JP2007223852A - Electrically conductive ceramic sintered compact and sputtering target as well as manufacturing method thereof - Google Patents

Electrically conductive ceramic sintered compact and sputtering target as well as manufacturing method thereof Download PDF

Info

Publication number
JP2007223852A
JP2007223852A JP2006047778A JP2006047778A JP2007223852A JP 2007223852 A JP2007223852 A JP 2007223852A JP 2006047778 A JP2006047778 A JP 2006047778A JP 2006047778 A JP2006047778 A JP 2006047778A JP 2007223852 A JP2007223852 A JP 2007223852A
Authority
JP
Japan
Prior art keywords
sintered body
conductive ceramic
density
ceramic sintered
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006047778A
Other languages
Japanese (ja)
Other versions
JP4894293B2 (en
Inventor
Shoichi Yamauchi
正一 山内
Tetsuo Shibutami
哲夫 渋田見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2006047778A priority Critical patent/JP4894293B2/en
Publication of JP2007223852A publication Critical patent/JP2007223852A/en
Application granted granted Critical
Publication of JP4894293B2 publication Critical patent/JP4894293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sputtering target in which the generation of arcing is little over a long period of time during film deposition by sputtering, an electrically conductive ceramic sintered compact which is used to obtain the sputtering target, and a manufacturing method capable of easily obtaining such a sintered compact. <P>SOLUTION: It is capable of obtaining an electrically conductive ceramic sintered compact having a particle size of the sintered compact of at least 0.5 μm and smaller than 1 μm and a density of the sintered compact of at least 98% and an electrically conductive ceramic sintered compact having a particle size of the sintered compact of at least 0.5 μm and smaller than 2 μm and a density difference in the thickness direction of not more than 1% by sintering a formed body composed of the raw material powder through electromagnetic heating. It is also capable of obtaining an excellent sputtering target in which the generation of arcing is little over a long period of time and which has high mechanical strength by using such a sintered compact as a target material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば透明導電膜の製造に使用されるITO等の導電性セラミックス焼結体及びそれを用いたスパッタリングターゲット並びにその製造方法に関する。   The present invention relates to a conductive ceramic sintered body such as ITO used for manufacturing a transparent conductive film, a sputtering target using the same, and a method for manufacturing the same.

基材表面にセラミックス薄膜を形成させる技術は種々あるが、スパッタリング法は大面積化が容易でかつ高性能の膜が得られる成膜法であることから様々な分野で使用されている。例えば、ITO(Indium Tin Oxide)薄膜は高導電性、高透過率といった特徴を有し、更に微細加工も容易に行えることから、フラットパネルディスプレイ用表示電極、太陽電池用窓材、帯電防止膜等の広範囲な分野に渡って用いられている。特に液晶表示装置を始めとしたフラットパネルディスプレイ分野では近年大型化および高精細化が進んでおり、その表示用電極であるITO薄膜に対する需要もまた急速に高まっている。このようなITO薄膜の製造方法はスプレー熱分解法、CVD法等の化学的成膜法と電子ビーム蒸着法、スパッタリング法等の物理的成膜法に大別することができる。中でもスパッタリング法は大面積化が容易でかつ高性能の膜が得られる成膜法であることから、様々な分野で使用されている。   There are various techniques for forming a ceramic thin film on the surface of a substrate, but the sputtering method is used in various fields because it is a film forming method that can easily increase the area and obtain a high-performance film. For example, ITO (Indium Tin Oxide) thin film has features such as high conductivity and high transmittance, and can be easily finely processed. Therefore, display electrodes for flat panel displays, window materials for solar cells, antistatic films, etc. Used in a wide range of fields. In particular, in the field of flat panel displays including liquid crystal display devices, the size and resolution have been increasing in recent years, and the demand for an ITO thin film as a display electrode is also rapidly increasing. Such a method for producing an ITO thin film can be roughly divided into a chemical film formation method such as spray pyrolysis and CVD, and a physical film formation method such as electron beam evaporation and sputtering. Among these, the sputtering method is used in various fields because it is a film forming method that can easily increase the area and obtain a high-performance film.

スパッタリング法によりITO薄膜を製造する場合、用いるスパッタリングターゲットとしては金属インジウムおよび金属スズからなる合金ターゲット(以降ITターゲットと略する)あるいは酸化インジウムと酸化スズからなる複合酸化物ターゲット(以降ITOターゲットと略する)が用いられる。このうち、ITOターゲットを用いる方法は、ITターゲットを用いる方法と比較して、得られた膜の抵抗値および透過率の経時変化が少なく成膜条件のコントロールが容易であるため、ITO薄膜製造方法の主流となっている。   When an ITO thin film is produced by a sputtering method, a sputtering target to be used is an alloy target composed of metal indium and metal tin (hereinafter abbreviated as IT target) or a composite oxide target composed of indium oxide and tin oxide (hereinafter abbreviated as ITO target). Is used. Among these, the method using an ITO target is less susceptible to changes in the resistance value and transmittance of the obtained film over time than the method using an IT target, and the film formation conditions can be easily controlled. Has become the mainstream.

ITOスパッタリングターゲットの品質に関しては、成膜中のアーキングの発生とターゲットの大型化、ターゲット厚み増加に伴う問題点が挙げられる。   Regarding the quality of the ITO sputtering target, there are problems associated with the occurrence of arcing during film formation, the enlargement of the target, and the increase in target thickness.

スパッタリングでITO薄膜の成膜を行なう場合、アーキングが多く発生すると形成された薄膜中にパーティクルが発生する。これは液晶表示装置等のフラットパネルディスプレイにおける製造歩留まり低下の原因となり、アーキング発生を抑制できるスパッタリングターゲットが強く望まれている。その為に、ITOターゲットには、アーキングの一因と考えられるノジュールの発生防止、形成される薄膜の均一性の観点から、高密度で均一なものが要求されている。ノジュールとはターゲットの使用時間の増加に伴い、ターゲット表面に表れる黒色の突起物であり、パーティクルの発生原となるため、その低減が望まれているものである。   When forming an ITO thin film by sputtering, if a large amount of arcing occurs, particles are generated in the formed thin film. This causes a decrease in manufacturing yield in flat panel displays such as liquid crystal display devices, and a sputtering target that can suppress arcing is strongly desired. Therefore, the ITO target is required to have a high density and uniformity from the viewpoint of preventing the generation of nodules considered to be a cause of arcing and the uniformity of the formed thin film. A nodule is a black protrusion that appears on the surface of the target as the target usage time increases, and it is a source of particle generation.

アーキングの低減には、スパッタリングターゲットに用いるITO焼結体の密度向上が有効であり、例えば、特許文献1には、焼結密度98%以上100%以下、焼結粒径1μm以上20μm以下の高密度ITO焼結体が記載されている。また、高密度焼結体の製造方法としては、例えば、特許文献2のように酸素加圧焼結を行う方法等が知られている。   In order to reduce arcing, it is effective to improve the density of an ITO sintered body used for a sputtering target. For example, Patent Document 1 discloses a high sintering density of 98% to 100% and a sintered particle size of 1 μm to 20 μm. A density ITO sintered body is described. Moreover, as a manufacturing method of a high-density sintered body, for example, a method of performing oxygen pressure sintering as in Patent Document 2 is known.

また、近年、薄膜を形成する基板の大型化や薄膜形成工程の生産性向上の観点から、スパッタリングターゲットの大型化や厚みを増やす必要が生じている。スパッタリングターゲットを大型化するとITO焼結体が割れやすくなるといった問題があった。ITO焼結体の割れの対策としては、例えば、特許文献1のように焼結体の機械的強度が高いことが有効と考えられている。一般的には3点曲げ試験等の機械的強度は焼結体密度が高くて、焼結粒径が小さい方が高いと考えられる。しかし、ITO焼結体の場合、焼結粒径を小さくすると密度が上がらなくなり、アーキングがおこりやすくなる問題点があった。   In recent years, it has become necessary to increase the size and thickness of a sputtering target from the viewpoint of increasing the size of a substrate on which a thin film is formed and improving the productivity of a thin film forming process. When the sputtering target is enlarged, there is a problem that the ITO sintered body easily breaks. As a countermeasure against cracking of the ITO sintered body, for example, it is considered effective that the mechanical strength of the sintered body is high as in Patent Document 1. In general, it is considered that the mechanical strength such as a three-point bending test is higher when the sintered body density is higher and the sintered particle size is smaller. However, in the case of an ITO sintered body, there is a problem that when the sintered particle size is reduced, the density cannot be increased and arcing is likely to occur.

また、ITO焼結体の厚みは10mm以上、特に15mm以上になると焼結体の中心部の密度が低くなるという密度分布が生じ、アーキングが起こりやすくなるといった問題があった。焼結体の厚みが増した場合は、原料の選定や焼成条件を調整することで密度低下を抑制する対策が行われていた。焼成条件としては、昇温速度を遅くしたり、高温での保持時間を長くして、被加熱物の内外の温度差を少なくする方法が取られ、この結果、焼結粒径は大きくなり機械的強度が低下するという問題点があった。   Further, when the thickness of the ITO sintered body is 10 mm or more, particularly 15 mm or more, there is a problem that a density distribution occurs in which the density of the central portion of the sintered body is low, and arcing is likely to occur. When the thickness of the sintered body has increased, measures have been taken to suppress a decrease in density by selecting raw materials and adjusting firing conditions. As firing conditions, a method of reducing the temperature difference between the inside and outside of the object to be heated by slowing the temperature rising rate or lengthening the holding time at a high temperature is taken. There was a problem that the mechanical strength was lowered.

また、ZAO膜もITO膜と同様に透明導電膜として、フラットパネルディスプレイ用、表示電極、太陽電池用窓材、帯電防止膜等の広範囲な分野への適用の検討が始まっている。この材料に関してもアーキングの発生により得られる透明導電膜の抵抗が増加する等の問題がある。   In addition, as with the ITO film, the ZAO film has been studied as a transparent conductive film and applied to a wide range of fields such as for flat panel displays, display electrodes, solar cell windows, and antistatic films. This material also has a problem that the resistance of the transparent conductive film obtained by the occurrence of arcing is increased.

なお、上記の問題点は、ITO、ZAO以外の導電性セラミックス系ターゲットでも同様である。   The above-mentioned problems are the same for conductive ceramic targets other than ITO and ZAO.

また、ITO焼結体等の導電性セラミックス焼結体は常圧焼成法、ホットプレス法等で製造されるが、例えば、ITO焼結体の場合、常圧焼成法では1500〜1600℃の焼成温度が必要であり、また、大型の焼結体の製造には昇温速度を遅くする等で焼成時間が長時間となり、エネルギーを多く消費する製造方法である。また、外部熱源により加熱焼結するため、特に、大型や厚みのある成形体の焼成においては中心部の密度低下等の問題があった。また、ITO焼結体の場合、焼成温度が高温であるため、発熱体としてモリブデンシリサイドが使用されるが、その劣化に伴い、発熱体成分の影響で製品歩留まりが低下する問題もあった。   In addition, conductive ceramic sintered bodies such as ITO sintered bodies are manufactured by a normal pressure firing method, a hot press method or the like. For example, in the case of an ITO sintered body, firing at 1500 to 1600 ° C. is performed by a normal pressure firing method. This is a production method that requires temperature, and for producing a large-sized sintered body, consumes a lot of energy because the firing time becomes long by slowing the heating rate. In addition, since it is heated and sintered by an external heat source, there is a problem such as a decrease in the density of the central portion, especially in the case of firing a large or thick molded body. In the case of an ITO sintered body, since the firing temperature is high, molybdenum silicide is used as a heating element. However, along with the deterioration, there is a problem that the product yield is lowered due to the influence of the heating element component.

近年、省エネ効果と自己加熱による均一加熱の観点からマイクロ波やミリ波を用いた自己加熱型焼結がアルミナ等のセラミックス材料で検討されている(例えば非特許文献1参照)。しかし、ITO焼結体やAZO焼結体等の導電性セラミックスにおいては、それらの焼結メカニズムの複雑さなどから検討は行われていなかった。   In recent years, self-heating type sintering using microwaves or millimeter waves has been studied for ceramic materials such as alumina from the viewpoint of energy saving effect and uniform heating by self-heating (see Non-Patent Document 1, for example). However, studies have not been made on conductive ceramics such as ITO sintered bodies and AZO sintered bodies because of the complexity of their sintering mechanisms.

特許第3457969号公報Japanese Patent No. 3457969 特開平3−207858号公報JP-A-3-207858 豊田中央研究所R&Dレビュー Vol.30 NO.4(1995)Toyota Central R & D Review Vol. 30 NO. 4 (1995)

しかしながら、導電性セラミックス系スパッタリングターゲットに要求される性能は日々高まり、大型化や厚み増加に対応したアーキング発生が少ない製品が求められている。また、その導電性セラミックス焼結体の製造方法の省エネ化、生産性向上への対応が求められている。   However, the performance required for the conductive ceramics-based sputtering target is increasing day by day, and a product with less arcing corresponding to the increase in size and thickness is required. Further, there is a demand for energy saving and productivity improvement in the method for manufacturing the conductive ceramic sintered body.

上記課題を解決すべく鋭意研究した結果、導電性セラミックス焼結体の厚みが増加しても、アーク特性が良い導電性セラミックス焼結体とは、焼結粒径が小さく、かつ焼結密度の大きい焼結体であること、特に、その焼結体の厚み方向の密度差が小さく、焼結密度の小さい部分がないものであることを見出した。そして、このような導電性セラミックス焼結体は、原料粉末の成形体を電磁波加熱により焼成して焼結することにより得られることを見出した。   As a result of earnest research to solve the above problems, even if the thickness of the conductive ceramic sintered body is increased, the conductive ceramic sintered body having good arc characteristics is a small sintered particle size and a sintered density. It has been found that it is a large sintered body, in particular, that the density difference in the thickness direction of the sintered body is small and there is no portion with a low sintered density. And it discovered that such an electroconductive ceramic sintered compact was obtained by baking and sintering the molded object of raw material powder by electromagnetic heating.

即ち、本発明の導電性セラミックス焼結体の第1の態様は、焼結粒径が0.5μm以上1μm未満であり、焼結体全体の平均焼結密度が相対密度で98%以上であることを特徴とする導電性セラミックス焼結体である。また、本発明の導電性セラミックス焼結体の第2の態様は焼結体の厚さが10mm以上の導電性セラミックス焼結体であって、焼結粒径が0.5μm以上2μm以下であり、焼結体全体の平均焼結密度が相対密度で98%以上であることを特徴とする導電性セラミックス焼結体である。さらに、本発明の導電性セラミックス焼結体の第3の態様は、焼結粒径が0.5μm以上2μm以下であり、かつ、厚さ方向の焼結密度の密度差が1%以下であることを特徴とする導電性セラミックス焼結体である。なお、この第3の態様においては、焼結体全体の平均焼結密度が相対密度で98%以上であることがさらに好ましい。また、長寿命のターゲットを得るためには、この導電性セラミックス焼結体の厚さを10mm以上とすることが好ましい。   That is, in the first aspect of the conductive ceramic sintered body of the present invention, the sintered particle size is 0.5 μm or more and less than 1 μm, and the average sintered density of the entire sintered body is 98% or more in relative density. This is a conductive ceramic sintered body characterized by the above. The second aspect of the conductive ceramic sintered body of the present invention is a conductive ceramic sintered body having a sintered body thickness of 10 mm or more, and a sintered particle size of 0.5 μm or more and 2 μm or less. The conductive ceramic sintered body is characterized in that the average sintered density of the entire sintered body is 98% or more in relative density. Furthermore, in the third aspect of the conductive ceramic sintered body of the present invention, the sintered particle diameter is 0.5 μm or more and 2 μm or less, and the density difference of the sintered density in the thickness direction is 1% or less. This is a conductive ceramic sintered body characterized by the above. In the third aspect, the average sintered density of the entire sintered body is more preferably 98% or more in terms of relative density. In order to obtain a long-life target, the thickness of the conductive ceramic sintered body is preferably 10 mm or more.

なお、本発明の導電性セラミックス焼結体は、バルク抵抗が1×10−2Ω・cm以下であることが好ましい。このような導電性セラミックス焼結体としては、ITO、AZO等の酸化物焼結体を例示することができる。 In addition, it is preferable that the conductive ceramic sintered body of the present invention has a bulk resistance of 1 × 10 −2 Ω · cm or less. Examples of such conductive ceramic sintered bodies include oxide sintered bodies such as ITO and AZO.

また、本発明のスパッタリングターゲットは、上記の導電性セラミックス焼結体をターゲット材として用いたことを特徴とするものである。   The sputtering target of the present invention is characterized by using the above-mentioned conductive ceramic sintered body as a target material.

さらに、本発明の導電性セラミックス焼結体の製造方法は、原料粉末の成形体を電磁波加熱によって焼結することを特徴とするものである。特に、周波数2.45GHzのマイクロ波焼成炉又は周波数28GHzのミリ波焼成炉を用いて電磁波加熱を行うことが好ましく、作成される導電性セラミックス焼結体と同一組成の焼結体をセッタとして使用することや、作成される導電性セラミックス焼結体と同一組成の焼結体を等温断熱壁として使用することが好ましい。   Furthermore, the method for producing a conductive ceramic sintered body according to the present invention is characterized in that a compact of a raw material powder is sintered by electromagnetic wave heating. In particular, electromagnetic wave heating is preferably performed using a microwave firing furnace with a frequency of 2.45 GHz or a millimeter wave firing furnace with a frequency of 28 GHz, and a sintered body having the same composition as the conductive ceramic sintered body to be produced is used as a setter. It is preferable to use a sintered body having the same composition as the conductive ceramic sintered body to be produced as the isothermal heat insulating wall.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の導電性セラミックスは、ITO(In−SnO)、AZO(Al−ZnO)、In−ZnO、Ga−ZnO、TiO−α(α:Ta等の正五価のイオン)、SnO−β(β:Sb等の正五価のイオン)、SiC、MoSi等が挙げられる。 Conductive ceramics of the present invention, ITO (In 2 O 3 -SnO 2), AZO (Al 2 O 3 -ZnO 2), In 2 O 3 -ZnO, Ga 2 O 3 -ZnO, TiO 2 -α (α : Positive pentavalent ions such as Ta), SnO 2 -β (β: positive pentavalent ions such as Sb), SiC, MoSi 2 and the like.

本発明の導電性セラミックス焼結体は、バルク抵抗値が1×10−2Ω・cm以下であることが好ましい。1×10−2Ω・cmを超えるとDC放電においてスパッタリングが不安定になりやすい。さらに好ましくは1×10−3Ω・cm以下である。1×10−3Ω・cm以下ではスパッタリングの安定性がさらに良くなるため好ましい。 The conductive ceramic sintered body of the present invention preferably has a bulk resistance value of 1 × 10 −2 Ω · cm or less. When it exceeds 1 × 10 −2 Ω · cm, sputtering tends to become unstable in DC discharge. More preferably, it is 1 × 10 −3 Ω · cm or less. 1 × 10 −3 Ω · cm or less is preferable because the sputtering stability is further improved.

本発明の導電性セラミックス焼結体の焼結粒径は0.5μm以上2μm以下である。焼結粒径が0.5μm未満の場合、高密度化が困難になるため好ましくない。また、2μmを超える場合は、アーキングの発生回数が多くなるため好ましくない。さらに好ましくは0.5μm以上1.5μm以下であり、さらには0.5μm以上1μm未満である。この範囲ではアーキングの発生が少なく、また焼結体の機械的強度ももっとも強い。なお、本発明でいう焼結粒径とはコード法により求めた値である。   The sintered particle size of the conductive ceramic sintered body of the present invention is 0.5 μm or more and 2 μm or less. When the sintered particle size is less than 0.5 μm, it is difficult to increase the density, which is not preferable. Moreover, when exceeding 2 micrometers, since the frequency | count of generation | occurrence | production of arcing increases, it is not preferable. More preferably, they are 0.5 micrometer or more and 1.5 micrometers or less, Furthermore, they are 0.5 micrometer or more and less than 1 micrometer. In this range, there is little arcing and the mechanical strength of the sintered body is the strongest. In the present invention, the sintered particle diameter is a value determined by the code method.

本発明の導電性セラミックス焼結体の厚さは10mm以上とすることが可能である。さらには15mm以上とすることも可能である。スパッタリングターゲットとしては30mmを超えるものは実用上必要がないので、本発明の導電性セラミックス焼結体の厚さは30mm以下で十分である。導電性セラミックス焼結体の厚さは厚いほど、それをターゲット材として用いたスパッタリングターゲットの使用可能時間(寿命)が長くなるため、成膜の生産性が向上するため好ましい。   The thickness of the conductive ceramic sintered body of the present invention can be 10 mm or more. Furthermore, it is also possible to make it 15 mm or more. Since a sputtering target having a thickness exceeding 30 mm is not necessary in practice, the thickness of the conductive ceramic sintered body of the present invention is sufficient to be 30 mm or less. The thicker the conductive ceramic sintered body, the longer the usable time (life) of the sputtering target using the conductive ceramic sintered body as a target material, which is preferable because the productivity of film formation is improved.

本発明の導電性セラミックス焼結体をターゲット材として用いたスパッタリングターゲットは、2枚以上の導電性セラミックス焼結体を1つのバッキンブプレートに接合してなるものであってもよい。その場合、導電性セラミックス焼結体の厚さが異なるものであってもよく、少なくとも1枚の導電性セラミックス焼結体の厚さが10mm以上であるものであってもよい。例えば、複数枚の導電性セラミックス焼結体からなるスパッタリングターゲットでは、中央部と端部では焼結体の厚さが異なり、端部の焼結体の厚さが厚いものが用いられることがあるが、このようなターゲットで、端部の導電性セラミックス焼結体だけの厚さを10mm以上としたものであってもよい。   The sputtering target using the conductive ceramic sintered body of the present invention as a target material may be formed by joining two or more conductive ceramic sintered bodies to one backing plate. In that case, the thickness of the conductive ceramic sintered body may be different, or the thickness of at least one conductive ceramic sintered body may be 10 mm or more. For example, in a sputtering target composed of a plurality of conductive ceramic sintered bodies, the thickness of the sintered body may be different between the center and the end, and the end sintered body may be thick. However, in such a target, the thickness of only the conductive ceramic sintered body at the end may be 10 mm or more.

本発明の導電性セラミックス焼結体の厚み方向の密度差は1%以内であることが好ましい。焼結体の密度差はアーク特性を悪化させるが、焼結粒径が小さくなると密度差を1%以内にすることは困難である。密度差が1%を超えると中央部の密度が低い部分の影響が顕著になりアーク特性が悪くなるために好ましくない。   The density difference in the thickness direction of the conductive ceramic sintered body of the present invention is preferably within 1%. Although the density difference of the sintered body deteriorates the arc characteristics, it is difficult to make the density difference within 1% when the sintered particle diameter becomes small. If the density difference exceeds 1%, the influence of the portion having a low density in the central portion becomes conspicuous and the arc characteristics deteriorate, which is not preferable.

さらには、アーク特性を良くするために厚み方向の密度差は0.5%以内であることが好ましい。さらには厚み方向の密度差は0.3%以内であることが好ましい。   Furthermore, the density difference in the thickness direction is preferably within 0.5% in order to improve arc characteristics. Furthermore, the density difference in the thickness direction is preferably within 0.3%.

なお、厚み方向の密度差は、以下のようにして求める。測定対象の導電性セラミックス焼結体の厚さ方向に、その上部、中央部、下部に3等分して板状の試料片を作成し、その各々の密度をアルキメデス法により測定し、以下に示す式より算出した。
厚さ方向の密度差(%)={(密度が最大の部位の密度)−(密度が最小の部位の密度)}/(密度が最大の部位の密度)×100
本発明の導電性セラミックス焼結体の焼結体全体の平均焼結密度は相対密度で98%以上であることが好ましい。相対密度が98%未満であるとアーキングが多くなる傾向がある。焼結密度が高いほどアーキング低減効果が得られるため、焼結体の相対密度は99%以上、さらには99.5%以上であることが好ましい。特に、被スパッタ面に平行な面を板面とする薄い(例えば2mm)板状の試料片を用いて測定した焼結密度が相対密度で97%未満になると、アーキングが顕著になることから、相対密度が97%未満の部分を有さない焼結体であることが好ましい。そのような導電性セラミックス焼結体であるためには、少なくとも、焼結体全体の平均焼結密度が相対密度で98%以上であり、かつ、厚さ方向の密度差が1%以内であることが好ましい。なお、相対密度(D)とは、例えば、ITO焼結体の場合、InとSnOの真密度の相加平均から求められる理論密度(dITO)に対する相対値を示している。相加平均から求められる理論密度(d)とは、ターゲット組成において、InとSnO粉末の混合量をa(g)とb(g)とした時、それぞれの真密度7.18(g/cm)、6.95(g/cm)を用いて、d=(a+b)/((a/7.18)+(b/6.95))により求められる。焼結体の測定密度をd1とすると、その相対密度Dは、D=d1/dITO×100(%)で求められる。
The density difference in the thickness direction is obtained as follows. In the thickness direction of the conductive ceramic sintered body to be measured, a plate-like sample piece is created by dividing the upper part, the central part, and the lower part into three equal parts, and the density of each is measured by the Archimedes method. It was calculated from the formula shown.
Density difference in thickness direction (%) = {(density of the portion with the highest density) − (density of the portion with the lowest density)} / (density of the portion with the highest density) × 100
The average sintered density of the entire sintered body of the conductive ceramic sintered body of the present invention is preferably 98% or more in terms of relative density. When the relative density is less than 98%, the arcing tends to increase. Since the arcing reduction effect is obtained as the sintered density is higher, the relative density of the sintered body is preferably 99% or more, more preferably 99.5% or more. In particular, when the sintered density measured using a thin (for example, 2 mm) plate-like sample piece having a plane parallel to the surface to be sputtered is less than 97% in relative density, arcing becomes significant. A sintered body having a relative density of less than 97% is preferred. In order to be such a conductive ceramic sintered body, at least the average sintered density of the entire sintered body is 98% or more in relative density, and the density difference in the thickness direction is within 1%. It is preferable. Note that the relative density (D), for example, in the case of ITO sintered body shows a relative value with respect to In 2 O 3 and the theoretical density determined from the true density of the arithmetic mean of SnO 2 (d ITO). The theoretical density (d) obtained from the arithmetic mean is the true density of 7.18 when the mixing amount of In 2 O 3 and SnO 2 powder is a (g) and b (g) in the target composition. Using (g / cm 3 ) and 6.95 (g / cm 3 ), d = (a + b) / ((a / 7.18) + (b / 6.95)). When the measured density of the sintered body is d1, the relative density D is obtained by D = d1 / dITO × 100 (%).

また、例えば、AZO焼結体の場合、ZnOおよびAlの真密度の相加平均から求められる理論密度(dAZO)に対する相対値を示している。相加平均から求められる理論密度(d)とは、ターゲットの組成において、ZnOおよびAl粉末の混合量をx(g)およびy(g)としたとき、それぞれの真密度5.68(g/cm)および3.987(g/cm)を用いて、d=(x+y)/((x/5.68)+(y/3.987))により求めることができ、実際に得られた焼結体の密度をd2とすると、その相対密度Dは、D=d2/dAZO×100で求めることができる。 For example, in the case of an AZO sintered body, a relative value with respect to a theoretical density (d AZO ) obtained from an arithmetic average of true densities of ZnO and Al 2 O 3 is shown. The theoretical density (d) obtained from the arithmetic mean is the true density of 5.68 when the mixing amount of ZnO and Al 2 O 3 powder is x (g) and y (g) in the target composition. (G / cm 3 ) and 3.987 (g / cm 3 ), d = (x + y) / ((x / 5.68) + (y / 3.987)) When the density of the obtained sintered body is d2, the relative density D can be obtained by D = d2 / dAZO × 100.

本発明のITO焼結体の3点曲げ強度は200MPa以上であることが好ましい。200MPa未満の時はITO焼結体のバキングプレートへの取りつけ時やスパッタリング時にITO焼結体の割れが発生する確率が高くなる。230MPa以上の時、割れ対策としてさらに好ましい。   The three-point bending strength of the ITO sintered body of the present invention is preferably 200 MPa or more. When the pressure is less than 200 MPa, the probability of cracking of the ITO sintered body increases when the ITO sintered body is attached to the backing plate or during sputtering. When it is 230 MPa or more, it is more preferable as a countermeasure against cracking.

本発明の導電性セラミックス焼結体の製造は原料粉末を必要に応じて混合し、成形、焼成して得られる。   The conductive ceramic sintered body of the present invention can be produced by mixing raw material powder as necessary, molding and firing.

始めに、導電性セラミックス焼結体の原料粉末を所定の混合比で混合する。例えば、ITO焼結体の場合、酸化スズの含有量はスパッタリング法により薄膜を製造した際に比抵抗が低下する、SnO/(In+SnO)で8重量%以上、15重量%以下とすることが好ましい。また、例えば、AZOの場合、酸化アルミニウムの含有量は、スパッタリング法により薄膜を製造した際に比抵抗が低下する1重量%以上、5重量%以下とすることが望ましい。 First, the raw material powder of the conductive ceramic sintered body is mixed at a predetermined mixing ratio. For example, in the case of an ITO sintered body, the content of tin oxide is 8 wt% or more and 15 wt% in SnO 2 / (In 2 O 3 + SnO 2 ), the specific resistance decreases when a thin film is produced by the sputtering method. The following is preferable. Further, for example, in the case of AZO, the content of aluminum oxide is desirably 1% by weight or more and 5% by weight or less at which the specific resistance decreases when a thin film is produced by a sputtering method.

原料粉末にバインダー等を加えてもよい。混合はボールミル、ジェットミル、クロスミキサー等で行なう。   A binder or the like may be added to the raw material powder. Mixing is performed by a ball mill, a jet mill, a cross mixer, or the like.

得られた原料粉末をプレス法あるいは鋳込法等の成形方法により成形してターゲット成形体を製造する。この際、使用する粉末の平均粒径が大きいと焼結後の密度が充分に上昇しない場合があるので、使用する粉末の平均粒径は1μm以下であることが望ましく、更に好ましくは0.1〜1μmである。こうすることにより、焼結粒径が小さく、焼結密度の高い焼結体を得ることが可能となる。   The obtained raw material powder is molded by a molding method such as a press method or a casting method to produce a target molded body. At this time, if the average particle size of the powder used is large, the density after sintering may not be sufficiently increased. Therefore, the average particle size of the powder used is desirably 1 μm or less, more preferably 0.1 μm. ˜1 μm. By doing so, it becomes possible to obtain a sintered body having a small sintered particle size and a high sintered density.

次に得られた成形体に必要に応じて、CIP等の圧密化処理を行う。この際CIP圧力は充分な圧密効果を得るため2ton/cm以上、好ましくは2〜3ton/cmであることが望ましい。ここで始めの成形を鋳込法により行った場合には、CIP後の成形体中に残存する水分およびバインダー等の有機物を除去する目的で脱バインダー処理を施してもよい。また、始めの成形をプレス法により行った場合でも、成型時にバインダーを使用したときには、同様の脱バインダー処理を行うこともできる。 Next, consolidation processing such as CIP is performed on the obtained molded body as necessary. Here CIP pressure is sufficient for obtaining a consolidation effect 2 ton / cm 2 or more, it is desirable that preferably is 2~3ton / cm 2. Here, when the first molding is performed by a casting method, a binder removal treatment may be performed for the purpose of removing moisture remaining in the molded body after CIP and organic substances such as a binder. Even when the first molding is performed by the press method, the same debinding process can be performed when a binder is used during molding.

次に、このようにして得られた成形体の焼結を行う。本発明の導電性セラミックス焼結体は、通常の外部加熱型の電気炉を用いる方法では作成することが困難であり、電磁波加熱により焼結することで達成することができる。以下に電磁波加熱による焼結について説明する。   Next, the molded body thus obtained is sintered. The conductive ceramic sintered body of the present invention is difficult to produce by a method using a normal external heating type electric furnace, and can be achieved by sintering by electromagnetic wave heating. Hereinafter, sintering by electromagnetic wave heating will be described.

本発明は電磁波を用いて加熱する焼結方法であれば特に限定されないが、電磁波としてはマグネトロンまたはジャイロトロン等から発生する連続またはパルス状の2.45GHz等のマイクロ波、28GHz等のミリ波、またはサブミリ波が利用できる。電磁波の周波数の選択は導電性セラミックスの焼結挙動から適切なものを選択することができる。大型の成形体を焼成する場合はミリ波の方が電磁波の吸収特性や電磁波の均一性が高いので好ましい。   The present invention is not particularly limited as long as it is a sintering method heated using electromagnetic waves, but as electromagnetic waves, continuous or pulsed microwaves such as 2.45 GHz generated from magnetron or gyrotron, millimeter waves such as 28 GHz, Or submillimeter waves can be used. The frequency of electromagnetic waves can be selected appropriately from the sintering behavior of conductive ceramics. In the case of firing a large molded body, the millimeter wave is preferable because it has higher electromagnetic wave absorption characteristics and higher electromagnetic wave uniformity.

本発明者等は、ITOやAZO等の導電性セラミックスは、2.45GHzや28GHz等の電磁波の吸収効率が高く、電磁波加熱により非常に短時間で高密度かつ均一な焼結体を得ることができるものであることを見出した。   The present inventors have found that conductive ceramics such as ITO and AZO have high absorption efficiency of electromagnetic waves such as 2.45 GHz and 28 GHz, and can obtain a high-density and uniform sintered body in a very short time by electromagnetic wave heating. I found out that it was possible.

本発明の導電性セラミックス焼結体の組織的な特徴としては、例えばスパッタリングターゲットとして使用する場合は、そのターゲットにより成膜する薄膜の組成に合わせて焼結体の組成を決めるため、本発明の導電性セラミックス焼結体は単一化合物からなる焼結体となる場合は少なく、その組織は2相以上からなる複合組織となる場合が多い。高密度で均一な焼結体を得るには、複合組織の各相の焼結粒径を制御し、また、気孔径を小さくすることが重要である。また、電磁波加熱は外部加熱と異なり、自己発熱を利用するため、選択加熱により外部加熱の場合とは異なる組織を作製することが可能となる利点があり、本発明の導電性セラミックス焼結体を作成する方法として適している場合がある。   As a structural feature of the conductive ceramic sintered body of the present invention, for example, when used as a sputtering target, the composition of the sintered body is determined according to the composition of the thin film formed by the target. The conductive ceramic sintered body is rarely a sintered body made of a single compound, and its structure is often a composite structure composed of two or more phases. In order to obtain a high-density and uniform sintered body, it is important to control the sintered particle diameter of each phase of the composite structure and to reduce the pore diameter. In addition, unlike external heating, electromagnetic heating uses self-heating, so there is an advantage that a structure different from that of external heating can be produced by selective heating. It may be suitable as a method of creating.

例えば、ITO焼結体は最終的には酸化インジウムとInSn12で表される酸化インジウムと酸化スズからなる複合酸化物の2相の混合組織となる。また、AZO焼結体は最終的には酸化亜鉛とZnAlで表される酸化亜鉛と酸化アルミニウムからなる複合酸化物の2相の混合組織となる。高密度で均一なITO焼結体やAZO焼結体を得るためには、ITO焼結体の場合、原料となる酸化インジウム、酸化スズ、焼結途中で生成するInSn12の電磁波吸収効率が良く、異常粒成長や気孔の増大といった不均一な組織ができないこと、また、AZO焼結体の場合、酸化亜鉛、酸化アルミニウム、焼結途中で生成するZnAlの電磁波吸収効率が良く、異常粒成長や気孔の増大といった不均一な組織ができないことが重要である。 For example, the ITO sintered body finally becomes a two-phase mixed structure of a complex oxide composed of indium oxide and indium oxide represented by In 4 Sn 3 O 12 and tin oxide. The AZO sintered body finally becomes a two-phase mixed structure of a composite oxide composed of zinc oxide and zinc oxide represented by ZnAl 2 O 4 and aluminum oxide. In order to obtain a high-density and uniform ITO sintered body or AZO sintered body, in the case of an ITO sintered body, indium oxide and tin oxide as raw materials, In 4 Sn 3 O 12 electromagnetic waves generated during sintering Absorption efficiency is good, non-uniform structure such as abnormal grain growth and increase in pores cannot be formed, and in the case of AZO sintered body, zinc oxide, aluminum oxide, electromagnetic wave absorption efficiency of ZnAl 2 O 4 generated during sintering It is important that a non-uniform structure such as abnormal grain growth or increased pores cannot be formed.

実際に酸化インジウム粉末と酸化スズ粉末からなるITO成形体を電磁波加熱すると、電磁波吸収による局所加熱等の問題が起きず、酸化インジウムとInSn12からなる混合組織からなる均一な焼結体組織が得られ、ITO焼結体はマイクロ波加熱による作製に適した焼結体であることが確認できた。また、AZOについても同様に電磁波加熱により均一な焼結体組織が得られた。すなわち、ITO焼結体やAZO焼結体は、被加熱物の電磁波吸収効率を高めるために発熱補助材としてSiC等を添加したり、あるいは被加熱物の周囲に発熱体を配置する必要のない、電磁波加熱により焼成して得るのに適した材料である。尚、成形体の形状により加熱補助材や発熱体を併用することも可能である。 When an ITO molded body made of indium oxide powder and tin oxide powder is actually heated by electromagnetic waves, problems such as local heating due to electromagnetic wave absorption do not occur, and uniform sintering made of a mixed structure of indium oxide and In 4 Sn 3 O 12 A body structure was obtained, and it was confirmed that the ITO sintered body was a sintered body suitable for production by microwave heating. Similarly, with AZO, a uniform sintered body structure was obtained by electromagnetic heating. That is, it is not necessary for the ITO sintered body or the AZO sintered body to add SiC or the like as a heat generating auxiliary material to increase the electromagnetic wave absorption efficiency of the object to be heated, or to dispose the heating element around the object to be heated. It is a material suitable to be obtained by firing by electromagnetic heating. A heating auxiliary material or a heating element can be used in combination depending on the shape of the molded body.

使用される電磁波焼成炉としては、バッチ式、連続式、外部加熱式とのハイブリット式等の種々の焼成炉を使用することができる。   As the electromagnetic wave firing furnace to be used, various firing furnaces such as a batch type, a continuous type, and a hybrid type with an external heating type can be used.

導電性セラミックス焼結体作成のための金属酸化物等の原料化合物は電磁波の吸収効率が良いため電磁波加熱焼結の特徴である非常に短時間で、かつ均一に焼成できる効果が期待できる。その結果、従来の外部加熱では製造することが困難であった厚さの厚い導電性セラミックス焼結体でも厚さ方向の密度分布の少ない焼結体を製造することができる。特に導電性セラミックス焼結体の厚さが10mm以上となると、従来の外部加熱では中心部の密度低下のため、焼結体全体としての高密度化が困難であった。また、厚さ方向の密度分布を低減させるためには、昇温速度を遅くしたり、保持時間を長くして、被加熱物の内外の温度差を少なくする対応が取られており、その結果、焼結粒径が大きくなっていた。電磁波加熱では均一加熱が可能であるため、ほとんど密度分布のない高密度な焼結体を得ることが可能である。   Since a raw material compound such as a metal oxide for producing a conductive ceramic sintered body has good electromagnetic wave absorption efficiency, it can be expected to have an effect of uniform firing in a very short time, which is a feature of electromagnetic heating sintering. As a result, it is possible to manufacture a sintered body having a small density distribution in the thickness direction even with a thick conductive ceramic sintered body, which is difficult to manufacture by conventional external heating. In particular, when the thickness of the conductive ceramic sintered body is 10 mm or more, it is difficult to increase the density of the sintered body as a whole because the density of the central portion is reduced by conventional external heating. In addition, in order to reduce the density distribution in the thickness direction, measures are taken to reduce the temperature difference between the inside and outside of the object to be heated by slowing the heating rate or increasing the holding time. The sintered particle size was large. Since electromagnetic heating enables uniform heating, it is possible to obtain a high-density sintered body with almost no density distribution.

また、電磁波加熱では昇温速度を上げることや保持時間を短縮することが可能であり、粒成長を抑制した焼結粒径が小さい高密度な導電性セラミックス焼結体を容易に得ることが可能である。さらに、昇温の高速化や焼成時の保持時間の短縮により焼成に必要なエネルギーを大幅に削減することもできる。   Also, with electromagnetic heating, it is possible to increase the rate of temperature rise and shorten the holding time, and it is possible to easily obtain a high-density conductive ceramic sintered body with a small sintered particle size that suppresses grain growth. It is. Furthermore, the energy required for firing can be greatly reduced by increasing the temperature rise and shortening the holding time during firing.

また、モリブデンシリサイドなどの発熱体の劣化による影響で製品歩留まりが低下する問題も本質的に起こらない。   In addition, there is essentially no problem of a decrease in product yield due to the influence of heating elements such as molybdenum silicide.

焼成時の昇温速度については特に限定されないが、焼結粒径の微細化の観点から、100〜600℃/時間とするのが好ましく、さらには200〜600℃/時間が好ましい。焼結保持温度は、導電性セラミックスの種類により適宜選択する。例えばITOの場合、1300℃以上、1650℃未満、好ましくは、1400℃以上1600℃以下が良い。また、AZOの場合は、1200℃以上、1550℃未満、好ましくは1300℃以上1500℃以下が良い。   The temperature rising rate during firing is not particularly limited, but is preferably 100 to 600 ° C./hour, more preferably 200 to 600 ° C./hour, from the viewpoint of making the sintered particle size finer. The sintering holding temperature is appropriately selected depending on the type of conductive ceramic. For example, in the case of ITO, 1300 degreeC or more and less than 1650 degreeC, Preferably 1400 degreeC or more and 1600 degrees C or less are good. In the case of AZO, it is 1200 ° C. or higher and lower than 1550 ° C., preferably 1300 ° C. or higher and 1500 ° C. or lower.

電磁波加熱焼結では導電性セラミックス材料は非常に効率的に焼成が行われるため、従来の外部加熱法等による焼成より低温で高密度な焼結体を得ることが可能である。さらには、固溶を促進させるために高温で焼結を行った場合でも、短時間で焼結が可能なため、従来の外部加熱法に比べて焼結粒径を微細化することが可能である。すなわち、電磁波加熱による焼成により、結晶粒径が小さくかつ高密度の焼結体を得ることが可能であり、それにより、アーキングの発生が少なく、しかも機械的強度の高い優れたスパッタリングターゲットを得ることが可能となる。   Since the conductive ceramic material is baked very efficiently in the electromagnetic heating sintering, it is possible to obtain a sintered body having a high density at a lower temperature than that obtained by a conventional external heating method or the like. Furthermore, even when sintering is performed at a high temperature in order to promote solid solution, sintering can be performed in a short time, so that the sintered grain size can be made finer compared to conventional external heating methods. is there. That is, it is possible to obtain a sintered body having a small crystal grain size and a high density by firing by electromagnetic wave heating, thereby obtaining an excellent sputtering target with less arcing and high mechanical strength. Is possible.

さらに、前述のように、電磁波加熱では、従来の外部加熱では製造することが困難であった厚さが10mm以上の導電性セラミックス焼結体においても、厚さ方向の焼結密度の密度差の少ない焼結体を製造することができ、これにより、ターゲット寿命が長く、かつ、ターゲット寿命までの長時間に亘ってアーキングの発生が少ない、スパッタリングターゲットを得ることが可能となる。   Further, as described above, even with a conductive ceramic sintered body having a thickness of 10 mm or more, which is difficult to manufacture with conventional external heating, electromagnetic density heating has a difference in density of sintered density in the thickness direction. A small number of sintered bodies can be produced, whereby a sputtering target having a long target life and less arcing over a long time until the target life can be obtained.

なお、焼成時の保持時間は特に限定しないが、5時間以内で十分である。また、降温速度は特に規定されないが、例えば、ITO焼結体の場合、1200℃までは100℃/時間以上、好ましくは200℃/時間以上が良い。1200℃から室温までの降温速度の上限値については特に規定されないが、100℃/時間以下とするのが好ましい。降温速度を遅くする温度の設定および降温速度の選択は、焼結炉の容量、焼結体のサイズおよび形状、割れ易さなどを考慮して適宜決定すればよい。焼結時の雰囲気は導電性セラミックスの種類により任意に選択する。例えば、ITO焼結体の場合、酸素雰囲気中が好ましい。さらには、酸素気流中とし、焼結時に炉内に酸素を導入する際の酸素流量(L/min)と成形体仕込量(kg)の比(仕込重量/酸素流量)を、2.0以下、さらに好ましくは1.0以下とする。こうすることにより、高密度の焼結体を得やすくなる。また、AZO焼結体の場合、焼結時の雰囲気としては大気あるいは不活性雰囲気であることが好ましい。   In addition, although the holding time at the time of baking is not specifically limited, 5 hours or less are enough. Further, the temperature lowering rate is not particularly defined. For example, in the case of an ITO sintered body, it is 100 ° C./hour or more, preferably 200 ° C./hour or more up to 1200 ° C. The upper limit value of the temperature lowering rate from 1200 ° C. to room temperature is not particularly specified, but is preferably 100 ° C./hour or less. The setting of the temperature for lowering the temperature lowering rate and the selection of the temperature lowering rate may be appropriately determined in consideration of the capacity of the sintering furnace, the size and shape of the sintered body, ease of cracking, and the like. The atmosphere during sintering is arbitrarily selected according to the type of conductive ceramics. For example, in the case of an ITO sintered body, an oxygen atmosphere is preferable. Furthermore, the ratio of the oxygen flow rate (L / min) and the charged amount of the molded body (kg) (charge weight / oxygen flow rate) when introducing oxygen into the furnace during sintering is 2.0 or less. More preferably, it is 1.0 or less. By doing so, it becomes easy to obtain a high-density sintered body. In the case of an AZO sintered body, the atmosphere during sintering is preferably air or an inert atmosphere.

また、電磁波加熱の際のセッタや等温断熱壁として、作成される導電性セラミックス焼結体と同一組成の焼結体を使用することは大型の導電性セラミックス焼結体を得るために有効である。なお、セッタとは、焼成炉内において、被焼成物を載せる板状のセラミックスであり、通常は被焼成物の焼成温度において耐熱性があり、かつ、被焼成物と反応しない等、焼結に悪影響を与えない材料で構成される。しかしながら、電磁波加熱の場合、被焼成物である導電性セラミックスとセッタの電磁波吸収特性が大きく異なると、セッタと該導電性セラミックスの温度に差ができ、焼結体が割れたり、接触部で局所的に異状加熱が起きる可能性がある。このため、セッタに使用する材料としては、被焼成物である導電性セラミックスと同一組成のものが好ましい。なお、同一組成とは、主成分が該導電性セラミックスの構成元素からなるものであればよい。焼結形態は多孔質状、高密度等いずれでもよい。   Moreover, it is effective to obtain a large-sized conductive ceramic sintered body by using a sintered body having the same composition as that of the produced conductive ceramic sintered body as a setter or isothermal heat insulating wall during electromagnetic wave heating. . A setter is a plate-like ceramic on which a material to be fired is placed in a firing furnace, and usually has heat resistance at the firing temperature of the material to be fired and does not react with the material to be fired. Consists of materials that do not adversely affect. However, in the case of electromagnetic heating, if the electromagnetic wave absorption characteristics of the conductive ceramic and the setter that are to be fired differ greatly, there is a difference in the temperature between the setter and the conductive ceramic. Unusual heating may occur. For this reason, as a material used for a setter, the thing of the same composition as the electrically conductive ceramic which is a to-be-fired thing is preferable. In addition, the same composition should just be what a main component consists of a constituent element of this electroconductive ceramics. The sintered form may be porous or high density.

また、等温断熱壁とは焼成炉の内壁であって、被焼成物と同じような電磁波吸収特性を有する材料で作成され、焼成炉内の温度分布を均一に保つために設置される。等温断熱壁を被焼成物である導電性セラミックスと同一組成の材料により構成することにより、電気炉内の温度分布を最も均一に保つことができる。なお、同一組成とは、主成分が該導電性セラミックスの構成元素からなるものであればよい。焼結形態は多孔質状、高密度等いずれでもよい。   The isothermal heat insulating wall is an inner wall of the firing furnace, is made of a material having the same electromagnetic wave absorption characteristics as the object to be fired, and is installed to keep the temperature distribution in the firing furnace uniform. By constructing the isothermal heat insulating wall with a material having the same composition as that of the conductive ceramics to be fired, the temperature distribution in the electric furnace can be kept most uniform. In addition, the same composition should just be what a main component consists of a constituent element of this electroconductive ceramics. The sintered form may be porous or high density.

本発明の導電性セラミックス焼結体を所望の形状に研削加工した後、必要に応じて無酸素銅等からなるバッキングプレートにインジウム半田等を用いて接合することにより、本発明の導電性セラミックススパッタリングターゲットを得ることができる。   After the conductive ceramic sintered body of the present invention is ground into a desired shape, the conductive ceramic sputtering of the present invention is bonded to a backing plate made of oxygen-free copper or the like using indium solder or the like as necessary. You can get a target.

得られたターゲットをスパッタリング装置内に設置し、アルゴンなどの不活性ガスと必要に応じて酸素ガスをスパッタリングガスとして用いて、dcあるいはrf電界を印加してスパッタリングを行うことにより、所望の基板上に導電性セラミックス薄膜を形成することができる。この際アーキング発生量が低減されるという本発明の効果が発現される。   The obtained target is placed in a sputtering apparatus, and sputtering is performed by applying a dc or rf electric field by using an inert gas such as argon and oxygen gas as a sputtering gas as necessary, and applying a dc or rf electric field. A conductive ceramic thin film can be formed on the substrate. At this time, the effect of the present invention that the amount of arcing is reduced is exhibited.

また、本発明による導電性セラミックス焼結体は、セラミックスに付加機能を持たせることを目的として第3の元素を添加した導電性セラミックス焼結体においても有効である。第3元素としては、例えば、Mg,Al,Si,Ti,Zn,Ga,In,Ge,Y,Zr,Nb,Hf,Ta等を例示することができる。これら元素の添加量は、特に限定されるものではないが、セラミックスの優れた電気光学的特性を劣化させないため、(第3元素の酸化物の総和)/(セラミックス+第3元素の酸化物の総和)で0重量%を超え20重量%以下(重量比)とすることが好ましい   The conductive ceramic sintered body according to the present invention is also effective in a conductive ceramic sintered body to which a third element is added for the purpose of giving the ceramic an additional function. Examples of the third element include Mg, Al, Si, Ti, Zn, Ga, In, Ge, Y, Zr, Nb, Hf, and Ta. The amount of addition of these elements is not particularly limited, but in order not to deteriorate the excellent electro-optical characteristics of ceramics, (total of oxides of third elements) / (ceramics + oxides of third elements) The total is preferably more than 0% by weight and 20% by weight or less (weight ratio).

本発明では、原料粉末からなる成形体を電磁波加熱により焼成して導電性セラミックス焼結体を得ることにより、容易に、結晶粒径が小さく、かつ、高密度の焼結体を得ることができる。また、厚さが10mm以上の焼結体においても、厚さ方向の焼結密度の密度差の少ない焼結体を得ることができる。したがって、本発明の導電性セラミックス焼結体をターゲット材として用いることにより、焼結体の結晶粒径が小さくかつ高密度であることから、アーキングの発生が極めて少なく、また、焼結体の厚さを10mm以上に厚くすることができることから極めて長寿命であり、さらに、厚さ方向の密度差が小さく、焼結体中に低密度の部分がないため、ターゲット寿命までの長時間に亘ってアーキングの発生の少ない優れたスパッタリングターゲットを得ることができる。しかも、結晶粒径が小さいことから、機械的強度が高く、割れ難く大型化の容易な優れたスパッタリングターゲットを得ることができる。   In the present invention, a compact made of a raw material powder is fired by electromagnetic heating to obtain a conductive ceramic sintered body, whereby a sintered body having a small crystal grain size and a high density can be easily obtained. . Further, even in a sintered body having a thickness of 10 mm or more, a sintered body having a small density difference in the sintered density in the thickness direction can be obtained. Therefore, by using the conductive ceramic sintered body of the present invention as a target material, since the crystal grain size of the sintered body is small and high density, the occurrence of arcing is extremely small, and the thickness of the sintered body is Since the thickness can be increased to 10 mm or more, it has a very long life, and further, since the density difference in the thickness direction is small and there is no low-density part in the sintered body, it takes a long time to the target life. An excellent sputtering target with less arcing can be obtained. Moreover, since the crystal grain size is small, it is possible to obtain an excellent sputtering target that has high mechanical strength, is difficult to break, and is easy to increase in size.

さらに、電磁波加熱によれば、焼成のための昇温の高速化や焼成時の保持時間の短縮が可能であり、それにより焼成に必要なエネルギーを大幅に削減することもできる。また、電磁波加熱では成形体自身が発熱体となるので、外部加熱法におけるように発熱体の劣化による影響で製品歩留まりが低下することもない。   Furthermore, according to the electromagnetic wave heating, it is possible to increase the temperature rise for firing and shorten the holding time during firing, thereby significantly reducing the energy required for firing. Further, since the molded body itself becomes a heating element in the electromagnetic wave heating, the product yield is not lowered due to the influence of the deterioration of the heating element as in the external heating method.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。なお、本実施例における各測定は以下のように行った。
(1)焼結体密度:アルキメデス法により測定した。
(2)厚さ方向の密度差:焼結体を厚み方向に上部、中央部、下部に3等分し、それぞれの焼結体密度をアルキメデス法で測定する。そして、以下に示す式より算出した。
・厚さ方向の密度差(%)={(密度が最大の部位の密度)−(密度が最小の部位の密度)}/(密度が最大の部位の密度)×100
(3)焼結粒径:SEM写真からコード法によりコード径を算出した。測定した焼結粒子の個数は300個以上とした。
(4)バルク抵抗:焼結体のバルク抵抗は四探針法により測定した。
(5)放電評価:以下の条件にて、60時間連続放電した際の積算アーキング発生回数を測定した。評価条件を同一にするため、得られた焼結体の上下の部分をほぼ同量研削除去して厚みを9mmとした。焼結体の上下の部分を除去することで、もっとも密度が低い部分にて放電評価することとなり、放電特性の良好なサンプルほど厚みが増した時も特性が良好で、寿命が長いことになる。
(スパッタリング条件)DC電力:300W、ガス圧:7.0mTorr、スパッタリングガス:Ar+酸素、スパッタリングガス中の酸素ガス濃度(O/Ar):0.05%、放電時間:60時間、ここで、酸素ガス濃度は、得られる薄膜の抵抗率が最も低下する値に設定した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. In addition, each measurement in a present Example was performed as follows.
(1) Sintered body density: Measured by Archimedes method.
(2) Density difference in the thickness direction: The sintered body is divided into three equal parts in the upper part, the central part and the lower part in the thickness direction, and the density of each sintered body is measured by Archimedes method. And it computed from the formula shown below.
Density difference in thickness direction (%) = {(density of the portion with the highest density) − (density of the portion with the lowest density)} / (density of the portion with the highest density) × 100
(3) Sintered particle diameter: The cord diameter was calculated from the SEM photograph by the cord method. The number of measured sintered particles was 300 or more.
(4) Bulk resistance: The bulk resistance of the sintered body was measured by a four-point probe method.
(5) Discharge evaluation: The number of integrated arcing occurrences when continuously discharged for 60 hours was measured under the following conditions. In order to make the evaluation conditions the same, the upper and lower portions of the obtained sintered body were ground and removed by substantially the same amount to a thickness of 9 mm. By removing the upper and lower parts of the sintered body, discharge evaluation is performed at the part with the lowest density, and the better the discharge characteristics, the better the characteristics and the longer the life of the sample. .
(Sputtering conditions) DC power: 300 W, gas pressure: 7.0 mTorr, sputtering gas: Ar + oxygen, oxygen gas concentration in sputtering gas (O 2 / Ar): 0.05%, discharge time: 60 hours, where The oxygen gas concentration was set to a value at which the resistivity of the obtained thin film was the lowest.

(実施例1)
平均粒径0.5μmの酸化インジウム粉末90重量部と平均粒径0.5μmの酸化スズ粉末10重量部とをポリエチレン製のポットに入れ、乾式ボールミルにより20時間混合し、混合粉末を調製した。前記混合粉末のタップ密度を測定したところ2.1g/cmであった。
Example 1
90 parts by weight of indium oxide powder having an average particle diameter of 0.5 μm and 10 parts by weight of tin oxide powder having an average particle diameter of 0.5 μm were placed in a polyethylene pot and mixed for 20 hours by a dry ball mill to prepare a mixed powder. The tap density of the mixed powder was measured and found to be 2.1 g / cm 3 .

この混合粉末を所定の焼結体厚みが得られるように粉末量を調整して金型に入れ、300kg/cmの圧力でプレスして成形体とした。この成形体を3ton/cmの圧力でCIPによる処理を行った。次にこの成形体をマイクロ波焼成炉(周波数=2.45GHz)にSiCセッタの上に設置して、以下の条件で焼結した。
(焼結条件)昇温速度:200℃/時間、焼結温度:1300℃、焼結時間:1時間、雰囲気:昇温時の室温から降温時の100℃まで純酸素ガスを炉内に、(仕込重量/酸素流量)=0.8で導入、降温速度:焼成温度から1200℃までは、200℃/時間、以降100℃/時間。
The mixed powder was adjusted in the amount of powder so as to obtain a predetermined thickness of the sintered body, placed in a mold, and pressed at a pressure of 300 kg / cm 2 to obtain a molded body. This molded body was treated with CIP at a pressure of 3 ton / cm 2 . Next, this compact was placed on a SiC setter in a microwave firing furnace (frequency = 2.45 GHz) and sintered under the following conditions.
(Sintering conditions) Temperature increase rate: 200 ° C./hour, sintering temperature: 1300 ° C., sintering time: 1 hour, atmosphere: pure oxygen gas in the furnace from room temperature at the time of temperature increase to 100 ° C. at the time of temperature decrease, (Feed weight / oxygen flow rate) = 0.8, temperature drop rate: 200 ° C./hour from the firing temperature to 1200 ° C., thereafter 100 ° C./hour.

得られた焼結体の密度、厚み方向の密度差、焼結粒径、バルク抵抗を測定した。結果を表1に示す。焼結体の厚み方向の密度差の小さな高密度な焼結体が得られた。   The density of the obtained sintered body, the density difference in the thickness direction, the sintered particle diameter, and the bulk resistance were measured. The results are shown in Table 1. A high-density sintered body with a small density difference in the thickness direction of the sintered body was obtained.

得られた焼結体から湿式加工により4インチφで厚さ9mmのターゲット用焼結体を作製した。厚さ9mmの焼結体は、元の焼結体の上下をほぼ同じ厚み分、研削除去することで作製した。得られたターゲット用焼結体をインジウム半田を用いて無酸素銅製のバッキングプレートにボンディングしてターゲットとした。このターゲットを用いて連続放電評価を実施した。結果を表1に示す。積算アーキング発生回数は僅かであった。   A sintered body for a target having a thickness of 4 mm and a thickness of 9 mm was prepared from the obtained sintered body by wet processing. A sintered body having a thickness of 9 mm was produced by grinding and removing the upper and lower portions of the original sintered body by substantially the same thickness. The target sintered body thus obtained was bonded to an oxygen-free copper backing plate using indium solder to obtain a target. Continuous discharge evaluation was carried out using this target. The results are shown in Table 1. The cumulative number of arcing occurrences was very small.

(実施例2)
昇温速度を300℃/h、焼成温度を1400℃とした以外は実施例1と同様の方法で焼結体を得た。得られた焼結体の密度、厚み方向の密度差、焼結粒径、バルク抵抗を測定した。結果を表1に示す。焼結体の厚み方向の密度差の小さな高密度な焼結体が得られた。
実施例1と同様にして、厚さ9mmのターゲット用焼結体を作製してターゲットを得、連続放電試験を実施した。結果を表1に示す。積算アーキング発生回数は僅かであった。
(Example 2)
A sintered body was obtained in the same manner as in Example 1 except that the heating rate was 300 ° C./h and the firing temperature was 1400 ° C. The density of the obtained sintered body, the density difference in the thickness direction, the sintered particle diameter, and the bulk resistance were measured. The results are shown in Table 1. A high-density sintered body with a small density difference in the thickness direction of the sintered body was obtained.
In the same manner as in Example 1, a target sintered body having a thickness of 9 mm was prepared to obtain a target, and a continuous discharge test was performed. The results are shown in Table 1. The cumulative number of arcing occurrences was very small.

(実施例3)
昇温速度を600℃/h、焼成温度を1500℃、保持時間を0.25時間とした以外は実施例1と同様の方法で、焼結体を得た。得られた焼結体の密度、厚み方向の密度差、焼結粒径、バルク抵抗を測定した。結果を表1に示す。焼結体の厚み方向の密度差の小さな高密度な焼結体が得られた。
(Example 3)
A sintered body was obtained in the same manner as in Example 1 except that the heating rate was 600 ° C./h, the firing temperature was 1500 ° C., and the holding time was 0.25 hours. The density of the obtained sintered body, the density difference in the thickness direction, the sintered particle diameter, and the bulk resistance were measured. The results are shown in Table 1. A high-density sintered body with a small density difference in the thickness direction of the sintered body was obtained.

実施例1と同様にして、厚さ9mmのターゲット用焼結体を作製してターゲットを得、連続放電試験を実施した。結果を表1に示す。積算アーキング発生回数は僅かであった。   In the same manner as in Example 1, a target sintered body having a thickness of 9 mm was prepared to obtain a target, and a continuous discharge test was performed. The results are shown in Table 1. The cumulative number of arcing occurrences was very small.

(実施例4)
ITO焼結体で作成したセッタの上に成形体を設置し、昇温速度を400℃/h、焼成温度を1600℃、保持時間を0.25時間とした以外は実施例1と同様の方法で、焼結体を得た。得られた焼結体の密度、厚み方向の密度差、焼結粒径、バルク抵抗を測定した。結果を表1に示す。焼結体の厚み方向の密度差の小さな高密度な焼結体が得られた。
実施例1と同様にして、厚さ9mmのターゲット用焼結体を作製してターゲットを得、連続放電試験を実施した。結果を表1に示す。積算アーキング発生回数は僅かであった。
Example 4
The same method as in Example 1 except that the molded body was placed on a setter made of an ITO sintered body, the heating rate was 400 ° C / h, the firing temperature was 1600 ° C, and the holding time was 0.25 hours. Thus, a sintered body was obtained. The density of the obtained sintered body, the density difference in the thickness direction, the sintered particle diameter, and the bulk resistance were measured. The results are shown in Table 1. A high-density sintered body with a small density difference in the thickness direction of the sintered body was obtained.
In the same manner as in Example 1, a target sintered body having a thickness of 9 mm was prepared to obtain a target, and a continuous discharge test was performed. The results are shown in Table 1. The cumulative number of arcing occurrences was very small.

(実施例5)
実施例1と同様にして得られた成形体をミリ波焼成炉(周波数=28GHz)に設置して、昇温速度を300℃/h、焼成温度を1250℃、保持時間を2時間とした以外は実施例1と同様の方法で、焼結体を得た。得られた焼結体の密度、厚み方向の密度差、焼結粒径、バルク抵抗を測定した。結果を表1に示す。焼結体の厚み方向の密度差の小さな高密度な焼結体が得られた。
(Example 5)
The molded body obtained in the same manner as in Example 1 was placed in a millimeter wave firing furnace (frequency = 28 GHz), except that the heating rate was 300 ° C./h, the firing temperature was 1250 ° C., and the holding time was 2 hours. Obtained a sintered body in the same manner as in Example 1. The density of the obtained sintered body, the density difference in the thickness direction, the sintered particle diameter, and the bulk resistance were measured. The results are shown in Table 1. A high-density sintered body with a small density difference in the thickness direction of the sintered body was obtained.

実施例1と同様にして、厚さ9mmのターゲット用焼結体を作製してターゲットを得、連続放電試験を実施した。結果を表1に示す。積算アーキング発生回数は僅かであった。   In the same manner as in Example 1, a target sintered body having a thickness of 9 mm was prepared to obtain a target, and a continuous discharge test was performed. The results are shown in Table 1. The cumulative number of arcing occurrences was very small.

(実施例6)
実施例1と同様にして得られた成形体をミリ波焼成炉(周波数=28GHz)に設置して、昇温速度を300℃/h、焼成温度を1500℃、保持時間を0.25時間とした以外は実施例1と同様の方法で、焼結体を得た。得られた焼結体の密度、厚み方向の密度差、焼結粒径、バルク抵抗を測定した。結果を表1に示す。焼結体の厚み方向の密度差の小さな高密度な焼結体が得られた。焼結体の厚み方向の密度差の小さな高密度な焼結体が得られた。
(Example 6)
The molded body obtained in the same manner as in Example 1 was placed in a millimeter wave firing furnace (frequency = 28 GHz), the heating rate was 300 ° C./h, the firing temperature was 1500 ° C., and the holding time was 0.25 hours. A sintered body was obtained in the same manner as in Example 1 except that. The density of the obtained sintered body, the density difference in the thickness direction, the sintered particle diameter, and the bulk resistance were measured. The results are shown in Table 1. A high-density sintered body with a small density difference in the thickness direction of the sintered body was obtained. A high-density sintered body with a small density difference in the thickness direction of the sintered body was obtained.

実施例1と同様にして、厚さ9mmのターゲット用焼結体を作製してターゲットを得、連続放電試験を実施した。結果を表1に示す。積算アーキング発生回数は僅かであった。   In the same manner as in Example 1, a target sintered body having a thickness of 9 mm was prepared to obtain a target, and a continuous discharge test was performed. The results are shown in Table 1. The cumulative number of arcing occurrences was very small.

(実施例7)
平均粒径0.8μmの酸化亜鉛粉末98重量部と平均粒径0.3μmの酸化アルミニウム粉末2重量部とをポリエチレン製のポットに入れ、乾式ボールミルにより24時間混合し、混合粉末を調製した。この混合粉末を金型に入れ、300kg/cmの圧力でプレスして成形体とした。この成形体を3ton/cmの圧力でCIPによる処理を行った。
(Example 7)
98 parts by weight of zinc oxide powder having an average particle diameter of 0.8 μm and 2 parts by weight of aluminum oxide powder having an average particle diameter of 0.3 μm were placed in a polyethylene pot and mixed for 24 hours by a dry ball mill to prepare a mixed powder. This mixed powder was put into a mold and pressed at a pressure of 300 kg / cm 2 to obtain a molded body. This molded body was treated with CIP at a pressure of 3 ton / cm 2 .

次にこの成形体をマイクロ波焼成炉(周波数=2.45GHz)にAZO焼結体から作製したセッタの上に設置して、以下の条件で焼結した。
(焼結条件)昇温速度:300℃/時間、焼結温度:1400℃、焼結時間:1時間、雰囲気:昇温時の室温から降温時の100℃まで純窒素ガスを炉内に、(仕込重量/窒素流量)=0.8で導入、降温速度:100℃/時間。
Next, this compact was placed on a setter made from an AZO sintered body in a microwave firing furnace (frequency = 2.45 GHz) and sintered under the following conditions.
(Sintering conditions) Temperature increase rate: 300 ° C./hour, sintering temperature: 1400 ° C., sintering time: 1 hour, atmosphere: pure nitrogen gas from room temperature at the time of temperature increase to 100 ° C. at the time of temperature decrease, (Feed weight / nitrogen flow rate) = 0.8, temperature drop rate: 100 ° C./hour.

得られた焼結体の密度、厚み方向の密度差、焼結粒径、バルク抵抗を測定した。結果を表1に示す。焼結体の厚み方向の密度差の小さな高密度な焼結体が得られた。   The density of the obtained sintered body, the density difference in the thickness direction, the sintered particle diameter, and the bulk resistance were measured. The results are shown in Table 1. A high-density sintered body with a small density difference in the thickness direction of the sintered body was obtained.

(比較例1)
焼結体厚みで15mmとなるITO成形体を用意し、発熱体としてモリブデンシリサイドを使用する外部加熱型焼成炉に設置して、昇温速度を300℃/h、焼成温度を1400℃、保持時間を1時間とした以外は実施例1と同様の方法で焼結体を得た。得られた焼結体の密度、厚み方向の密度差、焼結粒径を測定した。結果を表1に示す。得られた焼結体の厚み方向の密度差は1.2%と大きなものであった。
(Comparative Example 1)
An ITO molded body having a sintered body thickness of 15 mm is prepared and placed in an external heating type firing furnace using molybdenum silicide as a heating element. The heating rate is 300 ° C./h, the firing temperature is 1400 ° C., and the holding time. A sintered body was obtained in the same manner as in Example 1 except that was set to 1 hour. The density of the obtained sintered body, the density difference in the thickness direction, and the sintered particle size were measured. The results are shown in Table 1. The density difference in the thickness direction of the obtained sintered body was as large as 1.2%.

得られた焼結体から、実施例1と同様にして、厚さ9mmのターゲット用焼結体を作製してターゲットを得、連続放電試験を実施した。結果を表1に示す。多くのアークが発生した。   From the obtained sintered body, in the same manner as in Example 1, a target sintered body having a thickness of 9 mm was prepared to obtain a target, and a continuous discharge test was performed. The results are shown in Table 1. Many arcs occurred.

(比較例2)
ITO成形体として、焼結体厚みで8mmと15mmの2種類を用意し、発熱体としてモリブデンシリサイドを使用する外部加熱型焼成炉に設置して、昇温速度を室温から800℃までは100℃/h、800℃から25℃/h、焼成温度を1600℃、保持時間を5時間とした以外は実施例1と同様の方法で焼結体を得た。得られた焼結体の密度、厚み方向の密度差、焼結粒径を測定した。結果を表1に示す。得られた焼結体の厚み方向の密度差は8mm、15mm厚みの焼結体ともに小さかったが、焼結粒径がともに大きくなった。
(Comparative Example 2)
Two types of ITO compacts, 8mm and 15mm in thickness, are prepared and installed in an external heating type firing furnace using molybdenum silicide as a heating element, and the rate of temperature rise from room temperature to 800 ° C is 100 ° C. / H, 800 ° C. to 25 ° C./h, a sintered body was obtained in the same manner as in Example 1 except that the firing temperature was 1600 ° C. and the holding time was 5 hours. The density of the obtained sintered body, the density difference in the thickness direction, and the sintered particle size were measured. The results are shown in Table 1. The density difference in the thickness direction of the obtained sintered body was small for both the 8 mm and 15 mm thick sintered bodies, but the sintered particle size was both increased.

実施例1と同様にして、厚さ9mmのターゲット用焼結体を作製してターゲットを得、連続放電試験を実施した。結果を表1に示す。多くのアークが発生した。   In the same manner as in Example 1, a target sintered body having a thickness of 9 mm was prepared to obtain a target, and a continuous discharge test was performed. The results are shown in Table 1. Many arcs occurred.

Figure 2007223852
Figure 2007223852

Claims (13)

焼結粒径が0.5μm以上1μm未満であり、焼結体全体の平均焼結密度が相対密度で98%以上であることを特徴とする導電性セラミックス焼結体。 A conductive ceramic sintered body having a sintered particle size of 0.5 μm or more and less than 1 μm, and an average sintered density of the entire sintered body of 98% or more in terms of relative density. 厚さが10mm以上の導電性セラミックス焼結体であって、焼結粒径が0.5μm以上2μm以下であり、焼結体全体の平均焼結密度が相対密度で98%以上であることを特徴とする導電性セラミックス焼結体。 It is a conductive ceramic sintered body having a thickness of 10 mm or more, a sintered particle diameter of 0.5 μm or more and 2 μm or less, and an average sintered density of the entire sintered body is 98% or more in relative density. Characteristic conductive ceramic sintered body. 焼結粒径が0.5μm以上2μm以下であり、かつ、厚さ方向の焼結密度の密度差が1%以下であることを特徴とする導電性セラミックス焼結体。 A conductive ceramic sintered body having a sintered particle size of 0.5 μm or more and 2 μm or less and a density difference of sintered density in the thickness direction of 1% or less. 厚さが10mm以上であることを特徴とする請求項3記載の導電性セラミックス焼結体。 The conductive ceramic sintered body according to claim 3, wherein the thickness is 10 mm or more. 焼結体全体の平均焼結密度が相対密度で98%以上であることを特徴とする請求項3又は4に記載の導電性セラミックス焼結体。 The conductive ceramic sintered body according to claim 3 or 4, wherein an average sintered density of the entire sintered body is 98% or more in terms of relative density. バルク抵抗が1×10−2Ω・cm以下であることを特徴とする請求項1〜5のいずれか1項に記載の導電性セラミックス焼結体。 Bulk resistance is 1 * 10 <-2 > (omega | ohm) * cm or less, The electroconductive ceramic sintered compact of any one of Claims 1-5 characterized by the above-mentioned. 導電性セラミックスがITOであることを特徴とする請求項1〜6のいずれか1項に記載の導電性セラミックス焼結体。 The conductive ceramic sintered body according to any one of claims 1 to 6, wherein the conductive ceramic is ITO. 導電性セラミックスがAZOであることを特徴とする請求項1〜6のいずれか1項に記載の導電性セラミックス焼結体。 The conductive ceramic sintered body according to any one of claims 1 to 6, wherein the conductive ceramic is AZO. 請求項1〜8のいずれか1項に記載の導電性セラミックス焼結体をターゲット材として用いたことを特徴とするスパッタリングターゲット。 A sputtering target using the conductive ceramic sintered body according to claim 1 as a target material. 原料粉末の成形体を電磁波加熱によって焼結することを特徴とする導電性セラミックス焼結体の製造方法。 A method for producing a conductive ceramic sintered body comprising sintering a compact of a raw material powder by electromagnetic heating. 周波数2.45GHzのマイクロ波焼成炉又は周波数28GHzのミリ波焼成炉を用いて電磁波加熱を行うことを特徴とする請求項10に記載の導電性セラミックス焼結体の製造方法。 The method for producing a conductive ceramic sintered body according to claim 10, wherein electromagnetic wave heating is performed using a microwave firing furnace having a frequency of 2.45 GHz or a millimeter wave firing furnace having a frequency of 28 GHz. 作成される導電性セラミックス焼結体と同一組成の焼結体をセッタとして使用することを特徴とする請求項10又は請求項11に記載の導電性セラミックス焼結体の製造方法。 The method for producing a conductive ceramic sintered body according to claim 10 or 11, wherein a sintered body having the same composition as the produced conductive ceramic sintered body is used as a setter. 作成される導電性セラミックス焼結体と同一組成の焼結体を等温断熱壁として使用することを特徴とする請求項10〜12のいずれか1項に記載の導電性セラミックス焼結体の製造方法。
The method for producing a conductive ceramic sintered body according to any one of claims 10 to 12, wherein a sintered body having the same composition as that of the produced conductive ceramic sintered body is used as an isothermal heat insulating wall. .
JP2006047778A 2006-02-24 2006-02-24 Conductive ceramic sintered body, sputtering target, and manufacturing method thereof Active JP4894293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006047778A JP4894293B2 (en) 2006-02-24 2006-02-24 Conductive ceramic sintered body, sputtering target, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006047778A JP4894293B2 (en) 2006-02-24 2006-02-24 Conductive ceramic sintered body, sputtering target, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007223852A true JP2007223852A (en) 2007-09-06
JP4894293B2 JP4894293B2 (en) 2012-03-14

Family

ID=38546004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006047778A Active JP4894293B2 (en) 2006-02-24 2006-02-24 Conductive ceramic sintered body, sputtering target, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4894293B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051676A (en) * 2007-08-23 2009-03-12 Tosoh Corp Method for producing electrically-conductive ceramic sintered compact
JP2009051675A (en) * 2007-08-23 2009-03-12 Tosoh Corp Method for producing electrically-conductive ceramic sintered compact
JP2010037565A (en) * 2008-07-31 2010-02-18 Fujifilm Corp Film-depositing apparatus and film-forming method
JP2010111560A (en) * 2008-11-10 2010-05-20 Taiheiyo Cement Corp Zinc oxide sintered compact and sputtering target using the same
JP2010111939A (en) * 2008-11-10 2010-05-20 Taiheiyo Cement Corp Sputtering target and method for producing the same
JP2010121183A (en) * 2008-11-20 2010-06-03 Sony Corp Zinc oxide based sputtering target and method of manufacturing the same, zinc oxide-based transparent conductive film and method of manufacturing the same and electronic apparatus
JP2010150093A (en) * 2008-12-25 2010-07-08 Tosoh Corp Method for producing sintered compact for transparent electroconductive film
JP2010248049A (en) * 2009-04-20 2010-11-04 Tosoh Corp Method for producing sintered compact for transparent electroconductive film
JP2011000848A (en) * 2009-06-22 2011-01-06 Solar Applied Materials Technology Corp Die for slip cast molding, using method thereof, and related application
JP2012180274A (en) * 2008-12-12 2012-09-20 Idemitsu Kosan Co Ltd Sintered composite oxide, and sputtering target comprising the same
JP2013112833A (en) * 2011-11-25 2013-06-10 Taiheiyo Cement Corp Sputtering target material and method for manufacturing the same
KR101322595B1 (en) * 2011-07-21 2013-10-29 삼성코닝정밀소재 주식회사 Method of manufacturing for indium tin oxide target thereof and indium tin oxide target by using the same
KR101358358B1 (en) * 2011-08-17 2014-02-05 삼성코닝정밀소재 주식회사 Degreasing sintering furnace
WO2016027540A1 (en) * 2014-08-22 2016-02-25 三井金属鉱業株式会社 Target material, target material manufacturing method, and board-like target
CN113604778A (en) * 2021-07-05 2021-11-05 广州市尤特新材料有限公司 AZO target material applied to solar cell and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6054516B2 (en) 2013-03-25 2016-12-27 日本碍子株式会社 Zinc oxide sputtering target

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311428A (en) * 1992-05-11 1993-11-22 Tosoh Corp High density ito sintered compact and sputtering target
JPH08283936A (en) * 1995-04-17 1996-10-29 Tosoh Corp Production of ito sintered compact
JPH10279366A (en) * 1997-03-31 1998-10-20 Kyocera Corp Production of high-strength piezoelectric ceramic
JPH1161394A (en) * 1997-08-27 1999-03-05 Bridgestone Corp Sputtering target board
JPH11278946A (en) * 1998-03-31 1999-10-12 Dowa Mining Co Ltd Jig for sintering ito (indium tin oxide) sintered body, its production and production of ito sintered body by using the same
JP2001088873A (en) * 1999-09-17 2001-04-03 Dainippon Printing Co Ltd Microwave-calorific substance and tray
JP2003003257A (en) * 2001-06-22 2003-01-08 Sumitomo Metal Mining Co Ltd High-density sputtering target for transparent conductive film, its manufacturing method, and mold for manufacturing sputtering target
JP2005089268A (en) * 2003-09-18 2005-04-07 Japan Nuclear Cycle Development Inst States Of Projects Method and apparatus for sintering boron carbide ceramic
JP2005203723A (en) * 2003-10-24 2005-07-28 Kyocera Corp Glass ceramic substrate and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311428A (en) * 1992-05-11 1993-11-22 Tosoh Corp High density ito sintered compact and sputtering target
JPH08283936A (en) * 1995-04-17 1996-10-29 Tosoh Corp Production of ito sintered compact
JPH10279366A (en) * 1997-03-31 1998-10-20 Kyocera Corp Production of high-strength piezoelectric ceramic
JPH1161394A (en) * 1997-08-27 1999-03-05 Bridgestone Corp Sputtering target board
JPH11278946A (en) * 1998-03-31 1999-10-12 Dowa Mining Co Ltd Jig for sintering ito (indium tin oxide) sintered body, its production and production of ito sintered body by using the same
JP2001088873A (en) * 1999-09-17 2001-04-03 Dainippon Printing Co Ltd Microwave-calorific substance and tray
JP2003003257A (en) * 2001-06-22 2003-01-08 Sumitomo Metal Mining Co Ltd High-density sputtering target for transparent conductive film, its manufacturing method, and mold for manufacturing sputtering target
JP2005089268A (en) * 2003-09-18 2005-04-07 Japan Nuclear Cycle Development Inst States Of Projects Method and apparatus for sintering boron carbide ceramic
JP2005203723A (en) * 2003-10-24 2005-07-28 Kyocera Corp Glass ceramic substrate and method for manufacturing the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051675A (en) * 2007-08-23 2009-03-12 Tosoh Corp Method for producing electrically-conductive ceramic sintered compact
JP2009051676A (en) * 2007-08-23 2009-03-12 Tosoh Corp Method for producing electrically-conductive ceramic sintered compact
JP2010037565A (en) * 2008-07-31 2010-02-18 Fujifilm Corp Film-depositing apparatus and film-forming method
JP2010111560A (en) * 2008-11-10 2010-05-20 Taiheiyo Cement Corp Zinc oxide sintered compact and sputtering target using the same
JP2010111939A (en) * 2008-11-10 2010-05-20 Taiheiyo Cement Corp Sputtering target and method for producing the same
JP4661948B2 (en) * 2008-11-20 2011-03-30 ソニー株式会社 Zinc oxide-based sputtering target and method for producing the same, zinc oxide-based transparent conductive film, method for producing the same and electronic equipment
JP2010121183A (en) * 2008-11-20 2010-06-03 Sony Corp Zinc oxide based sputtering target and method of manufacturing the same, zinc oxide-based transparent conductive film and method of manufacturing the same and electronic apparatus
JP2012180274A (en) * 2008-12-12 2012-09-20 Idemitsu Kosan Co Ltd Sintered composite oxide, and sputtering target comprising the same
US8753548B2 (en) 2008-12-12 2014-06-17 Idemitsu Kosan Co., Ltd. Composite oxide sintered body and sputtering target comprising same
JP5145513B2 (en) * 2008-12-12 2013-02-20 出光興産株式会社 Composite oxide sintered body and sputtering target comprising the same
US8871119B2 (en) 2008-12-12 2014-10-28 Idemitsu Kosan Co., Ltd. Composite oxide sintered body and sputtering target comprising same
JP2010150093A (en) * 2008-12-25 2010-07-08 Tosoh Corp Method for producing sintered compact for transparent electroconductive film
JP2010248049A (en) * 2009-04-20 2010-11-04 Tosoh Corp Method for producing sintered compact for transparent electroconductive film
JP2011000848A (en) * 2009-06-22 2011-01-06 Solar Applied Materials Technology Corp Die for slip cast molding, using method thereof, and related application
KR101322595B1 (en) * 2011-07-21 2013-10-29 삼성코닝정밀소재 주식회사 Method of manufacturing for indium tin oxide target thereof and indium tin oxide target by using the same
KR101358358B1 (en) * 2011-08-17 2014-02-05 삼성코닝정밀소재 주식회사 Degreasing sintering furnace
JP2013112833A (en) * 2011-11-25 2013-06-10 Taiheiyo Cement Corp Sputtering target material and method for manufacturing the same
WO2016027540A1 (en) * 2014-08-22 2016-02-25 三井金属鉱業株式会社 Target material, target material manufacturing method, and board-like target
CN106460163A (en) * 2014-08-22 2017-02-22 三井金属矿业株式会社 Target material, target material manufacturing method, and board-like target
JPWO2016027540A1 (en) * 2014-08-22 2017-06-01 三井金属鉱業株式会社 Target material, target material manufacturing method and flat target
TWI653209B (en) 2014-08-22 2019-03-11 日商三井金屬鑛業股份有限公司 Target, method for producing target and planar target
CN113604778A (en) * 2021-07-05 2021-11-05 广州市尤特新材料有限公司 AZO target material applied to solar cell and preparation method thereof
CN113604778B (en) * 2021-07-05 2023-12-01 广州市尤特新材料有限公司 AZO target material applied to solar cell and preparation method thereof

Also Published As

Publication number Publication date
JP4894293B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4894293B2 (en) Conductive ceramic sintered body, sputtering target, and manufacturing method thereof
JP5158355B2 (en) Sputtering target made of sintered oxide
EP2952493B1 (en) Oxide sintered body, production method therefor, target, and transparent conductive film
US9834838B2 (en) Zn—Sn—O based oxide sintered body and method for producing the same
JP5339100B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP6677095B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
JPH10306367A (en) Zno-ga2o3 sintered body for sputtering target and its production
JP6291593B2 (en) ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film
JP2012136417A (en) Zinc oxide sintered compact, sputtering target composed of the same, and zinc oxide thin film
JP2013173658A (en) Tin oxide-based sintered body and method for manufacturing the same
KR20150119078A (en) SINTERED BODY COMPRISING LiCoO2, SPUTTERING TARGET, AND PRODUCTION METHOD FOR SINTERED BODY COMPRISING LiCoO2
TWI452027B (en) Zinc oxide sintered tablet and manufacturing method thereof
JP2002275623A (en) Sintered compact target for depositing transparent electrically conductive thin film, production method therefor and transparent electrically conductive thin film obtained therefrom
JP3780932B2 (en) Sintered target for producing transparent conductive thin film and method for producing the same
JP5218032B2 (en) Method for producing sintered body for transparent conductive film
JP6677058B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
JP2014194066A (en) Complex oxide sintered body and oxide transparent conductive film
JP5907086B2 (en) Indium oxide-based oxide sintered body and method for producing the same
JP5309975B2 (en) Sintered body for transparent conductive film, sputtering target and method for producing the same
JP4835542B2 (en) Method for producing conductive ceramic sintered body
JP2002275624A (en) Sintered compact target for depositing transparent electrically conductive thin film, production method therefor and transparent electrically conductive thin film obtained therefrom
JP2003239063A (en) Transparent conductive thin film, its manufacturing method, and sputtering target used for its manufacture
JP2002030429A (en) Ito sputtering target and manufacturing method
JP4835541B2 (en) Manufacturing method of sintered ceramics
KR20150039753A (en) Oxide Sintered Body and Tablet Obtained by Processing Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R151 Written notification of patent or utility model registration

Ref document number: 4894293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3