膜面への金属付着を抑える効果によるものである。   The present invention is characterized in that a part of the concentrated water in the RO membrane is returned to the upstream side of the RO membrane module 1, and the concentrated water is circulated in this way, so that the pole in the sample water in the one-stage RO membrane can be obtained. This makes it possible to concentrate a very small amount of a substance to be analyzed with high concentration. The higher the amount of concentrated water returned, the better the concentration of the analyte, but the larger the amount of circulating water, the larger the amount of retained water in the system, and the larger the capacity of the device. Connection is undesirable. From the viewpoint of high concentration and downsizing of the apparatus, the concentrated water is preferably circulated so that the membrane surface flow velocity at the RO membrane is 25 to 600 m / Hr, particularly 400 to 450 m / Hr. The reason why the concentration efficiency is improved by circulating a part of the concentrated water and increasing the membrane surface flow velocity at the RO membrane is due to the effect of reducing the concentration polarization of the membrane surface and suppressing metal adhesion to the membrane surface. Is.

なお、この濃縮水の循環には、清浄度の高い循環ポンプ、例えばポリテトラフルオロエチレン等のフッ素樹脂製(フッ素樹脂加工製品を含む)の部材を使用し、またモーターによる部材間接触のない磁気浮上型ポンプ等を用いることが、循環ポンプからのコンタミによる分析誤差を低減する上で好ましい。   For the circulation of the concentrated water, a highly clean circulating pump, for example, a member made of fluororesin (including fluororesin processed products) such as polytetrafluoroethylene is used, and there is no magnetic contact between the members by the motor. It is preferable to use a floating pump or the like in order to reduce analysis errors due to contamination from the circulation pump.

RO膜モジュール1の濃縮水のうち、RO膜モジュール1の入口側に返送されない残部の濃縮水は、分析手段に送給されて分析対象物質濃度が分析される。この分析手段としては特に制限はなく、分析対象物質の種類に応じて適宜決定されるが、金属イオンの分析には、図1に示すイオンクロマトグラフ2及び分光光度計3のいずれか一方又は双方を用いることができる。その他、抵抗率計、微粒子計、TOC計、シリカ計、溶存酸素計なども使用することができる。複数の分析手段を用いる場合、これらは、直列に配置しても良く、並列に配置しても良い。   Of the concentrated water of the RO membrane module 1, the remaining concentrated water that is not returned to the inlet side of the RO membrane module 1 is supplied to the analysis means and analyzed for the concentration of the substance to be analyzed. The analysis means is not particularly limited and is appropriately determined according to the type of the substance to be analyzed. For the analysis of metal ions, either or both of the ion chromatograph 2 and the spectrophotometer 3 shown in FIG. Can be used. In addition, a resistivity meter, a fine particle meter, a TOC meter, a silica meter, a dissolved oxygen meter and the like can also be used. When using a plurality of analysis means, these may be arranged in series or in parallel.

分析手段で分析された濃縮水中の分析対象物質濃度から、検水中の分析対象物質濃度を次のようにして演算することができる。   From the analysis target substance concentration in the concentrated water analyzed by the analysis means, the analysis target substance concentration in the test water can be calculated as follows.

即ち、本発明のように、検水を連続的にRO膜で濃縮して濃縮水の一部を循環している場合、系内の検水の流量は略定常状態で安定しているため、検水流量、循環水量、及び濃縮水抜出量を一定に保持していれば、RO膜での濃縮倍率は一定であるとみなすことができ、下記式(1)のように、濃縮水中の分析対象物質濃度を濃縮倍数で除した値を検水の分析対象物質濃度とすることができる。
RO膜への検水の供給量:Ff
系外へ抜き出す濃縮水量:Fb
濃縮水の分析対象物質濃度(モニタリング検出値):Cm
RO膜の濃縮倍率=Ff/Fb
検水中の分析対象物質濃度=濃縮水の分析対象物質濃度/RO膜の濃縮倍率
=Cm/(Ff/Fb)
That is, as in the present invention, when the sample water is continuously concentrated by the RO membrane and a part of the concentrated water is circulated, the flow rate of the sample water in the system is stable in a substantially steady state. If the sample water flow rate, circulating water volume, and concentrated water withdrawal volume are kept constant, the concentration rate at the RO membrane can be considered to be constant, and analysis of the concentrated water as shown in the following formula (1). A value obtained by dividing the target substance concentration by the concentration factor can be used as the analysis target substance concentration of the test water.
Supply amount of test water to RO membrane: Ff
Concentrated water to be extracted out of the system: Fb
Concentration of analyte in concentrated water (monitoring detection value): Cm
RO membrane concentration factor = Ff / Fb
Analyte concentration in the sample water = Analyte concentration in the concentrated water / RO membrane concentration rate
= Cm / (Ff / Fb)

このような本発明において、モニタリング対象となる検水としては特に制限はないが、一般的には、分析対象物質の含有濃度が低く、水質分析のためには濃縮を要するものであり、最も代表的なものとしては、半導体工場等で使用される超純水が挙げられる。   In the present invention, the sample water to be monitored is not particularly limited, but generally, the concentration of the substance to be analyzed is low, and concentration is necessary for water quality analysis. A typical example is ultrapure water used in semiconductor factories and the like.

モニタリングできる分析対象物質としては、分析手段としてイオンクロマトグラフを用いた場合においては、カチオン、シリカ、金属、有機酸等が挙げられる。また、分析手段として分光光度計を用いた場合においては、カチオン、シリカ、重金属等が挙げられる。   Examples of the analytes that can be monitored include cations, silica, metals, organic acids and the like when an ion chromatograph is used as an analysis means. In addition, when a spectrophotometer is used as the analysis means, cations, silica, heavy metals, and the like can be given.

本発明は特に、個々の金属の金属イオン濃度が1ng/L以下の超純水について、金属イオン濃度を連続モニタリングする場合に有効である。   The present invention is particularly effective when continuously monitoring the metal ion concentration of ultrapure water in which the metal ion concentration of each metal is 1 ng / L or less.

なお、検水の濃縮に用いるRO膜には特に制限はない。   In addition, there is no restriction | limiting in particular in the RO membrane used for concentration of test water.

本発明において、RO膜モジュールを2段以上に多段に設けることも可能であるが、本発明によれば、1段のRO膜で検水を十分に濃縮することができること、また、モニタリング装置の小型化を目的とすることから、RO膜モジュールは通常1段のみ設けられる。   In the present invention, the RO membrane module can be provided in two or more stages. However, according to the present invention, the test water can be sufficiently concentrated by the one-stage RO membrane, and the monitoring device For the purpose of downsizing, the RO membrane module is usually provided in only one stage.

以下に参考例及び実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference examples and examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

なお、以下の参考例及び実施例では、図1に示す装置を用いて、検水の連続モニタリングを行った。   In the following reference examples and examples, continuous monitoring of sample water was performed using the apparatus shown in FIG.

RO膜モジュール1のRO膜としては、日東電工社製逆浸透膜「ES−20−D4」(4inch)を使用し、RO膜の濃縮水の循環ポンプPとしては、イワキ社製レビトロ磁気浮上型ポンプ「LEV300F」(最大吐出量40L/min、最高揚程20m、最高回転数6200rpm、耐圧力0.30MPa)を用いた。また、分光光度計3としてはFIAMO社製「FIAMO」を、イオンクロマトグラフ2としては横河電気社製「IC−7000」を用いた。   As the RO membrane of the RO membrane module 1, a reverse osmosis membrane “ES-20-D4” (4 inch) manufactured by Nitto Denko Corporation is used, and as a circulating pump P for concentrated water of the RO membrane, Levitro magnetic levitation type manufactured by Iwaki Co., Ltd. A pump “LEV300F” (maximum discharge amount 40 L / min, maximum lift 20 m, maximum rotation speed 6200 rpm, withstand pressure 0.30 MPa) was used. Further, “FIAMO” manufactured by FIAMO was used as the spectrophotometer 3, and “IC-7000” manufactured by Yokogawa Electric Co., Ltd. was used as the ion chromatograph 2.

検水としては超純水(pH7.0)を用い、超純水中の極微量のNaイオン、Caイオン、Feイオンをモニタリング分析することとし、イオンクロマトグラフでNaイオン、Caイオンをモニタリング評価し、分光光度計でFeイオンをモニタリング評価した。   Ultrapure water (pH 7.0) is used as test water, and trace analysis of Na ion, Ca ion, and Fe ion in ultrapure water is monitored and analyzed, and Na ion and Ca ion are monitored and evaluated by ion chromatography. The Fe ion was monitored and evaluated with a spectrophotometer.

[参考例1]
循環ポンプを停止した状態で、RO膜に、超純水を500mL/minで供給して、濃縮水50mL/min(10倍濃縮)を取り出し、その全量を分析系統へ送給した。このとき、RO膜の膜面流速は427m/Hrとなる。
図2に、モニタリング対象の超純水についての分析値と、濃縮水についての分析値と、イオンクロマトグラフ及び分光光度計で検出した値(モニタリング検出値)を示す。また、図3に、モニタリング検出値と、濃縮水分析値との関係を示す。なお、超純水及び濃縮水の分析値は誘導結合プラズマ質量分析計(ICP−MS)によって測定した値である。
図2,3より、RO膜で超純水中の金属イオンを、イオンクロマトグラフ及び分光光度計の定量下限値以上の濃度に濃縮することにより、これらを精度良く分析することが可能となることが分かる。
なお、この参考例1における各金属イオンの回収率(検水中の分析対象物質量から透過水中の分析対象物質量を引いた量に対する濃縮水中の分析対象物質量の割合)は、図4に示す通りであった。
[Reference Example 1]
With the circulation pump stopped, ultrapure water was supplied to the RO membrane at 500 mL / min, concentrated water 50 mL / min (10-fold concentration) was taken out, and the entire amount was supplied to the analysis system. At this time, the membrane surface flow velocity of the RO membrane is 427 m / Hr.
FIG. 2 shows analysis values for the ultrapure water to be monitored, analysis values for the concentrated water, and values (monitoring detection values) detected by an ion chromatograph and a spectrophotometer. FIG. 3 shows the relationship between the monitoring detection value and the concentrated water analysis value. The analytical value of ultrapure water and concentrated water is a value measured by an inductively coupled plasma mass spectrometer (ICP-MS).
2 and 3, it is possible to analyze metal ions in ultrapure water with an RO membrane to a concentration higher than the lower limit of quantification of ion chromatograph and spectrophotometer. I understand.
The recovery rate of each metal ion in Reference Example 1 (ratio of the amount of the analyte in the concentrated water to the amount obtained by subtracting the amount of the analyte in the permeated water from the amount of the analyte in the test water) is shown in FIG. It was street.

[参考例2]
参考例1において、超純水に酸(硝酸)を添加して、RO膜の給水のpHが約6.5となるように調整したこと以外は同様にしてモニタリングを行った。
その結果、濃縮水分析値とモニタリング検出値については、参考例1と同様に優れた相関関係が得られ、更に、図4に示す如く、回収率については非常に良好なものとなった。
[Reference Example 2]
Monitoring was performed in the same manner as in Reference Example 1 except that acid (nitric acid) was added to ultrapure water and the pH of the RO membrane feed water was adjusted to about 6.5.
As a result, as for the concentrated water analysis value and the monitoring detection value, an excellent correlation was obtained as in Reference Example 1. Furthermore, as shown in FIG. 4, the recovery rate was very good.

[実施例1]
参考例2において、循環ポンプを作動させて、更に、濃縮水の一部をRO膜モジュールの入口側へ、RO膜の膜面流速が427m/Hrとなるように高速循環したこと以外は同様にしてモニタリングを行った。
その結果、濃縮水分析値とモニタリング検出値については、参考例1,2と同様に優れた相関関係が得られ、更に、図4に示す如く、回収率については格段に高い結果が得られた。
[Example 1]
In Reference Example 2, the same operation was performed except that the circulation pump was operated and a part of the concentrated water was circulated at high speed so that the membrane surface flow velocity of the RO membrane was 427 m / Hr to the inlet side of the RO membrane module. Monitoring.
As a result, as for the concentrated water analysis value and the monitoring detection value, an excellent correlation was obtained in the same manner as in Reference Examples 1 and 2, and as shown in FIG. 4, a much higher result was obtained for the recovery rate. .

以上の結果から、本発明によれば、検水中の1ng/L以下の極微量の分析対象物質を連続的に高濃縮して高精度な分析結果を得ることができることがわかる。   From the above results, it can be seen that according to the present invention, a very small amount of an analyte of 1 ng / L or less in test water can be continuously highly concentrated to obtain a highly accurate analysis result.

本発明の検水の連続モニタリング装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the continuous monitoring apparatus of the test water of this invention. 参考例1における超純水の連続モニタリング分析結果を示すグラフである。It is a graph which shows the continuous monitoring analysis result of the ultrapure water in the reference example 1. 参考例1における濃縮水分析値とモニタリング検出値の相関を示すグラフである。It is a graph which shows the correlation of the concentrated water analysis value and monitoring detection value in the reference example 1. 参考例1,2及び実施例1における金属イオンの回収率を示すグラフである。4 is a graph showing metal ion recovery rates in Reference Examples 1 and 2 and Example 1.

符号の説明Explanation of symbols

1 RO膜モジュール
2 イオンクロマトグラフ
3 分光光度計
1 RO membrane module 2 Ion chromatograph 3 Spectrophotometer

Claims (8)

検水中の分析対象物質の濃度を連続的にモニタリングする方法において、
検水を逆浸透膜分離処理することにより分析対象物質が濃縮された濃縮水と分析対象物質濃度が低減された透過水とに分離する濃縮工程と、
該濃縮工程からの濃縮水の一部を該濃縮工程前に返送する返送工程と、
残部の濃縮水中の分析対象物質濃度を測定する分析工程と、
該分析工程の分析結果に基づいて検水中の分析対象物質濃度を演算する演算工程と
を含むことを特徴とする検水の連続モニタリング方法。
In the method of continuously monitoring the concentration of the analyte in the sample water,
A concentration step for separating the test water into a concentrated water in which the analyte is concentrated and a permeated water in which the analyte concentration is reduced by subjecting the test water to reverse osmosis membrane separation;
A return step of returning a portion of the concentrated water from the concentration step before the concentration step;
An analysis process for measuring the concentration of the analyte in the remaining concentrated water;
And a calculation step of calculating the concentration of the substance to be analyzed in the test water based on the analysis result of the analysis step.
請求項1において、前記返送工程において、濃縮工程における逆浸透膜の膜面流速が25〜600m/Hrとなるように前記濃縮水を返送することを特徴とする検水の連続モニタリング方法。   The continuous monitoring method according to claim 1, wherein in the returning step, the concentrated water is returned so that the membrane surface flow velocity of the reverse osmosis membrane in the concentration step is 25 to 600 m / Hr. 請求項1又は2において、前記濃縮工程に先立ち、前記逆浸透膜分離処理される水のpHが3.0〜6.95の範囲となるように調整するpH調整工程を含むことを特徴とする検水の連続モニタリング方法。   3. The method according to claim 1, further comprising a pH adjustment step of adjusting the pH of the water subjected to the reverse osmosis membrane separation treatment to be in a range of 3.0 to 6.95 prior to the concentration step. Continuous monitoring method of sample water. 請求項1ないし3のいずれか1項において、前記検水は、個々の金属の金属イオン濃度が1ng/L以下の超純水であり、前記分析対象物質が金属イオンであることを特徴とする検水の連続モニタリング方法。   4. The sample water according to claim 1, wherein the sample water is ultrapure water having a metal ion concentration of each metal of 1 ng / L or less, and the analysis target substance is a metal ion. Continuous monitoring method of sample water. 検水中の分析対象物質の濃度を連続的にモニタリングする装置において、
検水を逆浸膜分離処理することにより分析対象物質が濃縮された濃縮水と分析対象物質濃度が低減された透過水とに分離する逆浸透膜分離手段と、
該濃縮水の一部を該逆浸透膜分離手段の上流側に返送する返送手段と、
残部の濃縮水中の分析対象物質濃度を測定する分析手段と、
該分析手段の分析結果に基づいて検水中の分析対象物質濃度を演算する演算手段と
を含むことを特徴とする検水の連続モニタリング装置。
In a device that continuously monitors the concentration of the analyte in the sample water,
A reverse osmosis membrane separation means for separating the test water into a concentrated water in which the analyte is concentrated and a permeated water in which the concentration of the analyte is reduced by subjecting the test water to reverse osmosis membrane separation;
A return means for returning a part of the concentrated water to the upstream side of the reverse osmosis membrane separation means;
An analytical means for measuring the concentration of the analyte in the remaining concentrated water;
And a calculation unit for calculating a concentration of a substance to be analyzed in the test water based on an analysis result of the analysis unit.
請求項5において、前記返送手段において、逆浸透膜分離手段における膜面流速が25〜600m/Hrとなるように前記濃縮水を返送することを特徴とする検水の連続モニタリング装置。   The continuous monitoring apparatus according to claim 5, wherein in the returning means, the concentrated water is returned so that a membrane surface flow rate in the reverse osmosis membrane separating means is 25 to 600 m / Hr. 請求項5又は6において、前記逆浸透膜分離手段に導入される水のpHが3.0〜6.95の範囲となるように調整するpH調整手段を含むことを特徴とする検水の連続モニタリング装置。   7. A continuous water sample according to claim 5, further comprising pH adjusting means for adjusting the pH of the water introduced into the reverse osmosis membrane separation means to be in the range of 3.0 to 6.95. Monitoring device. 請求項5ないし7のいずれか1項において、前記検水は、個々の金属の金属イオン濃度が1ng/L以下の超純水であり、前記分析対象物質が金属イオンであることを特徴とする検水の連続モニタリング装置。   8. The sample water according to claim 5, wherein the sample water is ultrapure water having a metal ion concentration of each metal of 1 ng / L or less, and the analysis target substance is a metal ion. A continuous monitoring device for water sampling.
JP2007334561A 2007-12-26 2007-12-26 Method and apparatus for continuous monitoring of sample water Expired - Fee Related JP5092735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007334561A JP5092735B2 (en) 2007-12-26 2007-12-26 Method and apparatus for continuous monitoring of sample water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007334561A JP5092735B2 (en) 2007-12-26 2007-12-26 Method and apparatus for continuous monitoring of sample water

Publications (2)

Publication Number Publication Date
JP2009156692A true JP2009156692A (en) 2009-07-16
JP5092735B2 JP5092735B2 (en) 2012-12-05

Family

ID=40960876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007334561A Expired - Fee Related JP5092735B2 (en) 2007-12-26 2007-12-26 Method and apparatus for continuous monitoring of sample water

Country Status (1)

Country Link
JP (1) JP5092735B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108525A (en) * 2013-12-03 2015-06-11 株式会社ディスコ Water quality inspection device
JP2020124687A (en) * 2019-02-05 2020-08-20 野村マイクロ・サイエンス株式会社 Concentrator, concentration measuring apparatus and ultrapure water producing apparatus
KR20210072055A (en) 2018-10-17 2021-06-16 오르가노 코포레이션 Water quality management method, ion adsorption device, information processing device and information processing system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592188A (en) * 1991-09-30 1993-04-16 Koichi Arai Production of concentrated hot-spring water
JPH0739874A (en) * 1993-05-26 1995-02-10 Sumitomo Chem Co Ltd Method for concentrating waste liquid containing photoresist
JPH07163979A (en) * 1993-12-16 1995-06-27 Japan Organo Co Ltd Reverse osmosis membrane treatment
JP2001099595A (en) * 1999-09-30 2001-04-13 New Tokyo International Airport Authority Apparatus and method for recycling air conditioned cooling water
JP2004077299A (en) * 2002-08-19 2004-03-11 Kurita Water Ind Ltd Device and method for concentrating test water
JP2006317163A (en) * 2005-05-10 2006-11-24 Japan Organo Co Ltd Water quality measuring method and apparatus thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592188A (en) * 1991-09-30 1993-04-16 Koichi Arai Production of concentrated hot-spring water
JPH0739874A (en) * 1993-05-26 1995-02-10 Sumitomo Chem Co Ltd Method for concentrating waste liquid containing photoresist
JPH07163979A (en) * 1993-12-16 1995-06-27 Japan Organo Co Ltd Reverse osmosis membrane treatment
JP2001099595A (en) * 1999-09-30 2001-04-13 New Tokyo International Airport Authority Apparatus and method for recycling air conditioned cooling water
JP2004077299A (en) * 2002-08-19 2004-03-11 Kurita Water Ind Ltd Device and method for concentrating test water
JP2006317163A (en) * 2005-05-10 2006-11-24 Japan Organo Co Ltd Water quality measuring method and apparatus thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108525A (en) * 2013-12-03 2015-06-11 株式会社ディスコ Water quality inspection device
KR20210072055A (en) 2018-10-17 2021-06-16 오르가노 코포레이션 Water quality management method, ion adsorption device, information processing device and information processing system
JP2020124687A (en) * 2019-02-05 2020-08-20 野村マイクロ・サイエンス株式会社 Concentrator, concentration measuring apparatus and ultrapure water producing apparatus
JP7208043B2 (en) 2019-02-05 2023-01-18 野村マイクロ・サイエンス株式会社 Concentration measurement device, ultrapure water production device, and water treatment method
JP7208043B6 (en) 2019-02-05 2023-02-03 野村マイクロ・サイエンス株式会社 Concentration measurement device, ultrapure water production device, and water treatment method

Also Published As

Publication number Publication date
JP5092735B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
KR102602540B1 (en) Ultrapure water production device and method of operating the ultrapure water production device
US6733661B2 (en) Ultrapure water producing apparatus
US20210262991A1 (en) Automated system for detection of silicon species in phosphoric acid
WO2015075835A1 (en) Control method and control program for water treatment facility and water treatment system
JP2008194560A (en) Evaluation method of water to be treated in membrane separation device, water treatment method, and water treatment device
JP5092735B2 (en) Method and apparatus for continuous monitoring of sample water
KR102498445B1 (en) Detector for measuring concentration of ions in solutions and an ion chromatography and ion chromatography system including the same
JP2024014871A (en) Ultrapure water production equipment and its water quality management method
JP2010044022A (en) Method and apparatus for continuously monitoring test water
JP2010216977A (en) Apparatus for measurement of total organic carbon
JP2004077299A (en) Device and method for concentrating test water
JP5943196B2 (en) Water treatment facility control method, control program, and water treatment system
US9134264B2 (en) Monitoring method
JP4735959B2 (en) Concentrated ion chromatograph measuring method and concentrated ion chromatograph measuring apparatus
Darbouret et al. Ultrapure water blank for boron trace analysis
Takeuchi et al. Parallel-plate wet denuder coupled ion chromatograph for near-real-time detection of trace acidic gases in clean room air
US20070238188A1 (en) Peroxide monitor
Wang et al. Ion chromatographic analysis of anions in ammonium hydroxide, hydrofluoric acid, and slurries, used in semiconductor processing
KR101441610B1 (en) Method for evaluating of anion exchange resin performance and Online performance evaluation instrument
JP2019188313A (en) Operation method of electric deionization device
CA2228886A1 (en) Apparatus for the purification of liquids and a method of manufacturing and of operating same
Lu et al. An on-line electrodialyzer-ICP-MS analytical system for direct determination of trace metal impurities in KOH
JP2002205053A (en) System for monitoring raw water and method for controlling operation of concentrating/separating apparatus using the same
JP3900504B2 (en) Ultrapure water ion monitor
Ruth et al. Progress in optimization of transition metal cation chromatography and its application to analysis of silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees