JP2007222854A - Catalyst for synthesizing methacrolein and methacrylic acid, its manufacturing method, method for producing methacrolein and methacrylic acid - Google Patents
Catalyst for synthesizing methacrolein and methacrylic acid, its manufacturing method, method for producing methacrolein and methacrylic acid Download PDFInfo
- Publication number
- JP2007222854A JP2007222854A JP2006050433A JP2006050433A JP2007222854A JP 2007222854 A JP2007222854 A JP 2007222854A JP 2006050433 A JP2006050433 A JP 2006050433A JP 2006050433 A JP2006050433 A JP 2006050433A JP 2007222854 A JP2007222854 A JP 2007222854A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- methacrylic acid
- methacrolein
- raw material
- catalyst precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は、少なくともモリブデン、ビスマス及び鉄を含有するメタクロレイン及びメタクリル酸合成用触媒、特にイソブチレン又は第三級ブチルアルコール(以下、TBAと略すことがある)を分子状酸素により気相接触酸化してメタクロレイン及びメタクリル酸を合成する際に使用する触媒、ならびにそれを用いたメタクロレイン及びメタクリル酸の製造方法に関する。 In the present invention, a catalyst for synthesizing methacrolein and methacrylic acid containing at least molybdenum, bismuth and iron, particularly isobutylene or tertiary butyl alcohol (hereinafter sometimes abbreviated as TBA) is vapor-phase catalytically oxidized with molecular oxygen. The present invention relates to a catalyst used when synthesizing methacrolein and methacrylic acid, and a method for producing methacrolein and methacrylic acid using the catalyst.
メタクリル酸は、透明樹脂の代表であるメタクリル樹脂の原料であるメタクリル酸メチルの原料等に用いられる工業上有用な物質である。 Methacrylic acid is an industrially useful substance used as a raw material for methyl methacrylate, which is a raw material for methacrylic resin, which is a representative of transparent resins.
メタクリル酸の工業的製法の一つとして、イソブチレンまたはTBAを用いた直酸法が挙げられる。この方法では、二段の酸化反応が用いられ、前段でイソブチレンまたはTBAの酸化により主としてメタクロレインと若干量のメタクリル酸が、後段で一段目において生成したメタクロレインを酸化してメタクリル酸が生成される。 One of the industrial methods for producing methacrylic acid is a direct acid method using isobutylene or TBA. In this method, a two-stage oxidation reaction is used, and methacrolein and a small amount of methacrylic acid are mainly oxidized by the oxidation of isobutylene or TBA in the former stage, and methacrylic acid is produced by oxidizing the methacrolein produced in the first stage in the latter stage. The
イソブチレンまたはTBAを分子状酸素により気相接触酸化してメタクロレイン及びメタクリル酸を製造するための触媒、すなわち前段の反応の際に用いられる触媒に関して、多くの検討がされている。例えば、触媒を構成する成分及びその比率に関するもの(特許文献1〜4)、触媒の製造法に関するもの(特許文献5、6)などが挙げられる。
これらの触媒を用いた反応で製造される化合物(メタクロレイン及びメタクリル酸)は、化学原料として大きな需要を持つため、工業化プラントとしても大規模なものばかりである。そのため、メタクロレイン及びメタクリル酸の合計選択率がたとえ0.1%向上しただけでも、資源の有効化、製造コストの低減という観点から考えると非常に大きなメリットがある。したがって、メタクロレイン及びメタクリル酸の合計選択率をさらに高めることが望まれている。 Since the compounds (methacrolein and methacrylic acid) produced by the reaction using these catalysts have a great demand as chemical raw materials, they are only large-scale industrial plants. Therefore, even if the total selectivity of methacrolein and methacrylic acid is improved by only 0.1%, there is a great merit from the viewpoint of resource validation and manufacturing cost reduction. Therefore, it is desired to further increase the total selectivity of methacrolein and methacrylic acid.
本発明の目的は、メタクロレイン及びメタクリル酸選択性に優れた触媒およびその製造方法を提供することにある。 An object of the present invention is to provide a catalyst excellent in methacrolein and methacrylic acid selectivity and a method for producing the same.
本発明は、モリブデン、ビスマス及び鉄を必須成分として含有する複合酸化物、を含むメタクロレイン及びメタクリル酸合成用触媒の製造方法であって、
少なくとも、モリブデン、ビスマス及び鉄の各原料を水に溶解または分散させて原料溶液またはスラリーを調製する工程と、
前記原料溶液またはスラリーを熱処理して触媒前駆体を得る工程と、
前記触媒前駆体を微粉化する工程と、
前記微粉化された触媒前駆体を水に分散させて触媒前駆体スラリーを調製する工程と、
前記触媒前駆体スラリーを熱処理する工程と、
を有することを特徴とするメタクロレイン及びメタクリル酸合成用触媒の製造方法、およびその方法により得られるメタクロレイン及びメタクリル酸合成用触媒である。
The present invention is a method for producing methacrolein and methacrylic acid synthesis catalyst comprising a composite oxide containing molybdenum, bismuth and iron as essential components,
At least a step of preparing a raw material solution or slurry by dissolving or dispersing each raw material of molybdenum, bismuth and iron in water;
Heat-treating the raw material solution or slurry to obtain a catalyst precursor;
Pulverizing the catalyst precursor;
Dispersing the finely divided catalyst precursor in water to prepare a catalyst precursor slurry; and
Heat treating the catalyst precursor slurry;
A method for producing methacrolein and a methacrylic acid synthesis catalyst characterized by having, and a catalyst for synthesizing methacrolein and methacrylic acid obtained by the method.
また、本発明は上記のメタクロレイン及びメタクリル酸合成用触媒を用いて、イソブチレン又は第三級ブチルアルコールを分子状酸素により気相接触酸化することを特徴とするメタクロレイン及びメタクリル酸の製造方法である。 The present invention also provides a method for producing methacrolein and methacrylic acid, characterized in that isobutylene or tertiary butyl alcohol is subjected to gas phase catalytic oxidation with molecular oxygen using the above-mentioned methacrolein and methacrylic acid synthesis catalyst. is there.
本発明のメタクロレイン及びメタクリル酸合成用触媒は、メタクロレイン及びメタクリル酸選択性に優れており、この触媒を用いることでメタクロレイン及びメタクリル酸を高選択的に製造することができる。 The catalyst for synthesizing methacrolein and methacrylic acid of the present invention is excellent in methacrolein and methacrylic acid selectivity. By using this catalyst, methacrolein and methacrylic acid can be produced with high selectivity.
本発明のメタクロレイン及びメタクリル酸合成用触媒は、モリブデン、ビスマス及び鉄を必須成分として含有する複合酸化物、を含むものであれば、その複合酸化物の組成は特に限定されないが、好ましくは下記の式(1)で表される組成を有する複合酸化物を含むものである。 As long as the catalyst for synthesizing methacrolein and methacrylic acid of the present invention contains a composite oxide containing molybdenum, bismuth and iron as essential components, the composition of the composite oxide is not particularly limited. The composite oxide having the composition represented by the formula (1) is included.
MoaBibFecCodNieXfYgZhSiiOj (1)
式(1)中、Mo、Bi、Fe、Co、Ni、SiおよびOは、それぞれモリブデン、ビスマス、鉄、コバルト、ニッケル、ケイ素および酸素を示し、Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタルおよび亜鉛からなる群より選ばれた少なくとも1種の元素を示し、Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモンおよびチタンからなる群より選ばれた少なくとも1種の元素を示し、Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を示す。a、b、c、d、e、f、g、h、iおよびjは、各元素の原子比率を表し、a=12のとき、b=0.01〜3、c=0.01〜5、d=0〜12、e=0〜12(但しd+e=1〜12)、f=0〜8、g=0〜5、h=0.001〜2、i=0〜20であり、jは前記各成分の原子価を満足するのに必要な酸素原子比率である。この複合酸化物の酸素以外の組成は、触媒をアンモニア水に溶解してICP発光分析法と原子吸光分析法で分析することや、ICP発光分析法と原子吸光分析法などで分析した標準サンプルがある場合、蛍光X線分析装置を用いて、この標準サンプルとの比較で見積もることができる。
Mo a Bi b F c Co d N e X f Y g Z h Si i O j (1)
In the formula (1), Mo, Bi, Fe, Co, Ni, Si and O represent molybdenum, bismuth, iron, cobalt, nickel, silicon and oxygen, respectively, X is chromium, lead, manganese, calcium, magnesium, Represents at least one element selected from the group consisting of niobium, silver, barium, tin, tantalum and zinc, and Y is selected from the group consisting of phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium Z represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium. a, b, c, d, e, f, g, h, i, and j represent the atomic ratio of each element, and when a = 12, b = 0.01-3, c = 0.01-5 , D = 0-12, e = 0-12 (provided d + e = 1-12), f = 0-8, g = 0-5, h = 0.001-2, i = 0-20, j Is the oxygen atom ratio necessary to satisfy the valence of each component. The composition of the composite oxide other than oxygen is obtained by dissolving the catalyst in aqueous ammonia and analyzing it by ICP emission spectrometry and atomic absorption spectrometry, or analyzing a standard sample analyzed by ICP emission analysis and atomic absorption spectrometry. In some cases, it can be estimated by comparison with this standard sample using an X-ray fluorescence analyzer.
以下、上記メタクロレイン及びメタクリル酸合成用触媒の製造方法を説明する。 Hereinafter, a method for producing the methacrolein and methacrylic acid synthesis catalyst will be described.
まず、少なくとも、モリブデン、ビスマス及び鉄の各原料を水に溶解または分散させて原料溶液またはスラリーを調製する。用いる原料は特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物等を組み合わせて使用することができる。モリブデン原料としては、例えば、パラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等が使用できる。ビスマス原料としては、例えば、三酸化ビスマス、硝酸ビスマス、次炭酸ビスマス等が使用できる。鉄原料としては、例えば、硝酸第二鉄、水酸化鉄、三酸化鉄等が使用できる。各元素の原料は1種でもよく、2種以上を併用してもよい。 First, at least each raw material of molybdenum, bismuth and iron is dissolved or dispersed in water to prepare a raw material solution or slurry. The raw material to be used is not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides and the like of each element can be used in combination. As the molybdenum raw material, for example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, or the like can be used. Examples of the bismuth raw material that can be used include bismuth trioxide, bismuth nitrate, and bismuth subcarbonate. Examples of the iron raw material that can be used include ferric nitrate, iron hydroxide, and iron trioxide. The raw material of each element may be 1 type, and may use 2 or more types together.
次に、原料溶液またはスラリーを熱処理して触媒前駆体とする。熱処理する方法は特に限定されないが、まずは汎用の箱型乾燥機、噴霧乾燥機、ドラムドライヤー、スラリードライヤー等を用い乾燥し、さらに別途焼成することができる。熱処理温度は100℃以上が好ましく、150℃以上がより好ましく、さらに好ましくは200℃以上である。また500℃以下が好ましく、400℃以下がより好ましく、さらに300℃以下が好ましい。熱処理時間は、0.1〜48時間が好ましい。熱処理として乾燥及び焼成を行う場合、噴霧乾燥以外の場合の乾燥温度は50〜200℃が好ましく、噴霧乾燥の場合の出口温度は通常100℃以上であり、105〜200℃が好ましい。焼成は150〜400℃で0.1〜48時間とすることが好ましい。 Next, the raw material solution or slurry is heat-treated to form a catalyst precursor. The heat treatment method is not particularly limited, but it can be first dried using a general-purpose box-type dryer, spray dryer, drum dryer, slurry dryer or the like, and further baked separately. The heat treatment temperature is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, and further preferably 200 ° C. or higher. Moreover, 500 degrees C or less is preferable, 400 degrees C or less is more preferable, and also 300 degrees C or less is preferable. The heat treatment time is preferably 0.1 to 48 hours. When drying and baking are performed as the heat treatment, the drying temperature in cases other than spray drying is preferably 50 to 200 ° C, and the outlet temperature in the case of spray drying is usually 100 ° C or higher, preferably 105 to 200 ° C. Firing is preferably performed at 150 to 400 ° C. for 0.1 to 48 hours.
次いで、得られた触媒前駆体を微粉化する。触媒前駆体を微粉化する方式は、乾式、湿式のどちらを用いても構わない。乾式の場合、擂潰機、ボールミルなどが用いられる。湿式の場合、水等の液体を混合し、ホモジナイザー等を用いて微粉化する。乾式、湿式は併用しても構わない。微粉化後の触媒前駆体のメジアン径は10μm以下が好ましく、7μm以下がより好ましく、さらに好ましくは5μm以下である。また0.01μm以上、0.05μm以上、0.1μm以上が好ましい。メジアン径は、レーザー回折式粒度分布測定装置で測定できる。 Next, the obtained catalyst precursor is pulverized. As a method for pulverizing the catalyst precursor, either a dry method or a wet method may be used. In the case of the dry type, a crusher, a ball mill or the like is used. In the case of the wet type, a liquid such as water is mixed and pulverized using a homogenizer or the like. Dry and wet methods may be used in combination. The median diameter of the catalyst precursor after pulverization is preferably 10 μm or less, more preferably 7 μm or less, and even more preferably 5 μm or less. Moreover, 0.01 micrometer or more, 0.05 micrometer or more, and 0.1 micrometer or more are preferable. The median diameter can be measured with a laser diffraction particle size distribution analyzer.
その後、微粉化された触媒前駆体を水に分散させて触媒前駆体スラリーを調製する。本発明では、微粉化された触媒前駆体を水に分散させないと効果が現れない。使用する水の質量は微粉化された触媒前駆体の質量に対し1〜100倍が好ましく、より好ましくは2〜10倍である。また、場合によっては、加温や冷却を行ってもよく、水以外の各種酸、塩基、有機溶媒をさらに混合することもできる。 Thereafter, the finely divided catalyst precursor is dispersed in water to prepare a catalyst precursor slurry. In the present invention, the effect does not appear unless the finely divided catalyst precursor is dispersed in water. The mass of water to be used is preferably 1 to 100 times, more preferably 2 to 10 times the mass of the finely divided catalyst precursor. In some cases, heating and cooling may be performed, and various acids other than water, bases, and organic solvents may be further mixed.
その後、触媒前駆体スラリーを熱処理して触媒を得る。熱処理方法は特に限定されないが、原料溶液またはスラリーの熱処理方法と同様な操作を行うことができる。熱処理温度は、300℃以上が好ましく、400℃以上がより好ましい。また700℃以下が好ましく、600℃以下がより好ましい。熱処理時間は、0.1〜48時間が好ましい。ただし、ここでの熱処理温度は、原料溶液またはスラリーの熱処理温度より高い温度にて行われることが好ましい。熱処理として乾燥及び焼成を行うを行う場合、乾燥は、噴霧乾燥以外の場合、50〜200℃で0.1〜48時間、噴霧乾燥の場合、出口温度は通常100℃以上であり、105〜200℃が好ましい。焼成は300〜700℃で0.1〜48時間とすることが好ましい。この場合、ここでの乾燥温度は特に制限はないが、ここでの焼成温度は原料溶液またはスラリーの熱処理温度より高い温度にて行われることが好ましい。 Thereafter, the catalyst precursor slurry is heat-treated to obtain a catalyst. The heat treatment method is not particularly limited, but the same operation as the heat treatment method of the raw material solution or slurry can be performed. The heat treatment temperature is preferably 300 ° C. or higher, and more preferably 400 ° C. or higher. Moreover, 700 degrees C or less is preferable and 600 degrees C or less is more preferable. The heat treatment time is preferably 0.1 to 48 hours. However, the heat treatment temperature here is preferably higher than the heat treatment temperature of the raw material solution or slurry. When performing drying and baking as the heat treatment, drying is performed at 50 to 200 ° C. for 0.1 to 48 hours in the case other than spray drying, and in the case of spray drying, the outlet temperature is usually 100 ° C. or higher, and 105 to 200 ° C is preferred. Firing is preferably performed at 300 to 700 ° C. for 0.1 to 48 hours. In this case, the drying temperature here is not particularly limited, but the firing temperature here is preferably higher than the heat treatment temperature of the raw material solution or slurry.
本発明の実施に際しては、得られた触媒を成型することができる。なお、触媒を成型する方法は特に限定されるものではなく、打錠成型機、押出成型機、転動造粒機等の一般粉体用成型機を用いて、球状、リング状、円柱状、星型状等の任意の形状に成型できる。又、担体に前記の触媒成分が担持された担持型触媒にすることもでき、その際は担体を共存下で成型すればよい。また、担体を触媒前駆体スラリーに混合しても良い。 In carrying out the present invention, the obtained catalyst can be molded. In addition, the method for molding the catalyst is not particularly limited, and using a general powder molding machine such as a tableting molding machine, an extrusion molding machine, a rolling granulator, a spherical shape, a ring shape, a cylindrical shape, It can be molded into any shape such as a star shape. In addition, a supported catalyst in which the above-described catalyst component is supported on a carrier can be used, and in this case, the carrier may be molded in the coexistence. Further, the support may be mixed with the catalyst precursor slurry.
触媒を成型する際には、従来公知の添加剤、例えば、ポリビニルアルコール、カルボキシメチルセルロース等の有機化合物を更に添加しても良い。更には、グラファイト及びケイソウ土等の無機化合物、ガラス繊維、セラミックファイバー及び炭素繊維等の無機ファイバーを添加しても良い。又、担持を行う際に使用する担体としては、シリカ、アルミナ、シリカ−アルミナ、マグネシア、チタニア等が挙げられる。 When molding the catalyst, conventionally known additives such as organic compounds such as polyvinyl alcohol and carboxymethyl cellulose may be further added. Further, inorganic compounds such as graphite and diatomaceous earth, and inorganic fibers such as glass fiber, ceramic fiber and carbon fiber may be added. Examples of the carrier used for carrying are silica, alumina, silica-alumina, magnesia, titania and the like.
上記のようにして得られた触媒成型体をさらに熱処理することもできる。熱処理条件については特に限定はなく、公知の熱処理条件を適用することができる。熱処理は、通常300〜600℃の温度範囲で、0.1〜48時間行われる。 The catalyst molded body obtained as described above can be further heat-treated. The heat treatment conditions are not particularly limited, and known heat treatment conditions can be applied. The heat treatment is usually performed at a temperature range of 300 to 600 ° C. for 0.1 to 48 hours.
このような方法によれば、熱処理後に行う微粉化により熱処理時に不均一になっていた成分を均質化すると考えられ、さらにそれを水に再分散することにより、水に溶解部分の再構築が行われるため、得られる触媒の選択性が向上するものと考えられる。すなわち、水への再分散前後で触媒表面と内部の組成が変わっていると推定している。 According to such a method, it is considered that the components that have become non-uniform at the time of the heat treatment are homogenized by pulverization after the heat treatment, and further, the portion dissolved in the water is reconstructed by redispersing it in water. Therefore, it is considered that the selectivity of the obtained catalyst is improved. That is, it is presumed that the composition of the catalyst surface and the interior changes before and after redispersion in water.
本発明の触媒は、シリカ、アルミナ、シリカ−アルミナ、マグネシア、チタニア、シリコンカーバイト等の不活性担体で希釈して用いることもできる。 The catalyst of the present invention can be used after diluted with an inert carrier such as silica, alumina, silica-alumina, magnesia, titania, silicon carbide and the like.
本発明の触媒は、イソブチレン又はTBAの分子状酸素による気相接触酸化反応を行う際に用いることができる。具体的には、原料のイソブチレン又はTBAに分子状酸素を加え、前記の触媒の存在下に気相接触酸化を行う。気相接触酸化反応を行うに当たっては、イソブチレン又はTBA対分子状酸素のモル比は1:0.5〜3の範囲が好ましい。原料のイソブチレン又はTBAと分子状酸素とを含む原料ガスは、不活性ガスで希釈された状態で用いることが好ましい。原料ガス中の原料の濃度は、1〜20容量%が好ましい。分子状酸素源としては空気を用いることが経済的であるが、必要ならば純酸素で富化した空気を用いる。また、原料ガスに水蒸気を加えるのが好ましい。原料ガス中の水の濃度は、1〜45重量%が好ましい。反応圧力は、常圧から数気圧までが良い。反応温度は200〜450℃の範囲で選ぶことができる。特に250〜400℃の範囲が好ましい。 The catalyst of the present invention can be used when performing a gas phase catalytic oxidation reaction of isobutylene or TBA with molecular oxygen. Specifically, molecular oxygen is added to the raw material isobutylene or TBA, and gas phase catalytic oxidation is performed in the presence of the catalyst. In carrying out the gas phase catalytic oxidation reaction, the molar ratio of isobutylene or TBA to molecular oxygen is preferably in the range of 1: 0.5-3. The raw material gas containing the raw material isobutylene or TBA and molecular oxygen is preferably used in a state diluted with an inert gas. The concentration of the raw material in the raw material gas is preferably 1 to 20% by volume. It is economical to use air as the molecular oxygen source, but if necessary, air enriched with pure oxygen is used. Further, it is preferable to add water vapor to the raw material gas. The concentration of water in the raw material gas is preferably 1 to 45% by weight. The reaction pressure is preferably from normal pressure to several atmospheres. The reaction temperature can be selected in the range of 200 to 450 ° C. The range of 250-400 degreeC is especially preferable.
以下、本発明による触媒の製造例、及びそれを用いての反応例を、比較例と共に説明する。説明中「部」は質量部を意味する。分析はガスクロマトグラフィーを用いた。原料(イソブチレン又はTBA)の反応率、生成するメタクロレイン及びメタクリル酸の選択率はそれぞれ以下のように定義される。
原料の反応率(%)=(反応した原料のモル数/供給した原料のモル数)×100
メタクロレインの選択率(%)=(生成したメタクロレインのモル数/反応した原料のモル数)×100
メタクリル酸の選択率(%)=(生成したメタクリル酸のモル数/反応した原料のモル数)×100
触媒前駆体のメジアン径は、島津製作所製SALD−7000(商品名)で測定した。触媒の元素の組成(酸素を除く)は、アンモニア水に溶解した触媒をICP発光分析法と原子吸光分析法により見積もった。
Hereinafter, the manufacture example of the catalyst by this invention and the reaction example using it are demonstrated with a comparative example. In the description, “parts” means parts by mass. The analysis used gas chromatography. The reaction rate of the raw material (isobutylene or TBA) and the selectivity of the produced methacrolein and methacrylic acid are respectively defined as follows.
Reaction rate of raw material (%) = (number of moles of reacted raw material / number of moles of supplied raw material) × 100
Selectivity (%) of methacrolein = (number of moles of methacrolein produced / number of moles of reacted raw material) × 100
Methacrylic acid selectivity (%) = (number of moles of methacrylic acid produced / number of moles of reacted raw material) × 100
The median diameter of the catalyst precursor was measured with SALD-7000 (trade name) manufactured by Shimadzu Corporation. The elemental composition of the catalyst (excluding oxygen) was estimated by ICP emission analysis and atomic absorption analysis of the catalyst dissolved in aqueous ammonia.
<実施例1>
(触媒調製)
純水1,000部に、パラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム6.2部、及び硝酸セシウム27.6部を、60℃にて溶解、混合してA液とした。その後、ナトリウム含量3ppmの三酸化ビスマス27.5部を加えたところ、A液に白色の沈殿が生じた。これとは別に、純水1,000部に、硝酸第二鉄200.2部、硝酸ニッケル78.9部、硝酸亜鉛14.0部、及び硝酸コバルト357.1部を、順次加えて溶解しB液とした。次いで、上記白色の沈殿が生じているA液にB液を加え、スラリー状のC液とした。しかる後、C液に三酸化アンチモン24.1部を加えてD液とし、80℃で1時間熟成した後、水の大部分を蒸発させた。
<Example 1>
(Catalyst preparation)
Liquid A was prepared by dissolving and mixing 500 parts of ammonium paramolybdate, 6.2 parts of ammonium paratungstate, and 27.6 parts of cesium nitrate in 1,000 parts of pure water. Thereafter, when 27.5 parts of bismuth trioxide having a sodium content of 3 ppm was added, a white precipitate was formed in the liquid A. Separately, 200.2 parts of ferric nitrate, 78.9 parts of nickel nitrate, 14.0 parts of zinc nitrate, and 357.1 parts of cobalt nitrate were sequentially added and dissolved in 1,000 parts of pure water. It was set as B liquid. Subsequently, the B liquid was added to the A liquid in which the white precipitate was generated to obtain a slurry C liquid. Thereafter, 24.1 parts of antimony trioxide was added to the C liquid to obtain a D liquid. After aging at 80 ° C. for 1 hour, most of the water was evaporated.
得られたケーキ状物質Aを120℃で16時間、さらに空気雰囲気下200℃で3時間熱処理した後、得られた触媒前駆体を微粉化した。微粉化した触媒前駆体のメジアン径は1μmであった。得られた微粉化した触媒前駆体500部を水2000部に分散し、1時間攪拌した。その後、水の大部分を蒸発させた。得られたケーキ状物質Bを120℃で16時間、さらに空気雰囲気下300℃で1時間熱処理した後、粉砕した。その後加圧成型したものを破砕し、この破砕粒子のうち、目開き2.36mmの篩を通過し、かつ目開き0.71mmの篩を通過しないものを得た。その後、こうして分級された特定の大きさの粒子を再び空気雰囲気下500℃で6時間熱処理して、触媒を得た。 The obtained cake-like substance A was heat-treated at 120 ° C. for 16 hours and further in an air atmosphere at 200 ° C. for 3 hours, and then the obtained catalyst precursor was pulverized. The median diameter of the finely divided catalyst precursor was 1 μm. 500 parts of the resulting finely divided catalyst precursor was dispersed in 2000 parts of water and stirred for 1 hour. Thereafter, most of the water was evaporated. The obtained cake-like substance B was heat-treated at 120 ° C. for 16 hours and further in an air atmosphere at 300 ° C. for 1 hour, and then pulverized. Thereafter, the pressure-molded product was crushed, and among the crushed particles, a particle that passed through a sieve having an aperture of 2.36 mm and not passed through a sieve having an aperture of 0.71 mm was obtained. Thereafter, the particles of a specific size thus classified were again heat-treated at 500 ° C. for 6 hours in an air atmosphere to obtain a catalyst.
こうして得られた触媒の元素の組成(酸素を除く)は、Mo12Bi0.5Fe2.1Ni2.3Co5.2Zn0.2W0.1Sb0.7Cs0.6であった。 The elemental composition (excluding oxygen) of the catalyst thus obtained was Mo 12 Bi 0.5 Fe 2.1 Ni 2.3 Co 5.2 Zn 0.2 W 0.1 Sb 0.7 Cs 0.6 .
(反応評価)
この触媒をステンレス製反応管に充填した後、この反応管に、イソブチレン(原料)5%、酸素12%、水蒸気10%、及び窒素73%(容量%)の原料混合ガスを接触時間3.6秒で通過させ、340℃でイソブチレンの気相接触反応を行った。その結果、イソブチレンの反応率98.6%、メタクロレインの選択率90.7%、メタクリル酸の選択率3.7%、メタクロレインとメタクリル酸の合計選択率は94.4%であった。
(Reaction evaluation)
After filling this catalyst in a stainless steel reaction tube, the reaction tube was charged with a raw material mixed gas of 5% isobutylene (raw material), 12% oxygen, 10% water vapor, and 73% (volume%) nitrogen for a contact time of 3.6. The gas phase contact reaction of isobutylene was conducted at 340 ° C. As a result, the reaction rate of isobutylene was 98.6%, the selectivity of methacrolein was 90.7%, the selectivity of methacrylic acid was 3.7%, and the total selectivity of methacrolein and methacrylic acid was 94.4%.
<比較例1>
(触媒調製)
実施例1と同様にして得られたケーキ状物質Aを120℃で16時間、さらに空気雰囲気下300℃で1時間熱処理した後、粉砕した。その後加圧成型したものを破砕し、この破砕粒子のうち、目開き2.36mmの篩を通過し、かつ目開き0.71mmの篩を通過しないものを得た。その後、こうして分級された特定の大きさの粒子を再び空気雰囲気下500℃で6時間熱処理して、触媒を得た。
<Comparative Example 1>
(Catalyst preparation)
The cake-like substance A obtained in the same manner as in Example 1 was heat-treated at 120 ° C. for 16 hours and further in an air atmosphere at 300 ° C. for 1 hour, and then pulverized. Thereafter, the pressure-molded product was crushed, and among the crushed particles, a particle that passed through a sieve having an aperture of 2.36 mm and not passed through a sieve having an aperture of 0.71 mm was obtained. Thereafter, the particles of a specific size thus classified were again heat-treated at 500 ° C. for 6 hours in an air atmosphere to obtain a catalyst.
(反応評価)
この触媒を用いること以外は、実施例1と同じ条件にて反応評価を行った。その結果、イソブチレンの反応率98.0%、メタクロレインの選択率89.1%、メタクリル酸の選択率3.4%、メタクロレインとメタクリル酸の合計選択率は92.5%であった。
(Reaction evaluation)
The reaction was evaluated under the same conditions as in Example 1 except that this catalyst was used. As a result, the reaction rate of isobutylene was 98.0%, the selectivity of methacrolein was 89.1%, the selectivity of methacrylic acid was 3.4%, and the total selectivity of methacrolein and methacrylic acid was 92.5%.
<実施例2>
原料をTBAに変更する以外は、実施例1と同じ条件にて反応評価を行った。その結果、TBAの反応率100%、メタクロレインの選択率89.7%、メタクリル酸の選択率3.4%、メタクロレインとメタクリル酸の合計選択率は93.1%であった。
<Example 2>
The reaction was evaluated under the same conditions as in Example 1 except that the raw material was changed to TBA. As a result, the reaction rate of TBA was 100%, the selectivity of methacrolein was 89.7%, the selectivity of methacrylic acid was 3.4%, and the total selectivity of methacrolein and methacrylic acid was 93.1%.
<比較例2>
原料をTBAに変更する以外は、比較例1と同じ条件にて反応評価を行った。その結果、TBAの反応率100%、メタクロレインの選択率88.1%、メタクリル酸の選択率3.0%、メタクロレインとメタクリル酸の合計選択率は91.1%であった。
<Comparative example 2>
The reaction was evaluated under the same conditions as in Comparative Example 1 except that the raw material was changed to TBA. As a result, the reaction rate of TBA was 100%, the selectivity of methacrolein was 88.1%, the selectivity of methacrylic acid was 3.0%, and the total selectivity of methacrolein and methacrylic acid was 91.1%.
以上のように、本発明の触媒は、メタクロレイン及びメタクリル酸の合計選択性に優れており、この触媒を用いることでメタクロレイン及びメタクリル酸を高選択的に製造することができる。 As described above, the catalyst of the present invention is excellent in the total selectivity of methacrolein and methacrylic acid, and methacrolein and methacrylic acid can be produced with high selectivity by using this catalyst.
Claims (3)
少なくとも、モリブデン、ビスマス及び鉄の各原料を水に溶解または分散させて原料溶液またはスラリーを調製する工程と、
前記原料溶液またはスラリーを熱処理して触媒前駆体を得る工程と、
前記触媒前駆体を微粉化する工程と、
前記微粉化された触媒前駆体を水に分散させて触媒前駆体スラリーを調製する工程と、
前記触媒前駆体スラリーを熱処理する工程と、
を有することを特徴とするメタクロレイン及びメタクリル酸合成用触媒の製造方法。 A method for producing methacrolein and methacrylic acid synthesis catalyst, comprising a composite oxide containing molybdenum, bismuth and iron as essential components,
At least a step of preparing a raw material solution or slurry by dissolving or dispersing each raw material of molybdenum, bismuth and iron in water;
Heat-treating the raw material solution or slurry to obtain a catalyst precursor;
Pulverizing the catalyst precursor;
Dispersing the finely divided catalyst precursor in water to prepare a catalyst precursor slurry; and
Heat treating the catalyst precursor slurry;
A method for producing methacrolein and a catalyst for synthesizing methacrylic acid, characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006050433A JP2007222854A (en) | 2006-02-27 | 2006-02-27 | Catalyst for synthesizing methacrolein and methacrylic acid, its manufacturing method, method for producing methacrolein and methacrylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006050433A JP2007222854A (en) | 2006-02-27 | 2006-02-27 | Catalyst for synthesizing methacrolein and methacrylic acid, its manufacturing method, method for producing methacrolein and methacrylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007222854A true JP2007222854A (en) | 2007-09-06 |
JP2007222854A5 JP2007222854A5 (en) | 2009-04-16 |
Family
ID=38545151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006050433A Pending JP2007222854A (en) | 2006-02-27 | 2006-02-27 | Catalyst for synthesizing methacrolein and methacrylic acid, its manufacturing method, method for producing methacrolein and methacrylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007222854A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009207995A (en) * | 2008-03-04 | 2009-09-17 | Mitsubishi Rayon Co Ltd | Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and its manufacturing method |
JP2010207696A (en) * | 2009-03-09 | 2010-09-24 | Sumitomo Chemical Co Ltd | Method of manufacturing catalyst for manufacturing methacrylic acid and method of manufacturing methacrylic acid |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08238433A (en) * | 1994-12-21 | 1996-09-17 | Mitsubishi Rayon Co Ltd | Preparation of supported catalyst for synthesis of methacrolein and methacrylic acid |
JP2001029788A (en) * | 1999-07-21 | 2001-02-06 | Mitsubishi Rayon Co Ltd | Production of fluidized bed catalyst comprising molybdenum-bismuth-iron-containing metal oxide |
JP2004000930A (en) * | 2002-04-12 | 2004-01-08 | Mitsubishi Chemicals Corp | Method for regenerating deteriorated catalyst |
JP2005199268A (en) * | 2003-12-17 | 2005-07-28 | Mitsubishi Chemicals Corp | Method for producing compound oxide catalyst |
-
2006
- 2006-02-27 JP JP2006050433A patent/JP2007222854A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08238433A (en) * | 1994-12-21 | 1996-09-17 | Mitsubishi Rayon Co Ltd | Preparation of supported catalyst for synthesis of methacrolein and methacrylic acid |
JP2001029788A (en) * | 1999-07-21 | 2001-02-06 | Mitsubishi Rayon Co Ltd | Production of fluidized bed catalyst comprising molybdenum-bismuth-iron-containing metal oxide |
JP2004000930A (en) * | 2002-04-12 | 2004-01-08 | Mitsubishi Chemicals Corp | Method for regenerating deteriorated catalyst |
JP2005199268A (en) * | 2003-12-17 | 2005-07-28 | Mitsubishi Chemicals Corp | Method for producing compound oxide catalyst |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009207995A (en) * | 2008-03-04 | 2009-09-17 | Mitsubishi Rayon Co Ltd | Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and its manufacturing method |
JP2010207696A (en) * | 2009-03-09 | 2010-09-24 | Sumitomo Chemical Co Ltd | Method of manufacturing catalyst for manufacturing methacrylic acid and method of manufacturing methacrylic acid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4863436B2 (en) | Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids | |
JP2008284416A (en) | Method for manufacturing metal oxide catalyst | |
JP2007222854A (en) | Catalyst for synthesizing methacrolein and methacrylic acid, its manufacturing method, method for producing methacrolein and methacrylic acid | |
JP4356303B2 (en) | Composite oxide catalyst and method for producing the same | |
JP3690939B2 (en) | Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid | |
JP2005058909A (en) | Production method for catalyst for synthesizing methacrylic acid | |
JP4017412B2 (en) | Method for producing composite oxide catalyst | |
JP5344753B2 (en) | Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP4372573B2 (en) | Method for producing a catalyst for methacrylic acid production | |
JP2007090193A (en) | Production method of catalyst for methacrylic acid production and production method of methacrylic acid | |
JP4811977B2 (en) | Method for producing catalyst for synthesis of methacrylic acid | |
JP2005066476A (en) | Method for producing catalyst for producing methacrylic acid, catalyst produced by the method, and method for producing metacrylic acid | |
JP2011115681A (en) | Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid | |
JP4902991B2 (en) | Method for producing oxide catalyst | |
JP5070089B2 (en) | Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and method for producing the same | |
JP2006102740A (en) | Catalyst for producing methacrylic acid, process for producing the same and process for producing methacrylic acid | |
JP5090796B2 (en) | Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid | |
JP2010201365A (en) | Method for manufacturing catalyst for synthesizing unsaturated carboxylic acid | |
CN107282059B (en) | Catalyst for producing acrylic acid | |
JP2007222855A (en) | Manufacturing method of unsaturated aldehyde and catalysts for unsaturated carboxylic acid composition | |
JP4601420B2 (en) | Method for producing a catalyst for methacrylic acid production | |
JP4947756B2 (en) | Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP2008149263A (en) | Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron | |
JP2005230720A (en) | Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same | |
JP5842378B2 (en) | Method for producing catalyst for synthesis of unsaturated carboxylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090226 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110803 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111129 |