JP2007224193A - Curable resin composition and optical device - Google Patents

Curable resin composition and optical device Download PDF

Info

Publication number
JP2007224193A
JP2007224193A JP2006048257A JP2006048257A JP2007224193A JP 2007224193 A JP2007224193 A JP 2007224193A JP 2006048257 A JP2006048257 A JP 2006048257A JP 2006048257 A JP2006048257 A JP 2006048257A JP 2007224193 A JP2007224193 A JP 2007224193A
Authority
JP
Japan
Prior art keywords
group
resin composition
curable resin
component
ethylenically unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006048257A
Other languages
Japanese (ja)
Other versions
JP4933797B2 (en
Inventor
Shoji Nishiguchi
将司 西口
Daisuke Yaginuma
大祐 柳沼
Hirotoshi Kamata
博稔 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP2006048257A priority Critical patent/JP4933797B2/en
Publication of JP2007224193A publication Critical patent/JP2007224193A/en
Application granted granted Critical
Publication of JP4933797B2 publication Critical patent/JP4933797B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a curable resin composition and an optical device, which have excellent transparency, high refractive index, weatherability, heat resistance, and appropriate hardness and strength and enables production of well-balanced cured products. <P>SOLUTION: The curable resin composition comprises (A) a polyorganosiloxane having an average of two or more ethylenically unsaturated group in one molecule, (B) a fluorene compound represented by formula [1], wherein X and Y denote ethylenically unsaturated groups and may be the same or different, R<SP>1</SP>denotes a 1 to 20C divalent hydrocarbon group, R<SP>2</SP>denotes a 1 to 10C alkyl group or aryl group, "a" is an integer between 0 and 4, (2+2n) "a"s may be the same or different, and "n" is an integer between 0 and 10, (C) a polyorganohydrogenpolysiloxane having two or more hydrogen atoms binding to a silicon atom in one molecule, and (D) a catalyst for hydrosilylation reaction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、LED(以下、発光素子と称する場合もある)、フォトセンサー、レーザー等のオプトデバイスや一般光学材料の封止に好適な高い屈折率と耐熱性、耐候性を有する硬化物を与えるフルオレン化合物とポリオルガノシロキサンを含む硬化性樹脂組成物に関するものであり、さらには同硬化性樹脂組成物により封止されたオプトデバイスに関するものである。   The present invention provides a cured product having a high refractive index, heat resistance, and weather resistance suitable for sealing optical devices such as LEDs (hereinafter sometimes referred to as light emitting elements), photosensors, lasers, and general optical materials. The present invention relates to a curable resin composition containing a fluorene compound and a polyorganosiloxane, and further relates to an optical device sealed with the curable resin composition.

近年、オプトデバイスの分野は目覚ましい発展を遂げてきている。中でもLEDは長寿命、高輝度、低消費電力などの優れた特徴を持つためその用途は年々拡大している。特に近年青色や紫外発光のLEDが開発され、照明光源、表示装置、液晶ディスプレイのバックライトなどに用途で急速に普及してきている。
従来、LEDの封止に用いられる材料は、強度と光透過性に優れたエポキシ樹脂が主として使われてきた(例えば、特許文献1、2、3)。
しかし、青色LEDや紫外LEDなど波長約350nm〜500nmの光を発光するLEDは半導体チップからの発熱量が大きく、また光が短波長であることから、透光性封止部に用いられるエポキシ樹脂の劣化による着色が促進され、これにより半導体チップから発光する光を吸収してしまうため透過光が減少し、結果的に短時間でのLEDの輝度低下の原因となっている。
他のLED用封止材料としてはシリコーン系の樹脂が知られている。シリコーン系樹脂を用いた封止材料は透明性、耐候性、耐熱性に優れることから、エポキシ樹脂では劣化してしまう青色LEDや紫外LED用途で用いられる場合が多くなってきている。
しかし、従来のシリコーン系封止材料はゲル状やゴム状の弾性体のものが多く(例えば、特許文献4、5)、これは衝撃を吸収しやすい反面、変形しやすく、変形によってLEDのボンディングワイヤーが切断するという問題が発生しやすい。さらにエポキシ樹脂に比べて屈折率が低いことから光の取り出し効率が低くなる問題や、硬化物にタックが残りやすく表面に埃が付着したり、傷がつきやすいという問題もあった。これらの問題を解決する手段の一つとして、不飽和基含有有機化合物とハイドロジェンポリシロキサンとの組成物(例えば、特許文献6など)が提案されているが、脂環式化合物では屈折率を上げられないことや、アリルエーテルなどのエーテル構造や窒素原子を含む化合物では高温で着色しやすいなどの点で十分ではなく、物性バランスの良いシリコーン系封止材料が強く望まれていた。
In recent years, the field of opto-devices has made remarkable progress. In particular, LEDs have excellent features such as long life, high brightness, and low power consumption, and their applications are expanding year by year. In particular, blue and ultraviolet light emitting LEDs have been developed in recent years, and are rapidly spreading in applications such as illumination light sources, display devices, and liquid crystal display backlights.
Conventionally, the epoxy resin excellent in intensity | strength and light transmittance has been mainly used for the material used for sealing of LED (for example, patent document 1, 2, 3).
However, an LED that emits light having a wavelength of about 350 nm to 500 nm, such as a blue LED or an ultraviolet LED, generates a large amount of heat from the semiconductor chip, and the light has a short wavelength. Coloring due to deterioration of the light is promoted, and thus light emitted from the semiconductor chip is absorbed, so that transmitted light is reduced, resulting in a decrease in luminance of the LED in a short time.
Silicone resins are known as other LED sealing materials. Sealing materials using silicone resins are excellent in transparency, weather resistance, and heat resistance, and thus are increasingly used in blue LED and ultraviolet LED applications that are degraded by epoxy resins.
However, many of the conventional silicone-based sealing materials are gel-like or rubber-like elastic bodies (for example, Patent Documents 4 and 5), which are easy to absorb impacts but are easily deformed. The problem of wire breakage is likely to occur. Furthermore, since the refractive index is lower than that of the epoxy resin, there is a problem that the light extraction efficiency is low, and there is a problem that tack is likely to remain on the cured product, and dust adheres to the surface or is easily damaged. As a means for solving these problems, a composition (for example, Patent Document 6) of an unsaturated group-containing organic compound and hydrogen polysiloxane has been proposed, but an alicyclic compound has a refractive index. A silicone-based sealing material having a good balance of physical properties has been strongly desired because it cannot be increased, and an ether structure such as allyl ether or a compound containing a nitrogen atom is not sufficient in that it tends to be colored at high temperatures.

特開2003−277473号公報JP 2003-277473 A 特開2003−176334号公報JP 2003-176334 A 特開2003−26763号公報JP 2003-26763 A 特開平3−166262号公報JP-A-3-166262 特開平3−22553号公報JP-A-3-22553 特開2002−80733号公報JP 2002-80733 A

上記従来技術の問題点に鑑み、本発明の目的は透明性に優れ、屈折率が高く、耐候性、耐熱性があり、適度な硬度と強度を有するバランスに優れた硬化物を与えることより、オプトデバイス用途、特に青色LEDや紫外LED用の封止に適したシリコーン系の硬化性樹脂組成物、及び同硬化性樹脂組成物で封止されたオプトデバイスを提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is to provide a cured product excellent in balance, having excellent transparency, high refractive index, weather resistance, heat resistance, and having an appropriate hardness and strength. An object of the present invention is to provide a silicone-based curable resin composition suitable for optical device use, particularly for blue LED and ultraviolet LED sealing, and an opto-device sealed with the same curable resin composition.

本発明者等は、前記課題を解決するため、鋭意検討を重ねた結果、エチレン性不飽和基を有するポリオルガノシロキサン、エチレン性不飽和基を有するフルオレン系化合物、ポリオルガノハイドロジェンポリシロキサンおよびヒドロシリル化反応触媒を含有する組成物を用いることにより、透明性に優れ、屈折率が高く、耐候性、耐熱性があり、適度な硬度と強度を有する、バランスに優れた硬化物を与える硬化性樹脂組成物およびオプトデバイスを提供できることを見いだし、本発明を完成するに至った。
すなわち、本発明は、以下(1)〜(9)、
(1)(A)一分子中に平均して2個以上のエチレン性不飽和基を有するポリオルガノシロキサン、(B)式[1]で表されるフルオレン系化合物
As a result of intensive studies to solve the above problems, the present inventors have made polyorganosiloxanes having ethylenically unsaturated groups, fluorene compounds having ethylenically unsaturated groups, polyorganohydrogenpolysiloxanes and hydrosilyls. By using a composition containing a fluorination reaction catalyst, a curable resin that provides a cured product with excellent balance, excellent transparency, high refractive index, weather resistance, heat resistance, moderate hardness and strength It has been found that a composition and an optical device can be provided, and the present invention has been completed.
That is, the present invention includes the following (1) to (9),
(1) (A) Polyorganosiloxane having two or more ethylenically unsaturated groups on average in one molecule, (B) fluorene compound represented by the formula [1]

Figure 2007224193
Figure 2007224193

[式中、XおよびYはエチレン性不飽和基を示し、それぞれ同じでも異なっていてもよい。R1は炭素数1〜20の2価の炭化水素基を示し、R2は炭素数1〜10のアルキル基またはアリール基を示し、aは0〜4の整数で(2+2n)個のaは同じでも異なっていてもよい。nは0〜10の整数である]、
(C)ケイ素原子に結合した水素原子を1分子中に2個以上有するポリオルガノハイドロジェンポリシロキサンおよび
(D)ヒドロシリル化反応触媒よりなる硬化性樹脂組成物、
(2)式[1]中のXおよびYが、それぞれアリル基、メタリル基またはビニルベンジル基より選択されるいずれか少なくともひとつである上記(1)記載の硬化性樹脂組成物、
(3)式[1]中のnおよびaがいずれも0である上記(1)または(2)に記載の硬化性樹脂組成物、
(4)(B)成分のフルオレン系化合物と(C)成分のポリオルガノハイドロジェンポリシロキサンを予めヒドロシリル化反応させて得られた化合物を(A)成分と(D)成分の混合物に配合してなる上記(1)記載の硬化性樹脂組成物、
(5)(A)成分と(B)成分の合計量に対する(B)成分の割合が0.1質量%〜80質量%となる範囲になるように配合された上記(1)〜(4)のいずれかに記載の硬化性樹脂組成物、
(6)(C)成分の配合量が(A)成分中のエチレン性不飽和基と(B)成分中のエチレン性不飽和基の合計モル量に対して(C)成分中のケイ素原子に直結した水素原子のモル比が0.5〜2.0 となる量である上記(1)〜(5)のいずれかに記載の硬化性樹脂組成物、
(7)(D)のヒドロシリル化反応触媒が白金族系金属触媒である上記(1)〜(6)のいずれかに記載の硬化性樹脂組成物、
(8)オプトデバイス封止に用いる上記(1)〜(7)のいずれかに記載の硬化性樹脂組成物、および
(9)上記(1)〜(7)のいずれかに記載の硬化性樹脂組成物によって封止されたオプトデバイスを提供するものである。
[Wherein, X and Y represent ethylenically unsaturated groups, which may be the same or different. R 1 represents a divalent hydrocarbon group having 1 to 20 carbon atoms, R 2 represents an alkyl group or aryl group having 1 to 10 carbon atoms, a is an integer of 0 to 4, and (2 + 2n) a are It can be the same or different. n is an integer from 0 to 10],
(C) a curable resin composition comprising a polyorganohydrogenpolysiloxane having two or more hydrogen atoms bonded to a silicon atom in one molecule, and (D) a hydrosilylation reaction catalyst,
(2) The curable resin composition according to the above (1), wherein X and Y in the formula [1] are at least one selected from an allyl group, a methallyl group, and a vinylbenzyl group,
(3) The curable resin composition according to the above (1) or (2), wherein both n and a in formula [1] are 0,
(4) A compound obtained by subjecting the fluorene compound of component (B) and the polyorganohydrogenpolysiloxane of component (C) to a hydrosilylation reaction in advance is blended into a mixture of component (A) and component (D). The curable resin composition according to the above (1),
(5) Said (1)-(4) mix | blended so that the ratio of (B) component with respect to the total amount of (A) component and (B) component may become the range used as 0.1 mass%-80 mass% The curable resin composition according to any one of
(6) Component (C) is added to the silicon atom in component (C) with respect to the total molar amount of ethylenically unsaturated groups in component (A) and ethylenically unsaturated groups in component (B). The curable resin composition according to any one of the above (1) to (5), wherein the molar ratio of directly connected hydrogen atoms is 0.5 to 2.0.
(7) The curable resin composition according to any one of the above (1) to (6), wherein the hydrosilylation reaction catalyst of (D) is a platinum group metal catalyst,
(8) The curable resin composition according to any one of the above (1) to (7), which is used for optical device sealing, and
(9) An optical device sealed with the curable resin composition according to any one of (1) to (7) above is provided.

本発明によれば、オプトデバイス用途、特に青色LEDや紫外LED用の封止材料として、透明性に優れ、屈折率が高く、耐候性、耐熱性があり、適度な硬度と強度を有するバランスに優れた硬化物を与えるシリコーン系の硬化性樹脂組成物、および優れたオプトデバイスが提供される。   According to the present invention, as a sealing material for opto device applications, particularly blue LEDs and ultraviolet LEDs, it has excellent transparency, a high refractive index, weather resistance, heat resistance, and a balance having appropriate hardness and strength. A silicone-based curable resin composition that provides an excellent cured product and an excellent optical device are provided.

本発明について、以下具体的に説明する。
本発明の硬化性樹脂組成物中の(A)成分であるポリオルガノシロキサンは一分子中に平均して少なくとも2個のエチレン性不飽和基を有するものであれば特に制限はなく下記平均組成式[2]
(R5b(R6C SiO(4-b-c)/2 [2]
で表される公知の化合物またはそれらの混合物を使用できる。この平均組成式[2]において、R5はエチレン性不飽和基、好ましくは炭素原子数2〜10のエチレン性不飽和基であり、例えば、ビニル基、アリル基、メタリル基、プロペニル基、ブテニル基、ヘキセニル基、シクロペンテニル基、シクロヘキセニル基、オクテニル基、ビニルベンジル基等が挙げられる。R6は置換または非置換の1価の炭化水素基であるか、あるいは2個のR6が一緒になって低級アルキレン基を形成していてもよい。この1価の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロブチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;あるいはこれらの炭化水素基に結合している水素原子の1部又は全部が塩素、フッ素、臭素等のハロゲン原子で置換されてなる基、例えば、クロロメチル基、トリフルオロプロピル基、クロロフェニル基、ジブロモフェニル基、テトラクロロフェニル基、ジフルオロフェニル基等のハロゲン化炭化水素基などを挙げることができ、また2個のR6から形成される低級アルキレン基としては、エチレン基、トリメチレン基、メチルメチレン基、テトラメチレン基、ヘキサメチレン基等を挙げることができる。また、bは0<b<3の数、cは0<c<3の数であり、ただし0<b+c<4である。上記平均組成式[2]で表されるオルガノポリシロキサンは、直鎖状、分岐状の何れでもよく、またそれらの混合物からなっていてもよい。かかるオルガノポリシロキサンは、1種単独でまたは2種以上を組合わせて用いられるが、他の成分との溶解性の点から好ましくは分子量500〜100000程度のものが使用される。
The present invention will be specifically described below.
The polyorganosiloxane as component (A) in the curable resin composition of the present invention is not particularly limited as long as it has at least two ethylenically unsaturated groups on average in one molecule, and the following average composition formula [2]
(R 5 ) b (R 6 ) C SiO (4-bc) / 2 [2]
The well-known compound represented by these, or mixtures thereof can be used. In this average composition formula [2], R 5 is an ethylenically unsaturated group, preferably an ethylenically unsaturated group having 2 to 10 carbon atoms, for example, vinyl group, allyl group, methallyl group, propenyl group, butenyl. Group, hexenyl group, cyclopentenyl group, cyclohexenyl group, octenyl group, vinylbenzyl group and the like. R 6 is a substituted or unsubstituted monovalent hydrocarbon group, or two R 6 may be combined to form a lower alkylene group. Examples of the monovalent hydrocarbon group include an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an octyl group; a cycloalkyl group such as a cyclopentyl group, a cyclohexyl group, and a cyclobutyl group; a phenyl group Aryl groups such as tolyl group, xylyl group and naphthyl group; aralkyl groups such as benzyl group, phenylethyl group and phenylpropyl group; or part or all of hydrogen atoms bonded to these hydrocarbon groups are chlorine, Groups substituted by halogen atoms such as fluorine and bromine, such as halogenated hydrocarbon groups such as chloromethyl, trifluoropropyl, chlorophenyl, dibromophenyl, tetrachlorophenyl, and difluorophenyl as the lower alkylene group can be also formed of two R 6 , Ethylene group, trimethylene group, methyl methylene group, tetramethylene group, hexamethylene group or the like. Also, b is a number 0 <b <3, and c is a number 0 <c <3, where 0 <b + c <4. The organopolysiloxane represented by the average composition formula [2] may be linear or branched, or may be a mixture thereof. Such organopolysiloxanes are used singly or in combination of two or more, but those having a molecular weight of about 500 to 100,000 are preferably used from the viewpoint of solubility with other components.

この(A)成分である分岐状ポリオルガノシロキサンとしては、例えば、次の各一般式(R7 2SiO2/2)d、(CH2=CHR7 2SiO1/2)e、(R7SiO3/2)fで表される構造単位と平均組成を有する混合物を使用することができる。
上記各構造単位において、d、eおよびfは混合物中の各構造体のモル分率を表し、0<d、e、f≦0.5、およびd+e+f=1の関係を満たすのが好ましい。
上記各一般式において、R7は炭素数1〜20のアルキル基または炭素数5〜20のシクロアルキル基または芳香族基を表わしそれぞれ同じでも異なっていてもよい。R7の例としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、へキシル基、イソへキシル基、ヘプチル基、イソヘプチル基、オクチル基、イソオクチル基、ノニル基、デシル基等の直鎖または分岐状のアルキル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基、シクロヘプチル基、シクロオクチル基、ジシクロペンチル基、デカヒドロナフチル等のシクロアルキル基、フェニル基、ナフチル基、テトラヒドロナフチル基、トリル基、エチルフェニル基等のアラルキル基およびアリール基等をあげることができる。これらの中でも、入手の容易さの観点からメチル基、エチル基、プロピル基およびフェニル基が特に好ましい。
Examples of the branched polyorganosiloxane as the component (A) include the following general formulas (R 7 2 SiO 2/2 ) d, (CH 2 = CHR 7 2 SiO 1/2 ) e, (R 7 A mixture having a structural unit represented by SiO 3/2 ) f and an average composition can be used.
In each structural unit, d, e, and f represent the mole fraction of each structural body in the mixture, and preferably satisfy the relationship of 0 <d, e, f ≦ 0.5, and d + e + f = 1.
In the above general formulas, R 7 represents an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or an aromatic group, and may be the same or different. Examples of R 7 are methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, isohexyl, Linear or branched alkyl group such as heptyl group, isoheptyl group, octyl group, isooctyl group, nonyl group, decyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cycloheptyl group, cyclooctyl group, dicyclopentyl And a cycloalkyl group such as a decahydronaphthyl group, a phenyl group, a naphthyl group, a tetrahydronaphthyl group, a tolyl group, and an ethylphenyl group, an aryl group, and the like. Among these, a methyl group, an ethyl group, a propyl group, and a phenyl group are particularly preferable from the viewpoint of availability.

上記各式の構造単位に対応するオルガノシラン類および/またはオルガノシロキサン類を原料とし、共加水分解によって、または、共加水分解縮合物の共重合によって得ることができる。原料としては、例えば、トリメチルクロロシラン、トリエチルクロロシラン、トリフェニルクロロシラン、トリプロピルクロロシラン、ジフェニルジクロロシラン、ビニルトリクロロシラン、フェニルトリクロロシラン、メチルトリクロロシラン、エチルトリクロロシラン、トリメチルメトキシシラン、ジフェニルジメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシランなどが挙げられる。   The organosilanes and / or organosiloxanes corresponding to the structural units of the above formulas can be used as raw materials, and can be obtained by cohydrolysis or copolymerization of a cohydrolyzed condensate. Examples of raw materials include trimethylchlorosilane, triethylchlorosilane, triphenylchlorosilane, tripropylchlorosilane, diphenyldichlorosilane, vinyltrichlorosilane, phenyltrichlorosilane, methyltrichlorosilane, ethyltrichlorosilane, trimethylmethoxysilane, diphenyldimethoxysilane, vinyltri Examples include methoxysilane, phenyltrimethoxysilane, methyltrimethoxysilane, and ethyltrimethoxysilane.

本発明の硬化性樹脂組成物中の(A)成分である直鎖状ポリオルガノシロキサンとしては、例えば、以下の式[3]で表されるエチレン性不飽和基含有シロキシ末端ジオルガノシロキサンを使用することもできる。   As the linear polyorganosiloxane which is the component (A) in the curable resin composition of the present invention, for example, an ethylenically unsaturated group-containing siloxy-terminated diorganosiloxane represented by the following formula [3] is used. You can also

Figure 2007224193
Figure 2007224193

上記式[3]において、各R3は炭素数1〜20の置換基を有していてもよい一価の炭化水素基であり、それぞれ同じでも異なっていてもよい。各R4はR3と同じであるかエチレン性不飽和基であり、mおよびlは≧0で、両者が同時に0になることはなく、(A)成分が1分子につき平均して少なくとも2個のエチレン性不飽和基を含むような数値である。
mの上限は20程度であり、後記する実施態様では約8、lは0である。エチレン性不飽和基としては、炭素数2〜10程度のもの、具体的には、ビニル基、プロペニル基、ブテニル基、ヘキセニル基、シクロペンテニル基、シクロヘキセニル基、オクテニル基、アリル基、メタリル基、ビニルベンジル基等があり、ビニル基が好ましい。
好ましくは、R3は炭素数7未満の置換基を有していない一価の炭化水素基または炭素数7未満のハロゲン化アルキル基であり、より好ましくは、メチル基またはエチル基のようなアルキル基、シクロヘキシル基のようなシクロアルキル基、フェニル基のようなアリール基である。通常はメチル基である。
上記式で表されるポリオルガノシロキサンの具体例としては、ジメチルビニルシロキシ末端ポリジメチルシロキサンやジメチルヘキセニルシロキシ末端ジメチルシロキサン等が挙げられる。
In the above formula [3], each R 3 is a monovalent hydrocarbon group which may have a substituent having 1 to 20 carbon atoms, and may be the same or different. Each R 4 is the same as R 3 or an ethylenically unsaturated group, m and l are ≧ 0, and they are not simultaneously 0, and the component (A) has an average of at least 2 per molecule. It is a numerical value including one ethylenically unsaturated group.
The upper limit of m is about 20, and in the embodiment described later, about 8 and l are 0. The ethylenically unsaturated group has about 2 to 10 carbon atoms, specifically, vinyl group, propenyl group, butenyl group, hexenyl group, cyclopentenyl group, cyclohexenyl group, octenyl group, allyl group, methallyl group. Vinyl benzyl group and the like, and vinyl group is preferable.
Preferably, R 3 is a monovalent hydrocarbon group having no substituent having less than 7 carbon atoms or a halogenated alkyl group having less than 7 carbon atoms, more preferably an alkyl group such as a methyl group or an ethyl group. A cycloalkyl group such as a cyclohexyl group, and an aryl group such as a phenyl group. Usually a methyl group.
Specific examples of the polyorganosiloxane represented by the above formula include dimethylvinylsiloxy-terminated polydimethylsiloxane and dimethylhexenylsiloxy-terminated dimethylsiloxane.

本発明の硬化性樹脂組成物中の(B)成分である式[1]で表されるエチレン性不飽和基含有フルオレン系化合物は、フルオレン骨格が高い屈折率と優れた剛直性や耐熱性を有しており、さらに分子内にエーテル構造、エステル構造や複素原子を含まないことにより着色し難い特徴を有しており、これを添加することでシリコーン樹脂が本来有している優れた耐熱性などの物性を低下させることなく硬化物の強度、屈折率を向上させることができる。
式[1]において、XおよびYはエチレン性不飽和基を示し、それぞれ同じでも異なっていてもよい。エチレン性不飽和基としては、炭素数としては2〜10程度のもの、具体的には、ビニル基、プロペニル基、ブテニル基、ヘキセニル基、オクテニル基、シクロペンテニル基、シクロヘキセニル基、アリル基、メタリル基、ビニルベンジル基等があり、それぞれアリル基、メタリル基またはビニルベンジル基より選択されるいずれか一つが好ましい。
1は炭素数1〜20の2価の炭化水素基を示し、R2は炭素数1〜10のアルキル基またはアリール基を示し、aは0〜4の整数で(2+2n)個のaは同じでも異なっていてもよい。nは0〜10の整数で、好ましくは、0または1である。
The ethylenically unsaturated group-containing fluorene compound represented by the formula [1], which is the component (B) in the curable resin composition of the present invention, has a high refractive index and excellent rigidity and heat resistance. In addition, it has the characteristics that it is hard to be colored by not containing an ether structure, ester structure or hetero atom in the molecule, and by adding this, it has excellent heat resistance inherent to the silicone resin The strength and refractive index of the cured product can be improved without degrading the physical properties such as.
In the formula [1], X and Y represent an ethylenically unsaturated group, which may be the same or different. As the ethylenically unsaturated group, those having about 2 to 10 carbon atoms, specifically vinyl group, propenyl group, butenyl group, hexenyl group, octenyl group, cyclopentenyl group, cyclohexenyl group, allyl group, There are a methallyl group, a vinylbenzyl group, and the like, and any one selected from an allyl group, a methallyl group, and a vinylbenzyl group is preferable.
R 1 represents a divalent hydrocarbon group having 1 to 20 carbon atoms, R 2 represents an alkyl group or aryl group having 1 to 10 carbon atoms, a is an integer of 0 to 4, and (2 + 2n) a are It can be the same or different. n is an integer of 0 to 10, preferably 0 or 1.

式[1]のエチレン性不飽和基含有フルオレン系化合物は、フルオレン系化合物と対応するエチレン性不飽和基を有するハロゲン化合物をアルカリ金属存在下で反応させることにより得られる。一方の原料であるフルオレン系化合物としては、フルオレン骨格の9,9'位に少なくとも1つの活性水素を持つ化合物を用いることができ、例えばフルオレン、2、7−ジメチルフルオレン、2、7−ジフェニルフルオレンなどのフルオレン誘導体類、フルオレン、あるいは、その誘導体と対応するジオール化合物との脱水反応、あるいはジハロメチル化合物との脱ハロゲン化水素反応により得られる1,2−ビス(9−フルオレニル)エタン、1,3−ビス(9−フルオレニル)プロパン、1,4−ビス(9−フルオレニル)ブタン、1,5−ビス(9−フルオレニル)ペンタン、1,6−ビス(9−フルオレニル)ヘキサンなどのフルオレンダイマー類、フルオレンオリゴマー類等が挙げられるが、入手のし易さの観点からフルオレン、2、7−ジメチルフルオレン、1,6−ビス(9−フルオレニル)ヘキサンが好ましい。これらは単独でも2種以上を混合して用いても良い。   The ethylenically unsaturated group-containing fluorene compound of the formula [1] can be obtained by reacting a fluorene compound with a corresponding halogen compound having an ethylenically unsaturated group in the presence of an alkali metal. As the fluorene compound as one raw material, a compound having at least one active hydrogen at the 9,9′-position of the fluorene skeleton can be used, for example, fluorene, 2,7-dimethylfluorene, 2,7-diphenylfluorene. 1,2-bis (9-fluorenyl) ethane obtained by dehydration reaction of fluorene derivatives such as fluorene or the corresponding diol compound, or dehydrohalogenation reaction with a dihalomethyl compound, 1,3 Fluorene dimers such as -bis (9-fluorenyl) propane, 1,4-bis (9-fluorenyl) butane, 1,5-bis (9-fluorenyl) pentane, 1,6-bis (9-fluorenyl) hexane, Fluorene oligomers and the like can be mentioned. From the viewpoint of easy availability, fluorene, 2,7-dimethylfluorene, 1,6-bis (9 -Fluorenyl) hexane is preferred. These may be used alone or in admixture of two or more.

もう一方の原料であるハロゲン化合物としては例えばアリルクロライド、アリルブロマイド、メタリルクロライド、メタリルブロマイド、ビニルベンジルクロライド、ビニルベンジルブロマイドなどが挙げられ、これらは単独でも2種以上を混合して用いても良い。   Examples of the halogen compound as the other raw material include allyl chloride, allyl bromide, methallyl chloride, methallyl bromide, vinyl benzyl chloride, and vinyl benzyl bromide. These may be used alone or in combination of two or more. Also good.

(B)成分の具体的化合物としては、ジアリルフルオレン、ジメタリルフルオレン、9,9’−ビス(ビニルベンジル)−2,7−ジメチルフルオレン、1,6-ビス(9-フルオレニル)ヘキサンのフルオレン部の9'位にビニルベンジル基が2つ置換した化合物、すなわち、式[1]のR1が−(CH2)6−、R2がいずれもH、n=1であるビス(ビニルベンジル)フルオレン化合物、フルオレンをキシリレンジクロリドと反応させたオリゴマーのフルオレン部の9'位にビニルベンジル基が2つ置換した化合物、すなわち、式[1]のR1が−CH2PhCH2−、R2がいずれもH、n=1〜3であるビス(ビニルベンジル)フルオレンオリゴマー化合物等が挙げられる(Phはフェニル基)。 Specific compounds of the component (B) include diallyl fluorene, dimethallyl fluorene, 9,9′-bis (vinylbenzyl) -2,7-dimethylfluorene, fluorene part of 1,6-bis (9-fluorenyl) hexane. A compound in which two vinylbenzyl groups are substituted at the 9′-position, ie, bis (vinylbenzyl) in which R 1 in formula [1] is — (CH 2 ) 6 —, R 2 is H, and n = 1 Fluorene compound, a compound in which two vinylbenzyl groups are substituted at the 9′-position of the fluorene moiety of an oligomer obtained by reacting fluorene with xylylene dichloride, that is, R 1 in the formula [1] is —CH 2 PhCH 2 —, R 2 Are bis (vinylbenzyl) fluorene oligomer compounds in which n is H and n = 1 to 3 (Ph is a phenyl group).

(B)成分の配合量は特に制限されるものではなく、目的とする硬化物であるオプトデバイスに要求される強度や屈折率により決定すればよいが、好ましくは(A)成分と(B)成分の合計量に対する(B)成分の割合が0.1質量%〜80質量%となる範囲、さらに好ましくは5質量%〜50質量%となる範囲で配合するのがよい。
(A)成分と(B)成分の配合比率を上記の範囲に保持することにより、透明性に優れ、屈折率が高く、耐候性、耐熱性があり、適度な硬度と強度を有するバランスに優れた硬化物が得られる。
The blending amount of the component (B) is not particularly limited, and may be determined according to the strength and refractive index required for the optical device that is the target cured product, preferably the component (A) and the component (B). It is good to mix | blend in the range from which the ratio of (B) component with respect to the total amount of a component will be 0.1 mass%-80 mass%, More preferably, it will be 5 mass%-50 mass%.
By maintaining the blending ratio of the component (A) and the component (B) in the above range, the transparency is excellent, the refractive index is high, the weather resistance and the heat resistance are excellent, and the balance having appropriate hardness and strength is excellent. Cured product is obtained.

本発明の硬化性樹脂組成物中の(C)成分であるポリオルガノハイドロジェンポリシロキサンは前記(A)成分および(B)成分とヒドロシリル化反応させることにより組成物を硬化させる際の架橋剤として働くものであり、ケイ素原子に結合した水素原子を1分子中に平均して2個以上有する少なくとも1種以上のポリオルガノハイドロジェンポリシロキサンであればよい。
オルガノハイドロジェンポリシロキサンとしては、1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、1,1,3,3−テトラフェニルジシロキサン、1,3,5,7−テトラフェニルシクロテトラシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位と(C65)SiO3/2単位とからなる共重合体などが挙げられる。
The polyorganohydrogenpolysiloxane which is the component (C) in the curable resin composition of the present invention is used as a crosslinking agent when the composition is cured by hydrosilylation reaction with the components (A) and (B). What is necessary is just at least one polyorganohydrogenpolysiloxane that works and has an average of two or more hydrogen atoms bonded to silicon atoms in one molecule.
Examples of the organohydrogenpolysiloxane include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, 1,1,3,3-tetraphenyldisiloxane, 3,5,7-tetraphenylcyclotetrasiloxane, both ends trimethylsiloxy group-capped methylhydrogen polysiloxane, both ends trimethylsiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer, both ends dimethylhydrogensiloxy group-capped dimethyl Polysiloxane, both ends dimethylhydrogensiloxy-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, both ends trimethylsiloxy-blocked methylhydrogensiloxane / diphenylsiloxane copolymer, both ends trimethyl Siloxy groups at methylhydrogensiloxane-diphenylsiloxane-dimethylsiloxane copolymers, copolymers consisting of (CH 3) 2 HSiO 1/2 units and SiO 4/2 units, (CH 3) 2 HSiO 1/2 units And a copolymer composed of (C 6 H 5 ) SiO 3/2 units.

上記(C)成分であるポリオルガノハイドロポリシロキサンの配合量は、(A)成分中のエチレン性不飽和基と(B)成分中のエチレン性不飽和基の合計モル量に対して(C)成分中のケイ素原子に直結した水素原子のモル比が0.5〜2.0 倍となる量、好ましくは0.8〜1.5倍となる量とすることで、よい硬化物が得られる。   The blending amount of the polyorganohydropolysiloxane as the component (C) is (C) based on the total molar amount of the ethylenically unsaturated group in the component (A) and the ethylenically unsaturated group in the component (B). By setting the molar ratio of hydrogen atoms directly bonded to silicon atoms in the component to 0.5 to 2.0 times, preferably 0.8 to 1.5 times, a good cured product can be obtained. .

本発明では、組成物中での各成分の相溶性を向上させる観点から、使用する(B)成分と(C)成分について一部あるいは全量を予めヒドロシリル化反応させ、得られた生成物を(A)成分および(D)成分と混合した硬化性樹脂組成物として用いることもできる。   In the present invention, from the viewpoint of improving the compatibility of each component in the composition, a part or all of the component (B) and the component (C) to be used are subjected to a hydrosilylation reaction in advance, and the resulting product ( It can also be used as a curable resin composition mixed with the component (A) and the component (D).

本発明の硬化性樹脂組成物中の(D)成分であるヒドロシリル化反応触媒は、水素原子が結合したケイ素原子と多重結合を有する炭化水素とのヒドロシリル化反応を促進するために通常用いられる触媒であり、本発明において(A)成分、(B)成分中のエチレン性不飽和基と(C)成分中のSiH基とのヒドロシリル化反応を促進するために用いられる。(D)成分であるヒドロシリル化反応触媒としては、例えば、白金、ロジウム、パラジウム、ルテニウム、及びイリジウムなどの金属や金属化合物が挙げられ、特に白金及び白金化合物を使用することが好ましい。白金化合物としては、PtCl4、H2PtCl4・6H2O、Na2PtCl4・4H2O、H2PtCl4・6H2Oとシクロヘキサンからなる反応生成物などの白金ハロゲン化物、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体、ビス−(γ−ピコリン)−白金ジクロライド、トリメチレンジピリジン−白金ジクロライド、ジシクロペンタジエン−白金ジクロライド、シクロオクタジエン−白金ジクロライド、シクロペンタジエン−白金ジクロライド)、ビス(アルキニル)ビス(トリフェニルホスフィン)白金錯体、ビス(アルキニル)(シクロオクタジエン)白金錯体などの各種白金錯体が挙げられる。 The hydrosilylation reaction catalyst which is the component (D) in the curable resin composition of the present invention is a catalyst usually used for promoting the hydrosilylation reaction between a silicon atom bonded with a hydrogen atom and a hydrocarbon having multiple bonds. In the present invention, it is used to accelerate the hydrosilylation reaction between the ethylenically unsaturated group in component (A) and component (B) and the SiH group in component (C). Examples of the hydrosilylation reaction catalyst as component (D) include metals and metal compounds such as platinum, rhodium, palladium, ruthenium, and iridium, and it is particularly preferable to use platinum and platinum compounds. The platinum compounds, PtCl 4, H 2 PtCl 4 · 6H 2 O, platinum halides, such as Na 2 PtCl 4 · 4H 2 O , H2PtCl 4 · 6H 2 O and the reaction products of cyclohexane, platinum-1,3 -Divinyl-1,1,3,3-tetramethyldisiloxane complex, bis- (γ-picoline) -platinum dichloride, trimethylenedipyridine-platinum dichloride, dicyclopentadiene-platinum dichloride, cyclooctadiene-platinum dichloride, And various platinum complexes such as cyclopentadiene-platinum dichloride), bis (alkynyl) bis (triphenylphosphine) platinum complex, and bis (alkynyl) (cyclooctadiene) platinum complex.

なお、(D)成分であるこのヒドロシリル化反応触媒の配合量は、通常、白金族金属として(A)、(B)及び(C)成分の合計質量に対して1〜500ppm、特に2〜100ppm程度配合することが好ましい。(B)と(C)成分について一部あるいは全量を予めヒドロシリル化反応させる場合は、(D)成分であるこのヒドロシリル化反応触媒を(B)成分と(C)成分の合計質量に対して1〜500ppm、特に2〜100ppm程度配合することが好ましい。   In addition, the compounding quantity of this hydrosilylation reaction catalyst which is (D) component is 1-500 ppm with respect to the total mass of (A), (B) and (C) component as a platinum group metal normally, Especially 2-100 ppm. It is preferable to mix about. When a part or all of the components (B) and (C) are subjected to a hydrosilylation reaction in advance, the hydrosilylation reaction catalyst as the component (D) is added to the total mass of the components (B) and (C). It is preferable to add about 500 ppm, particularly about 2-100 ppm.

また、本発明の硬化性樹脂組成物においてはその効果を損なうことのない範囲内で種々の添加物を添加することができる。例えば、硬化性、ポットライフを与えるためのヒドロシリル化反応用反応制御剤や白色発光用のYAG等の蛍光体、また必要に応じて微粒子状シリカ、酸化チタン等の無機充填剤や顔料、有機充填剤、金属充填剤、難燃剤、耐熱剤、耐酸化劣化剤等を配合してもよい。
硬化条件としては30℃〜200℃、好ましくは80℃〜150℃の温度範囲で、使用する触媒の種類に応じて適した温度で10分〜300分間硬化させることで、良好な成型物を得ることができる。
Moreover, in the curable resin composition of this invention, various additives can be added in the range which does not impair the effect. For example, a reaction control agent for hydrosilylation reaction to give curability and pot life, a phosphor such as YAG for white light emission, and inorganic fillers and pigments such as fine-particle silica and titanium oxide as necessary, organic filling You may mix | blend an agent, a metal filler, a flame retardant, a heat-resistant agent, an oxidation degradation agent, etc.
Curing conditions are 30 ° C. to 200 ° C., preferably 80 ° C. to 150 ° C., and cured at a temperature suitable for the type of catalyst used for 10 minutes to 300 minutes to obtain a good molded product. be able to.

オプトデバイスの封止材として本発明の硬化性樹脂組成物を使用する場合は、光を透過させる必要性から透明であることはもちろん、発光素子からの光の取り出し効率を上げるため屈折率が高いことが望ましい。また、発光素子にできるだけ応力が加わることのないよう変形や歪みを少なくするため、ある程度の硬度を有し、衝撃にも耐える必要があることから割れにくいことも要求される。さらに、先に述べたように耐候性が必要であり、また発光部は高熱になるので耐熱性が必要である。耐候性、耐熱性は機械的強度を保つのみならず、封止材の光透過性も阻害されるべきでないのでさらに着色等が起らないことも重要である。本発明の硬化性樹脂組成物は、これらの要求特性を十分に満足しており、オプトデバイス、特にLED用の封止材組成物として特に有効である。
本発明の封止されたオプトデバイスは、本発明の硬化性樹脂組成物を用いて主発光ピークが550nm以下の発光素子を被覆し、所定の温度で加熱硬化することにより得られる。
When the curable resin composition of the present invention is used as an encapsulant for an opto device, the refractive index is high in order to increase the light extraction efficiency from the light emitting element as well as being transparent because of the necessity of transmitting light. It is desirable. In addition, in order to reduce deformation and distortion so that stress is not applied to the light emitting element as much as possible, it is required to have a certain degree of hardness and be resistant to impact because it needs to withstand impact. Further, as described above, weather resistance is necessary, and the light emitting portion is heated, so heat resistance is necessary. It is important that the weather resistance and heat resistance not only keep the mechanical strength but also prevent the coloring and the like from occurring because the light transmittance of the sealing material should not be inhibited. The curable resin composition of the present invention sufficiently satisfies these required characteristics, and is particularly effective as an encapsulant composition for optical devices, particularly LEDs.
The sealed optical device of the present invention is obtained by coating a light emitting element having a main light emission peak of 550 nm or less using the curable resin composition of the present invention and heat curing at a predetermined temperature.

この場合発光素子とは、主発光ピークが550nm以下であれば特に限定なく従来公知のLEDが挙げられ、特にGaN、InGaN等の窒化物系LEDが好ましい。このようなLEDとしては、例えば、MOCVD法、HDVPE法、液相成長法などの各種方法によって、必要に応じてGaN、AlN等のバッファー層を設けた基板上に半導体材料を積層して作製したものが挙げられる。この場合の基板としては、各種材料を用いることができるが、例えばサファイア、スピネル、SiC、Si、ZnO、GaN単結晶等が挙げられる。これらのうち、結晶性の良好なGaNを容易に形成でき、工業的利用価値が高いという観点からは、サファイアを用いることが好ましい。   In this case, the light-emitting element is not particularly limited as long as the main light emission peak is 550 nm or less, and conventionally known LEDs are exemplified, and nitride LEDs such as GaN and InGaN are particularly preferable. Such LED is produced by laminating a semiconductor material on a substrate provided with a buffer layer of GaN, AlN or the like, if necessary, by various methods such as MOCVD, HDVPE, and liquid phase growth. Things. Various materials can be used as the substrate in this case, and examples thereof include sapphire, spinel, SiC, Si, ZnO, and GaN single crystal. Of these, sapphire is preferably used from the viewpoint that GaN having good crystallinity can be easily formed and has high industrial utility value.

LEDには従来知られている方法によって電極を形成させることができ、LED上の電極は種々の方法でリード端子等と電気的に接続される。電気接続部材としては、発光素子の電極とのオーミック性機械的接続性等が良いものが好ましく、例えば、金、銀、銅、白金、アルミニウムやそれらの合金等を用いたボンディングワイヤーが挙げられる。また、銀、カーボン等の導電性フィラーを樹脂で充填した導電性接着剤等を用いることもできる。これらのうち、作業性が良好であるという観点からは、アルミニウム線あるいは金線を用いることが好ましい。   An electrode can be formed on the LED by a conventionally known method, and the electrode on the LED is electrically connected to a lead terminal or the like by various methods. As the electrical connection member, those having good ohmic mechanical connectivity with the electrode of the light emitting element are preferable, and examples thereof include bonding wires using gold, silver, copper, platinum, aluminum, alloys thereof, and the like. Alternatively, a conductive adhesive or the like in which a conductive filler such as silver or carbon is filled with a resin can be used. Of these, it is preferable to use an aluminum wire or a gold wire from the viewpoint of good workability.

本発明に用いられるリード端子としては、ボンディングワイヤー等の電気接続部材との密着性、電気伝導性等が良好なものが好ましく、リード端子の電気抵抗としては、300μΩ・cm以下が好ましく、より好ましくは3μΩ・cm以下である。これらのリード端子材料としては、例えば、鉄、銅、鉄入り銅、錫入り銅や、これらに銀、ニッケル等をメッキしたもの等が挙げられる。これらのリード端子は良好な光の広がりを得るために適宜光沢度を調整してもよい。   The lead terminal used in the present invention preferably has good adhesion to an electrical connection member such as a bonding wire, electrical conductivity, etc., and the electrical resistance of the lead terminal is preferably 300 μΩ · cm or less, more preferably Is 3 μΩ · cm or less. Examples of these lead terminal materials include iron, copper, iron-containing copper, tin-containing copper, and those plated with silver, nickel, or the like. The glossiness of these lead terminals may be adjusted as appropriate in order to obtain a good light spread.

本発明の封止されたオプトデバイス、特にLEDパッケージは、本発明の硬化性樹脂組成物によって電極、リード端子等を接続したLEDを被覆後、加熱硬化することによって製造することができる。この場合被覆とは、上記LEDを直接封止するものに限らず、間接的に被覆する場合も含む。具体的には、LEDを本発明の硬化性樹脂組成物で直接従来用いられる種々の方法で封止してもよいし、従来用いられるエポキシ樹脂、アクリル樹脂、ユリア樹脂、イミド樹脂等の封止樹脂やガラスでLEDを封止した後に、その上あるいは周囲を本発明の硬化性樹脂組成物で被覆してもよい。また、LEDを本発明の硬化性樹脂組成物で封止した後、従来用いられるエポキシ樹脂、アクリル樹脂、ユリア樹脂、イミド樹脂等でモールディングしてもよい。以上のような方法によって屈折率や比重の差によりレンズ効果等の種々の効果をもたせることも可能である。   The sealed opto-device of the present invention, particularly the LED package, can be produced by coating the LED connected with electrodes, lead terminals, etc. with the curable resin composition of the present invention, followed by heat curing. In this case, the covering is not limited to directly sealing the LED, but includes a case where the LED is indirectly covered. Specifically, the LED may be encapsulated by various methods conventionally used directly with the curable resin composition of the present invention, and conventionally used epoxy resin, acrylic resin, urea resin, imide resin, etc. After sealing LED with resin or glass, you may coat | cover the top or circumference | surroundings with the curable resin composition of this invention. Further, after the LED is sealed with the curable resin composition of the present invention, it may be molded with a conventionally used epoxy resin, acrylic resin, urea resin, imide resin or the like. Various effects such as a lens effect can be provided by the difference in refractive index and specific gravity by the above method.

封止の方法としても各種方法を適用することができる。例えば、底部にLEDを配置させたカップ、キャビティ、パッケージ凹部等に液状の本発明の硬化性樹脂組成物をディスペンサーその他の方法にて注入して前記加熱条件で硬化させてもよいし、固体状あるいは高粘度液状の本発明の硬化性樹脂組成物を加熱する等して流動させ同様にパッケージ凹部等に注入してさらに加熱する等して硬化させてもよい。この場合のパッケージは種々の材料を用いて作製することができ、例えば、ポリカーボネート樹脂、ポリフェニレンスルフィド樹脂、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、ABS樹脂等を挙げることができる。また、モールド型枠中に本発明の硬化性樹脂組成物をあらかじめ注入し、そこにLEDが固定されたリードフレーム等を浸漬した後硬化させる方法も適用することができるし、LEDを挿入した型枠中にディスペンサーによる注入、トランスファー成形、射出成形等により本発明の硬化性樹脂組成物による封止層を形成、硬化させてもよい。   Various methods can be applied as a sealing method. For example, the liquid curable resin composition of the present invention may be injected into a cup, cavity, package recess, or the like in which an LED is disposed on the bottom by a dispenser or other methods and cured under the above heating conditions, or in a solid state Alternatively, the curable resin composition of the present invention in a high-viscosity liquid may be flowed by heating or the like and similarly injected into a package recess or the like and further heated to be cured. The package in this case can be manufactured using various materials, and examples thereof include polycarbonate resin, polyphenylene sulfide resin, epoxy resin, acrylic resin, silicone resin, and ABS resin. In addition, a method of injecting a curable resin composition of the present invention into a mold frame in advance and immersing a lead frame or the like on which the LED is fixed and then curing the mold can be applied. A sealing layer made of the curable resin composition of the present invention may be formed and cured in the frame by injection with a dispenser, transfer molding, injection molding, or the like.

さらに、単に液状または流動状態とした本発明の硬化性樹脂組成物をLED上に滴下あるいはコーティングして硬化させてもよい。あるいは、LED上に孔版印刷、スクリーン印刷、あるいはマスクを介して塗布すること等により本発明の硬化性樹脂組成物による封止層を形成させて硬化させることもできる。その他、あらかじめ板状、あるいはレンズ形状等に部分硬化あるいは硬化させた本発明の硬化性樹脂組成物をLED上に固定する方法によってもよい。さらには、LEDをリード端子やパッケージに固定するダイボンド剤として用いることもできるし、LED上のパッシベーション膜として用いることもできる。   Further, the curable resin composition of the present invention simply in a liquid or fluid state may be dropped or coated on the LED and cured. Alternatively, a sealing layer made of the curable resin composition of the present invention can be formed and cured on the LED by stencil printing, screen printing, or application through a mask. In addition, a method of fixing the curable resin composition of the present invention, which has been partially cured or cured in a plate shape or a lens shape, on the LED in advance may be used. Furthermore, it can also be used as a die bond agent for fixing the LED to a lead terminal or a package, or can be used as a passivation film on the LED.

被覆部分の形状も特に限定されず種々の形状をとることができる。例えば、レンズ形状、板状、薄膜状、特開平6−244458号公報に記載されている「発光素子の側面が透光性基板上面の鉛直方向より鋭角で切断されている」ような形状等が挙げられる。これらの形状は本発明の硬化性樹脂組成物を成形硬化させることによって形成してもよいし、本発明の硬化性樹脂組成物を硬化した後に後加工により形成してもよい。   The shape of the covering portion is not particularly limited and can take various shapes. For example, a lens shape, a plate shape, a thin film shape, or a shape described in JP-A-6-244458, such as “the side surface of the light emitting element is cut at an acute angle from the vertical direction of the upper surface of the translucent substrate”, etc. Can be mentioned. These shapes may be formed by molding and curing the curable resin composition of the present invention, or may be formed by post-processing after curing the curable resin composition of the present invention.

本発明の封止されたオプトデバイス、特にLEDパッケージは、種々のタイプとすることができ、例えば、ランプタイプ、SMDタイプ、チップタイプ等いずれのタイプでもよい。SMDタイプ、チップタイプのパッケージ基板としては、種々のものが用いられ、例えば、エポキシ樹脂、BTレジン、セラミック等が挙げられる。   The sealed opto-device of the present invention, particularly the LED package, can be of various types, for example, any type such as a lamp type, an SMD type, and a chip type. Various types of SMD type and chip type package substrates are used, and examples thereof include epoxy resin, BT resin, and ceramic.

本発明の封止されたオプトデバイス、特にLEDパッケージは従来公知の各種の用途に用いることができる。具体的には、例えばバックライト、照明、センサー光源、車両用計器光源、信号灯、表示灯、表示装置、面状発光体の光源、ディスプレイ、装飾、各種ライト等を挙げることができる。   The sealed opto-device of the present invention, particularly the LED package, can be used for various known applications. Specifically, for example, a backlight, illumination, sensor light source, vehicle instrument light source, signal lamp, indicator lamp, display device, planar light source, display, decoration, various lights, and the like can be given.

以下に実施例および比較例を示し、本発明をさらに詳細に説明するが、本発明は下記の例になんら限定されるものではない。なお、実施例でおよび比較例行われた各特性の測定方法を以下に示す。   The present invention will be described in more detail with reference to examples and comparative examples below, but the present invention is not limited to the following examples. In addition, the measuring method of each characteristic performed by the Example and the comparative example is shown below.

(1)光線透過率
各硬化性樹脂組成物を厚さ2mmのスペーサーを挟んだガラス板の間に流し込み、150℃で180分間加熱硬化を行い樹脂板を作製し、次いで、島津製作所社製分光光度計UV−1650PCを用いて400nmでの透過率を測定した。
(2)高温通電試験後の照度保持率
各硬化性樹脂組成物で封止したLEDパッケージの初期の照度積算値と100℃のオーブン中で20mAの電流を流して1000時間の点灯試験を行った後の照度積算値をウシオ電機社製スペクトロラジオメーターUSR−30を用いて測定し、次式により照度保持率を算出した。
照度保持率(%)=[(試験後の照度積算値)/(初期の照度積算値)]×100
(3)硬度
光透過率測定用のものと同じ樹脂板を作製し、JIS K6253に従いデュロメーターにて硬度(ショアD)を測定した。
(4)屈折率
光透過率測定用のものと同じ樹脂板を作製し、JIS K7105に従い測定した。
(5)耐候性
光透過率測定用のものと同じ樹脂板を作製し、EXFO社製紫外線照射機Acticure 4000を用いて365nm(600mW/cm2)の紫外光を10時間照射した後、400nmでの透過率(%)を測定して耐候性の指標とした。
(6)耐熱性
光透過率測定用のものと同じ樹脂板を作製し、150℃のオーブン中に72時間放置した後、400nmでの透過率(%)を測定して耐熱性の指標とした。
(1) Light transmittance Each curable resin composition is poured into a glass plate with a spacer having a thickness of 2 mm, and is cured by heating at 150 ° C. for 180 minutes, and then a spectrophotometer manufactured by Shimadzu Corporation The transmittance at 400 nm was measured using UV-1650PC.
(2) Illuminance retention after high-temperature energization test An initial illumination integrated value of the LED package sealed with each curable resin composition and a lighting test for 1000 hours were conducted by passing a current of 20 mA in an oven at 100 ° C. The subsequent integrated illuminance value was measured using a spectroradiometer USR-30 manufactured by USHIO INC., And the illuminance retention rate was calculated according to the following equation.
Illuminance retention rate (%) = [(integrated illuminance value after test) / (initial integrated illuminance value)] × 100
(3) Hardness The same resin plate as that for light transmittance measurement was prepared, and the hardness (Shore D) was measured with a durometer according to JIS K6253.
(4) Refractive index The same resin plate as that for light transmittance measurement was produced and measured according to JIS K7105.
(5) Weather resistance After preparing the same resin plate as that for light transmittance measurement and irradiating 365 nm (600 mW / cm 2 ) of ultraviolet light for 10 hours using an Exfo ultraviolet irradiation machine Acticure 4000, at 400 nm The transmittance (%) was measured and used as an indicator of weather resistance.
(6) Heat resistance After preparing the same resin plate as that for light transmittance measurement and leaving it in an oven at 150 ° C. for 72 hours, the transmittance (%) at 400 nm was measured and used as an index of heat resistance. .

[合成例1]
フェニルトリメトキシシラン19.8g(0.1mol)、ジフェニルジメトキシシラン48.6g(0.2mol)、ジメチルジメトキシシラン24.0g(0.2mol)、ジメチルビニルエトキシシラン39.6g(0.3mol)および酢酸500gを仕込み、110℃で10時間重合した後、トルエン500gを加え、500mlの水で5回洗浄し、ポリオルガノシロキサン混合物のトルエン溶液を得た。
この溶液から減圧蒸留によってトルエンを除去し、(A)成分に該当する下式の平均組成を持つポリオルガノシロキサン混合物を得た。これを「A−1」とする。各構造単位の右側の数字はモル比を示す[Phはフェニル基を示す]。
(PhSiO3/20.1、(Ph2SiO2/20.2、((CH32SiO2/20.2、(CH2=CH(CH32SiO1/20.3
[Synthesis Example 1]
19.8 g (0.1 mol) of phenyltrimethoxysilane, 48.6 g (0.2 mol) of diphenyldimethoxysilane, 24.0 g (0.2 mol) of dimethyldimethoxysilane, 39.6 g (0.3 mol) of dimethylvinylethoxysilane and After charging 500 g of acetic acid and polymerizing at 110 ° C. for 10 hours, 500 g of toluene was added and washed 5 times with 500 ml of water to obtain a toluene solution of a polyorganosiloxane mixture.
Toluene was removed from this solution by vacuum distillation to obtain a polyorganosiloxane mixture having an average composition of the following formula corresponding to component (A). This is designated as “A-1”. The numbers on the right side of each structural unit indicate the molar ratio [Ph indicates a phenyl group].
(PhSiO 3/2 ) 0.1 , (Ph 2 SiO 2/2 ) 0.2 , ((CH 3 ) 2 SiO 2/2 ) 0.2 , (CH 2 = CH (CH 3 ) 2 SiO 1/2 ) 0.3

[合成例2]
温度調節器、撹拌装置、冷却コンデンサー、滴下ロートを備えた1リットルの四つ口フラスコにフルオレンを49.8g(0.3モル)、メチルイソブチルケトン200g、テトラ−n−ブチルアンモニウムブロミド2.91g(9×10-3モル)、ハイドロキノン0.73g、50質量%NaOH水溶液96g(NaOH純度95質量%、1.14モル)を仕込み、撹拌しながら60℃まで昇温して均一の溶液にした。この溶液にアリルクロライド53.5g(0.7モル)を20分かけて滴下し、その後60℃で7時間反応させた。
得られた反応生成物に200mlのトルエンを追加してから、溶液を2N塩酸で中和した後、蒸留水で3回洗浄し、トルエンを減圧除去後、得られた黄色液体をシリカゲルを用いたカラムクロマトにより精製し、9,9´−ジアリルフルオレンの無色液体59gを得た。これを「B−1」とする。
[Synthesis Example 2]
49.8 g (0.3 mol) of fluorene, 200 g of methyl isobutyl ketone, 2.91 g of tetra-n-butylammonium bromide in a 1 liter four-necked flask equipped with a temperature controller, a stirring device, a cooling condenser, and a dropping funnel (9 × 10 −3 mol), 0.73 g of hydroquinone, and 96 g of 50% by weight NaOH aqueous solution (NaOH purity 95% by weight, 1.14 mol) were heated to 60 ° C. with stirring to obtain a uniform solution. . To this solution, 53.5 g (0.7 mol) of allyl chloride was added dropwise over 20 minutes, and then reacted at 60 ° C. for 7 hours.
After adding 200 ml of toluene to the obtained reaction product, the solution was neutralized with 2N hydrochloric acid, washed with distilled water three times, toluene was removed under reduced pressure, and the resulting yellow liquid was used with silica gel. Purification by column chromatography gave 59 g of a colorless liquid of 9,9′-diallylfluorene. This is referred to as “B-1”.

[合成例3]
温度調節器、撹拌装置、冷却コンデンサー、滴下ロートを備えた1リットルの四つ口フラスコにフルオレンを49.8g(0.3モル)、メチルイソブチルケトン200g、テトラ−n−ブチルアンモニウムブロミド2.91g(9×10-3モル)、ハイドロキノン0.73g、50重量%NaOH水溶液96g(NaOH純度質量95%、1.14モル)を仕込み、撹拌しながら60℃まで昇温して均一の溶液にした。この溶液にメタリルクロライド63.3g(0.7モル)を20分かけて滴下し、その後60℃で7時間反応させた。
得られた反応生成物に200mlのトルエンを追加してから、溶液を2N塩酸で中和した後、蒸留水で3回洗浄し、トルエンを減圧除去後、得られた黄色液体をシリカゲルを用いたカラムクロマトにより精製し、9,9´−ジメタリルフルオレンの無色液体67gを得た。これを「B−2」とする。
[Synthesis Example 3]
49.8 g (0.3 mol) of fluorene, 200 g of methyl isobutyl ketone, 2.91 g of tetra-n-butylammonium bromide in a 1 liter four-necked flask equipped with a temperature controller, a stirring device, a cooling condenser, and a dropping funnel (9 × 10 −3 mol), 0.73 g of hydroquinone, and 96 g of 50 wt% NaOH aqueous solution (NaOH purity mass 95%, 1.14 mol) were heated to 60 ° C. with stirring to obtain a uniform solution. . To this solution, 63.3 g (0.7 mol) of methallyl chloride was added dropwise over 20 minutes, and then reacted at 60 ° C. for 7 hours.
After adding 200 ml of toluene to the obtained reaction product, the solution was neutralized with 2N hydrochloric acid, washed with distilled water three times, toluene was removed under reduced pressure, and the resulting yellow liquid was used with silica gel. Purification by column chromatography gave 67 g of a colorless liquid of 9,9'-dimethallylfluorene. This is referred to as “B-2”.

[合成例4]
温度調節器、撹拌装置、冷却コンデンサー、滴下ロートを備えた1リットルの四つ口フラスコに2,7−ジメチルフルオレンを58.2g(0.3モル)、メチルイソブチルケトン200g、テトラ−n−ブチルアンモニウムブロミド2.91g(9×10-3モル)、ハイドロキノン0.73g、50質量%NaOH水溶液96g(NaOH純度95質量%、1.14モル)を仕込み、撹拌しながら60℃まで昇温して均一の溶液にした。
この溶液にビニルベンジルクロライド(m−/p−異性体:50/50質量%混合物)117g(純度91質量%、0.7モル)を20分かけて滴下し、その後60℃で7時間反応させた。得られた反応生成物に200mlのトルエンを追加してから、溶液を2N塩酸で中和した後、蒸留水で3回洗浄し、トルエンを減圧除去後、得られた淡黄色粘稠固体を新鮮なトルエンから再結晶することにより、9,9’−ビス(ビニルベンジル)−2,7−ジメチルフルオレンの白色固体73.4gを得た。これを「B−3」とする。
[Synthesis Example 4]
In a 1 liter four-necked flask equipped with a temperature controller, a stirrer, a cooling condenser, and a dropping funnel, 58.2 g (0.3 mol) of 2,7-dimethylfluorene, 200 g of methyl isobutyl ketone, tetra-n-butyl 2.91 g (9 × 10 −3 mol) of ammonium bromide, 0.73 g of hydroquinone, 96 g of 50% by weight NaOH aqueous solution (NaOH purity 95% by weight, 1.14 mol) were charged and the temperature was raised to 60 ° C. while stirring. A homogeneous solution was obtained.
To this solution, 117 g (purity 91% by mass, 0.7 mol) of vinylbenzyl chloride (m- / p-isomer: 50/50% by mass mixture) was added dropwise over 20 minutes, and then reacted at 60 ° C. for 7 hours. It was. After adding 200 ml of toluene to the obtained reaction product, the solution was neutralized with 2N hydrochloric acid, washed with distilled water three times, and the toluene was removed under reduced pressure. By recrystallizing from pure toluene, 73.4 g of 9,9′-bis (vinylbenzyl) -2,7-dimethylfluorene was obtained as a white solid. This is designated as “B-3”.

[合成例5]
温度調節器、攪拌装置、冷却コンデンサー、滴下ロートを備えた1リットルの四つ口フラスコに1,6-ビス(9-フルオレニル)ヘキサン207g(0.5モル)、トルエン400g、テトラ−n−ブチルアンモニウムブロマイド14g、ビニルベンジルクロライド(m/p異性体の50/50質量比混合物)152.5g(純度91質量%、1.0モル)を仕込み、攪拌しながら40℃まで昇温して均一な溶液にした。これに50質量%NaOH水溶液80g(NaOH、2モル)を加えて、その後70℃で8時間反応させた。
次にフラスコ内容物を2N塩酸で中和した後、蒸留水で2回洗浄し、トルエンを減圧留去後、得られたオレンジ色の粘ちょう液体をシリカゲルを用いたカラムクロマトにより精製し、1,6-ビス(9-フルオレニル)ヘキサンのフルオレン部の9'位にビニルベンジル基が2つ置換[式[1]のR1が−(CH2)6−、n=1であるビス(ビニルベンジル)化合物]した白色固体274gを得た。これを「B−4」とする。
[Synthesis Example 5]
In a 1 liter four-necked flask equipped with a temperature controller, a stirrer, a cooling condenser, and a dropping funnel, 207 g (0.5 mol) of 1,6-bis (9-fluorenyl) hexane, 400 g of toluene, tetra-n-butyl 14 g of ammonium bromide and 152.5 g of vinylbenzyl chloride (m / p isomer 50/50 mass ratio mixture) (purity 91 mass%, 1.0 mol) were charged, and the temperature was raised to 40 ° C. with stirring to be uniform. Into solution. To this was added 80 g of 50% by weight NaOH aqueous solution (NaOH, 2 mol) and then reacted at 70 ° C. for 8 hours.
Next, the flask contents were neutralized with 2N hydrochloric acid, washed twice with distilled water, toluene was distilled off under reduced pressure, and the resulting orange viscous liquid was purified by column chromatography using silica gel. , 6-Bis (9-fluorenyl) hexane is substituted with two vinylbenzyl groups at the 9′-position of the fluorene moiety [bis (vinyl) in which R 1 in formula [1] is — (CH 2 ) 6 —, n = 1 Benzyl) compound] was obtained. This is designated as “B-4”.

(実施例1)
「A−1」100質量部に「B−1」60質量部、市販の下記式[4]で表されるポリフェニル(ジメチルシロキシ)シロキサン(数平均分子量1000)140質量部を加え、この混合物に触媒として白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体を100ppm加えてよく撹拌混合、脱泡した。
次に、この樹脂組成物を465nmのピーク波長をもつLEDチップをマウントしたステムにポッティングし、150℃で180分間加熱硬化したところ、封止部にタックやクラックのない透明なLEDパッケージが得られた。このLEDパッケージに20mAの電流を流した時の照度を測定した。また上記組成物を厚さ2mmのスペーサーを挟んだガラス板の間に流し込み、同様の条件で硬化を行い樹脂板を得た。この樹脂板について400nmでの透過率を測定した。測定結果を表1に示す。
Example 1
60 parts by mass of “B-1” and 100 parts by mass of polyphenyl (dimethylsiloxy) siloxane (number average molecular weight 1000) represented by the following formula [4] are added to 100 parts by mass of “A-1”, and this mixture is added. Then, 100 ppm of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex was added as a catalyst, and the mixture was thoroughly stirred and defoamed.
Next, when this resin composition is potted on a stem mounted with an LED chip having a peak wavelength of 465 nm and cured by heating at 150 ° C. for 180 minutes, a transparent LED package free from tacks and cracks is obtained in the sealed portion. It was. The illuminance when a current of 20 mA was passed through the LED package was measured. Moreover, the said composition was poured between the glass plates which pinched | interposed the spacer of thickness 2mm, and it hardened | cured on the same conditions and obtained the resin plate. The transmittance of this resin plate at 400 nm was measured. The measurement results are shown in Table 1.

Figure 2007224193
Figure 2007224193

(実施例2)
下記式[5]で示される市販のビニルジメチルシロキシ末端ポリジメチルシロキサン(数平均分子量770)100質量部に「B−2」140質量部、市販の1,3,5,7−テトラメチルシクロテトラシロキサン90質量部を加え、この混合物に触媒として白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体を100ppm加えてよく撹拌混合、脱泡した。
この組成物について実施例1と同様の方法でLEDパッケージと硬化物を作製し測定を行った。
(Example 2)
100 parts by mass of a commercially available vinyldimethylsiloxy-terminated polydimethylsiloxane (number average molecular weight 770) represented by the following formula [5]: 140 parts by mass of “B-2”, commercially available 1,3,5,7-tetramethylcyclotetra 90 parts by mass of siloxane was added, 100 ppm of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex was added as a catalyst to this mixture, and the mixture was thoroughly stirred and defoamed.
About this composition, the LED package and hardened | cured material were produced by the method similar to Example 1, and the measurement was performed.

Figure 2007224193
Figure 2007224193

(実施例3)
下記式[6]で示される市販のビニルジメチルシロキシ末端ポリジメチルシロキサンジフェニルシロキサンコポリマー(数平均分子量9500、n:m(モル比)=6:1)80質量部に「B−2」140質量部、市販の1,3,5,7−テトラメチルシクロテトラシロキサン80質量部を加え、この混合物に触媒として白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体を100ppm加えてよく撹拌混合、脱泡した。
この組成物について実施例1と同様の方法でLEDパッケージと硬化物を作製し測定を行った。
(Example 3)
Commercially available vinyldimethylsiloxy-terminated polydimethylsiloxane diphenylsiloxane copolymer represented by the following formula [6] (number average molecular weight 9500, n: m (molar ratio) = 6: 1) is 80 parts by mass and “B-2” is 140 parts by mass. , 80 parts by mass of commercially available 1,3,5,7-tetramethylcyclotetrasiloxane was added, and 100 ppm of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex was added to the mixture as a catalyst. In addition, the mixture was thoroughly stirred and degassed.
About this composition, the LED package and hardened | cured material were produced by the method similar to Example 1, and the measurement was performed.

Figure 2007224193
Figure 2007224193

(実施例4)
トルエン200質量部に「B−3」15質量部、市販の1,3,5,7−テトラメチルシクロテトラシロキサン40質量部、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体30ppmを溶解させ60℃で3時間攪拌した後、トルエンを減圧除去することにより得られた予めヒドロシリル化反応を行って得られた液状化合物の全量を「A−1」100質量部に加え、さらに白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体を50ppmになるように加えてよく撹拌混合、脱泡した。
この組成物について実施例1と同様の方法でLEDパッケージと硬化物を作製し測定を行った。
Example 4
200 parts by mass of toluene, 15 parts by mass of “B-3”, 40 parts by mass of commercially available 1,3,5,7-tetramethylcyclotetrasiloxane, platinum-1,3-divinyl-1,1,3,3-tetra After dissolving 30 ppm of methyldisiloxane complex and stirring at 60 ° C. for 3 hours, 100 parts by mass of “A-1” was obtained as a total amount of the liquid compound obtained by carrying out a hydrosilylation reaction beforehand obtained by removing toluene under reduced pressure. In addition, platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex was added to a concentration of 50 ppm, and the mixture was thoroughly stirred and defoamed.
About this composition, the LED package and hardened | cured material were produced by the method similar to Example 1, and the measurement was performed.

(実施例5)
トルエン200質量部に「B−4」50質量部、市販の上記式[4]で表されるポリフェニル(ジメチルシロキシ)シロキサン(数平均分子量1000)100質量部、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体を30ppmを溶解させ60℃で3時間攪拌した後、トルエンを減圧除去することにより得られた予めヒドロシリル化反応を行った液状化合物の全量を式[5]で示される末端ビニルポリジメチルシロキサン(数平均分子量770)100質量部に加え、さらに白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体を50ppm加えてよく撹拌混合、脱泡した。この組成物について実施例1と同様の方法でLEDパッケージと硬化物を作製し測定を行った。
(Example 5)
200 parts by mass of toluene, 50 parts by mass of “B-4”, 100 parts by mass of commercially available polyphenyl (dimethylsiloxy) siloxane (number average molecular weight 1000) represented by the above formula [4], platinum-1,3-divinyl- The total amount of the liquid compound subjected to the hydrosilylation reaction previously obtained by dissolving 30 ppm of 1,1,3,3-tetramethyldisiloxane complex and stirring at 60 ° C. for 3 hours and then removing toluene under reduced pressure In addition to 100 parts by mass of the terminal vinyl polydimethylsiloxane (number average molecular weight 770) represented by [5], 50 ppm of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex may be added. The mixture was stirred and degassed. About this composition, the LED package and hardened | cured material were produced by the method similar to Example 1, and the measurement was performed.

(比較例1)
「A−1」100質量部に市販の上記式[4]で表されるポリフェニル(ジメチルシロキシ)シロキサン(数平均分子量1000)50質量部を加え、この混合物に触媒として白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体を100ppm加えてよく撹拌混合、脱泡した。
この組成物について実施例1と同様の方法でLEDパッケージと硬化物を作製し測定を行った。
(Comparative Example 1)
50 parts by mass of a commercially available polyphenyl (dimethylsiloxy) siloxane (number average molecular weight 1000) represented by the above formula [4] is added to 100 parts by mass of “A-1”, and platinum-1,3- 100 ppm of divinyl-1,1,3,3-tetramethyldisiloxane complex was added, and the mixture was thoroughly stirred and defoamed.
About this composition, the LED package and hardened | cured material were produced by the method similar to Example 1, and the measurement was performed.

(比較例2)
「A−1」100質量部にトリアリルイソシアヌレート40質量部、市販の上記式[4]で表されるポリフェニル(ジメチルシロキシ)シロキサン(数平均分子量1000)140質量部を加え、この混合物に触媒として白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体を100ppm加えてよく撹拌混合、脱泡した。
この組成物について実施例1と同様の方法でLEDパッケージと硬化物を作製し測定を行った。
(Comparative Example 2)
40 parts by mass of triallyl isocyanurate and 140 parts by mass of polyphenyl (dimethylsiloxy) siloxane (number average molecular weight 1000) represented by the above formula [4] are added to 100 parts by mass of “A-1”. 100 ppm of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex was added as a catalyst, and the mixture was thoroughly stirred and defoamed.
About this composition, the LED package and hardened | cured material were produced by the method similar to Example 1, and the measurement was performed.

(比較例3)
上記式[5]で示される末端ビニルポリジメチルシロキサン(数平均分子量770)100質量部にオルガノハイドロジェンポリシロキサンとして市販の式[4]で表されるポリフェニル(ジメチルシロキシ)シロキサン50質量部を加え、この混合物に触媒として白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体を100ppm加えてよく撹拌混合、脱泡した。
この組成物について実施例1と同様の方法でLEDパッケージと硬化物を作製し測定を行った。LEDパッケージは封止部が柔らかく若干タックがあり、傷がつきやすいものであった。
(Comparative Example 3)
50 parts by mass of polyphenyl (dimethylsiloxy) siloxane represented by the formula [4], which is commercially available as an organohydrogenpolysiloxane, is added to 100 parts by mass of the terminal vinyl polydimethylsiloxane (number average molecular weight 770) represented by the above formula [5]. In addition, 100 ppm of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex was added to the mixture as a catalyst, and the mixture was thoroughly stirred and defoamed.
About this composition, the LED package and hardened | cured material were produced by the method similar to Example 1, and the measurement was performed. The LED package had a soft sealing part, had a slight tack, and was easily scratched.

(比較例4)
エポキシ樹脂として水添ビスフェノールAジグリシジルエーテル100質量部に酸無水物硬化剤として4−メチルヘキサヒドロフタル酸無水物80質量部、硬化促進剤としてメチルトリブチルホスホニウムジメチルホスフェート1質量部を加えてよく撹拌混合、脱泡した。この組成物について実施例1と同様の方法で硬化物を作製し測定を行った。
(Comparative Example 4)
Add 100 parts by mass of hydrogenated bisphenol A diglycidyl ether as an epoxy resin, 80 parts by mass of 4-methylhexahydrophthalic anhydride as an acid anhydride curing agent, and 1 part by mass of methyltributylphosphonium dimethyl phosphate as a curing accelerator and stir well. Mix and degas. About this composition, the hardened | cured material was produced by the method similar to Example 1, and it measured.

Figure 2007224193
Figure 2007224193

Figure 2007224193
Figure 2007224193

表1および表2によれば、本発明の硬化性樹脂組成物から得られる硬化物およびLEDパッケージは優れた光透過性、耐候性、耐熱性を維持しながら屈折率と硬度が向上していることがわかる。   According to Table 1 and Table 2, the cured product and LED package obtained from the curable resin composition of the present invention have improved refractive index and hardness while maintaining excellent light transmittance, weather resistance, and heat resistance. I understand that.

Claims (9)

(A)一分子中に平均して2個以上のエチレン性不飽和基を有するポリオルガノシロキサン、(B)式[1]で表されるフルオレン系化合物
Figure 2007224193
[式中、XおよびYはエチレン性不飽和基を示し、それぞれ同じでも異なっていてもよい。R1は炭素数1〜20の2価の炭化水素基を示し、R2は炭素数1〜10のアルキル基またはアリール基を示し、aは0〜4の整数で(2+2n)個のaは同じでも異なっていてもよい。nは0〜10の整数である]、
(C)ケイ素原子に結合した水素原子を1分子中に2個以上有するポリオルガノハイドロジェンポリシロキサンおよび
(D)ヒドロシリル化反応触媒よりなる硬化性樹脂組成物。
(A) A polyorganosiloxane having two or more ethylenically unsaturated groups on average in one molecule, (B) a fluorene compound represented by the formula [1]
Figure 2007224193
[Wherein, X and Y represent ethylenically unsaturated groups, which may be the same or different. R 1 represents a divalent hydrocarbon group having 1 to 20 carbon atoms, R 2 represents an alkyl group or aryl group having 1 to 10 carbon atoms, a is an integer of 0 to 4, and (2 + 2n) a are It can be the same or different. n is an integer from 0 to 10],
(C) A curable resin composition comprising a polyorganohydrogenpolysiloxane having two or more hydrogen atoms bonded to a silicon atom in one molecule and (D) a hydrosilylation reaction catalyst.
式[1]中のXおよびYが、それぞれアリル基、メタリル基またはビニルベンジル基より選択されるいずれか少なくともひとつである請求項1記載の硬化性樹脂組成物。   2. The curable resin composition according to claim 1, wherein X and Y in the formula [1] are each at least one selected from an allyl group, a methallyl group, and a vinylbenzyl group. 式[1]中のnおよびaがいずれも0である請求項1または2に記載の硬化性樹脂組成物。   The curable resin composition according to claim 1 or 2, wherein both n and a in the formula [1] are 0. (B)成分のフルオレン系化合物と(C)成分のポリオルガノハイドロジェンポリシロキサンを予めヒドロシリル化反応させて得られた化合物を(A)成分と(D)成分の混合物に配合してなる請求項1記載の硬化性樹脂組成物。   A compound obtained by subjecting a fluorene compound of component (B) and a polyorganohydrogenpolysiloxane of component (C) to a hydrosilylation reaction in advance in a mixture of component (A) and component (D). The curable resin composition according to 1. (A)成分と(B)成分の合計量に対する(B)成分の割合が0.1質量%〜80質量%となる範囲になるように配合された請求項1〜4のいずれかに記載の硬化性樹脂組成物。   The ratio of the (B) component with respect to the total amount of (A) component and (B) component was mix | blended so that it might become the range used as 0.1 mass%-80 mass%. Curable resin composition. (C)成分の配合量が(A)成分中のエチレン性不飽和基と(B)成分中のエチレン性不飽和基の合計モル量に対して(C)成分中のケイ素原子に直結した水素原子のモル比が0.5〜2.0 となる量である請求項1〜5のいずれかに記載の硬化性樹脂組成物。   Hydrogen in which the blending amount of component (C) is directly connected to silicon atoms in component (C) with respect to the total molar amount of ethylenically unsaturated groups in component (A) and ethylenically unsaturated groups in component (B). The curable resin composition according to any one of claims 1 to 5, wherein the molar ratio of the atoms is 0.5 to 2.0. (D)のヒドロシリル化反応触媒が白金族系金属触媒である請求項1〜6のいずれかに記載の硬化性樹脂組成物。   The curable resin composition according to any one of claims 1 to 6, wherein the hydrosilylation reaction catalyst (D) is a platinum group metal catalyst. オプトデバイス封止に用いる請求項1〜7のいずれかに記載の硬化性樹脂組成物。   Curable resin composition in any one of Claims 1-7 used for opto device sealing. 請求項1〜7のいずれかに記載の硬化性樹脂組成物によって封止されたオプトデバイス。   An opto-device sealed with the curable resin composition according to claim 1.
JP2006048257A 2006-02-24 2006-02-24 Curable resin composition and optical device Expired - Fee Related JP4933797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006048257A JP4933797B2 (en) 2006-02-24 2006-02-24 Curable resin composition and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006048257A JP4933797B2 (en) 2006-02-24 2006-02-24 Curable resin composition and optical device

Publications (2)

Publication Number Publication Date
JP2007224193A true JP2007224193A (en) 2007-09-06
JP4933797B2 JP4933797B2 (en) 2012-05-16

Family

ID=38546291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006048257A Expired - Fee Related JP4933797B2 (en) 2006-02-24 2006-02-24 Curable resin composition and optical device

Country Status (1)

Country Link
JP (1) JP4933797B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120980A (en) * 2006-11-15 2008-05-29 Sony Chemical & Information Device Corp Sealing resin composition and light emitting device
KR101002733B1 (en) 2007-09-14 2010-12-21 제일모직주식회사 Organic compound, and organic photoelectric device comprising the same
JP7457318B2 (en) 2020-01-30 2024-03-28 国立大学法人信州大学 Fluorene compounds and polymers thereof, and methods for producing them

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327126A (en) * 2001-02-23 2002-11-15 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, method for producing the same and liquid crystal display device and light-emitting diode using the same
JP2002327114A (en) * 2001-02-23 2002-11-15 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, method for producing the same, and liquid crystal display and light-emitting diode each using the optical material
JP2004182783A (en) * 2002-11-29 2004-07-02 Showa Highpolymer Co Ltd Epoxyfluorene compound and its manufacturing method
JP2005089733A (en) * 2003-08-14 2005-04-07 Shin Etsu Chem Co Ltd Curable silicone resin composition
JP2005343984A (en) * 2004-06-02 2005-12-15 Kaneka Corp Curable composition and semiconductor device encapsulated with the curable composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327126A (en) * 2001-02-23 2002-11-15 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, method for producing the same and liquid crystal display device and light-emitting diode using the same
JP2002327114A (en) * 2001-02-23 2002-11-15 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, method for producing the same, and liquid crystal display and light-emitting diode each using the optical material
JP2004182783A (en) * 2002-11-29 2004-07-02 Showa Highpolymer Co Ltd Epoxyfluorene compound and its manufacturing method
JP2005089733A (en) * 2003-08-14 2005-04-07 Shin Etsu Chem Co Ltd Curable silicone resin composition
JP2005343984A (en) * 2004-06-02 2005-12-15 Kaneka Corp Curable composition and semiconductor device encapsulated with the curable composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120980A (en) * 2006-11-15 2008-05-29 Sony Chemical & Information Device Corp Sealing resin composition and light emitting device
KR101002733B1 (en) 2007-09-14 2010-12-21 제일모직주식회사 Organic compound, and organic photoelectric device comprising the same
US8586200B2 (en) 2007-09-14 2013-11-19 Cheil Industries, Inc. Organic compound, and organic photoelectric device including the same
JP7457318B2 (en) 2020-01-30 2024-03-28 国立大学法人信州大学 Fluorene compounds and polymers thereof, and methods for producing them

Also Published As

Publication number Publication date
JP4933797B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
RU2401846C2 (en) Functional polyorganosiloxanes and curable composition based on said polyorganosiloxanes
TWI631185B (en) Curable silicone composition, cured product thereof, and optical semiconductor device
US9117985B2 (en) Silicone resin composition and an optical semiconductor device
JP5792193B2 (en) Curable composition
EP1990367B1 (en) Curable organosilicon composition and cured product thereof
US8569429B2 (en) Curable silicone resin composition with high reliability and optical semiconductor device using same
JP2010013503A (en) Curable resin composition and opto device
JP2004359756A (en) Sealant composition for led
KR20130116813A (en) Heat curable silicone resin composition for reflector of led, and reflector for led and optical semiconductor device using the same
JPWO2015033979A1 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
KR101560042B1 (en) Curable composition
JP2012046604A (en) Curable silicone-based composition containing polycyclic hydrocarbon skeleton component
JP2015525465A (en) Optoelectronic device and manufacturing method thereof
US10927278B2 (en) Curable organopolysiloxane composition and semiconductor device
CN111484744B (en) Addition-curable silicone resin composition and optical element
JP2006049533A (en) Resin sealing light emitting diode device and sealing method
JP2016191038A (en) Silicone material, curable silicone composition and optical device
JP4933797B2 (en) Curable resin composition and optical device
KR100899830B1 (en) Resin-encapsulated light emitting diode and method for encapsulating light emitting diode
KR101591185B1 (en) Curable composition
KR101486566B1 (en) Composition for encapsulant and encapsulant and electronic device
KR101560044B1 (en) Curable composition
JP7360910B2 (en) A curable composition and a semiconductor device using the composition as a sealant.
KR20130128646A (en) Organopolysiloxane composition
KR20150030925A (en) Organopolysiloxane composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees