JP2013040066A - Method for manufacturing lamellar silicate compound - Google Patents

Method for manufacturing lamellar silicate compound Download PDF

Info

Publication number
JP2013040066A
JP2013040066A JP2011176839A JP2011176839A JP2013040066A JP 2013040066 A JP2013040066 A JP 2013040066A JP 2011176839 A JP2011176839 A JP 2011176839A JP 2011176839 A JP2011176839 A JP 2011176839A JP 2013040066 A JP2013040066 A JP 2013040066A
Authority
JP
Japan
Prior art keywords
silicate compound
aqueous solution
layered silicate
mixed aqueous
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011176839A
Other languages
Japanese (ja)
Other versions
JP5665689B2 (en
Inventor
Tomohiro Iwasaki
智宏 岩▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Prefecture University PUC
Original Assignee
Osaka University NUC
Osaka Prefecture University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Prefecture University PUC filed Critical Osaka University NUC
Priority to JP2011176839A priority Critical patent/JP5665689B2/en
Publication of JP2013040066A publication Critical patent/JP2013040066A/en
Application granted granted Critical
Publication of JP5665689B2 publication Critical patent/JP5665689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a lamellar silicate compound, which provide a large crystal.SOLUTION: The method for manufacturing a lamellar silicate compound includes a hydrothermal treatment step of reacting a mixed aqueous solution containing SiOand NaO under a hydrothermal condition. Before the hydrothermal treatment step is carried out, a charging step of filling the mixed aqueous solution and a ball for a medium in a vessel is carried out; and in the hydrothermal step, the vessel filled with the mixed aqueous solution and the ball for a medium is placed for a first predetermined time under a hydrothermal condition, and thereafter, the ball for a medium is removed and the mixed aqueous solution is placed for a second predetermined time under a hydrothermal condition.

Description

本発明は、例えば、触媒、吸着剤、イオン交換体、体質顔料、複合材料の基材等に用いられる層状ケイ酸塩化合物の製造方法に関するものであり、さらに詳しくは、層状ケイ酸塩化合物結晶の合成時間の短縮を達成した上で、大きな結晶が得られる層状ケイ酸塩化合物の製造方法に関する。   The present invention relates to a method for producing a layered silicate compound used for, for example, a catalyst, an adsorbent, an ion exchanger, an extender pigment, a base material of a composite material, and more specifically, a layered silicate compound crystal It is related with the manufacturing method of the layered silicate compound from which the big crystal | crystallization is obtained after achieving shortening of the synthesis time of.

マガディアイト(magadiite)、カネマイト(kanemite)、マカタイト(makatite)、アイラアイト(ilerite)、ケニヤアイト(kenyaite)等の層状ケイ酸塩鉱物は、層間が伸縮可能であることから、吸着剤、脱臭剤等の収着材料、イオン交換体、軟化剤、触媒等の担体として用いられている。さらに、層状ケイ酸塩鉱物は、シリカ等の酸化物によるインターカレーションや、層表面のシラノール基の修飾により、その層構造を変化させて被吸着物質に対する選択性等を制御したり耐熱性を向上させたりして、吸着材料、カラム材等の分離用材、撥水材料、撥油材料、排ガス浄化用等の触媒担体、充填材等に利用されている。   Layered silicate minerals such as magadiite, kanemite, macaite, iraite, kenyaite, and the like can be expanded and contracted between layers. It is used as a carrier for sorption materials, ion exchangers, softeners, catalysts and the like. In addition, layered silicate minerals can control the selectivity to adsorbed substances and improve heat resistance by changing the layer structure by intercalation with oxides such as silica and modification of silanol groups on the surface of the layer. In other words, it has been used as an adsorbent material, a separation material such as a column material, a water repellent material, an oil repellent material, a catalyst carrier for purifying exhaust gas, a filler, and the like.

これらの層状ケイ酸塩鉱物の中でもアイラアイト(化学式NaO・8SiO・10HO)は、平面状ケイ酸骨格の積層構造をもち、層間にシラノール基を有しており、マガディアイトやケニヤアイト等の他の層状ケイ酸塩鉱物では見られない特徴的な性質をもっている。例えば、アイラアイトの粒子の形状は、非常に規則的な長方形の板状であり、分散性が極めて高いことから、各種機能性材料におけるホスト化合物として、無機ナノ粒子の被覆処理による紫外線遮蔽材料(例えば、特許文献1参照)、パール顔料(例えば、特許文献2参照)、インターカレーションによるメソポア多孔体(例えば、特許文献3参照)、触媒(例えば、非特許文献1参照)、有機・無機ハイブリッド材料(例えば、非特許文献2参照)に利用されている。 Among these layered silicate minerals, Irayaite (chemical formula Na 2 O · 8SiO 2 · 10H 2 O) has a layered structure of planar silicic acid skeleton, and has silanol groups between layers, magadiite and Kenyaite. It has characteristic properties not found in other layered silicate minerals. For example, the shape of the particles of Iraite is a very regular rectangular plate and has a very high dispersibility. Therefore, as a host compound in various functional materials, an ultraviolet shielding material (for example, an inorganic nanoparticle coating treatment) , Patent document 1), pearl pigment (for example, refer to patent document 2), mesopore porous material by intercalation (for example, refer to patent document 3), catalyst (for example, refer to non-patent document 1), organic / inorganic hybrid material (See, for example, Non-Patent Document 2).

アイラアイトは、天然に存在しないため、人工的に合成することによってのみ得られる。アイラアイトの合成には、コロイダルシリカと水酸化ナトリウムとを混合した混合水溶液(例えば、SiO1モルあたりNaO0.25モル、水7.5モルの組成を有する)をステンレス鋼(SUS304)製の容器に充填して、オーブン内に入れることにより、100℃程度の水熱条件下で反応させる合成方法が広く採用されている(例えば、特許文献4参照)。 Since Iraite does not exist in nature, it can only be obtained by artificial synthesis. For the synthesis of islayite, a mixed aqueous solution in which colloidal silica and sodium hydroxide are mixed (for example, a composition of 0.25 mol of Na 2 O and 7.5 mol of water per mol of SiO 2 ) is made of stainless steel (SUS304). A synthesis method in which the reaction is carried out under a hydrothermal condition of about 100 ° C. by filling the container in an oven and placing it in an oven is widely adopted (see, for example, Patent Document 4).

特許第3876521号公報Japanese Patent No. 38765521 特開2006−124524号公報JP 2006-124524 A 特許第2949215号公報Japanese Patent No. 2949215 特開平9−227116号公報JP-A-9-227116

「Synthesis and characterization of transition metal oxide−pillared materials with mesoporosity from layered silicate ilerite」Sun Jin Kim、Eun Ji Kim、Tae Bum Kang、Kwang−Doeg Jung、Oh−Shim Joo、Chae−Ho Shin、Journal of Porous Materials 13 (2006) 27−35"Synthesis and characterization of transition metal oxide-pillared materials with mesoporosity from layered silicate ilerite" Sun Jin Kim, Eun Ji Kim, Tae Bum Kang, Kwang-Doeg Jung, Oh-Shim Joo, Chae-Ho Shin, Journal of Porous Materials 13 (2006) 27-35 「Synthesis of new microporous layered organic−inorganic hybrid nanocomposites by alkoxysilylation of a crystalline layered silicate、ilerite」Ryo Ishii、Takuji Ikeda、Tetsuji Itoh、Takeo Ebina、Toshirou Yokoyama、Takaaki Hanaoka、Fujio Mizukami、Journal of Materials Chemistry 16 (2006) 4035−4043"Synthesis of new microporous layered organic-inorganic hybrid nanocomposites by alkoxysilylation of a crystalline layered silicate, ilerite" Ryo Ishii, Takuji Ikeda, Tetsuji Itoh, Takeo Ebina, Toshirou Yokoyama, Takaaki Hanaoka, Fujio Mizukami, Journal of Materials Chemistry 16 (2006) 4035-4043

ところで、上述したような合成方法では、混合水溶液を水熱条件下に置くことで、比較的大きい分子量のケイ酸ナトリウム分子が加水分解により低分子化し、さらに低分子化したケイ酸ナトリウム分子間で縮重合が起こることで、シリカ骨格の2次構造ユニットと呼ばれる、アイラアイトの結晶核の前駆体が生成する。これら前駆体間でさらに縮重合が進むことで、アイラアイトの結晶核が生成し、結晶核が結晶成長することで、アイラアイトの結晶が生成することになる。   By the way, in the synthesis method as described above, by placing the mixed aqueous solution under hydrothermal conditions, sodium silicate molecules having a relatively large molecular weight are reduced in molecular weight by hydrolysis, and further between the sodium silicate molecules that have been reduced in molecular weight. When the condensation polymerization occurs, a precursor of the crystal nucleus of Iraite called a secondary structure unit of a silica skeleton is generated. As the polycondensation proceeds further between these precursors, Iraite crystal nuclei are formed, and the crystal nuclei grow to produce Ilayite crystals.

しかし、結晶核が生成した後の結晶成長は速やかに進行するが、結晶核が生成するまでの誘導期間が非常に長く、1週間以上を必要とし、例えば100℃で水熱処理を行った場合では誘導期間は約18日である。なお、水熱処理における加熱温度を上げることで誘導期間を僅かに短縮できるが、温度上昇に伴って他の層状ケイ酸塩化合物(マガディアイト)も生成しはじめることから、温度上昇による誘導期間の大幅な短縮は困難である。このため、誘導期間が非常に長いので、電力等の消費エネルギーが多くなり、その結果、製造経費が高くなり、現状ではアイラアイトは工業的な応用展開には至っていない。   However, although crystal growth proceeds rapidly after the formation of crystal nuclei, the induction period until the formation of crystal nuclei is very long, requiring one week or more. For example, when hydrothermal treatment is performed at 100 ° C. The induction period is about 18 days. Although the induction period can be shortened slightly by increasing the heating temperature in hydrothermal treatment, other layered silicate compounds (magadiaite) begin to form as the temperature rises. Such shortening is difficult. For this reason, since the induction period is very long, energy consumption such as electric power increases, and as a result, the manufacturing cost increases, and at present, Ilayite has not yet achieved industrial application development.

この課題を解決するべく本出願人は、混合水溶液とセラミック(金属酸化物)製の媒体用ボールとを容器内に充填して、水熱処理工程を実行する層状ケイ酸塩化合物の製造方法を以前に着想し出願した。これにより、アイラアイトの結晶核のボール表面での不均一核生成が促進されることによって、結晶核の前駆体の生成が促進され、前駆体を水熱処理することで速やかに結晶核の生成が起こり、合成時間の短縮を行った。
さらに、本出願人は、混合水溶液とセラミック製の媒体用ボールとを容器内に充填して、水熱処理工程を実行する層状ケイ酸塩化合物の製造方法について検討した。その結果、水熱処理工程において、混合水溶液と媒体用ボールとを充填した容器を水熱条件下に所定時間(例えば、1日等)、置いた後、媒体用ボールを取り除いて混合水溶液のみを水熱条件下に所定時間(例えば、1週間等)、置くことにより、大きな結晶(例えば、3μm以上等)が得られることを見出した。
In order to solve this problem, the present applicant has previously proposed a method for producing a layered silicate compound in which a mixed aqueous solution and a ceramic (metal oxide) medium ball are filled in a container and a hydrothermal treatment step is performed. I applied for an idea. This promotes the generation of heterogeneous nuclei on the ball surface of the crystal nuclei of Iraite, thereby facilitating the formation of the precursors of the crystal nuclei and the rapid formation of crystal nuclei by hydrothermal treatment of the precursors. The synthesis time was shortened.
Furthermore, the present applicant studied a method for producing a layered silicate compound in which a mixed aqueous solution and a ceramic medium ball are filled in a container and a hydrothermal treatment step is performed. As a result, in the hydrothermal treatment step, the container filled with the mixed aqueous solution and the medium ball is placed under a hydrothermal condition for a predetermined time (for example, one day), and then the medium ball is removed to remove only the mixed aqueous solution. It was found that large crystals (for example, 3 μm or more) can be obtained by placing them under thermal conditions for a predetermined time (for example, one week).

すなわち、本発明の層状ケイ酸塩化合物の製造方法は、SiOとNaOとを含有する混合水溶液を、水熱条件下で反応させる水熱処理工程を含む層状ケイ酸塩化合物の製造方法であって、前記水熱処理工程を実行する前に、前記混合水溶液と、媒体用ボールとを容器内に充填する仕込工程を実行し、前記水熱処理工程において、前記混合水溶液と、媒体用ボールとを充填した容器を水熱条件下に第一所定時間、置いた後、前記媒体用ボールを取り除いて前記混合水溶液を水熱条件下に第二所定時間、置くようにしている。 That is, the method for producing a layered silicate compound of the present invention is a method for producing a layered silicate compound including a hydrothermal treatment step in which a mixed aqueous solution containing SiO 2 and Na 2 O is reacted under hydrothermal conditions. Before performing the hydrothermal treatment step, the charging step of filling the mixed aqueous solution and the medium ball into a container is performed. In the hydrothermal treatment step, the mixed aqueous solution and the medium ball are After the filled container is placed under hydrothermal conditions for a first predetermined time, the medium ball is removed and the mixed aqueous solution is placed under hydrothermal conditions for a second predetermined time.

ここで、「第一所定時間」及び「第二所定時間」とは、実験者等によって予め決められた任意の時間である。   Here, the “first predetermined time” and the “second predetermined time” are arbitrary times determined in advance by an experimenter or the like.

本発明の層状ケイ酸塩化合物の製造方法によれば、層状ケイ酸塩化合物結晶の合成時間の短縮を可能とするとともに、大きな結晶を得ることができる。   According to the method for producing a layered silicate compound of the present invention, the synthesis time of the layered silicate compound crystal can be shortened and a large crystal can be obtained.

(他の課題を解決するための手段および効果)
また、本発明の層状ケイ酸塩化合物の製造方法は、前記容器は、ボールミルであり、前記水熱処理工程を実行する前に、前記ボールミルを用いて混合水溶液をミリング処理するミリング処理工程を実行するようにしてもよい。
本発明の層状ケイ酸塩化合物の製造方法によれば、層状ケイ酸塩化合物結晶の合成時間の短縮をより可能とし、さらにミリング処理工程で使用したボールミルをそのまま水熱処理工程で使用することができる。
(Means and effects for solving other problems)
Further, in the method for producing a layered silicate compound of the present invention, the container is a ball mill, and before the hydrothermal treatment step is performed, a milling process step of milling the mixed aqueous solution using the ball mill is performed. You may do it.
According to the method for producing a layered silicate compound of the present invention, the synthesis time of the layered silicate compound crystal can be further shortened, and the ball mill used in the milling treatment step can be used as it is in the hydrothermal treatment step. .

また、本発明の層状ケイ酸塩化合物の製造方法において、前記第一所定時間は、12時間以上36時間以下であるようにしてもよい。
また、本発明の層状ケイ酸塩化合物の製造方法において、前記媒体用ボールは、ジルコニアボールであるようにしてもよい。
また、本発明の層状ケイ酸塩化合物の製造方法において、前記媒体用ボールの直径は、1mm以上5mm以下であるようにしてもよい。
Moreover, in the manufacturing method of the layered silicate compound of this invention, you may make it said 1st predetermined time be 12 hours or more and 36 hours or less.
In the method for producing a layered silicate compound of the present invention, the medium ball may be a zirconia ball.
In the method for producing a layered silicate compound of the present invention, the diameter of the medium ball may be 1 mm or more and 5 mm or less.

そして、本発明の層状ケイ酸塩化合物の製造方法は、前記混合水溶液は、23重量%以上26重量%以下のSiOと、6重量%以上8重量%以下のNaOとを含有するようにしてもよい。
さらに、本発明の層状ケイ酸塩化合物の製造方法は、前記層状ケイ酸塩化合物は、アイラアイトであり、前記水熱条件下を、90℃以上130℃以下とするようにしてもよい。
And the manufacturing method of the layered silicate compound of the present invention is such that the mixed aqueous solution contains 23 wt% or more and 26 wt% or less of SiO 2 and 6 wt% or more and 8 wt% or less of Na 2 O. It may be.
Furthermore, in the method for producing a layered silicate compound of the present invention, the layered silicate compound may be Iraite, and the hydrothermal condition may be 90 ° C. or higher and 130 ° C. or lower.

110℃のオーブン内に入れた水熱処理時間と収率との関係を示すグラフ。The graph which shows the relationship between the hydrothermal treatment time put in 110 degreeC oven, and a yield. 110℃のオーブン内に入れた水熱処理時間と収率との関係を示すグラフ。The graph which shows the relationship between the hydrothermal treatment time put in 110 degreeC oven, and a yield. 層状ケイ酸塩化合物結晶の大きさと水熱処理時間との関係を示すグラフ。The graph which shows the relationship between the magnitude | size of a layered silicate compound crystal | crystallization, and hydrothermal treatment time.

以下、本発明の実施形態について説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。   Hereinafter, embodiments of the present invention will be described. Note that the present invention is not limited to the embodiments described below, and it goes without saying that various aspects are included without departing from the spirit of the present invention.

本発明に係る層状ケイ酸塩化合物の製造方法は、混合水溶液を作製する混合水溶液作製工程(A)と、混合水溶液と媒体用ボールとを容器内に充填する仕込工程(B)と、混合水溶液と媒体用ボールとを水熱条件下で反応させる第一水熱処理工程(C)と、混合水溶液のみを水熱条件下で反応させる第二水熱処理工程(D)とを含むことになる。   The method for producing a layered silicate compound according to the present invention includes a mixed aqueous solution preparation step (A) for preparing a mixed aqueous solution, a preparation step (B) for filling the mixed aqueous solution and a medium ball into a container, and a mixed aqueous solution. The first hydrothermal treatment step (C) in which the medium balls are reacted under hydrothermal conditions, and the second hydrothermal treatment step (D) in which only the mixed aqueous solution is reacted under hydrothermal conditions.

(A)混合水溶液作製工程
SiOとNaOとを含有する混合水溶液を作製する。
上記SiOとしては、アモルファスシリカの使用が好適である。一般には、湿式法で合成されたシリカであればよく、特にその履歴は限定されない。例えば、珪酸ソーダやアルコキシドを原料として得られるシリカや、ケイ酸塩鉱石を鉱酸処理して得られるアモルファスシリカを用いることができる。
上記NaOとしては、水酸化ナトリウムの使用が好適である。
なお、水ガラス(珪酸ソーダ、(4号水ガラス))をそのまま使用、もしくは、水ガラスにシリカ源やナトリウム源や水を添加し濃度調整して使用することもできる。
そして、混合水溶液は、23重量%以上26重量%以下のSiOと、6重量%以上8重量%以下のNaOとを含有することが好ましい。
(A) to prepare a mixed aqueous solution containing a mixed aqueous solution preparation step SiO 2 and Na 2 O.
As the SiO 2, it is preferable to use amorphous silica. In general, silica synthesized by a wet method may be used, and its history is not particularly limited. For example, silica obtained using sodium silicate or alkoxide as a raw material, or amorphous silica obtained by treating a silicate ore with a mineral acid can be used.
As the Na 2 O, using sodium hydroxide is preferred.
Water glass (sodium silicate, (No. 4 water glass)) can be used as it is, or it can be used by adjusting the concentration by adding a silica source, a sodium source or water to the water glass.
The mixed aqueous solution preferably contains 23 wt% or more and 26 wt% or less of SiO 2 and 6 wt% or more and 8 wt% or less of Na 2 O.

(B)仕込工程
混合水溶液と媒体用ボールとを容器内に充填する。
上記容器として、生成物の汚染防止のために、セラミック製、もしくは、内面がフッ素樹脂等の耐摩耗材料で被覆された金属製のものを使用することが好ましい。
上記媒体用ボールとしては、生成物の汚染防止と結晶核生成の促進とのために、ジルコニア製、ステンレス鋼製、ナイロン製、アルミナ製、炭化ケイ素製が好ましく、セラミック製がより好ましく、ジルコニア製が特に好ましい。そして、媒体用ボールの直径は、0.1mm以上10mm以下であることが好ましく、1mm以上5mm以下であることがより好ましく、1mm以上3mm以下であることが特に好ましい。
(B) Preparation process The mixed aqueous solution and medium balls are filled in a container.
In order to prevent contamination of the product, it is preferable to use a container made of ceramic or a metal whose inner surface is coated with a wear resistant material such as a fluororesin.
The medium balls are preferably made of zirconia, stainless steel, nylon, alumina, silicon carbide, more preferably made of ceramic, and more preferably made of zirconia in order to prevent product contamination and promote crystal nucleation. Is particularly preferred. The diameter of the medium ball is preferably from 0.1 mm to 10 mm, more preferably from 1 mm to 5 mm, and particularly preferably from 1 mm to 3 mm.

(C)第一水熱処理工程
媒体用ボールと混合水溶液とをともにオーブン内に入れることにより、90℃以上130℃以下の水熱条件下で反応させる。オーブン内に入れる時間は、6時間以上であればよいが、12時間以上36時間以下であることが好ましい。
(C) First hydrothermal treatment step Both the medium ball and the mixed aqueous solution are placed in an oven to react under hydrothermal conditions of 90 ° C or higher and 130 ° C or lower. The time to put in the oven may be 6 hours or more, but is preferably 12 hours or more and 36 hours or less.

(D)第二水熱処理工程
先の容器から混合水溶液を取り出した後、混合水溶液のみを新たな容器内に充填してオーブン内に入れることにより、90℃以上130℃以下の水熱条件下で反応させる。オーブン内に入れる時間は、12時間以上であればよいが、24時間以上であることが好ましい。
上記新たな容器としては、生成物の汚染防止のために、セラミック製、もしくは、内面がフッ素樹脂等の耐摩耗材料で被覆された金属製のものを使用することが好ましい。
(D) Second hydrothermal treatment step After the mixed aqueous solution is taken out from the previous container, only the mixed aqueous solution is filled in a new container and placed in an oven, under hydrothermal conditions of 90 ° C or higher and 130 ° C or lower. React. The time for placing in the oven may be 12 hours or longer, but is preferably 24 hours or longer.
The new container is preferably made of ceramic or a metal whose inner surface is coated with a wear resistant material such as fluororesin in order to prevent contamination of the product.

なお、(B)仕込工程と(C)第一水熱処理工程との間に、ミリング処理工程を実行してもよい。このとき、ボールミルの回転速度は理論臨界回転速度の20%〜150%であることが好ましく、80%〜120%がより好ましい。また、ミリング処理時の温度は0℃〜40℃であることが好ましく、20℃〜30℃であることがより好ましい。さらに、ミリング処理時間は、収率の点から、2時間〜12時間であることが好ましく、3時間〜6時間であることがより好ましい。   In addition, you may perform a milling process process between the (B) preparation process and the (C) 1st hydrothermal process. At this time, the rotational speed of the ball mill is preferably 20% to 150%, more preferably 80% to 120% of the theoretical critical rotational speed. Moreover, it is preferable that the temperature at the time of a milling process is 0 to 40 degreeC, and it is more preferable that it is 20 to 30 degreeC. Furthermore, the milling treatment time is preferably 2 hours to 12 hours, more preferably 3 hours to 6 hours from the viewpoint of yield.

以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらによりなんら制限されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

<実施例1> 実施例1に係るアイラアイトの製造
(A)混合水溶液作製工程
4号水ガラス(関東化学株式会社製、SiO:24.3重量%、NaO:6.7重量%)を準備した。
(B)仕込工程
容量200mlのステンレス鋼(SUS304)製の密閉容器に、39g(約30ml)の4号水ガラスと、235gの直径3mmのジルコニアボールを仕込んだ。
<Example 1> Manufacture of Iraite according to Example 1 (A) Mixed aqueous solution preparation step No. 4 water glass (manufactured by Kanto Chemical Co., Inc., SiO 2 : 24.3% by weight, Na 2 O: 6.7% by weight) Prepared.
(B) Preparation process A sealed container made of stainless steel (SUS304) having a capacity of 200 ml was charged with 39 g (about 30 ml) of No. 4 water glass and 235 g of zirconia balls having a diameter of 3 mm.

(C)第一水熱処理工程
密閉容器を、110℃のオーブン内に24時間、入れることで水熱処理した。
(D)第二水熱処理工程
密閉容器から混合水溶液を取り出した後、混合水溶液のみをステンレス鋼(SUS304)製の密閉容器内に充填して、110℃のオーブン内に5日間、入れることで水熱処理した。そして、合成物を取り出して洗浄し、3日間、40℃の空気中で乾燥することにより、実施例1に係るアイラアイトを作製した。
(C) First hydrothermal treatment step Hydrothermal treatment was performed by placing the sealed container in an oven at 110 ° C for 24 hours.
(D) Second hydrothermal treatment step After the mixed aqueous solution is taken out from the sealed container, only the mixed aqueous solution is filled in a sealed container made of stainless steel (SUS304) and placed in an oven at 110 ° C. for 5 days for water. Heat treated. And the synthetic | combination was taken out and wash | cleaned, and the eyelashite which concerns on Example 1 was produced by drying in the air of 40 degreeC for 3 days.

<比較例1> 比較例1に係るアイラアイトの製造
実施例1における第二水熱処理工程を実行せず、第一水熱処理工程で110℃のオーブン内に8日間、入れたこと以外は実施例1と同様にして、比較例1に係るアイラアイトを作製した。
<比較例2> 比較例2に係るアイラアイトの製造
比較例1における仕込工程において、ジルコニアボールを充填しなかったこと以外は比較例1と同様にして、比較例2に係るアイラアイトを作製した。
<Comparative example 1> Manufacture of Iraite according to Comparative Example 1 Example 1 except that the second hydrothermal treatment step in Example 1 was not performed and the first hydrothermal treatment step was put in an oven at 110 ° C for 8 days. In the same manner as above, an eyelashite according to Comparative Example 1 was produced.
<Comparative example 2> Manufacture of an eyelash according to comparative example 2 An eyelash according to comparative example 2 was produced in the same manner as in comparative example 1 except that the zirconia balls were not filled in the preparation step in comparative example 1.

<評価1>収率
実施例1に係るアイラアイトと比較例1〜2に係るアイラアイトとの収率を算出した。このとき、アイラアイトの収率として、密閉容器内に仕込んだ水ガラスから量論的に合成しうる最大のアイラアイトの重量に対する、生成した固相重量の割合(重量%)を算出した。その結果を図1及び図2に示す。図1及び図2は、110℃のオーブン内に入れた水熱処理時間と、収率との関係を示すグラフである。
<Evaluation 1> Yield Yields of the eyeraite according to Example 1 and the eyeraite according to Comparative Examples 1 and 2 were calculated. At this time, as the yield of Iraite, the ratio (% by weight) of the generated solid phase weight to the maximum amount of Iraite that can be synthesized stoichiometrically from the water glass charged in the sealed container was calculated. The results are shown in FIGS. 1 and 2 are graphs showing the relationship between the hydrothermal treatment time in a 110 ° C. oven and the yield.

図1に示すように、比較例1に係るアイラアイトの製造方法では、約2日間の誘導期間を経た後、結晶成長が顕著となり、7日後に収率は平衡に達した。一方、比較例2に係るアイラアイトの製造方法では、約7日間の誘導期間を経た後、結晶成長が顕著となり、11日後に収率は平衡に達した。
また、図2に示すように、実施例1に係るアイラアイトの製造方法と、比較例1に係るアイラアイトの製造方法とは、結晶成長に大きな差はなく、水熱処理工程でオーブン内に2日間入れれば、アイラアイトを得ることができた。
以上のように、実施例1に係るアイラアイトの製造方法では、比較例2に係るアイラアイトの製造方法と比較して、半分以下の時間でアイラアイトが合成できることが確認できた。
As shown in FIG. 1, in the method for producing Iraite according to Comparative Example 1, crystal growth became remarkable after an induction period of about 2 days, and the yield reached equilibrium after 7 days. On the other hand, in the method for producing Iraite according to Comparative Example 2, crystal growth became remarkable after an induction period of about 7 days, and the yield reached equilibrium after 11 days.
In addition, as shown in FIG. 2, there is no significant difference in crystal growth between the method for producing Iraite according to Example 1 and the method for producing Iraite according to Comparative Example 1, and it can be placed in an oven for 2 days in the hydrothermal treatment process. As a result, Iraite could be obtained.
As described above, it was confirmed that in the method for producing Iraite according to Example 1, it was possible to synthesize Iraite in less than half the time compared with the method for producing Iraite according to Comparative Example 2.

<評価2>粒子径
実施例1及び比較例1に係るアイラアイトの粒子径を、レーザー回折散乱式粒度分布測定装置で測定した。その結果を図3に示す。図3は、層状ケイ酸塩化合物結晶の大きさ(中位径)と、水熱処理時間との関係を示すグラフである。なお、中位径とは、粒度分布においてある粒子径より大きい粒子の割合が、全体の50%を占めるときの粒子径である。
図3に示すように、比較例1に係るアイラアイトの製造方法では、水熱処理時間が長くなっても、中位径がほとんど変化しないことがわかった。一方、実施例1に係るアイラアイトの製造方法では、水熱処理時間が長くなるに伴って、中位径が大きくなっていくことがわかった。
以上のように、実施例1に係るアイラアイトの製造方法では、比較例1に係るアイラアイトの製造方法と比較して、大きな結晶のアイラアイトが合成できることが確認できた。
<Evaluation 2> Particle Diameter The particle diameters of the eyelets according to Example 1 and Comparative Example 1 were measured with a laser diffraction / scattering particle size distribution measuring apparatus. The result is shown in FIG. FIG. 3 is a graph showing the relationship between the size (median diameter) of the layered silicate compound crystal and the hydrothermal treatment time. The median diameter is the particle diameter when the proportion of particles larger than a certain particle diameter in the particle size distribution occupies 50% of the whole.
As shown in FIG. 3, it was found that in the method for producing Iraite according to Comparative Example 1, the median diameter hardly changed even when the hydrothermal treatment time was increased. On the other hand, in the method for producing Iraite according to Example 1, it was found that the median diameter becomes larger as the hydrothermal treatment time becomes longer.
As described above, it can be confirmed that the method for producing eyeraite according to Example 1 can synthesize large amount of eyeraite compared with the method for producing eyeraite according to Comparative Example 1.

本発明は、例えば、触媒、吸着剤、イオン交換体、体質顔料、複合材料の基材等に用いられる層状ケイ酸塩化合物の製造方法等に利用することができる。   The present invention can be used for, for example, a method for producing a layered silicate compound used for a catalyst, an adsorbent, an ion exchanger, an extender pigment, a base material of a composite material, and the like.

Claims (7)

SiOとNaOとを含有する混合水溶液を、水熱条件下で反応させる水熱処理工程を含む層状ケイ酸塩化合物の製造方法であって、
前記水熱処理工程を実行する前に、前記混合水溶液と、媒体用ボールとを容器内に充填する仕込工程を実行し、
前記水熱処理工程において、前記混合水溶液と、媒体用ボールとを充填した容器を水熱条件下に第一所定時間、置いた後、前記媒体用ボールを取り除いて前記混合水溶液を水熱条件下に第二所定時間、置くことを特徴とする層状ケイ酸塩化合物の製造方法。
A method for producing a layered silicate compound comprising a hydrothermal treatment step in which a mixed aqueous solution containing SiO 2 and Na 2 O is reacted under hydrothermal conditions,
Before performing the hydrothermal treatment step, execute a charging step of filling the container with the mixed aqueous solution and the medium ball,
In the hydrothermal treatment step, after the container filled with the mixed aqueous solution and the medium ball is placed under hydrothermal conditions for a first predetermined time, the medium ball is removed and the mixed aqueous solution is placed under hydrothermal condition. A method for producing a layered silicate compound, characterized by being placed for a second predetermined time.
前記容器は、ボールミルであり、
前記水熱処理工程を実行する前に、前記ボールミルを用いて混合水溶液をミリング処理するミリング処理工程を実行することを特徴とする請求項1に記載の層状ケイ酸塩化合物の製造方法。
The container is a ball mill;
2. The method for producing a layered silicate compound according to claim 1, wherein a milling process step of milling a mixed aqueous solution using the ball mill is performed before the hydrothermal process is performed.
前記第一所定時間は、12時間以上36時間以下であることを特徴とする請求項1又は請求項2に記載の層状ケイ酸塩化合物の製造方法。   The method for producing a layered silicate compound according to claim 1 or 2, wherein the first predetermined time is 12 hours or more and 36 hours or less. 前記媒体用ボールは、ジルコニアボールであることを特徴とする請求項1〜請求項3のいずれかに記載の層状ケイ酸塩化合物の製造方法。   The method for producing a layered silicate compound according to any one of claims 1 to 3, wherein the medium ball is a zirconia ball. 前記媒体用ボールの直径は、1mm以上5mm以下であることを特徴とする請求項1〜請求項3のいずれかに記載の層状ケイ酸塩化合物の製造方法。   The diameter of the said ball | bowl for media is 1 mm or more and 5 mm or less, The manufacturing method of the layered silicate compound in any one of Claims 1-3 characterized by the above-mentioned. 前記混合水溶液は、23重量%以上26重量%以下のSiOと、6重量%以上8重量%以下のNaOとを含有することを特徴とする請求項1〜請求項5のいずれかに記載の層状ケイ酸塩化合物の製造方法。 6. The mixed aqueous solution contains 23% by weight or more and 26% by weight or less of SiO 2 and 6% by weight or more and 8% by weight or less of Na 2 O. The manufacturing method of the layered silicate compound of description. 前記層状ケイ酸塩化合物は、アイラアイトであり、
前記水熱条件下を、90℃以上130℃以下とすることを特徴とする請求項6に記載の層状ケイ酸塩化合物の製造方法。
The layered silicate compound is Iraite
The method for producing a layered silicate compound according to claim 6, wherein the hydrothermal condition is 90 ° C or higher and 130 ° C or lower.
JP2011176839A 2011-08-12 2011-08-12 Method for producing layered silicate compound Active JP5665689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011176839A JP5665689B2 (en) 2011-08-12 2011-08-12 Method for producing layered silicate compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011176839A JP5665689B2 (en) 2011-08-12 2011-08-12 Method for producing layered silicate compound

Publications (2)

Publication Number Publication Date
JP2013040066A true JP2013040066A (en) 2013-02-28
JP5665689B2 JP5665689B2 (en) 2015-02-04

Family

ID=47888819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011176839A Active JP5665689B2 (en) 2011-08-12 2011-08-12 Method for producing layered silicate compound

Country Status (1)

Country Link
JP (1) JP5665689B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188930A1 (en) * 2022-03-29 2023-10-05 日産化学株式会社 Method for producing layered silicate and application thereof in silica nanosheet production, etc.
WO2023188928A1 (en) * 2022-03-29 2023-10-05 日産化学株式会社 Cage silicate and method for producing same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101824A (en) * 1989-09-18 1991-04-26 Agency Of Ind Science & Technol Method and device for producing inorganic powder by hydrothermal synthesis
JPH06503060A (en) * 1990-12-01 1994-04-07 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン Hydrothermal production method of crystalline sodium disilicate
JPH09227116A (en) * 1996-02-23 1997-09-02 Agency Of Ind Science & Technol Production of layered silicic acid salt
JPH10263391A (en) * 1997-03-25 1998-10-06 Tokyo Gas Co Ltd Deodorant for gas containing malodorous component, deodorization using the same and regeneration of the same
JP2000086230A (en) * 1998-07-02 2000-03-28 Sekisui Chem Co Ltd Aluminosilicate slurry, hardenable inorganic composition and inorganic hardened body
JP2003137537A (en) * 2001-11-05 2003-05-14 Zeotec:Kk Method of manufacturing artificial zeolite
JP2004002132A (en) * 2002-04-11 2004-01-08 Sekisui Chem Co Ltd Zeolite powder granule and its manufacturing method
JP2005239459A (en) * 2004-02-25 2005-09-08 Tohoku Techno Arch Co Ltd Production method for zeolite
JP2006124524A (en) * 2004-10-29 2006-05-18 Kao Corp Pearl pigment
JP3876521B2 (en) * 1998-02-20 2007-01-31 堺化学工業株式会社 Ultraviolet shielding fine powder composition and use thereof
JP2007191366A (en) * 2006-01-20 2007-08-02 National Institute Of Advanced Industrial & Technology Manufacturing method of ceramic powder, and manufacturing unit of ceramic powder
JP2007222713A (en) * 2006-02-21 2007-09-06 Tohoku Univ Removal and recovery of magnesium and calcium, and a type zeolite manufacturing method from steel industry by-product
JP2012051759A (en) * 2010-09-01 2012-03-15 Osaka Prefecture Univ Method of manufacturing layer silicate compound

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101824A (en) * 1989-09-18 1991-04-26 Agency Of Ind Science & Technol Method and device for producing inorganic powder by hydrothermal synthesis
JPH06503060A (en) * 1990-12-01 1994-04-07 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン Hydrothermal production method of crystalline sodium disilicate
JPH09227116A (en) * 1996-02-23 1997-09-02 Agency Of Ind Science & Technol Production of layered silicic acid salt
JPH10263391A (en) * 1997-03-25 1998-10-06 Tokyo Gas Co Ltd Deodorant for gas containing malodorous component, deodorization using the same and regeneration of the same
JP3876521B2 (en) * 1998-02-20 2007-01-31 堺化学工業株式会社 Ultraviolet shielding fine powder composition and use thereof
JP2000086230A (en) * 1998-07-02 2000-03-28 Sekisui Chem Co Ltd Aluminosilicate slurry, hardenable inorganic composition and inorganic hardened body
JP2003137537A (en) * 2001-11-05 2003-05-14 Zeotec:Kk Method of manufacturing artificial zeolite
JP2004002132A (en) * 2002-04-11 2004-01-08 Sekisui Chem Co Ltd Zeolite powder granule and its manufacturing method
JP2005239459A (en) * 2004-02-25 2005-09-08 Tohoku Techno Arch Co Ltd Production method for zeolite
JP2006124524A (en) * 2004-10-29 2006-05-18 Kao Corp Pearl pigment
JP2007191366A (en) * 2006-01-20 2007-08-02 National Institute Of Advanced Industrial & Technology Manufacturing method of ceramic powder, and manufacturing unit of ceramic powder
JP2007222713A (en) * 2006-02-21 2007-09-06 Tohoku Univ Removal and recovery of magnesium and calcium, and a type zeolite manufacturing method from steel industry by-product
JP2012051759A (en) * 2010-09-01 2012-03-15 Osaka Prefecture Univ Method of manufacturing layer silicate compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014050297; T. IWASAKI et al.: 'Rapid synthesis of octosilicate, a layered alkali silicate, by heterogeneous nucleation at the solid' Applied Clay Science , 2012, 58, 39-43. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188930A1 (en) * 2022-03-29 2023-10-05 日産化学株式会社 Method for producing layered silicate and application thereof in silica nanosheet production, etc.
WO2023188928A1 (en) * 2022-03-29 2023-10-05 日産化学株式会社 Cage silicate and method for producing same
KR20230141780A (en) * 2022-03-29 2023-10-10 닛산 가가쿠 가부시키가이샤 Method for producing layered silicate and its application in production of silica nanosheets, etc.
KR20230141779A (en) * 2022-03-29 2023-10-10 닛산 가가쿠 가부시키가이샤 Basket-type silicate and its manufacturing method
CN117157249A (en) * 2022-03-29 2023-12-01 日产化学株式会社 Cage silicate and method for producing same
JP7401030B1 (en) 2022-03-29 2023-12-19 日産化学株式会社 Method for producing layered silicate and its application in producing silica nanosheets, etc.
KR102656777B1 (en) 2022-03-29 2024-04-11 닛산 가가쿠 가부시키가이샤 Method for producing layered silicate and its application in production of silica nanosheets, etc.
KR102656769B1 (en) 2022-03-29 2024-04-11 닛산 가가쿠 가부시키가이샤 Basket-type silicate and its manufacturing method
US11999625B2 (en) 2022-03-29 2024-06-04 Nissan Chemical Corporation Method of producing layered silicate, and application thereof in production of silica nanosheet and so on
US12012368B2 (en) 2022-03-29 2024-06-18 Nissan Chemical Corporation Cage silicate and method for producing the same

Also Published As

Publication number Publication date
JP5665689B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP4936208B2 (en) Core-shell type spherical silica mesoporous material and method for producing core-shell type spherical silica mesoporous material
Hu et al. Insight into the physicochemical aspects of kaolins with different morphologies
JP4296307B2 (en) Method for producing spherical silica-based mesoporous material
Wang et al. Synthesis, structure, optical and magnetic properties of interlamellar decoration of magadiite using vanadium oxide species
JP5060670B2 (en) Silica-based chiral nanostructure and method for producing the same
Kępiński et al. Structure evolution of nanocrystalline CeO2 supported on silica: effect of temperature and atmosphere
CN107666954A (en) The preparation method of metal oxide silicon dioxide composite aerogel and the metal oxide silicon dioxide composite aerogel of preparation
CN102718236B (en) Activated alumina with vane possessing oriented staging structure and preparation method
CN101775659B (en) Process for preparing mullite whisker or flaky alumina by using coal ash
ES2910274T3 (en) ZSM 5 catalyst
Jaber et al. Synthesis of clay minerals
Jiang et al. Aerosol-assisted synthesis of monodisperse single-crystalline α-cristobalite nanospheres
WO2011065521A1 (en) Silica nanofiber/nanocrystalline metal oxide composite and method for producing same
JP5634174B2 (en) Method for producing layered silicate compound
JP5665689B2 (en) Method for producing layered silicate compound
CN102807249B (en) Method for controlling shapes of zinc oxide nanoparticles
JP4488191B2 (en) Method for producing spherical silica-based mesoporous material
JP5141948B2 (en) Spherical silica-based mesoporous material having a bimodal pore structure and method for producing the same
Roth et al. Exfoliating layered zeolite MFI into unilamellar nanosheets in solution as precursors for the synthesis of hierarchical nanocomposites and oriented films
KR101246811B1 (en) Porous graphene-layered titanium oxide nanohybrids and production method thereof
CN102963906B (en) Method for preparing nanozeolite bundle
Li et al. Rapid preparation of porous Fe2O3/SiO2 nanocomposites via an organic precursor
JP5311707B2 (en) Method for producing fine particle titanium dioxide
CN109694090A (en) SCM-13 molecular sieve and preparation method thereof
JP4507499B2 (en) Method for producing spherical porous body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5665689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250