JP2007219132A - プロジェクタの製造方法 - Google Patents

プロジェクタの製造方法 Download PDF

Info

Publication number
JP2007219132A
JP2007219132A JP2006039304A JP2006039304A JP2007219132A JP 2007219132 A JP2007219132 A JP 2007219132A JP 2006039304 A JP2006039304 A JP 2006039304A JP 2006039304 A JP2006039304 A JP 2006039304A JP 2007219132 A JP2007219132 A JP 2007219132A
Authority
JP
Japan
Prior art keywords
light
adjustment
alignment
projector
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006039304A
Other languages
English (en)
Inventor
Shunji Uejima
俊司 上島
Hidetoki Morikuni
栄時 守国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006039304A priority Critical patent/JP2007219132A/ja
Publication of JP2007219132A publication Critical patent/JP2007219132A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】光学素子の容易かつ高精度なアライメント調整により高品質な画像を表示可能な
プロジェクタを製造するためのプロジェクタの製造方法を提供すること。
【解決手段】画像信号に応じて変調された光を被照射面へ入射させることにより画像を表
示するプロジェクタの製造方法であって、調整用光源41からの調整光を、調整用光源4
1から被照射面までの光路中の光学素子へ供給する調整光供給工程と、光学素子へ供給さ
れる調整光、及び光学素子に付されたアライメントマークを用いて、光路中の光学素子の
うち少なくとも1つのアライメントを調整するアライメント調整工程と、を含む。
【選択図】図5

Description

本発明は、プロジェクタの製造方法、特に、薄型なリアプロジェクタを製造する製造方
法の技術に関する。
リアプロジェクタは、画像信号に応じて変調された光をスクリーンにて透過させること
により画像を表示する。従来、リアプロジェクタにおいて、空間光変調装置である液晶パ
ネルを変位させる調整機構を用いて、フォーカスの調整、及び各液晶パネルからの映像光
の画素を一致させる調整を行う技術が提案されている(例えば、特許文献1参照。)。
特開平11−102015号公報
しかしながら、リアプロジェクタは、空間光変調装置に対するフォーカス調整等を行っ
たとしても、照明光学系や結像光学系に用いられる各光学素子のアライメント調整の精度
が低ければ、高品質な画像を得ることは困難である。また、近年、リアプロジェクタの薄
型化を図るために、スクリーンに対して斜めに映像光を入射させる構成が提案されている
。薄型なリアプロジェクタは、光学素子のアライメントのずれが光学性能へ及ぼす影響が
大きいと考えられる。特に、ミラーの中心位置からずれた位置を軸とする非球面ミラーに
ついては、特にアライメント調整が難しくなる。このように、従来の技術では、光学素子
の容易かつ高精度なアライメント調整を行うことが困難であるという問題を生じる。本発
明は、上述の問題に鑑みてなされたものであり、光学素子の容易かつ高精度なアライメン
ト調整により高品質な画像を表示可能なプロジェクタを製造するためのプロジェクタの製
造方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明によれば、画像信号に応じて変
調された光を被照射面へ入射させることにより画像を表示するプロジェクタの製造方法で
あって、調整用光源からの調整光を、調整用光源から被照射面までの光路中の光学素子へ
供給する調整光供給工程と、光学素子へ供給される調整光、及び光学素子に付されたアラ
イメントマークを用いて、光路中の光学素子のうち少なくとも1つのアライメントを調整
するアライメント調整工程と、を含むことを特徴とするプロジェクタの製造方法を提供す
ることができる。
アライメント調整工程では、光学素子の位置又は傾きの少なくとも一方を調節すること
で、光学素子のアライメントを調整することができる。アライメントマークの位置へ調整
光を入射させるように調整光を目視しながら光学素子の位置又は傾きを調節することによ
り、光学素子の容易かつ高精度なアライメント調整を行うことを可能とし、光学系の調整
効率を飛躍的に向上できる。光学素子の高精度なアライメント調整により、光利用効率の
低下、画像の歪み、色ずれ等を低減し、高品質な画像を表示することが可能となる。また
、一の光学素子を透過又は反射した調整光を用いて他の光学素子のアライメント調整を行
うことが可能であるから、複数の光学素子のアライメント調整を容易に行うことができる
。これにより、光学素子の容易かつ高精度なアライメント調整により高品質な画像を表示
可能なプロジェクタを製造することができる。
また、本発明の好ましい態様としては、調整光供給工程において、少なくとも2つの調
整光を光学素子へ供給することが望ましい。複数の調整光を用いることにより、光学素子
の複数箇所に付されたアライメントマークを用いたアライメント調整を行うことが可能と
なる。複数箇所に付されたアライメントマークと複数の調整光を用いることにより、光学
素子の位置及び傾きを容易に調節することが可能となる。
また、本発明の好ましい態様としては、調整用光源からの光を少なくとも2つの調整光
に分岐させる分岐工程を含むことが望ましい。調整用光源からの光を複数の調整光に分岐
させることで、調整光の数より少ない数の調整用光源を用いることが可能となる。これに
より、調整光ごとに調整用光源を用意する場合よりも簡易な構成を用いて、光学素子のア
ライメント調整を行うことができる。
また、本発明の好ましい態様としては、少なくとも2つの調整光同士の間隔を調節する
調整光間隔調節工程を含むことが望ましい。これにより、光学素子のアライメント調整を
精度良く行うことができる。
また、本発明の好ましい態様としては、プロジェクタは、映像用光源からの光を画像信
号に応じて変調する空間光変調装置を有し、アライメント調整工程において、映像用光源
から空間光変調装置までの光路中の光学素子のうち少なくとも1つのアライメントを調整
することが望ましい。ここで、映像用光源から空間光変調装置までの光路中の光学素子に
は、空間光変調装置を含むものとする。これにより、プロジェクタの照明光学系に用いら
れる各光学素子、及び空間光変調装置のアライメント調整ができる。
また、本発明の好ましい態様としては、プロジェクタは、画像信号に応じて変調された
光を投写する投写レンズを有し、アライメント調整工程において、投写レンズから被照射
面までの光路中の光学素子のうち少なくとも1つのアライメントを調整することが望まし
い。これにより、プロジェクタの結像光学系に用いられる各光学素子のアライメント調整
ができる。
また、本発明の好ましい態様としては、プロジェクタは、投写レンズからの光を透過さ
せるスクリーンを有し、アライメント調整工程において、投写レンズからスクリーンまで
の光路中の光学素子のうち少なくとも1つのアライメントを調整することが望ましい。こ
こで、投写レンズからスクリーンまでの光路中の光学素子には、スクリーンを含むものと
する。これにより、リアプロジェクタの結像光学系に用いられる各光学素子、及びスクリ
ーンのアライメント調整ができる。
また、本発明の好ましい態様としては、プロジェクタは、投写レンズからの光をプロジ
ェクタ外部の被照射面へ入射させる反射ミラーを有し、アライメント調整工程において、
投写レンズから反射ミラーまでの光路中の光学素子のうち少なくとも1つのアライメント
を調整することが望ましい。ここで、投写レンズから反射ミラーまでの光路中の光学素子
には、反射ミラーを含むものとする。これにより、フロント投写型プロジェクタの結像光
学系に用いられる各光学素子のアライメント調整ができる。
また、本発明の好ましい態様としては、プロジェクタは、映像用光源からの光を用いて
画像を表示し、調整光供給工程において、映像用光源を設ける位置、又は映像用光源を設
ける位置の近傍に配置された調整用光源を用いて調整光を供給することが望ましい。これ
により、映像用光源からの光と同様に調整光を供給し、容易に各光学素子のアライメント
調整ができる。
また、本発明の好ましい態様としては、プロジェクタは、映像用光源からの光を用いて
画像を表示し、アライメント調整工程において、光学素子のうち映像用光源からの光が入
射する領域以外の領域に形成されたアライメントマークを用いて光学素子のアライメント
を調整することが望ましい。映像用光源からの光が入射する領域以外の領域にアライメン
トマークを形成することで、アライメント調整工程により位置決めされた光学素子をその
まま画像表示のために用いることが可能となる。
また、本発明の好ましい態様としては、プロジェクタは、映像用光源からの光を用いて
画像を表示し、アライメント調整工程において、映像用光源からの光を透過させる光学素
子について、互いに異なる光透過率を有する領域を組み合わせて形成されたアライメント
マークを用いて光学素子のアライメントを調整することが望ましい。互いに異なる光透過
率を有する領域を組み合わせてアライメントマークを形成することで、目視による調整光
の確認によって、光学素子のアライメント調整を正確かつ容易に行うことが可能となる。
また、本発明の好ましい態様としては、プロジェクタは、映像用光源からの光を用いて
画像を表示し、アライメント調整工程において、映像用光源からの光を反射させる光学素
子について、互いに異なる反射率を有する領域を組み合わせて形成されたアライメントマ
ークを用いて光学素子のアライメントを調整することが望ましい。互いに異なる反射率を
有する領域を組み合わせてアライメントマークを形成することで、目視により確認される
調整光の光量に応じて光学素子のアライメント調整を正確かつ容易に行うことが可能とな
る。
また、本発明の好ましい態様としては、アライメント調整工程において、調整光の入射
により蛍光を発する蛍光部を有するアライメントマークを用いて光学素子のアライメント
を調整することが望ましい。蛍光部を用いることで、蛍光の発生の有無の確認によって調
整光の位置を容易に確認することができる。これにより、光学素子のアライメント調整を
正確かつ容易に行うことが可能となる。
以下に図面を参照して、本発明の実施例を詳細に説明する。
図1は、本発明の実施例1に係るプロジェクタの製造方法により製造されるリアプロジ
ェクタ10の概略構成を示す。図1に示す構成は、リアプロジェクタ10をX方向の中心
にて切断したYZ断面構成である。リアプロジェクタ10は、スクリーン16の一方の面
である被照射面に光を投写し、スクリーン16の他方の面から出射する光を観察すること
で画像を鑑賞するものである。光学エンジン部11は、画像信号に応じて変調された光を
供給する。
図2は、光学エンジン部11の構成を説明するものである。映像用光源である超高圧水
銀ランプ20は、第1色光である赤色光(以下、「R光」という。)、第2色光である緑
色光(以下、「G光」という。)、及び第3色光である青色光(以下、「B光」という。
)を含む光を供給する。第1インテグレータレンズ21及び第2インテグレータレンズ2
2は、アレイ状に配列された複数のレンズ素子を有する。第1インテグレータレンズ21
は、超高圧水銀ランプ20からの光束を複数に分割する。第1インテグレータレンズ21
の各レンズ素子は、超高圧水銀ランプ20からの光束を第2インテグレータレンズ22の
レンズ素子近傍にて集光させる。第2インテグレータレンズ22のレンズ素子は、第1イ
ンテグレータレンズ21のレンズ素子の像を空間光変調装置上に形成する。
2つのインテグレータレンズ21、22を経た光は、偏光変換素子23にて特定の振動
方向を有する偏光光、例えばs偏光光に変換される。重畳レンズ24は、第1インテグレ
ータレンズ21の各レンズ素子の像を空間光変調装置上で重畳させる。第1インテグレー
タレンズ21、第2インテグレータレンズ22及び重畳レンズ24は、超高圧水銀ランプ
20からの光の強度分布を空間光変調装置上にて均一化させる。重畳レンズ24からの光
は、第1ダイクロイックミラー25に入射する。第1ダイクロイックミラー25は、R光
を反射し、G光及びB光を透過させる。第1ダイクロイックミラー25で反射したR光は
、第1ダイクロイックミラー25、反射ミラー26でそれぞれ光路を略90度折り曲げら
れ、R光用フィールドレンズ29Rへ入射する。R光用フィールドレンズ29Rは、反射
ミラー26からのR光を平行化し、R光用空間光変調装置30Rへ入射させる。
R光用空間光変調装置30Rは、R光を画像信号に応じて変調する透過型の液晶表示装
置である。R光用空間光変調装置30Rに設けられた不図示の液晶パネルは、2つの透明
基板の間に、画像表示のための液晶層を封入している。液晶パネルに入射したs偏光光は
、画像信号に応じた変調によりp偏光光に変換される。R光用空間光変調装置30Rは、
変調によりp偏光光に変換されたR光を出射する。R光用空間光変調装置30Rで変調さ
れたR光は、色合成光学系であるクロスダイクロイックプリズム31へ入射する。
第1ダイクロイックミラー25を透過したG光及びB光は、第2ダイクロイックミラー
27へ入射する。第2ダイクロイックミラー27は、G光を反射し、B光を透過させる。
第2ダイクロイックミラー27で反射されたG光は、第2ダイクロイックミラー27で光
路を略90度折り曲げられ、G光用フィールドレンズ29Gへ入射する。G光用フィール
ドレンズ29Gは、第2ダイクロイックミラー27からのG光を平行化し、G光用空間光
変調装置30Gへ入射させる。G光用空間光変調装置30Gは、G光を画像信号に応じて
変調する透過型の液晶表示装置である。G光用空間光変調装置30Gに入射したs偏光光
は、液晶パネルでの変調によりp偏光光に変換される。G光用空間光変調装置30Gは、
変調によりp偏光光に変換されたG光を出射する。G光用空間光変調装置30Gで変調さ
れたG光は、クロスダイクロイックプリズム31へ入射する。
第2ダイクロイックミラー27を透過したB光は、2枚のリレーレンズ28及び2枚の
反射ミラー26を経由して、B光用フィールドレンズ29Bへ入射する。B光の光路は、
R光の光路及びG光の光路よりも長い。空間光変調装置における照明倍率を他の色光と等
しくするために、B光の光路には、リレーレンズ28を用いるリレー光学系が採用されて
いる。B光用フィールドレンズ29Bは、反射ミラー26からのB光を平行化し、B光用
空間光変調装置30Bへ入射させる。B光用空間光変調装置30Bは、B光を画像信号に
応じて変調する透過型の液晶表示装置である。B光用空間光変調装置30Bに入射したs
偏光光は、液晶パネルでの変調によりp偏光光に変換される。B光用空間光変調装置30
Bは、変調によりp偏光光に変換されたB光を出射する。B光用空間光変調装置30Bで
変調されたB光は、クロスダイクロイックプリズム31へ入射する。なお、各空間光変調
装置30R、30G、30Bは、変調によりs偏光光をp偏光光に変換するほか、p偏光
光をs偏光光に変換することとしても良い。
クロスダイクロイックプリズム31は、互いに略直交するように配置された2つのダイ
クロイック膜31a、31bを有する。第1ダイクロイック膜31aは、R光を反射し、
G光及びB光を透過させる。第2ダイクロイック膜31bは、B光を反射し、R光及びG
光を透過させる。クロスダイクロイックプリズム31は、それぞれ異なる方向から入射し
たR光、G光及びB光を合成し、投写レンズ12の方向へ出射させる。投写レンズ12は
、クロスダイクロイックプリズム31で合成された光を第1ミラー13(図1参照)の方
向へ投写する。
図1に戻って、第2ミラー14は、筐体17の背面近傍に設けられている。第1ミラー
13は、投写レンズ12及び第2ミラー14に対向する位置に設けられている。第1ミラ
ー13は、光学エンジン部11からの光を第2ミラー14の方向へ反射する。第1ミラー
13は、略平坦な平面形状を有する。第1ミラー13は、平行平板上に反射膜を形成する
ことにより構成できる。反射膜としては、高反射性の部材の層、例えばアルミニウム等の
金属部材の層や誘電体多層膜等を用いることができる。また、反射膜の上には、透明部材
を有する保護膜を形成することとしても良い。
第2ミラー14は、非球面形状の曲面を有する。非球面形状の曲面は、中心軸に対して
略回転対称な形状の曲面、例えば放物面や楕円面等、及び非回転対称な形状の自由曲面の
いずれであっても良い。第2ミラー14は、反射により第1ミラー13からの光を主にX
方向について広角化させる他、第1ミラー13からの光を筐体17の天井面の方向へ折り
曲げる。第2ミラー14は、非球面形状を有する基材上に反射膜を形成することにより構
成できる。投写レンズ12のみならず第2ミラー14にて光を広角化することで、投写レ
ンズ12のみにより光を広角化する場合より投写レンズ12を小型にすることができる。
第3ミラー15は、筐体17の天井面に近い位置に設けられている。第3ミラー15は
、第2ミラー14からの光をスクリーン16の方向へ反射する。第3ミラー15は、第1
ミラー13と同様に、略平坦な平面形状を有する。なお、第3ミラー15は、筐体17の
天井面に略平行に配置する他、天井面に対して傾けて配置しても良い。スクリーン16は
、投写レンズ12、及び各ミラー13、14、15を経た光を透過させる透過型スクリー
ンである。
図3は、スクリーン16の要部断面構成を示す。スクリーン16は、画像信号に応じた
光が入射する側に設けられたフレネルレンズ35を有する。フレネルレンズ35は、第3
ミラー15からの光を角度変換する。フレネルレンズ35は、凸レンズの凸面を切り出し
た形状のプリズム部34を平面上に並べて構成されている。複数のプリズム部34は、略
同心円状に配置されている。プリズム部34は、同心円の中心を通るYZ断面において、
第1面32及び第2面33により形成される略三角形状を有する。
第3ミラー15からの光は、第1面32からプリズム部34へ入射する。プリズム部3
4へ入射した光は、第2面33で全反射した後、観察者の方向であるZ方向へ進行する。
フレネルレンズ35は、このようにして第3ミラー15から斜めに入射する光を観察者の
方向へ角度変換する。スクリーン16は、フレネルレンズ35以外の他の構成、例えば、
フレネルレンズ35からの光を拡散させるレンチキュラーレンズアレイやマイクロレンズ
アレイ、拡散材を分散させた拡散板等を設けることとしても良い。
図1に戻って、投写レンズ12から第1ミラー13へ入射する光と、第2ミラー14か
ら第3ミラー15へ入射する光は、略上向きへ進行する。第3ミラー15からスクリーン
16へ入射する光は、略下向きに進行する。このように、筐体17内において光をスクリ
ーン16面に沿う方向へ進行させることにより、リアプロジェクタ10を薄型にすること
ができる。なお、光学エンジン部11は、超高圧水銀ランプ20を用いるものに限られず
、例えば、発光ダイオード素子(LED)等の固体発光素子を用いるものとしても良い。
図4は、本実施例に係るプロジェクタの製造方法のうち光学エンジン部11の各光学素
子を設置する手順を説明するフローチャートである。本実施例は、超高圧水銀ランプ20
(図2参照)に代えて配置された調整用光源ユニットからの調整光を用いて、調整用光源
から空間光変調装置までの各光学素子、及びクロスダイクロイックプリズムのアライメン
ト調整を行う。まず、ステップS1において、光学エンジン部11の各光学素子、及び調
整用光源ユニットを仮設置する。光学素子の仮設置とは、位置及び傾きが調整可能な状態
で光学素子を配置することを示す。各光学素子は、例えば、所定のホルダに嵌め込むこと
で仮設置を行う。調整用光源ユニットの仮設置とは、調整用光源ユニットを取り外し可能
な状態で配置することを示す。調整用光源ユニットは、例えば、超高圧水銀ランプ20用
のホルダに嵌め込むことで仮設置を行う。
次に、調整光供給工程であるステップS2において、調整用光源から空間光変調装置ま
での光路中の各光学素子、及びクロスダイクロイックプリズムへ調整光を供給する。次に
、アライメント調整工程であるステップS3において、調整用光源から空間光変調装置ま
での各光学素子、空間光変調装置、及びクロスダイクロイックプリズムのアライメントを
調整する。ステップS4では、ステップS3にてアライメントが調整された状態で各光学
素子を固定する。最後に、ステップS5において調整用光源ユニットの取り外し、ステッ
プS6において映像用光源である超高圧水銀ランプ20を設置することにより、光学エン
ジン部11の各光学素子の設置が完了する。
図5は、光学エンジン部11のうち、超高圧水銀ランプ20からのB成分の光の光路中
に配置された各光学素子へ調整光を供給する状態を示す。R成分の光の光路中の各光学素
子、及びG成分の光の光路中の各光学素子への調整光の供給は、B成分の光の光路中の各
光学素子の場合と同様であるから、ここではB成分の光が進行する光路中の光学素子を代
表例として説明する。
調整用光源ユニット40は、映像用光源である超高圧水銀ランプ20を設ける位置に配
置されている。調整用光源ユニット40は、調整用光源41、光分岐部42、及び角度変
換部43が設けられている。調整用光源ユニット40は、超高圧水銀ランプ20のホルダ
(不図示)に嵌め込み可能に構成されている。調整用光源ユニット40は、超高圧水銀ラ
ンプ20のホルダに嵌め込むことにより仮設置される。
調整用光源41としては、例えば、633nmのレーザ光を供給する半導体レーザを用
いることができる。高い指向性を特徴とするレーザ光を調整光として用いることにより、
調整用光源41から遠い位置の光学素子であっても、正確にアライメントの調整を行うこ
とが可能となる。また、調整光として、可視光である633nmのレーザ光を用いること
で、調整光を目視しながら光学素子のアライメントを行うことができる。調整光は可視光
である380nm〜660nmの波長を持つレーザ光であれば良く、光学素子ごとに安定
して調整光を認識可能とするためには、420nm〜650nmの波長を持つレーザ光を
用いることが望ましい。調整光は、レーザの安全基準に関するJIS規格(JIS C6
802)に定められるレーザクラス2レベル以下の強度であることが望ましい。さらに好
ましくは、調整光は、レーザクラス1以下の強度であることが望ましい。
光分岐部42は、調整用光源41からの光を分岐させることにより略同じ強度を持つ2
つの調整光を出射する分光プリズムである。調整用光源ユニット40は、光分岐部42を
用いた分岐工程により、1つの調整用光源41を用いて2つの調整光を供給する。光分岐
部42としては、分光プリズムの他、回折により光を分岐させる回折格子や、反射及び透
過により光を分岐させるハーフミラー等を用いることができる。角度変換部43は、光軸
に略平行となるように光分岐部42からの2つの調整光をそれぞれ角度変換する。角度変
換部43としては、例えばレンズを用いることができる。調整用光源ユニット40は、光
軸に略平行かつ所定の間隔で2つの調整光を供給するように構成されている。調整用光源
及び他の光学要素を調整用光源ユニット40として一体化することにより、高い精度で平
行度及び間隔が制御された調整光を供給することができる。なお、調整用光源ユニット4
0は、映像用光源である超高圧水銀ランプ20を設ける位置に配置する場合に限られず、
超高圧水銀ランプ20を設ける位置の近傍に配置することとしても良い。
調整用光源ユニット40から出射された2つの調整光は、まず第1インテグレータレン
ズ21へ入射する。2つの調整光のうちの一方は、第1インテグレータレンズ21の入射
面のうち、入射側から見て左上外縁部近傍へ入射する。他方の調整光は、第1インテグレ
ータレンズ21の入射面のうち、入射側から見て右下外縁部近傍へ入射する。2つの調整
光は、第1インテグレータレンズ21の入射面の矩形形状の対角線方向に並列した状態で
第1インテグレータレンズ21を透過する。第1インテグレータレンズ21を透過した2
つの調整光は、超高圧水銀ランプ20からのB成分の光と同様に、第2インテグレータレ
ンズ22からB光用空間光変調装置30Bまでの各光学素子を経てクロスダイクロイック
プリズム31へ入射する。
図6は、第1インテグレータレンズ21の入射側平面構成を示す。第1インテグレータ
レンズ21の入射面のうち超高圧水銀ランプ20からの光が入射する領域AR以外の領域
には、2つのアライメントマーク50が形成されている。アライメントマーク50は、互
いに略直交する2つの線分からなる十字形状をなしている。2つのアライメントマーク5
0のうちの一方は、第1インテグレータレンズ21の左上外縁部近傍に形成されている。
他方のアライメントマーク50は、第1インテグレータレンズ21の右下外縁部近傍に形
成されている。2つのアライメントマーク50の間隔は、調整用光源ユニット40から供
給される2つの調整光の間隔と略一致する。
第1インテグレータレンズ21は、図7に示すホルダ47により、調整用光源ユニット
40の側に入射面を向けて仮設置されている。ホルダ47は、第1インテグレータレンズ
21を枠部48に嵌め込むことで、第1インテグレータレンズ21を左右両側、及び下側
にて支持する。第1インテグレータレンズ21は、外縁部を枠部48に嵌め込むことで、
超高圧水銀ランプ20からの光が入射する領域AR及びアライメントマーク50がホルダ
47により覆い隠されない状態で支持されている。ホルダ47は、第1インテグレータレ
ンズ21が枠部48に嵌め込まれた状態のまま第1インテグレータレンズ21の位置及び
傾きを微調整できるように形成されている。
図6に戻って、第1インテグレータレンズ21のアライメント調整は、アライメントマ
ーク50の十字の交点部分を調整光が通過するように第1インテグレータレンズ21の位
置及び傾きを調節することにより行う。第1インテグレータレンズ21の矩形形状の対角
線方向に配列させた2つのアライメントマーク50を用いることで、第1インテグレータ
レンズ21の位置ずれ、及び傾きずれを正確に把握することができる。アライメントマー
クは、調整光を通過させる目標位置が認識できれば良く、十字形状に限られない。例えば
、図8に示す十字の中心に施した円を目標位置とするアライメントマーク51や、図9に
示す二重円の内側の円を目標位置とするアライメントマーク52を用いても良い。
調整光を透過させる各光学素子について、アライメントマーク50は、第1インテグレ
ータレンズ21の入射面へ直接描画や切り欠き、刻印等を施す他、レジスト等によるパタ
ーニングの利用等により形成することができる。また、金型を用いた型転写により成形さ
れる光学素子については、予め金型にパターンを施すことによりアライメントマーク50
を形成することとしても良い。アライメントマーク50は、いずれの光学素子についても
、光学素子の製造工程中において容易に形成することができる。
図10は、第1インテグレータレンズ21等の光学素子のアライメント調整を行うアラ
イメント調整治具60の概略構成を示す。アライメント調整治具60は、ポンプ64から
のエアー圧力を用いて光学素子のアライメント調整を行う。アーム62の2つの枝部の先
端にそれぞれ形成された吸着部61は、吸着部61自体の吸着力、又はポンプ64による
吸引力を利用して光学素子を保持する。調整機構部63は、エアー圧力によりアーム62
を駆動させる。
調整機構部63は、アーム62の駆動により、図11に示すx方向移動(x−shif
t)、y方向移動(y−shift)、z方向移動(z−shift)による光学素子の
位置の微調整、y軸回りの回転(xz−tilt)、x軸回りの回転(yz−tilt)
による光学素子の傾きの微調整を行う。調整機構部63の5つのステージを用いることで
、三次元(xyz)空間における光学素子の位置及び傾きを決定することができる。調整
光を目視しながらアーム62を駆動させることにより、光学素子の容易かつ高精度なアラ
イメント調整を行うことが可能である。なお、アライメント調整治具60は、エアー圧力
を用いる構成に限らず、他の駆動力、例えばモータ等による駆動力を用いる構成としても
良い。
アライメント調整治具60を用いて第1インテグレータレンズ21の位置及び傾きを決
定した後、ホルダ47(図7参照)内における第1インテグレータレンズ21の固定を行
う。第1インテグレータレンズ21等の光学素子の固定には、光硬化性樹脂等の硬化剤を
用いることができる。光学素子を高い精度で位置決めするために、光学素子の固定には、
硬化による収縮ができるだけ少ない硬化剤を用いることが望ましい。このようにして、第
1インテグレータレンズ21のアライメント調整が完了する。アライメントマーク50の
位置へ調整光を入射させるように調整光を目視しながら光学素子の位置又は傾きを調節す
ることにより、光学素子の容易かつ高精度なアライメント調整を行うことができる。
図5に戻って、第1インテグレータレンズ21を透過した2つの調整光は、第2インテ
グレータレンズ22からクロスダイクロイックプリズム31までの各光学素子のアライメ
ント調整に用いることができる。第2インテグレータレンズ22からクロスダイクロイッ
クプリズム31までの各光学素子のうち反射ミラー26以外の光学素子は、第1インテグ
レータレンズ21と同様に、2つの調整光を透過させる。調整光を透過させる光学素子に
ついては、第1インテグレータレンズ21と同様にしてアライメント調整を行うことがで
きる。なお、第1ダイクロイックミラー25及び第2ダイクロイックミラー27は、超高
圧水銀ランプ20からの光が入射する領域の反射特性に関わらず、調整光が入射する部分
において調整光を透過可能な構成とする必要がある。また、B光用空間光変調装置30B
は、液晶パネル45、液晶パネル45の入射側の第1偏光板44、液晶パネル45の出射
側の第2偏光板46をそれぞれ別にアライメント調整することが可能である。
反射ミラー26は、2つの調整光を反射する。反射ミラー26には、第1インテグレー
タレンズ21の場合と同様に、図6、図8及び図9を用いて説明したものと同様のアライ
メントマークを用いることができる。反射ミラー26のアライメント調整は、アライメン
トマークの目標位置へ調整光が入射するように反射ミラー26の位置及び傾きを調節する
ことにより行う。反射ミラー26等、調整光を反射させる光学素子について、アライメン
トマークは、例えば、反射面へ直接描画や切り欠き、刻印等を施す他、反射膜の成膜時に
パターンを施すことで形成できる。このようにして、調整用光源ユニット40からの調整
光を用いて、第1インテグレータレンズ21からクロスダイクロイックプリズム31まで
の光路中の各光学素子のアライメントを調整することができる。
各光学素子のアライメント調整を終了した後、調整用光源ユニット40に代えて、光学
エンジン部11に超高圧水銀ランプ20を取り付ける。なお、アライメント調整は、調整
用光源ユニット40に近い光学素子から行う場合に限られず、正確にアライメント調整を
行うことが可能であればいずれの順序で行うこととしても良い。但し、反射ミラー26よ
り調整用光源ユニット40から遠い光学素子をアライメント調整する場合は、調整光を正
確な方向へ進行させるために反射ミラー26を優先してアライメント調整する。
各光学素子について容易かつ高精度なアライメント調整を行うことで、リアプロジェク
タ10の光学系の調整効率を飛躍的に向上できる。光学素子の高精度なアライメント調整
を経てリアプロジェクタ10を製造することにより、光利用効率の低下、画像の歪み、色
ずれ等を低減し、高品質な画像を表示することが可能となる。また、一の光学素子を透過
又は反射した調整光を用いて他の光学素子のアライメント調整を行うことが可能であるか
ら、複数の光学素子のアライメント調整を容易に行うことができる。これにより、光学素
子の容易かつ高精度なアライメント調整により高品質な画像を表示可能なリアプロジェク
タ10を得られるという効果を奏する。
なお、光学素子のアライメント調整には2つの調整光を用いる場合に限らず、3つ以上
の調整光を用いることとしても良い。3つ以上の箇所に付されたアライメントマーク50
と3つ以上の調整光とを用いることにより、光学素子の位置及び傾きをさらに容易に調節
することが可能となる。3つ以上の調整光は、光分岐部42により調整用光源41からの
光を3つ以上に分岐することで供給することができる。また、1つの調整用光源41から
の光を光分岐部42で複数に分岐する構成とする他、光分岐部42を用いず複数の調整用
光源41により複数の調整光を供給することとしても良い。複数の調整用光源41に対し
て光分岐部42を配置することとし、複数の調整用光源41からの複数の光をさらに分岐
させることとしても良い。
各光学素子へ入射させる調整光の位置、及びアライメントマーク50の位置は、光学素
子の位置及び傾きの調節が可能であれば良く、上記のものに限られない。但し、各光学素
子に対して、アライメントマーク50は、超高圧水銀ランプ20からの光が入射する領域
ARにできるだけ近い位置に設けることが望ましい。これにより、アライメントマーク5
0を設けることによる光学素子の大型化を低減することができる。さらに、本実施例は、
リアプロジェクタ10の第1インテグレータレンズ21からクロスダイクロイックプリズ
ム31までの全ての光学素子のアライメント調整を行う場合に限られない。映像用光源で
ある超高圧水銀ランプ20からクロスダイクロイックプリズム31までの光路中の光学素
子のうち少なくとも1つのアライメント調整を行うこととすれば良い。
各光学素子のアライメント調整は、図10に示すアライメント調整治具60を用いて行
う場合に限られない。ホルダの位置及び傾きを微調整する調整機構を用いて光学素子のア
ライメント調整を行うこととしても良い。例えば、図12に示す2つの基板71、76及
び板バネ部74を用いた機構により、ホルダ70の位置及び傾きを微調整することができ
る。光学素子は、硬化性樹脂等により予めホルダ70に固定される。ホルダ70は、第1
基板71上に固定されている。
第1基板71の両端部には、それぞれ貫通穴72が形成されている。一方の貫通穴72
は、x軸に略平行な第1基板71の中心線Nよりプラスy側に設けられている。他方の貫
通穴72は、中心線Nよりマイナスy側に設けられている。板バネ部74の両端部には、
切り欠き部75が設けられている。第2基板76の両端部には、長穴部78が設けられて
いる。長穴部78は、x方向へ細長い形状を有する。長穴部78から見て第2基板76の
x方向中心部に近い側には、突起部77が設けられている。板バネ部74は、切り欠き部
75内に突起部77が差し込まれた状態で第2基板76上に載置される。
ネジ73は、第1基板71の貫通穴72、板バネ部74の切り欠き部75を介して第2
基板76の長穴部78にねじ込まれる。第1基板71は、ネジ73を用いることにより、
板バネ部74を介して第2基板76上に固定される。ネジ73を締めるに従い、板バネ部
74は第1基板71と第2基板76とにより強く押さえ込まれる。また、ネジ73を緩め
るに従い、板バネ部74は第1基板71をプラスz方向へ押し上げる。このように、第1
基板71と第2基板76との間に板バネ部74を設けることにより、ネジ73の締め具合
に応じてz方向における光学素子の位置を調節することができる。また、2つのネジ73
の締め具合の差に応じて、y軸回りの回転による光学素子の傾きの調節が可能である。
第1基板71の中心線Nのプラスy側に一方のネジ73、マイナスy側に他方のネジ7
3を設けることにより、2つのネジ73の締め具合の差に応じて、x軸回りの回転による
光学素子の傾きの調整も可能となる。さらに、x方向へ細長い形状の長穴部78を設ける
ことで、x方向に関して、第2基板76に対する第1基板71の位置の調整を行うことが
できる。この他、y方向に関して第2基板76の位置を調節することにより、三次元(x
yz)空間における光学素子の位置及び傾きを決定することができる。y方向に関しては
、x方向の場合と同様に、y方向へ細長い形状の長穴部とネジ(いずれも不図示)とを組
み合わせて用いることで、第2基板76の位置を調節することができる。図12を用いて
説明した調整機構の他、従来用いられる他の調整機構を用いて光学素子のアライメント調
整を行うこととしても良い。
図13〜図19は、アライメントマークの変形例を説明するものである。図13に示す
アライメントマーク81は、調整光を透過させる円形の透過部83と、透過部83の周囲
に形成された遮光部82とを有する。透過部83が設けられた円形領域が調整光を通過さ
せる目標位置となる。調整光が遮光部82で遮られず透過部83を通過することにより、
光学素子が正確にアライメント調整されたことを確認することができる。
図14に示すアライメントマーク84は、図13に示すアライメントマーク81とは逆
に、円形の遮光部86と、遮光部86の周囲に形成された透過部85とを有する。調整光
が遮光部86で遮られることにより、光学素子が正確にアライメント調整されたことを確
認することができる。かかるアライメントマーク84を設けた光学素子より後の光学素子
には調整光を進行させることができないため、アライメントマーク84は、最後段の光学
素子、例えば図5の構成ではクロスダイクロイックプリズム31に用いることができる。
図15に示すアライメントマーク87は、互いに異なる光透過率を有する4つの領域を
組み合わせて形成されている。互いに異なる光透過率を有する領域は、円形状の透過部8
8を中心とする同心円状に設けられている。透過部88が設けられた円形領域が調整光を
通過させる目標位置となる。透過部88は、アライメントマーク87中の他の領域と比較
して高い光透過率を有する。例えば、透過部88の周囲に形成された3つの領域は、透過
部88から離れるほど光透過率が低くなるように構成されている。
アライメントマーク87は、調整光が透過部88から遠い位置の領域に入射するほど調
整光を強く散乱させる。また、調整光が透過部88を通過しているとき、調整光の散乱は
最小となる。このことから、調整光の散乱が弱くなるように光学素子の位置及び傾きを調
節することにより、光学素子を正確な位置及び傾きへと導くことができる。これにより、
目視による調整光の確認によって、光学素子のアライメント調整を正確かつ容易に行うこ
とが可能となる。互いに異なる光透過率を有する各領域は、例えば、互いに異なる量の散
乱材を分散させることで構成することができる。
図16及び図17に示すアライメントマークは、超高圧水銀ランプ20からの光を反射
させる光学素子である反射ミラー26(図2参照)に用いることができる。図16に示す
アライメントマーク90は、調整光を反射させる円形の反射部91と、反射部91の周囲
に形成された光吸収部89とを有する。反射部91が設けられた円形領域が調整光を入射
させる目標位置となる。調整光が光吸収部89で吸収されず反射部91で反射することに
より、光学素子が正確にアライメント調整されたことを確認することができる。
図17に示すアライメントマーク92は、互いに異なる反射率を有する4つの領域を組
み合わせて形成されている。互いに異なる反射率を有する領域は、円形状の高反射部93
を中心とする同心円状に設けられている。高反射部93が設けられた円形領域が調整光を
通過させる目標位置となる。高反射部93は、アライメントマーク92中の他の領域と比
較して光の反射率が最も高い。例えば、高反射部93の周囲に形成された3つの領域は、
高反射部93から離れるほど光の反射率が低くなるように構成されている。互いに異なる
反射率を有する各領域は、例えば、互いに異なる膜厚の反射膜を形成することで構成でき
る。反射膜を厚くすることで吸収される光を多くし、反射率を低くすることができる。
調整光が高反射部93から遠い位置の領域に入射するほど、アライメントマーク92か
らの反射光は弱くなる。また、調整光が高反射部93へ入射しているとき、アライメント
マーク92からの反射光は最も強くなる。このことから、反射する調整光が強くなるよう
に光学素子の位置及び傾きを調節することにより、光学素子を正確な位置及び傾きへと導
くことができる。これにより、目視による調整光の確認によって、光学素子のアライメン
ト調整を正確かつ容易に行うことが可能となる。
図18に示すアライメントマーク95は、超高圧水銀ランプ20からの光を透過させる
光学素子に用いることができる。アライメントマーク95は、調整光を透過させる円形の
透過部94と、透過部94の周囲に形成された蛍光部96とを有する。透過部94が設け
られた円形領域が調整光を通過させる目標位置となる。蛍光部96は、調整光の入射によ
り蛍光を発する蛍光性物質を塗布することで形成できる。調整光が蛍光部96へ入射する
とき、アライメントマーク95は、蛍光を発生させる。また、調整光が透過部94へ入射
するとき、蛍光の発生は無くなる。よって、蛍光の発生の有無の確認により、調整光の位
置を容易に確認することができる。これにより、光学素子のアライメント調整を正確かつ
容易に行うことが可能となる。なお、効果的に蛍光を発生させるために、蛍光部96に用
いる蛍光性物質は、調整光の波長に応じて適宜選択することができる。
本実施例のリアプロジェクタ10とは異なる構成のリアプロジェクタについても、本実
施例と同様にして、映像用光源から空間光変調装置までの光路中の光学素子のアライメン
ト調整を行うことができる。例えば、3つの透過型液晶表示装置を設けた、いわゆる3板
式のリアプロジェクタに限らず、1つの液晶表示装置を用いた単板式のリアプロジェクタ
、反射型液晶表示装置を用いたリアプロジェクタ、微小ミラーアレイデバイスを用いたリ
アプロジェクタ等に本発明を適用しても良い。例えば、微小ミラーアレイデバイスについ
ては、映像用光源からの光を変調させる領域外の領域に形成された微小ミラーを用いて、
アライメント調整を行うことができる。また、リアプロジェクタに限らず、いわゆるフロ
ント投写型のプロジェクタに本発明を適用しても良い。このように、種々のプロジェクタ
について、照明光学系に用いられる各光学素子、及び空間光変調装置のアライメント調整
ができる。
図19は、実施例2のプロジェクタの製造方法のうち光学素子を設置する手順を説明す
るフローチャートである。本実施例は、上記実施例1で説明したリアプロジェクタ10の
第1ミラー13からスクリーン16(図1参照)までの光路中の各光学素子のアライメン
ト調整を行うことを特徴とする。本実施例では、リアプロジェクタ10のうち光学エンジ
ン部11に代えて調整用光源ユニットが配置される。本実施例において、ステップS11
〜ステップS15は、アライメント調整を行う光学素子が異なる他は上記実施例1で説明
した手順のステップS1〜ステップS5(図4参照)と同様である。本実施例では、最後
のステップS16において、調整用光源ユニットに代えて光学エンジン部11が設置され
る。
図20は、リアプロジェクタ10のうち光学エンジン部11、投写レンズ12、第1ミ
ラー13、及び第2ミラー14の配置例を示す。光学エンジン部11、投写レンズ12、
第1ミラー13、及び第2ミラー14は、1つの台座101に集約して配置することで、
互いの位置関係を正確に決定することができる。第1ミラー13は、第1ミラー支持部1
02を介して台座101に固定されている。第2ミラー14は、第2ミラー支持部102
を介して台座に固定されている。
図21は、調整用光源ユニット110から第1ミラー13、第2ミラー14、第3ミラ
ー15、スクリーン16へ調整光を供給する状態を示す。調整用光源ユニット110は、
光学エンジン部11を設ける位置に配置されている。調整用光源ユニット110は、調整
用光源111を有する。調整用光源111としては、例えば、633nmのレーザ光を供
給する半導体レーザを用いることができる。光分岐部112は、調整用光源111からの
光の一部を反射し、他の一部を透過させることで光を分岐させるハーフミラーである。光
分岐部112を透過した光、及び光分岐部112で反射した後ミラー113で反射した光
は、スリット114へ入射する。スリット114を通過した2つの光は、ミラー115で
折り曲げられ、投写レンズ12の方向へ進行する。
調整用光源ユニット110は、このようにして、略平行かつ所定の間隔の2つの調整光
を供給する。調整用光源111及び他の光学要素を調整用光源ユニット110として一体
化することにより、高い精度で平行度及び間隔が制御された調整光を供給することができ
る。また、例えば、光学エンジン部11のクロスダイクロイックプリズム31(図2参照
)を固定するホルダにミラー115を取り付けることで、リアプロジェクタ10に対する
調整用光源ユニット110の着脱を容易にすることができる。
投写レンズ12から出射された2つの調整光は、第1ミラー13へ入射する。2つの調
整光のうちの一方は、第1ミラー13の入射側から見て、第1ミラー13の左上外縁部近
傍へ入射する。他方の調整光は、第1ミラー13の右下外縁部近傍へ入射する。破線で示
す矩形領域は、光学エンジン部11からの画像信号に応じた光が入射する領域である。第
1ミラー13のうち画像信号に応じた光が入射する領域以外の領域には、2つのアライメ
ントマークが形成されている。アライメントマークは、略直角をなすように接する2つの
線分により構成されている。2つのアライメントマークのうちの一方は、第1ミラー13
の左上外縁部近傍に形成されている。他方のアライメントマークは、第1ミラー13の右
下外縁部近傍に形成されている。
第1ミラー13のアライメント調整は、アライメントマークの直角部分へ調整光が入射
するように第1ミラー13の位置及び傾きを調節することにより行う。第2ミラー14、
第3ミラー15、スクリーン16についても、第1ミラー13の場合と同様にしてアライ
メント調整を行う。上記実施例1と同様に本実施例の場合も、光学素子の容易かつ高精度
なアライメント調整により高品質な画像を表示可能なリアプロジェクタ10を得られると
いう効果を奏する。アライメントマークは、図21に示すものの他、上記実施例1と同様
に他の形態のものを用いても良い。
図22は、第1ミラー13の位置及び傾きを微調整する調整機構について説明するもの
である。第1ミラー13は、傾き調整部121を介して第1ミラー支持部102に固定さ
れている。長穴部123に設けられたネジ122を緩めると、固定部124を中心として
傾き調整部121を回転させることができる。これにより、X軸回りの回転による第1ミ
ラー13の傾きの調整を容易に行うことができる。
第1ミラー支持部102は、ネジ125により台座101に固定されている。第1ミラ
ー支持部102のうちネジ125が貫通する部分には、X方向へ細長い形状の不図示の長
穴部が設けられている。ネジ125を緩めると、X方向に関して第1ミラー支持部102
を移動させることが可能となる。これにより、X方向に関して第1ミラー13の位置を容
易に調節することができる。さらに、Z方向へ細長い形状の長穴部とネジ(いずれも不図
示)を組み合わせた構成により、Z方向に関して第1ミラー13の位置を調節することも
できる。
図20に示す第2ミラー14も、第1ミラー13の場合と同様に、第2ミラー支持部1
03の位置の調節によりアライメント調整を行うことができる。また、第2ミラー14は
、図23の側面構成に示すように、第2ミラー14に設けられたネジ133を用いて第2
ミラー14のアライメント調整を行うこととしても良い。ネジ133は、バネ134の中
心を貫くように設けられている。第2ミラー14に設けられたネジ133を緩めるに従い
、バネ134の付勢力により、第2ミラー14は押し上げられる。また、ネジ133を締
めるに従いバネ134が強く押さえ込まれることにより、第2ミラー14は押し下げられ
る。
図23に示す構成において、第1支持部131に対する第2ミラー14のZ方向の位置
を調節する2つのネジ133、及び第1支持部131に対する第2ミラー14のY方向の
位置を調節する2つのネジ133が設けられている。これら4つのネジ133を用いて、
X軸回りの回転による第2ミラー14の傾きの調節を容易に行うことができる。また、第
2支持部132上に第1支持部131を固定する2つのネジ133を用いて、Y方向にお
ける第2ミラー14の位置を容易に調節することができる。
図24は、図23に示す構成の正面構成を示す。第1支持部131に第2ミラー14を
固定する4つのネジ133を用いて、Y軸回りの回転による第2ミラー14の傾きの調節
を容易に行うことができる。また、第1支持部131のうちネジ133が貫通する部分に
は、X方向へ細長い形状の長穴部135が設けられている。ネジ133を緩めると、X方
向に関して第1支持部131を移動させることが可能となる。これにより、X方向に関し
て第2ミラー14の位置を容易に調節することができる。本実施例によると、特にアライ
メント調整が難しいとされる非球面ミラーである第2ミラー14についても、容易かつ高
精度なアライメント調整を行うことが可能である。なお、第2ミラー14の傾きの調節を
行うための構成は、図23及び図24に示すものに限られない。三次元(XYZ)空間に
おける第2ミラー14の傾きは、少なくとも3箇所にネジを設けることで調節することが
できる。
図25は、第3ミラー15の傾きを微調整する調整機構について説明するものである。
第3ミラー15は、板状の第3ミラー支持部141上に固定されている。第3ミラー支持
部141には、第3ミラー支持部141をX軸回りに回転させる回転軸142が設けられ
ている。
図26は、筐体17に第3ミラー15が取り付けられた状態を説明するものである。軸
受け部143は、筐体17面にて回転軸142を支持する。軸受け部143に設けられた
ネジ144を緩めると、軸受け部143に対して回転軸142を回転させることが可能と
なる。また、ネジ144を締めることで、回転軸142を固定させることができる。かか
る調整機構を用いることにより、X軸回りの回転による第3ミラー15の傾きの調節を容
易に行うことができる。
図27は、本実施例にて用いられる2つの調整光同士の間隔を調節する調整光間隔調節
工程について説明するものである。リアプロジェクタ10への調整用光源ユニット110
の設置に先立ち、調整用光源ユニット110のスリット114から所定距離L(例えば1
m)の平面Sにおける2つの調整光同士の間隔を測定する。そして、平面Sにおける2つ
の調整光同士の間隔がスリット114における間隔と略一致するように調整用光源111
、光分岐部112、ミラー113、スリット114のうち少なくとも1つの調整を行う。
調整光の間隔の調整を予め行うことにより、光学素子のアライメント調整を精度良く行う
ことができる。なお、調整光の間隔の調節は、リアプロジェクタ10への調整用光源ユニ
ット110の設置後に行うこととしても良い。また、上記実施例1においても、予め調整
光の間隔を調整することとしても良い。
本実施例は、光学エンジン部11に代えて設置された調整用光源ユニット110を用い
る他、上記実施例1の調整用光源ユニット40(図5参照)が設置された光学エンジン部
11を用いることとしても良い。この場合、調整用光源ユニット40からの調整光を用い
て、光学エンジン部11の各光学素子、及び投写レンズ12からスクリーン16までの光
路中の各光学素子のアライメント調整を行うことができる。
本実施例は、リアプロジェクタ10の第1ミラー13及びスクリーン16までの各光学
素子のアライメント調整を行う場合に限られない。投写レンズ12からスクリーン16ま
での光路中の光学素子のうち少なくとも1つのアライメント調整を行うこととすれば良い
。また、本実施例で説明するリアプロジェクタ10とは異なる構成のリアプロジェクタに
ついても、本実施例と同様にして、投写レンズからスクリーンまでの光路中の光学素子の
アライメント調整を行うことができる。例えば、画像信号に応じて変調されたレーザ光を
走査させることにより画像を表示するレーザプロジェクタに本発明を適用しても良い。こ
のように、種々のプロジェクタについて、結像光学系に用いられる各光学素子のアライメ
ント調整ができる。
図28は、本実施例の変形例に係るプロジェクタの製造方法により製造されたプロジェ
クタ150の概略構成を示す。プロジェクタ150は、プロジェクタ150外部のスクリ
ーン153へ画像信号に応じた光を投写し、スクリーン153で反射する光を観察するこ
とで画像を鑑賞する、いわゆるフロント投写型のプロジェクタである。上記のリアプロジ
ェクタ10と同一の部分には同一の符号を付し、重複する説明は省略する。
本変形例のプロジェクタ150は、上記のリアプロジェクタ10の第3ミラー15(図
1参照)に代えて、第2ミラー14からの光を筐体152外へ出射させる透過部151が
設けられている。透過部151は、硝子等の透明部材により構成されている。透過部15
1は、筐体152の天井面に形成されている。第2ミラー14で反射した光は、透過部1
51を透過した後、スクリーン153へ入射する。第2ミラー14は、投写レンズ12か
らの光をプロジェクタ150外部のスクリーン153の被照射面へ入射させる反射ミラー
として機能する。
プロジェクタ150は、スクリーン153が設けられる壁面に密着させて配置される。
上記のリアプロジェクタ10と同様に、本変形例のプロジェクタ150も薄型にすること
ができるため、スクリーン153下の少ないスペースを利用して画像を表示することがで
きる。また、スクリーン153から観察者の方向へ進行する光がプロジェクタ150によ
って遮られる事態を回避し、快適な映像観賞を行うことができる。本変形例では、第1ミ
ラー13、第2ミラー14の容易かつ高精度なアライメント調整により、高品質な画像を
表示可能なプロジェクタ150を得ることができる。
本変形例では、投写レンズ12から反射ミラーである第2ミラー14までの光学素子の
うちの少なくとも1つ、言い換えると第1ミラー13、第2ミラー14の少なくとも一方
のアライメント調整を行うこととすれば良い。本変形例で説明するプロジェクタ150と
は異なる構成のプロジェクタについても、本変形例と同様にして、投写レンズから反射ミ
ラーまでの光路中の光学素子のアライメント調整を行うことができる。
以上のように、本発明に係るプロジェクタの製造方法は、薄型なリアプロジェクタを製
造する場合に有用である。
リアプロジェクタの概略構成を示す図。 光学エンジン部の構成を説明する図。 スクリーンの要部断面構成を示す図。 本発明の実施例1に係るプロジェクタの製造方法について説明する図。 光学エンジン部の光路中の各光学素子へ調整光を供給する状態を示す図。 第1インテグレータレンズの入射側平面構成を示す図。 第1インテグレータレンズを設置するホルダの斜視構成を示す図。 アライメントマークの例を示す図。 アライメントマークの例を示す他の図。 アライメント調整治具の概略構成を示す図。 光学素子の位置及び傾きの調節について説明する図。 光学素子をアライメント調整するための調整機構を説明する図。 遮光部を有するアライメントマークを示す図。 遮光部を有するアライメントマークを示す他の図。 互いに異なる光透過率の領域を有するアライメントマークを示す図。 光吸収部を有するアライメントマークを示す図。 互いに異なる反射率の領域を有するアライメントマークを示す図。 蛍光部を有するアライメントマークを示す図。 本発明の実施例2に係るプロジェクタの製造方法について説明する図。 リアプロジェクタの光学素子の配置例を示す図。 リアプロジェクタの各光学素子へ調整光を供給する状態を示す図。 第1ミラーの位置及び傾きを微調整する調整機構について説明する図。 第2ミラーの位置及び傾きを微調整する調整機構について説明する図。 図23に示す構成の正面構成を示す図。 第3ミラーの傾きを微調整する調整機構について説明する図。 筐体に第3ミラーが取り付けられた状態を説明する図。 調整光間隔調節工程について説明する図。 実施例2の変形例について説明する図。
符号の説明
10 リアプロジェクタ、11 光学エンジン部、12 投写レンズ、13 第1ミラ
ー、14 第2ミラー、15 第3ミラー、16 スクリーン、17 筐体、20 超高
圧水銀ランプ、21 第1インテグレータレンズ、22 第2インテグレータレンズ、2
3 偏光変換素子、24 重畳レンズ、25 第1ダイクロイックミラー、26 反射ミ
ラー、27 第2ダイクロイックミラー、28 リレーレンズ、29R R光用フィール
ドレンズ、29G G光用フィールドレンズ、29B B光用フィールドレンズ、30R
R光用空間光変調装置、30G G光用空間光変調装置、30B B光用空間光変調装
置、31 クロスダイクロイックプリズム、31a 第1ダイクロイック膜、31b 第
2ダイクロイック膜、32 第1面、33 第2面、34 プリズム部、35 フレネル
レンズ、40 調整用光源ユニット、41 調整用光源、42 光分岐部、43 角度変
換部、44 第1偏光板、45 液晶パネル、46 第2偏光板、50 アライメントマ
ーク、AR 領域、47 ホルダ、48 枠部、51 アライメントマーク、52 アラ
イメントマーク、60 アライメント調整治具、61 吸着部、62 アーム、63 調
整機構部、64 ポンプ、70 ホルダ、71 第1基板、72 貫通穴、73 ネジ、
74 板バネ部、75 切り欠き部、76 第2基板、77 突起部、78 長穴部、N
中心線、81 アライメントマーク、82 遮光部、83 透過部、84 アライメン
トマーク、85 透過部、86 遮光部、87 アライメントマーク、88 透過部、8
9 光吸収部、90 アライメントマーク、91 反射部、92 アライメントマーク、
93 高反射部、94 透過部、95 アライメントマーク、96 蛍光部、101 台
座、102 第1ミラー支持部、103 第2ミラー支持部、110 調整用光源ユニッ
ト、111 調整用光源、112 光分岐部、113 ミラー、114 スリット、11
5 ミラー、121 傾き調整部、122 ネジ、123 長穴部、124 固定部、1
25 ネジ、131 第1支持部、132 第2支持部、133 ネジ、134 バネ、
135 長穴部、141 第3ミラー支持部、142 回転軸、143 軸受け部、14
4 ネジ、150 プロジェクタ、151 透過部、152 筐体、153 スクリーン

Claims (13)

  1. 画像信号に応じて変調された光を被照射面へ入射させることにより画像を表示するプロ
    ジェクタの製造方法であって、
    調整用光源からの調整光を、前記調整用光源から前記被照射面までの光路中の光学素子
    へ供給する調整光供給工程と、
    前記光学素子へ供給される前記調整光、及び前記光学素子に付されたアライメントマー
    クを用いて、前記光路中の前記光学素子のうち少なくとも1つのアライメントを調整する
    アライメント調整工程と、を含むことを特徴とするプロジェクタの製造方法。
  2. 前記調整光供給工程において、少なくとも2つの前記調整光を前記光学素子へ供給する
    ことを特徴とする請求項1に記載のプロジェクタの製造方法。
  3. 前記調整用光源からの光を前記少なくとも2つの調整光に分岐させる分岐工程を含むこ
    とを特徴とする請求項2に記載のプロジェクタの製造方法。
  4. 前記少なくとも2つの調整光同士の間隔を調節する調整光間隔調節工程を含むことを特
    徴とする請求項2又は3に記載のプロジェクタの製造方法。
  5. 前記プロジェクタは、映像用光源からの光を前記画像信号に応じて変調する空間光変調
    装置を有し、
    前記アライメント調整工程において、前記映像用光源から前記空間光変調装置までの光
    路中の光学素子のうち少なくとも1つのアライメントを調整することを特徴とする請求項
    1〜4のいずれか一項に記載のプロジェクタの製造方法。
  6. 前記プロジェクタは、前記画像信号に応じて変調された光を投写する投写レンズを有し

    前記アライメント調整工程において、前記投写レンズから前記被照射面までの光路中の
    光学素子のうち少なくとも1つのアライメントを調整することを特徴とする請求項1〜5
    のいずれか一項に記載のプロジェクタの製造方法。
  7. 前記プロジェクタは、前記投写レンズからの光を透過させるスクリーンを有し、
    前記アライメント調整工程において、前記投写レンズから前記スクリーンまでの光路中
    の光学素子のうち少なくとも1つのアライメントを調整することを特徴とする請求項6に
    記載のプロジェクタの製造方法。
  8. 前記プロジェクタは、前記投写レンズからの光を前記プロジェクタ外部の被照射面へ入
    射させる反射ミラーを有し、
    前記アライメント調整工程において、前記投写レンズから前記反射ミラーまでの光路中
    の光学素子のうち少なくとも1つのアライメントを調整することを特徴とする請求項6に
    記載のプロジェクタの製造方法。
  9. 前記プロジェクタは、映像用光源からの光を用いて画像を表示し、
    前記調整光供給工程において、前記映像用光源を設ける位置、又は前記映像用光源を設
    ける位置の近傍に配置された前記調整用光源を用いて前記調整光を供給することを特徴と
    する請求項1〜8のいずれか一項に記載のプロジェクタの製造方法。
  10. 前記プロジェクタは、映像用光源からの光を用いて画像を表示し、
    前記アライメント調整工程において、前記光学素子のうち前記映像用光源からの光が入
    射する領域以外の領域に形成された前記アライメントマークを用いて前記光学素子のアラ
    イメントを調整することを特徴とする請求項1〜9のいずれか一項に記載のプロジェクタ
    の製造方法。
  11. 前記プロジェクタは、映像用光源からの光を用いて画像を表示し、
    前記アライメント調整工程において、前記映像用光源からの光を透過させる光学素子に
    ついて、互いに異なる光透過率を有する領域を組み合わせて形成されたアライメントマー
    クを用いて前記光学素子のアライメントを調整することを特徴とする請求項1〜10のい
    ずれか一項に記載のプロジェクタの製造方法。
  12. 前記プロジェクタは、映像用光源からの光を用いて画像を表示し、
    前記アライメント調整工程において、前記映像用光源からの光を反射させる光学素子に
    ついて、互いに異なる反射率を有する領域を組み合わせて形成されたアライメントマーク
    を用いて前記光学素子のアライメントを調整することを特徴とする請求項1〜10のいず
    れか一項に記載のプロジェクタの製造方法。
  13. 前記アライメント調整工程において、前記調整光の入射により蛍光を発する蛍光部を有
    するアライメントマークを用いて前記光学素子のアライメントを調整することを特徴とす
    る請求項1〜10のいずれか一項に記載のプロジェクタの製造方法。
JP2006039304A 2006-02-16 2006-02-16 プロジェクタの製造方法 Withdrawn JP2007219132A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039304A JP2007219132A (ja) 2006-02-16 2006-02-16 プロジェクタの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039304A JP2007219132A (ja) 2006-02-16 2006-02-16 プロジェクタの製造方法

Publications (1)

Publication Number Publication Date
JP2007219132A true JP2007219132A (ja) 2007-08-30

Family

ID=38496514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039304A Withdrawn JP2007219132A (ja) 2006-02-16 2006-02-16 プロジェクタの製造方法

Country Status (1)

Country Link
JP (1) JP2007219132A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192588A (ja) * 2015-03-30 2016-11-10 株式会社ユニバーサルエンターテインメント 光学機構位置調整装置
CN107157516A (zh) * 2017-07-05 2017-09-15 四川省肿瘤医院 一种超声扫描设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192588A (ja) * 2015-03-30 2016-11-10 株式会社ユニバーサルエンターテインメント 光学機構位置調整装置
CN107157516A (zh) * 2017-07-05 2017-09-15 四川省肿瘤医院 一种超声扫描设备

Similar Documents

Publication Publication Date Title
US20070097337A1 (en) Image display apparatus
US10474022B2 (en) Illuminator and projector
US20110188003A1 (en) Illumination device and projection-type image display device
US10101647B2 (en) Illuminator and projector
JP6701751B2 (ja) 光源装置及びプロジェクター
JP4075303B2 (ja) プロジェクタ
JP2020008722A (ja) 照明装置及びプロジェクター
JP2009229804A (ja) 光学部品、光学ユニットおよび表示装置
JP2010160307A (ja) 光学素子および画像表示装置
US10859896B2 (en) Lens adjustment mechanism and projection-type display apparatus
JP2016162575A (ja) 光源装置、照明装置、およびプロジェクター
JP2007072435A (ja) プロジェクタ及びプロジェクタの製造方法
JP2007147897A (ja) 光学装置およびプロジェクタ
JP2009169042A (ja) 補償素子調整機構およびプロジェクタ
JP2007219132A (ja) プロジェクタの製造方法
US11474424B2 (en) Light source device and projector
JP4992619B2 (ja) 照明装置の製造方法、照明装置及びプロジェクタ
JP5849589B2 (ja) 反射型偏光板装置、電気光学装置、光学装置、及びプロジェクター
JP4957085B2 (ja) 投写光学系及びプロジェクタ
JP2004287202A (ja) プロジェクタ
JP2010113186A (ja) 投射型表示装置
JP5171496B2 (ja) 投写型表示装置
US20090273759A1 (en) Projection image display apparatus
JP2023057372A (ja) 光源装置及びプロジェクター
JP2006243643A (ja) 光学変換素子、およびプロジェクタ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512