JP2007222713A - Removal and recovery of magnesium and calcium, and a type zeolite manufacturing method from steel industry by-product - Google Patents

Removal and recovery of magnesium and calcium, and a type zeolite manufacturing method from steel industry by-product Download PDF

Info

Publication number
JP2007222713A
JP2007222713A JP2006043979A JP2006043979A JP2007222713A JP 2007222713 A JP2007222713 A JP 2007222713A JP 2006043979 A JP2006043979 A JP 2006043979A JP 2006043979 A JP2006043979 A JP 2006043979A JP 2007222713 A JP2007222713 A JP 2007222713A
Authority
JP
Japan
Prior art keywords
calcium
magnesium
type zeolite
elution
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006043979A
Other languages
Japanese (ja)
Inventor
Taichi Murakami
太一 村上
Naoyuki Narishima
尚之 成島
Yoshiyuki Sugano
善之 菅野
Yasutaka Iguchi
泰孝 井口
Chiaki Ouchi
千秋 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2006043979A priority Critical patent/JP2007222713A/en
Publication of JP2007222713A publication Critical patent/JP2007222713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of A type zeolite which adjusts the components of the raw material in order to synthesize A type zeolite using only the industrial by-product such as blast furnace slag and the like, and heats and agitates the same in an alkaline aqueous sloution using a jar mill type reactor to manufacture A type zeolite, and to provide a removal and recovery method of magnesium and calcium from the steel industry by-product which recovers the material generated at the time of adjustment and effects the perfect recycling of the industrial by-product. <P>SOLUTION: Calcium and magnesium are selectively removed by performing the agitation treatment of the industrial by-product such as the blast furnace slag and the like in a formic acid or citric acid aqueous solution using the jar mill type reactor. The industrial by-product is adjusted to form the composition so that the A type zeolite can be manufactured and synthesized. Calcium is recovered as a useful form such as calcium formate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、各種酸による鉄鋼スラグの室温におけるマグネシウム及びカルシウム溶出処理を実施し、マグネシウム及びカルシウムのスラグからの除去回収方法を検討し、適した酸種及びpH、溶出時間を明らかにするものである。さらにA型ゼオライト合成に適した組成へ移行させる条件を検討し、組成調整後のスラグを用いたA型ゼオライトの製造方法を提供することに関するものである。   The present invention carries out magnesium and calcium elution treatment of steel slag with various acids at room temperature, examines a method for removing and recovering magnesium and calcium from slag, and clarifies suitable acid species, pH, and elution time. is there. Further, the present invention relates to the study of conditions for shifting to a composition suitable for A-type zeolite synthesis and to provide a method for producing A-type zeolite using slag after composition adjustment.

ゼオライトへの水蒸気吸着に伴う発熱を利用した蓄熱システムは、昼夜間の消費電力ピーク差の平滑化、低温排熱の有効利用などへの適応が可能と考えられる。中でもA型ゼオライトは立方晶系の合成ゼオライトであり、交換カチオンとしてNa+を有するNa-A型の単位胞は(Na12[AlSiO4]12・27H2O)8と表され、ナトリウムはカリウムやアルカリ土類金属で置換されることが知られている。ゼオライトは、シリコン源、アルミニウム源、硬化剤および水を高温高圧下に一定時間置くこと(水熱合成法)で合成される。一般的にはシリコン源としてケイ酸ナトリウム、コロイダルシリカ、煙状シリカ、シリコンアルコキシドなどが、アルミニウム源として水酸化アルミニウム、アルミン酸ナトリウム、アルミニウムアルコキシドなどが使用されている(例えば、非特許文献1)。しかし、蓄熱材料として活用するには合成ゼオライトのコストが非常に高いことが問題である。 A heat storage system using heat generated by water vapor adsorption on zeolite is considered to be applicable to smoothing the difference in peak power consumption during daytime and nighttime, and effective use of low-temperature exhaust heat. Above all, the A-type zeolite is a cubic synthetic zeolite, and the Na-A type unit cell having Na + as an exchange cation is expressed as (Na 12 [AlSiO 4 ] 12 · 27H 2 O) 8, and sodium is potassium or It is known to be replaced with alkaline earth metals. Zeolite is synthesized by placing a silicon source, an aluminum source, a curing agent and water under high temperature and high pressure for a certain time (hydrothermal synthesis method). Generally, sodium silicate, colloidal silica, smoked silica, silicon alkoxide and the like are used as the silicon source, and aluminum hydroxide, sodium aluminate, aluminum alkoxide and the like are used as the aluminum source (for example, Non-Patent Document 1). . However, there is a problem that the cost of the synthetic zeolite is very high for use as a heat storage material.

日本における2004年度の銑鉄生産量は8,289万t、これに伴う高炉スラグの生成量(水分を含まない状態)は2,382万tもあり、このうち水砕スラグは1,860万t、徐冷スラグは522万tである。水砕率(水砕スラグ生産量/高炉スラグ生産量)は78.1mass%である(例えば、非特許文献2)。これらの多くはセメント原料、路盤材、コンクリート骨材などへ資源化されているが、今後の国内セメント需要の拡大が見込めない中で、新規用途の開拓が課題となっている。高炉水砕スラグは主成分が酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化カルシウムであり、A型ゼオライト中のナトリウムがマグネシウムやカルシウムで置換可能なことを考えればゼオライト合成の有力な原料候補に挙げられる。ゼオライトと比較的組成が近い鉄鋼スラグからゼオライトを合成できれば低コスト化が可能であるだけでなく、スラグの有効利用の観点からも好ましい。さらに、ゼオライトは蓄熱材料だけでなく、建築用調湿剤や工場排水の浄化、脱臭剤、土壌改質剤など様々な用途に使用することが可能なため、安価で大量に供給できる製造方法の開発が期待されている。   In 2004, pig iron production in Japan was 82.89 million tons, and the amount of blast furnace slag produced (with no moisture) was 23.82 million tons. Of this, granulated slag was 18.6 million tons, and slow-cooled slag was 522. 10,000 tons. The water granulation rate (granulated slag production / blast furnace slag production) is 78.1 mass% (for example, Non-Patent Document 2). Many of these resources have been recycled into cement raw materials, roadbed materials, concrete aggregates, etc. However, the expansion of domestic demand for cement is not expected in the future, and the development of new applications is an issue. Granulated blast furnace slag is mainly composed of silicon oxide, aluminum oxide, magnesium oxide, and calcium oxide. Considering that sodium in A-type zeolite can be replaced with magnesium or calcium, it is listed as a potential raw material candidate for zeolite synthesis. . If zeolite can be synthesized from steel slag having a composition relatively close to that of zeolite, not only cost reduction is possible, but also from the viewpoint of effective use of slag. Furthermore, zeolite can be used not only for heat storage materials but also for various purposes such as humidity control for buildings, purification of industrial wastewater, deodorizers, soil modifiers, etc. Development is expected.

これまでの研究(例えば、非特許文献3及び特許文献1)から高炉スラグを原料としてA型ゼオライトを高効率に合成するには、酸化マグネシウム+酸化カルシウム量を15mass%以下に原料組成を調整する必要があることが分かった。そのためにはシリコン源、アルミニウム源を添加する方法とスラグ中のマグネシウムやカルシウムを除去する方法が考えられ、これまでの研究では前者を採用し、シリコン源には非晶質酸化ケイ素、アルミニウム源にはアルミン酸ナトリウムを使用してきた。しかし、これら試薬の大量使用は高コストになるため、発生量が膨大な鉄鋼スラグを利用した合成には適切ではない。一方、後者の方法として高炉スラグからマグネシウムやカルシウムを選択的に除去することができれば、高炉スラグのみからA型ゼオライトを合成することが可能になる。   To synthesize A-type zeolite with high efficiency using blast furnace slag as a raw material from previous studies (for example, Non-Patent Document 3 and Patent Document 1), adjust the raw material composition to 15 mass% or less of magnesium oxide + calcium oxide. I found it necessary. For this purpose, a method of adding a silicon source and an aluminum source and a method of removing magnesium and calcium in the slag can be considered, and the former has been adopted in the previous studies, and the silicon source is an amorphous silicon oxide and an aluminum source. Has used sodium aluminate. However, since large amounts of these reagents are used at a high cost, they are not suitable for synthesis using steel slag with a large amount of generation. On the other hand, if magnesium and calcium can be selectively removed from blast furnace slag as the latter method, it becomes possible to synthesize A-type zeolite only from blast furnace slag.

これまでスラグからの金属イオン溶出挙動は海中を模擬した溶液中でのシリコンや鉄の溶出について報告がある(例えば、非特許文献4)。また、シュウ酸、クエン酸、タンニン酸などの有機酸を用いて、鉱物からのシリコン、アルミニウム、鉄、マグネシウムの溶出について検討はされている(例えば、非特許文献5)が、スラグから直接マグネシウムやカルシウムを除去回収するという報告はなく、その方法については検討が必要である。   Until now, the elution behavior of metal ions from slag has been reported for elution of silicon and iron in a solution simulating the sea (for example, Non-Patent Document 4). Further, elution of silicon, aluminum, iron, and magnesium from minerals using organic acids such as oxalic acid, citric acid, and tannic acid has been studied (for example, Non-Patent Document 5). There is no report of removing and collecting calcium and calcium, and the method needs to be studied.

A型ゼオライトを合成するために高炉スラグの予備処理を行った報告として、塩酸または硝酸で全溶解させた後、シリカゲルのみを生成させ、そこにアルミニウム源を加えて水熱合成を行う方法(例えば、特許文献2)や、スラグに炭酸ナトリウムを加えて1023〜1173Kで焼成後、pH4以下で酸処理および水洗し、水熱合成を行う方法(例えば、特許文献3)があるが、これらは高炉スラグ単独原料ではなく、さらに予備処理時に高温熱源が必要といった短所がある。また特許文献2、特許文献3、特許文献4、特許文献5には、原料粉末を酸水溶液で処理することによって原料中のカルシウム化合物を除去できると記載されているが、そのカルシウム選択性は著しく低い。   As a report of pretreatment of blast furnace slag to synthesize A-type zeolite, after complete dissolution with hydrochloric acid or nitric acid, only silica gel is produced, and an aluminum source is added thereto to perform hydrothermal synthesis (for example, , Patent Document 2) and a method of hydrothermal synthesis by adding sodium carbonate to slag and firing at 1023-1173K, then acid-treating and washing with water at pH 4 or lower (for example, Patent Document 3). There is a disadvantage that a high-temperature heat source is required at the time of preliminary treatment, not slag alone. Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5 describe that the calcium compound in the raw material can be removed by treating the raw material powder with an aqueous acid solution, but the calcium selectivity is remarkably high. Low.

特開2005-239459号公報JP 2005-239459 A 特開平8-259221号公報JP-A-8-259221 特開平7-196315号公報Japanese Laid-Open Patent Publication No.7-196315 特開平7-232913号公報Japanese Unexamined Patent Publication No. 7-232913 特許第3666031号公報Japanese Patent No. 3660311 小野嘉夫、八嶋建明:ゼオライトの科学と工学、講談社(2000)Yoshio Ono, Takeaki Yashima: Science and Engineering of Zeolite, Kodansha (2000) 鉄鋼スラグ統計年報(平成16年度実績)、鉄鋼スラグ協会Annual report on steel slag statistics (2004 results), Steel Slag Association Y.Sugano, R.Sahara, T.Murakami, T.Narushima, Y.Iguchi and C.Ouchi:ISIJ International, 45(2005), 937.Y. Sugano, R. Sahara, T. Murakami, T. Narushima, Y. Iguchi and C. Ouchi: ISIJ International, 45 (2005), 937. T.Miki, T.Futatsuka, K.Shitogiden, T.Nagasaka and M.Hino:ISIJ International, 44(2004), 762.T. Miki, T. Futatsuka, K. Shitogiden, T. Nagasaka and M. Hino: ISIJ International, 44 (2004), 762. H.Zhang and P.R.Bloom:Soil Sci. Soc. Am. J., 63(1999), 815.H.Zhang and P.R.Bloom: Soil Sci. Soc. Am. J., 63 (1999), 815. 田代健、伊藤公久:鉄鋼スラグの発生量低減と資源化、日本鉄鋼協会、(1997), 183.Ken Tashiro, Kimihisa Ito: Steel slag generation reduction and resource recycling, Japan Iron and Steel Institute, (1997), 183.

ゼオライトへの水蒸気吸着に伴う発熱を利用した蓄熱システムを実現するためには安価で高品質な、例えば水蒸気吸着特性に優れたA型ゼオライトの供給が必要不可欠である。そのためにはA型ゼオライト合成原料に産業副生成物を採用することが挙げられる。また、大量に発生する高炉スラグ等の産業副生成物の有効利用は重要な課題となっており、セメント原料や路盤材等に使用されているが、今後その使用量は低下する傾向にあり、新たな用途開発が必要である。本発明は産業副生成物を原料とした安価で大量生産が可能なA型ゼオライトの合成方法を提供するものである。さらに産業副生成物から合成に不要な物質を除去回収することにより、産業副生成物の完全利材化を実現する方法を提案するものである。   In order to realize a heat storage system that uses heat generated by water vapor adsorption on zeolite, it is indispensable to supply a low-cost, high-quality A-type zeolite having excellent water vapor adsorption characteristics, for example. For this purpose, it is possible to employ industrial by-products as the A-type zeolite synthesis raw material. In addition, effective utilization of industrial by-products such as blast furnace slag generated in large quantities has become an important issue, and it is used for cement raw materials and roadbed materials, but its usage tends to decrease in the future, New application development is required. The present invention provides a method for synthesizing A-type zeolite that can be mass-produced inexpensively using industrial by-products as raw materials. Furthermore, the present invention proposes a method for realizing the complete use of industrial by-products by removing and collecting substances unnecessary for synthesis from industrial by-products.

本発明によれば、鉄鋼スラグ等の鉄鋼産業副生成物からのマグネシウム及びカルシウム除去回収方法において、室温において、ギ酸もしくはクエン酸により溶解させて処理することを特徴とするマグネシウム及びカルシウム除去回収方法が得られる。   According to the present invention, there is provided a magnesium and calcium removal and recovery method from steel industry by-products such as steel slag, wherein the magnesium and calcium removal and recovery method is characterized by dissolving and treating with formic acid or citric acid at room temperature. can get.

また、本発明によれば、前記鉄鋼スラグ等の鉄鋼産業副生成物と前記ギ酸もしくは前記クエン酸の溶解反応において、ボールミル型反応容器を用いることを特徴とするマグネシウム及びカルシウム除去回収方法が得られる。   Further, according to the present invention, there is obtained a magnesium and calcium removal and recovery method characterized by using a ball mill type reaction vessel in the dissolution reaction of the steel industry by-products such as the steel slag and the formic acid or the citric acid. .

また、本発明によれば、マグネシウム及びカルシウム溶解溶液を乾燥、硫酸添加もしくは炭酸ガスを吹込むことを特徴とするマグネシウム及びカルシウム除去回収方法が得られる。   Moreover, according to this invention, the magnesium and calcium melt | dissolution solution is dried, sulfuric acid addition, or the carbon dioxide gas blowing, The magnesium and calcium removal collection method characterized by the above-mentioned is obtained.

また、本発明によれば、前記マグネシウム及び前記カルシウム除去回収処理後の残渣を、アルカリ溶液中で加熱することを特徴とするA型ゼオライトの製造方法が得られる。アルカリ源としては本実施例で示した水酸化ナトリウムのほかに、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物でも同様の効果が得られる。   Moreover, according to this invention, the residue after the said magnesium and said calcium removal collection process is heated in an alkaline solution, The manufacturing method of the A-type zeolite characterized by the above-mentioned is obtained. As the alkali source, in addition to sodium hydroxide shown in this embodiment, the same effect can be obtained by using alkali metal hydroxides such as potassium hydroxide and lithium hydroxide.

また、本発明によれば、前記残渣と前記アルカリ溶液を、ボールミル型反応容器中で、加熱処理を行うことを特徴とするA型ゼオライト製造方法が得られる。   Moreover, according to this invention, the A-type zeolite manufacturing method characterized by heat-processing the said residue and the said alkaline solution in a ball mill type reaction container.

A型ゼオライトの合成は長時間を要し、高コストである。産業副生成物から様々な方法で合成されるA型ゼオライトも複雑な工程を踏んでいるため、比較的コストが高い。本発明では大量に排出される高炉スラグを原料とし、ボールミル型反応容器を用い、高炉スラグをA型ゼオライト合成可能な組成に制御し、さらに同様の容器を用いたアルカリ水熱合成によるA型ゼオライト合成を可能にした。   The synthesis of A-type zeolite takes a long time and is expensive. A-type zeolite synthesized by various methods from industrial by-products also has a complicated process and is relatively expensive. In the present invention, blast furnace slag discharged in large quantities is used as a raw material, a ball mill type reaction vessel is used, the blast furnace slag is controlled to a composition capable of synthesizing A type zeolite, and further, A type zeolite by alkaline hydrothermal synthesis using the same vessel Made it possible to synthesize.

本発明では適切な酸溶液の選択及びボールミル型反応容器を採用することにより、可溶性マグネシウム及びカルシウム成分だけでなく、高炉水砕スラグをはじめとするガラス状物質からマグネシウム及びカルシウム成分のみを選択的に除去回収可能である。その際の酸種は有機酸、特にギ酸及びクエン酸が有効であることを明らかにするものである。さらに、除去後の溶液からマグネシウム及びカルシウム分を乾燥、硫酸添加及び炭酸ガスの吹き込み処理を施すことにより、回収が可能である。特にカルシウム分を乾燥させた場合はギ酸カルシウムとして回収されるため、摘花効果剤やコンクリート混和剤としての利用が可能である。   In the present invention, by selecting an appropriate acid solution and adopting a ball mill type reaction vessel, not only soluble magnesium and calcium components, but also only magnesium and calcium components from glassy substances including blast furnace granulated slag can be selectively used. It can be removed and recovered. In this case, the acid species clarifies that organic acids, particularly formic acid and citric acid are effective. Furthermore, it is possible to recover the magnesium and calcium components from the solution after removal by drying, adding sulfuric acid, and blowing carbon dioxide. In particular, when the calcium content is dried, it is recovered as calcium formate, so that it can be used as a flowering effect agent or a concrete admixture.

以下、本発明の実施の形態について図面を参照しながら説明する。
本発明の請求項1に記載の発明は、表1に示す組成に代表される高炉スラグをはじめとする産業副生成物を、図4に示すように初期pH2のギ酸またはクエン酸水溶液中、室温で溶出処理を施すことにより、マグネシウム及びカルシウムを選択的に除去回収するものである。図2に示すように、酸水溶液として、塩酸を用いても選択的除去回収はできず、有機酸の酢酸、乳酸では上記酸ほどの効果は現れない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The invention according to claim 1 of the present invention is that industrial by-products such as blast furnace slag represented by the composition shown in Table 1 are mixed at room temperature in a formic acid or citric acid aqueous solution having an initial pH of 2 as shown in FIG. By elution treatment, magnesium and calcium are selectively removed and recovered. As shown in FIG. 2, even when hydrochloric acid is used as the acid aqueous solution, selective removal and recovery cannot be performed, and acetic acid and lactic acid, which are organic acids, do not exhibit the same effect as the above acid.

また、請求項2に記載の発明は、図1に示すように上記溶出処理にボールミル型反応容器を用いることにより、図3に示すようにより効果的にマグネシウム及びカルシウムの選択的除去回収を可能にするものであり、適した酸水溶液はギ酸及びクエン酸である。   In addition, the invention according to claim 2 enables selective removal and recovery of magnesium and calcium more effectively as shown in FIG. 3 by using a ball mill type reaction vessel for the elution treatment as shown in FIG. Suitable acid aqueous solutions are formic acid and citric acid.

さらに、請求項3に記載の発明は、上記処理により発生した溶液の乾燥処理、硫酸添加、及び炭酸ガス吹き込みを施すことにより、マグネシウム及びカルシウム源を回収し、再利用可能にする方法である。図7に示すように、ギ酸水溶液で処理した溶液を乾燥させることにより、ギ酸カルシウムが得られる。   Furthermore, the invention described in claim 3 is a method for recovering the magnesium and calcium sources and making them reusable by drying the solution generated by the above treatment, adding sulfuric acid, and blowing carbon dioxide. As shown in FIG. 7, calcium formate can be obtained by drying the solution treated with the formic acid aqueous solution.

そして、請求項4に記載の発明は、請求項1および2に記載した発明を施すことにより、非特許文献3で明らかにしたA型ゼオライトの製造が可能な領域まで溶出残渣組成を変化させることができ、その残渣をアルカリ溶液中で加熱することにより、A型ゼオライトの製造を可能にするものである。   In the invention described in claim 4, by applying the invention described in claims 1 and 2, the elution residue composition is changed to a region where the production of A-type zeolite, which is clarified in Non-Patent Document 3, is possible. The residue can be heated in an alkaline solution to make it possible to produce A-type zeolite.

最後に、請求項5に記載の発明は、上記A型ゼオライトの合成に図1にしめすボールミル型反応容器を使用し、加熱攪拌処理をすることにより、短時間で、且つ図9に示すように粒径4〜5μmの市販A型ゼオライトより微細なA型ゼオライトの合成を可能にするものである。   Finally, the invention according to claim 5 uses the ball mill type reaction vessel shown in FIG. 1 for the synthesis of the A-type zeolite and heats and stirs it in a short time and as shown in FIG. This makes it possible to synthesize finer A-type zeolite than commercially available A-type zeolite having a particle size of 4 to 5 μm.

実操業で得られた42.5mass%のCaOを含有している高炉水砕スラグを原料とした。そのスラグ組成を表1に示す。溶出処理には、塩酸(特級,(株)和光純薬工業)、ギ酸(特級,(株)和光純薬工業)、酢酸(特級,(株)関東化学)、乳酸(特級,(株)和光純薬工業)、クエン酸(クエン酸一水和物から作製(特級,(株)和光純薬工業))、酒石酸(特級, (株)和光純薬工業)を用いた。比較のため、イオン交換水での溶出処理も行った。図1に示す定温乾燥器(DO-300,(株)井内盛栄堂)およびボールミル型反応容器を使用して、各種溶液中、室温での溶出処理により行った。反応容器は、テフロン(登録商標)製容器(内径40mm,容積60ml) をステンレス鋼容器の中に入れた二重の容器になっており、テフロン(登録商標)製容器はO-リングにより密閉される。定温乾燥機は下部のヒーターによって加熱でき、同時に反応容器を回転できるように設計されている。高炉水砕スラグ1.0g、所定pHにした各種酸溶液30ml、直径10mmのSiCボール(SiC11, ニッカトー)30個を容器に投入し、室温にて75rpmで回転させながら一定時間溶出処理を行った。処理後、沈殿物はポリカーボネイト製で孔径0.2μmのメンブレンフィルター(ADVANTEC)を用いて吸引ろ過後回収し、繰り返し溶出処理を行った。比較のため、静置での溶出処理も行った。金属イオンの溶出挙動を把握するために、各溶出段階で発生したろ液中のCa、Mg、Si、Alイオン濃度をICP発光分光分析装置(ICP-8100, (株)島津製作所)を用いて測定した。溶出したマグネシウム及びカルシウムの回収のため、ろ液は硫酸添加、CO2ガスの吹き込み及び343K保持による乾燥処理を行った。その残留物をX線ディフラクトメーター(X’Pert, Philips)を用いて2θ-θ法によるX線回折(XRD)により行った。 Blast furnace granulated slag containing 42.5 mass% CaO obtained in actual operation was used as a raw material. The slag composition is shown in Table 1. For elution treatment, hydrochloric acid (special grade, Wako Pure Chemical Industries, Ltd.), formic acid (special grade, Wako Pure Chemical Industries, Ltd.), acetic acid (special grade, Kanto Chemical Co., Ltd.), lactic acid (special grade, sum, Japanese) Kojun Pharmaceutical Co., Ltd.), citric acid (prepared from citric acid monohydrate (special grade, Wako Pure Chemical Industries, Ltd.)), and tartaric acid (special grade, Wako Pure Chemical Industries, Ltd.) were used. For comparison, elution treatment with ion-exchanged water was also performed. Using a constant temperature dryer (DO-300, Inei Seieido Co., Ltd.) and a ball mill type reaction vessel shown in FIG. 1, it was carried out by elution treatment at room temperature in various solutions. The reaction container is a double container in which a Teflon (registered trademark) container (inner diameter 40 mm, volume 60 ml) is placed in a stainless steel container, and the Teflon (registered trademark) container is sealed with an O-ring. The The constant temperature dryer is designed so that it can be heated by the lower heater and at the same time the reaction vessel can be rotated. Blast furnace granulated slag 1.0 g, 30 ml of various acid solutions adjusted to a predetermined pH, and 30 SiC balls (SiC11, Nikkato) having a diameter of 10 mm were put into a container and subjected to elution for a certain time while rotating at 75 rpm at room temperature. After the treatment, the precipitate was collected by suction filtration using a membrane filter (ADVANTEC) made of polycarbonate and having a pore size of 0.2 μm, and repeatedly eluted. For comparison, elution treatment was also performed by standing. In order to understand the elution behavior of metal ions, the concentration of Ca, Mg, Si, and Al ions in the filtrate generated at each elution stage was measured using an ICP emission spectrometer (ICP-8100, Shimadzu Corporation). It was measured. In order to recover the eluted magnesium and calcium, the filtrate was dried by adding sulfuric acid, blowing CO 2 gas, and maintaining 343K. The residue was subjected to X-ray diffraction (XRD) by the 2θ-θ method using an X-ray diffractometer (X'Pert, Philips).

pH値を2とした各種酸水溶液による7.2ksの溶出処理後の酸水溶液中のCaイオン濃度を図2に示す。酒石酸を除くと静置させたままの処理よりもSiCボールを入れ、回転させた方が溶出量は多くなった。また、無機酸である塩酸ではCaはほとんど溶出しなかったが、有機酸ではより多くのCaが溶出し、特にギ酸やクエン酸では溶液中のCa濃度が約1100ppmにまで到達し、多くのCaが溶出することが分かった。そこでCa溶出量が最も高かったクエン酸およびギ酸を用いた場合、及び最も低かった塩酸を用いた場合の処理後得られる残渣の組成を高炉スラグの初期組成とともにSiO2-Al2O3-CaO+MgO擬三元系状態図上にプロットし、図3に示す。斜線で示す領域はこれまでの研究でA型ゼオライトの合成が確認されている組成である。塩酸を用いた溶出では高炉スラグからの組成の変化はほとんど見られなかった。一方、クエン酸やギ酸を用いた溶出ではCaO+MgOが49mass%から41~46mass%まで変化した。さらにギ酸水溶液による溶出処理では、Si/Al比がほとんど変化しておらず、A型ゼオライト合成に適した組成へと変化する傾向にあった。 Fig. 2 shows the Ca ion concentration in the acid aqueous solution after 7.2ks elution treatment with various acid aqueous solutions with a pH value of 2. When tartaric acid was removed, the amount of elution increased when a SiC ball was placed and rotated, rather than with the treatment left standing. In addition, hydrochloric acid, which is an inorganic acid, hardly eluted Ca, but organic acid eluted more Ca. Especially formic acid and citric acid, the Ca concentration in the solution reached about 1100 ppm, and much Ca was dissolved. Was found to elute. Therefore, when citric acid and formic acid with the highest Ca elution amount were used and with the lowest hydrochloric acid, the composition of the residue obtained after the treatment together with the initial composition of the blast furnace slag was combined with SiO 2 -Al 2 O 3 -CaO Plotted on the + MgO pseudo ternary phase diagram and shown in FIG. The hatched area is the composition in which the synthesis of A-type zeolite has been confirmed in previous studies. Elution with hydrochloric acid showed almost no change in composition from blast furnace slag. On the other hand, elution with citric acid or formic acid changed CaO + MgO from 49 mass% to 41-46 mass%. Furthermore, in the elution treatment with aqueous formic acid solution, the Si / Al ratio hardly changed, and there was a tendency to change to a composition suitable for A-type zeolite synthesis.

ギ酸水溶液の初期pH値を変化させたときのCa溶出量を図4に示す。初期pH値によりCaおよびSiの溶出量は大きく異なり、初期値が2の場合のみCaが1150ppm、Siが80ppmと溶出量が非常に大きくなった。これは7.2ks後のpH値は初期pHを2、3、5としたとき、それぞれ6、10、11となっており、初期pHが高いと水溶液がアルカリ側にシフトしやすくなりCaの溶出が抑えられたためであると考えられる。そのため溶出処理の初期pHは2前後が最も適しているといえる。   FIG. 4 shows the Ca elution amount when the initial pH value of the formic acid aqueous solution is changed. The elution amounts of Ca and Si differed greatly depending on the initial pH value. Only when the initial value was 2, the elution amount was very large at 1150 ppm for Ca and 80 ppm for Si. The pH values after 7.2ks are 6, 10, and 11 when the initial pH is 2, 3, and 5, respectively. When the initial pH is high, the aqueous solution tends to shift to the alkali side, and Ca is eluted. It is thought that it was because it was suppressed. Therefore, it can be said that the initial pH of the elution treatment is most suitable around 2.

7.2ksの溶出処理では酸化マグネシウム+酸化カルシウムの量がA型ゼオライト合成可能領域に達しなかった。さらに7.2ks以上の溶出処理でも酸化マグネシウム+酸化カルシウム量は大きな変化をしなかった。そこで1.8または7.2ksの溶出処理後ろ過し、溶液を交換し再び溶出処理を行ったときのサイクル数と各元素の溶出重量の初期重量との比(W/Winitial)の関係を図5に示す。1サイクルの溶出時間の違いではマグネシウム及びカルシウム溶出量に大きな変化は見られなかったが、1.8ks毎に処理を行った場合の方がシリコン、アルミニウム溶出量が大きくなる傾向になった。また、1.8ksの場合、ろ過時にメンブレンフィルターの目詰まりが発生し、ろ過に長時間を要した。田代らは、酸化カルシウム−酸化ケイ素−フッ化カルシウム系スラグの317Kの水中への各金属元素の溶出量の時間変化について調べ、カルシウム、シリコン、ナトリウムは36~54ksで最大値をとり、その後減少することを報告しており、溶出時間の経過とともにスラグ表面に酸化カルシウム−酸化ケイ素―水のゲルが生成し、その後析出するというモデルを示している(非特許文献6)。本実験では、水ではなくギ酸を用いているが、スラグ組成が類似しており同様の現象が起きていると考えられる。さらにボールミルによって溶出が加速されていると考えられ、そのため最大値をとる時間が田代らよりも短時間の1.8~7.2ks間にあると予想される。これらの理由のため、溶液交換は7.2ks毎に行う方がマグネシウム及びカルシウム溶出には適していることが分かった。さらに、7.2ks毎交換ではマグネシウム及びカルシウムの溶出は3サイクルまでに急激に進行し、その後ほとんど変化がなかった。一方、シリコンは3サイクルまではマグネシウム及びカルシウムと同様の挙動を示したが、それ以降も僅かに溶出していた。また、アルミニウムは2サイクルまではほとんど溶出せず、それ以降にゆっくりと溶出が進行した。シリコン及びアルミニウムはA型ゼオライトの構造骨格を形成する元素であり、ゼオライトの合成原料とすることを考えると、可能な限り溶出によるロスを避けることが望ましい。各サイクル時の残渣組成を図6に高炉スラグ組成と共に状態図上に示す。3サイクルの処理によりA型ゼオライト合成が可能な領域に入り、その後更なる溶出処理により合成可能域から逸脱することが分かった。このことから溶出処理は7.2ksを3サイクル行うことが最適である。 In the elution treatment of 7.2ks, the amount of magnesium oxide + calcium oxide did not reach the A-type zeolite synthesis range. Furthermore, the amount of magnesium oxide + calcium oxide did not change significantly even when the elution treatment was over 7.2ks. Fig. 5 shows the relationship between the number of cycles and the initial weight of the elution weight of each element (W / W initial ) when filtration was performed after elution treatment of 1.8 or 7.2ks, and the elution treatment was performed again after changing the solution. Show. Although there was no significant change in the elution amounts of magnesium and calcium with the difference in elution time of one cycle, the elution amounts of silicon and aluminum tended to increase when the treatment was performed every 1.8ks. In the case of 1.8ks, the membrane filter was clogged during filtration, and it took a long time for filtration. Tashiro et al. Investigated the time variation of the elution amount of each metal element in 317K water of calcium oxide-silicon oxide-calcium fluoride system slag, and calcium, silicon, and sodium took maximum values at 36 to 54ks, and then decreased This shows a model in which a calcium oxide-silicon oxide-water gel is formed on the slag surface as the elution time elapses and then precipitates (Non-Patent Document 6). In this experiment, formic acid is used instead of water, but the slag composition is similar and the same phenomenon is considered to occur. Furthermore, it is considered that elution is accelerated by the ball mill, and therefore the maximum time is expected to be between 1.8 and 7.2ks, which is shorter than Tashiro et al. For these reasons, it was found that the solution exchange is more suitable for elution of magnesium and calcium every 7.2ks. Furthermore, at every 7.2ks exchange, elution of magnesium and calcium progressed rapidly by 3 cycles and remained almost unchanged thereafter. On the other hand, silicon behaved in the same way as magnesium and calcium up to 3 cycles, but it eluted slightly after that. In addition, aluminum hardly eluted until 2 cycles, and the dissolution proceeded slowly thereafter. Silicon and aluminum are elements that form the structural skeleton of A-type zeolite, and it is desirable to avoid loss due to elution as much as possible considering that it is used as a raw material for zeolite synthesis. The residual composition at each cycle is shown on the phase diagram together with the blast furnace slag composition in FIG. It was found that three cycles of treatment entered the region where A-type zeolite could be synthesized, and then deviated from the region capable of synthesis by further elution treatment. For this reason, it is optimal to perform the elution process for 3 cycles of 7.2ks.

ここで、1サイクル終了時のろ液を343Kにおいて172.8ks保持し、水分を蒸発させることで白色の粉末析出物が得られた。この粉末は高炉スラグ1gから0.38gを回収することができた。図7に示す析出物のXRDパターンより、ギ酸カルシウム((HCOO)2Ca)であることが分かった。ギ酸カルシウムは摘花効果剤やコンクリート混和剤として用いられており、大量に消費するコンクリート混和剤として安価なギ酸カルシウムを供給できる可能性を持っている。また、硫酸添加、CO2吹込みにおいてもそれぞれ硫酸化物、炭酸化物として回収可能であった。 Here, the filtrate at the end of one cycle was kept at 172.8ks at 343K and the water was evaporated to obtain a white powder precipitate. This powder was able to recover 0.38g from 1g of blast furnace slag. From the XRD pattern of the precipitate shown in FIG. 7, it was found to be calcium formate ((HCOO) 2 Ca). Calcium formate is used as a flowering effect agent and a concrete admixture, and has the potential to supply inexpensive calcium formate as a concrete admixture that is consumed in large quantities. In addition, it was possible to recover as a sulfated oxide and a carbonated carbonate by adding sulfuric acid and blowing CO 2 .

溶出処理後の残渣を合成原料とし、上記ボールミル型反応容器を用いてNaOH溶液中での水熱処理によるゼオライト合成を行った。合成原料と共に直径の5mmのSiCボールを240個および15mlの1M NaOH(純度 96.0%以上,(株)和光純薬工業)溶液を容器に入れ、343Kにおいて86.4ks直接合成法にて水熱処理を行った。水熱処理中、反応容器は75rpmで回転させた。水熱処理後、沈殿物はろ過後、イオン交換水で水洗し、定温乾燥器中343Kで乾燥させた。合成物の同定はXRDにより行った。さらに、合成物中のA型ゼオライトの定量にはXRDによる検量線法を用いた。標準物質にはMgO粉末(純度99.9%,(株)和光純薬工業)を使用し、添加量を50mass%とした。検量線は市販のA型ゼオライト粉末(268-01522,(株)和光純薬工業)とMgAl2O4粉末(純度99%, Alfa Aesar)を3:7、5:5、7:3の割合で混合した粉末を用いて作成した。さらに、水熱処理後の合成物の表面観察には走査型電子顕微鏡(SEM, XL30FEG, Philips)を用いた。観察試料はろ過、乾燥後は凝集しており、分散させるためにエタノール中で超音波洗浄後に得られた懸濁液を観察用ホルダー上に滴下し、大気中でエタノールを蒸発させ、SEM観察に供した。 The residue after the elution treatment was used as a raw material for synthesis, and zeolite synthesis was performed by hydrothermal treatment in a NaOH solution using the above ball mill type reaction vessel. 240 pieces of 5mm diameter SiC balls and 15ml of 1M NaOH (purity 96.0% or more, Wako Pure Chemical Industries, Ltd.) solution are put in a container together with synthetic raw materials, and hydrothermal treatment is carried out by 86.4ks direct synthesis method at 343K. It was. During the hydrothermal treatment, the reaction vessel was rotated at 75 rpm. After hydrothermal treatment, the precipitate was filtered, washed with ion-exchanged water, and dried at 343K in a constant temperature dryer. The compound was identified by XRD. Furthermore, the calibration curve method by XRD was used for the quantification of type A zeolite in the composite. MgO powder (purity 99.9%, Wako Pure Chemical Industries, Ltd.) was used as the standard substance, and the amount added was 50 mass%. The calibration curve is a ratio of commercially available A-type zeolite powder (268-01522, Wako Pure Chemical Industries, Ltd.) and MgAl 2 O 4 powder (purity 99%, Alfa Aesar) in a ratio of 3: 7, 5: 5, 7: 3. It was made using the powder mixed in Furthermore, a scanning electron microscope (SEM, XL30FEG, Philips) was used to observe the surface of the composite after hydrothermal treatment. The observation sample is agglomerated after filtration and drying. To disperse, the suspension obtained after ultrasonic cleaning in ethanol is dropped onto the observation holder, and the ethanol is evaporated in the atmosphere for SEM observation. Provided.

3サイクル処理後の残渣のみを用いてA型ゼオライトの直接合成を試みた。そのときの残渣の組成は高炉スラグの組成から溶出量を考慮して計算した値であり、22.5mass%SiO2 -11.2mass%Al2O3-3.8mass%CaO-0.3mass%MgOであった。図8-(a)に343Kにおいて1M NaOH溶液中で86.4ksの水熱処理後に得られる合成物のXRDパターンを示す。比較のため高炉スラグに非晶質SiO2、NaAlO2を添加した原料を用い、投入原料組成を含む全てを同じ条件で合成して得られる合成物のXRDパターンを図8-(b)に示す。溶出処理後の残渣のみを用いた場合でも、これまで報告した原料と同様にA型ゼオライトは合成された。しかし、(b)の従来材とは異なりtobermoriteとhydrogarnetのピークは確認されず、Na-P1(Na6Al6Si6O32・12H2O)の生成が確認された。これは原料中のCaO+MgOの割合が10%とこれまでより低いことで、高いCaO組成を持つtobermoriteやhydrogarnet の生成が抑えられ、さらにSi/Al比はこれまでより高いためSiリッチであるNa-P1が生成したと考えられる。A型ゼオライトの生成率は、非晶質SiO2およびNaAlO2を添加した原料からの合成物でおよそ45%なのに対して、溶出処理後の残渣のみからの合成物では51%であった。図9に高炉スラグ(a)、ギ酸処理後の残渣(b)および残渣のみからの合成物のSEM写真を示す。ギ酸処理前の高炉スラグは滑らかな表面形状をしているが、ギ酸処理を行うことにより、その表面の凹凸が増大し、全体的に小さい粒が増加した。合成物はこれまでのA型ゼオライトを含むものとほぼ同じ形状をしているが、小さい粒が多い傾向にあった。 A direct synthesis of A-type zeolite was attempted using only the residue after three cycles. The composition of the residue at that time was a value calculated in consideration of the elution amount from the composition of the blast furnace slag, and was 22.5 mass% SiO 2 -11.2 mass% Al 2 O 3 -3.8 mass% CaO-0.3 mass% MgO . Fig. 8- (a) shows the XRD pattern of the compound obtained after 86.4ks hydrothermal treatment in 1M NaOH solution at 343K. For comparison, Fig. 8- (b) shows the XRD pattern of a composite obtained by synthesizing everything including the raw material composition using the raw material with amorphous SiO 2 and NaAlO 2 added to blast furnace slag. . Even when only the residue after elution treatment was used, A-type zeolite was synthesized in the same manner as the raw materials reported so far. However, unlike the conventional material of (b), the peaks of tobermorite and hydrogarnet were not confirmed, and the formation of Na-P1 (Na 6 Al 6 Si 6 O 32 · 12H 2 O) was confirmed. This is because the ratio of CaO + MgO in the raw material is 10%, which is lower than before, and the production of tobermorite and hydrogarnet with high CaO composition is suppressed, and the Si / Al ratio is higher than before, so it is Si rich. It is thought that Na-P1 was generated. The production rate of A-type zeolite was about 45% for the product from the raw material to which amorphous SiO 2 and NaAlO 2 were added, whereas it was 51% for the product only from the residue after the elution treatment. FIG. 9 shows SEM photographs of the blast furnace slag (a), the residue (b) after the formic acid treatment, and the composite composed solely of the residue. The blast furnace slag before formic acid treatment has a smooth surface shape, but by performing the formic acid treatment, the irregularities on the surface increased and the number of small grains increased as a whole. The synthesized product has almost the same shape as that containing the conventional A-type zeolite, but tends to have many small particles.

A型ゼオライトを合成するために高炉スラグの予備処理を行った報告として、塩酸または硝酸で全溶解させた後、シリカゲルのみを生成させ、そこにAl源を加えて水熱合成を行う方法(特許文献2)や、スラグにNa2CO3を加えて1023〜1173Kで焼成後、pH4以下で酸処理および水洗し、水熱合成を行う方法(特許文献3)があるが、これらは高炉スラグ単独原料ではなく、さらに高温熱源が必要といった短所がある。また特許文献2、特許文献3、特許文献4、特許文献5には、原料粉末を酸水溶液で処理することによって原料中のカルシウム化合物を除去できると記載されているが、そのカルシウム選択性は著しく低い。 As a report of pretreatment of blast furnace slag to synthesize A-type zeolite, after completely dissolving with hydrochloric acid or nitric acid, only silica gel is generated, and Al source is added to the hydrothermal synthesis (patented) Document 2) and, after firing at 1023~1173K added Na 2 CO 3 to slag, acid treatment and washing with pH4 or less, there is a method (Patent Document 3) to perform hydrothermal synthesis, these blast furnace slag alone There is a disadvantage that a high-temperature heat source is required instead of raw materials. Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5 describe that the calcium compound in the raw material can be removed by treating the raw material powder with an aqueous acid solution, but the calcium selectivity is remarkably high. Low.

一方、本研究では、溶出プロセスが室温で行われる点と、残渣をそのまま水熱合成に用いる点で従来の方法よりも優れている。またギ酸またはクエン酸を用いることで選択的にカルシウム化合物を除去可能になった。   On the other hand, this study is superior to conventional methods in that the elution process is performed at room temperature and the residue is used as it is for hydrothermal synthesis. In addition, calcium compounds can be selectively removed by using formic acid or citric acid.

溶出処理及び水熱合成用ボールミル型反応容器の概略図。Schematic of a ball mill type reaction vessel for elution treatment and hydrothermal synthesis. 各種酸によるボールミル型反応容器を使用した場合および静置した場合の室温、2時間の高炉水砕スラグの溶出処理後のCa濃度。Ca concentration after elution treatment of granulated blast furnace slag for 2 hours at room temperature when using a ball mill type reaction vessel with various acids and standing. ギ酸、クエン酸、塩酸を用いた室温、2時間の高炉水砕スラグからの溶出処理後の組成をプロットしたSiO2-Al2O3- CaO+MgO系状態図。SiO 2 —Al 2 O 3 —CaO + MgO phase diagram plotting the composition after elution treatment from granulated blast furnace slag at room temperature for 2 hours using formic acid, citric acid, and hydrochloric acid. ギ酸の初期pHの違いによる高炉水砕スラグからのCa、Si、Alの溶出量。Elution amount of Ca, Si and Al from blast furnace granulated slag due to differences in initial pH of formic acid. 高炉水砕スラグからの初期pHが2のギ酸溶液による室温、2時間の溶出処理回数とCa、Mg、Al、Siの重量減少率。The number of elution treatments for 2 hours with a formic acid solution with an initial pH of 2 from granulated blast furnace slag and the weight reduction rate of Ca, Mg, Al, and Si. 高炉水砕スラグからの初期pHが2のギ酸溶液による室温、2時間の溶出処理回数1、3、6回時の残渣の組成をプロットしたSiO2-Al2O3- CaO+MgO系状態図。SiO 2 -Al 2 O 3 -CaO + MgO phase diagram plotting the composition of the residue from the granulated blast furnace slag with a formic acid solution with an initial pH of 2 at room temperature for 2 hours, elution times 1, 3, 6 . 溶出処理後の溶液を乾燥させることにより得た粉末のX線回折パターン。X-ray diffraction pattern of the powder obtained by drying the solution after the elution treatment. 高炉水砕スラグからの初期pHが2のギ酸溶液による室温、2時間の溶出処理を3回行った後に得られる残渣を原料とした水熱処理での生成物及び高炉スラグにシリカ及びアルミン酸ナトリウムを添加してSi/Al=1、CaO+MgO=15mass%に制御した原料を使用し水熱処理をした生成物のX線回折パンターン。Silica and sodium aluminate were added to the product and hydroblastic slag from the residue obtained after 3 times of elution treatment at room temperature for 2 hours with a formic acid solution with an initial pH of 2 from granulated blast furnace slag and blast furnace slag. X-ray diffraction pattern of the product hydrotreated by using raw materials with added Si / Al = 1 and CaO + MgO = 15 mass%. 原料とした高炉スラグ、ギ酸による溶出処理後の残渣、その残渣を用いた水熱処理後の生成物の電子顕微鏡写真。Electron micrographs of blast furnace slag as raw material, residue after elution treatment with formic acid, and product after hydrothermal treatment using the residue.

Claims (5)

鉄鋼スラグ等の鉄鋼産業副生成物からのマグネシウム及びカルシウム除去回収方法において、室温において、ギ酸もしくはクエン酸により溶解させて処理することを特徴とするマグネシウム及びカルシウム除去回収方法。   A method for removing and recovering magnesium and calcium from steel industry by-products such as steel slag, wherein the magnesium and calcium are recovered by treatment with formic acid or citric acid at room temperature. 前記鉄鋼スラグ等の鉄鋼産業副生成物と前記ギ酸もしくは前記クエン酸の溶解反応において、ボールミル型反応容器を用いることを特徴とする請求項1に記載のマグネシウム及びカルシウム除去回収方法。   The magnesium and calcium removal and recovery method according to claim 1, wherein a ball mill type reaction vessel is used in the dissolution reaction of the steel industry by-products such as steel slag and the formic acid or the citric acid. 請求項1及び2に記載したマグネシウム及びカルシウム溶解溶液を乾燥、硫酸添加もしくは炭酸ガスを吹込むことを特徴とするマグネシウム及びカルシウム除去回収方法。   A method for removing and recovering magnesium and calcium, comprising drying the magnesium and calcium solution according to claim 1 and adding sulfuric acid or blowing carbon dioxide. 前記マグネシウム及び前記カルシウム除去回収処理後の残渣を、アルカリ溶液中で加熱することを特徴とするA型ゼオライトの製造方法。   A process for producing A-type zeolite, wherein the residue after the magnesium and calcium removal and recovery treatment is heated in an alkaline solution. 前記残渣と前記アルカリ溶液を、ボールミル型反応容器中で、加熱処理を行うことを特徴とする請求項4に記載のA型ゼオライト製造方法。   The A-type zeolite production method according to claim 4, wherein the residue and the alkaline solution are subjected to a heat treatment in a ball mill type reaction vessel.
JP2006043979A 2006-02-21 2006-02-21 Removal and recovery of magnesium and calcium, and a type zeolite manufacturing method from steel industry by-product Pending JP2007222713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006043979A JP2007222713A (en) 2006-02-21 2006-02-21 Removal and recovery of magnesium and calcium, and a type zeolite manufacturing method from steel industry by-product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006043979A JP2007222713A (en) 2006-02-21 2006-02-21 Removal and recovery of magnesium and calcium, and a type zeolite manufacturing method from steel industry by-product

Publications (1)

Publication Number Publication Date
JP2007222713A true JP2007222713A (en) 2007-09-06

Family

ID=38545016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006043979A Pending JP2007222713A (en) 2006-02-21 2006-02-21 Removal and recovery of magnesium and calcium, and a type zeolite manufacturing method from steel industry by-product

Country Status (1)

Country Link
JP (1) JP2007222713A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929186B1 (en) 2007-11-19 2009-12-01 재단법인 포항산업과학연구원 How to recycle magnesium waste
WO2010084958A1 (en) 2009-01-23 2010-07-29 国立大学法人秋田大学 Hydro composite with iron and steel slag as starting material, and manufacturing method therefor
KR101002270B1 (en) 2009-03-13 2010-12-20 (재)율촌재단 Carbon dioxide absorbent and methods for manufacturing and using the same
JP2011011955A (en) * 2009-07-03 2011-01-20 Akita Univ Method for manufacturing inorganic ion exchanger
JP2011106969A (en) * 2009-11-18 2011-06-02 Railway Technical Res Inst Method of measuring total amount of alkali in hardened concrete
JP2013040066A (en) * 2011-08-12 2013-02-28 Osaka Prefecture Univ Method for manufacturing lamellar silicate compound
KR101315350B1 (en) 2011-12-09 2013-10-08 주식회사 포스코 Treating method of byproduct
WO2014007332A1 (en) 2012-07-05 2014-01-09 アイシン精機株式会社 Alkali metal and/or alkali earth metal extraction method
WO2014007331A1 (en) 2012-07-05 2014-01-09 アイシン精機株式会社 Alkali metal and/or alkali earth metal extraction method
JP2015132498A (en) * 2014-01-10 2015-07-23 住友金属鉱山株式会社 Liquid analysis method, metal recovery method, and scale recurrence control method
CN106552662A (en) * 2016-11-05 2017-04-05 上海大学 The method that molecular sieve catalyst is prepared using smelting steel slag
JP2020081936A (en) * 2018-11-20 2020-06-04 アイシン精機株式会社 Modification method for solid matter including calcium silicate
CN112174153A (en) * 2020-09-11 2021-01-05 重庆大学 Method for preparing A-type zeolite by utilizing titanium-containing blast furnace slag
CN113003584A (en) * 2021-03-26 2021-06-22 东北大学 Method for preparing mesoporous silicon-aluminum material by using steel slag
JP2021146309A (en) * 2020-03-23 2021-09-27 国立大学法人山梨大学 Method for separating calcium and silicon from blast furnace slag

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929186B1 (en) 2007-11-19 2009-12-01 재단법인 포항산업과학연구원 How to recycle magnesium waste
WO2010084958A1 (en) 2009-01-23 2010-07-29 国立大学法人秋田大学 Hydro composite with iron and steel slag as starting material, and manufacturing method therefor
JP2015038022A (en) * 2009-01-23 2015-02-26 国立大学法人 千葉大学 Hydro composite material with steel slag as raw material and production method thereof
KR101002270B1 (en) 2009-03-13 2010-12-20 (재)율촌재단 Carbon dioxide absorbent and methods for manufacturing and using the same
JP2011011955A (en) * 2009-07-03 2011-01-20 Akita Univ Method for manufacturing inorganic ion exchanger
JP2011106969A (en) * 2009-11-18 2011-06-02 Railway Technical Res Inst Method of measuring total amount of alkali in hardened concrete
JP2013040066A (en) * 2011-08-12 2013-02-28 Osaka Prefecture Univ Method for manufacturing lamellar silicate compound
KR101315350B1 (en) 2011-12-09 2013-10-08 주식회사 포스코 Treating method of byproduct
US9631256B2 (en) 2012-07-05 2017-04-25 Aisin Seiki Kabushiki Kaisha Alkali metal and/or alkali earth metal extraction method
WO2014007332A1 (en) 2012-07-05 2014-01-09 アイシン精機株式会社 Alkali metal and/or alkali earth metal extraction method
WO2014007331A1 (en) 2012-07-05 2014-01-09 アイシン精機株式会社 Alkali metal and/or alkali earth metal extraction method
US10113214B2 (en) 2012-07-05 2018-10-30 Aisin Seiki Kabushiki Kaisha Alkali metal and/or alkali earth metal extraction method
JP2015132498A (en) * 2014-01-10 2015-07-23 住友金属鉱山株式会社 Liquid analysis method, metal recovery method, and scale recurrence control method
CN106552662A (en) * 2016-11-05 2017-04-05 上海大学 The method that molecular sieve catalyst is prepared using smelting steel slag
JP2020081936A (en) * 2018-11-20 2020-06-04 アイシン精機株式会社 Modification method for solid matter including calcium silicate
JP7148066B2 (en) 2018-11-20 2022-10-05 株式会社アイシン Method for modifying solids containing calcium silicate
JP2021146309A (en) * 2020-03-23 2021-09-27 国立大学法人山梨大学 Method for separating calcium and silicon from blast furnace slag
JP7388633B2 (en) 2020-03-23 2023-11-29 国立大学法人山梨大学 Method for separating calcium and silicon from blast furnace slag
CN112174153A (en) * 2020-09-11 2021-01-05 重庆大学 Method for preparing A-type zeolite by utilizing titanium-containing blast furnace slag
CN113003584A (en) * 2021-03-26 2021-06-22 东北大学 Method for preparing mesoporous silicon-aluminum material by using steel slag

Similar Documents

Publication Publication Date Title
JP2007222713A (en) Removal and recovery of magnesium and calcium, and a type zeolite manufacturing method from steel industry by-product
Cheng et al. Preparation, optimization, and application of sustainable ceramsite substrate from coal fly ash/waterworks sludge/oyster shell for phosphorus immobilization in constructed wetlands
CN102320615B (en) A kind of take SILICA FUME as the method that precipitated silica is prepared in raw material carbonization
AU2006337405B2 (en) An improved process for the preparation of magnesia (MGO)
CN103011203B (en) Method for treatment of chlorinated waste molten salt generated in TiCl4 production process
CN103738986B (en) A kind of dolomite calcination water-soluble separating calcium and magnesium produce the method for magnesium hydroxide and calcium carbonate
JP5202514B2 (en) Carbonate group-containing magnesium hydroxide particles and method for producing the same
KR20140053244A (en) Process for producing zeolite a from aluminoborosilicate glass as raw material
CN116081673A (en) Calcium aluminum-based bimetallic oxide chlorine removing agent and preparation method and application thereof
CN106673028A (en) Preparation method of alkaline earth metal compound
KR20090051588A (en) The method to product caco3
Wajima et al. Synthesis of hydrocalumite-like adsorbent from blast furnace slag using alkali fusion
JP2014080347A (en) Extraction method of magnesium oxide from semifired dolomite
CN101374767B (en) An improved process for preparation of magnesium oxide
CN105084398B (en) A kind of method of asbestos tailings comprehensive utilization
EP1373139B1 (en) Extraction of silica and magnesium compounds from olivine
CN101880772B (en) Method for recycling magnesium from magnesium-containing waste solution
KR101993156B1 (en) Manufacturing method of zinc sulfate powder from recycling by-product of electric arc furnace dust including crude zinc oxide
CN106379923B (en) A kind of technique of waste residue production highly pure active magnesia using smelting magnesium
CN1299992C (en) High purity magnesium oxide cleaning production method
JP2010189241A (en) Method for producing complex of hydroxyapatite and zeolite
CN114288984A (en) Modified lime nitrogen slag composite particle, preparation method thereof and application thereof in stabilized solidification of beryllium-containing solid waste or polluted soil
CN116986832B (en) Integrated method for removing titanium gypsum by microwave pressurization and preparing high-strength gypsum
CN109133102B (en) Method for directly utilizing low-grade magnesite surface modification chemistry
JPH04357110A (en) High-density crude crystal line particle magnesia clinker