JP2007218717A - Inertial force sensor - Google Patents

Inertial force sensor Download PDF

Info

Publication number
JP2007218717A
JP2007218717A JP2006039002A JP2006039002A JP2007218717A JP 2007218717 A JP2007218717 A JP 2007218717A JP 2006039002 A JP2006039002 A JP 2006039002A JP 2006039002 A JP2006039002 A JP 2006039002A JP 2007218717 A JP2007218717 A JP 2007218717A
Authority
JP
Japan
Prior art keywords
vibrator
voltage
circuit
inertial force
force sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006039002A
Other languages
Japanese (ja)
Other versions
JP2007218717A5 (en
Inventor
Takeshi Uemura
猛 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006039002A priority Critical patent/JP2007218717A/en
Publication of JP2007218717A publication Critical patent/JP2007218717A/en
Publication of JP2007218717A5 publication Critical patent/JP2007218717A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inertial force sensor for reducing power consumption. <P>SOLUTION: The inertial force sensor comprises a vibrator 2; a drive circuit 4 for driving the vibrator 2; a monitor circuit 6 for monitoring the vibrating state of the vibrator 2; and a detection circuit 8 for detecting the distortion of the vibrator 2 caused by the Coriolis force. The drive circuit 4 controls voltage energized to the vibrator 2 so that the vibrator 2 vibrates with a fixed period and amplitude according to the vibrating state of the vibrator 2 by the monitoring circuit 6. Especially, the inertial force sensor has a voltage/current control means 22 for reducing the voltage added to the vibrator 2 in activation, as compared with that added to the vibrator 2 in a steady state, and increasing current added to the vibrator 2 in activation, as compared with that added to the vibrator 2 at steady state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、各種電子機器に用いる慣性力センサに関するものである。   The present invention relates to an inertial force sensor used in various electronic devices.

以下、従来の慣性力センサについて説明する。   Hereinafter, a conventional inertial force sensor will be described.

慣性力センサとしては角速度センサが挙げられ、この角速度センサは、振動子と、この振動子を振動させるための駆動回路と、コリオリ力(慣性力)に起因して振動子に生じる歪を感知するための感知回路と、駆動回路および感知回路に電力を供給するための電力供給回路とを備えている。   As an inertial force sensor, an angular velocity sensor can be cited. This angular velocity sensor senses a transducer, a drive circuit for vibrating the transducer, and distortion generated in the transducer due to Coriolis force (inertial force). And a power supply circuit for supplying power to the driving circuit and the sensing circuit.

振動子には、音叉形状、H形状、T形状、音片形状等、各種の形状のものがあるが、この振動子を振動させて、コリオリ力に起因して振動子に生じる歪を電気的に感知して角速度を算出するものである。   There are various types of vibrators such as a tuning fork shape, H shape, T shape, and sound piece shape. The vibrator is vibrated to electrically generate distortion caused by the Coriolis force. Is used to calculate the angular velocity.

このような角速度センサは、例えば、デジタルカメラ等の手振れ防止機能を構成する部品として搭載されている。   Such an angular velocity sensor is mounted, for example, as a component constituting a camera shake prevention function of a digital camera or the like.

なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2002−243451号公報
As prior art document information relating to the invention of this application, for example, Patent Document 1 is known.
JP 2002-243451 A

一般に、デジタルカメラ等は電池の駆動により作動させるため、電池の消費電力が大きくなれば使用可能な時間が短くなる。そのため、電池の消費電力を節電して長時間使用できるように、不使用時には主要機能への電力の供給を最低限に設定し、他の付加機能に対する電力の供給を遮断するような機能が採用されている。   In general, since a digital camera or the like is operated by driving a battery, the usable time is shortened if the power consumption of the battery is increased. Therefore, in order to save battery power consumption and use it for a long time, when not in use, the power supply to the main function is set to the minimum and the power supply to other additional functions is cut off. Has been.

しかし、手振れ防止機能を構成する慣性力センサでは振動子に電力を常時供給しており、電池の消費電力の節電を阻害している。これは、振動子への通電を遮断し、再度、通電を開始した場合、通電の遮断によって振動が止まった振動子は、再度、通電が開始されて振動子が振動したとしても、その振動子の振動が安定状態になるまでに時間を要する。すなわち、振動子の振動が安定状態になるまで精度良く慣性力を検知できないので、駆動回路から振動子への常時通電が必要となる。   However, the inertial force sensor that constitutes the camera shake prevention function constantly supplies power to the vibrator, thus hindering power saving of battery power consumption. This is because, when the energization to the vibrator is cut off and the energization is started again, the vibrator that has stopped vibrating due to the interruption of the energization will be activated even if the energization is started again and the vibrator vibrates. It takes time for the vibration of the to become stable. That is, since the inertial force cannot be accurately detected until the vibration of the vibrator becomes stable, it is necessary to always energize the vibrator from the drive circuit.

特に、振動子に通電するための電圧は、振動子が安定して振動している定常時よりも、振動子の振動を開始させて振動が安定するまでの起動時の方を大きくする必要がある。そのため、振動子に通電するための電圧は、振動子を振動させるために必要な最大値(起動時に必要な電圧)に設定しておく必要があり、消費電力が大きくなるという問題点を有していた。   In particular, the voltage for energizing the vibrator needs to be larger at the time of starting until the vibration is stabilized after the vibration of the vibrator is started than when the vibrator is oscillating stably. is there. Therefore, it is necessary to set the voltage for energizing the vibrator to the maximum value (voltage required at startup) necessary to vibrate the vibrator, resulting in a problem of increased power consumption. It was.

本発明は上記問題点を解決するもので、消費電力を低減した慣性力センサを提供することを目的としている。   The present invention solves the above-described problems, and an object thereof is to provide an inertial force sensor with reduced power consumption.

上記目的を達成するために本発明は、特に、定常時に振動子へ付加する電圧よりも起動時に前記振動子へ付加する電圧を小さくし、定常時に前記振動子へ付加する電流よりも起動時に前記振動子へ付加する電流を大きくする電圧電流制御手段を設けた構成である。   In order to achieve the above object, the present invention particularly reduces the voltage applied to the vibrator at the time of startup than the voltage applied to the vibrator at the time of steady state and the current at the time of startup than the current applied to the vibrator at the time of steady state. In this configuration, voltage current control means for increasing the current applied to the vibrator is provided.

上記構成により、定常時に振動子へ付加する電圧は起動時に振動子へ付加する電圧よりも小さいので、振動子に通電するための電圧は、振動子を振動させるために必要な最大値(起動時に必要な電圧)に常時設定しておく必要がなく消費電力を低減できる。   With the above configuration, the voltage applied to the vibrator during steady operation is smaller than the voltage applied to the vibrator during startup, so the voltage for energizing the vibrator is the maximum value required for vibrating the vibrator (when starting up) It is not necessary to always set the required voltage) to reduce power consumption.

特に、定常時に振動子へ付加する電流よりも起動時に振動子へ付加する電流を大きくしているので、電圧波形の立ち上がりと立ち下がりを急峻にし、振動子を振動させるために必要な最大値を確保できる時間が長くなり、起動効率を向上できる。また、起動時における電圧波形に対して、通電される電流が大きいので位相が遅れにくく、振動子の振動効率も向上できる。   In particular, the current applied to the vibrator at startup is greater than the current applied to the vibrator during steady state, so the voltage waveform rises and falls sharply and the maximum value required to vibrate the vibrator is set. The time that can be secured becomes longer, and the startup efficiency can be improved. In addition, since the energized current is large with respect to the voltage waveform at the time of activation, the phase is hardly delayed and the vibration efficiency of the vibrator can be improved.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の一実施の形態における慣性力センサのブロック図、図2は図1のA点〜C点における特性波形図、図3は図1のB点における特性波形に対するC点における定常時および起動時の特性波形図である。   1 is a block diagram of an inertial force sensor according to an embodiment of the present invention, FIG. 2 is a characteristic waveform diagram at points A to C in FIG. 1, and FIG. 3 is a constant waveform at point C with respect to the characteristic waveform at point B in FIG. It is a characteristic waveform diagram at the time of normal and startup.

図1において、本発明の一実施の形態における慣性力センサは、振動子2と、この振動子2を振動させる駆動回路4と、この振動子2の振動状態をモニタするモニタ回路6と、慣性力(コリオリ力)に起因した振動子2の歪を感知する感知回路8と、駆動回路4および感知回路8に電力を供給するための電力供給回路(図示せず)とを備えている。   In FIG. 1, an inertial force sensor according to an embodiment of the present invention includes a vibrator 2, a drive circuit 4 that vibrates the vibrator 2, a monitor circuit 6 that monitors the vibration state of the vibrator 2, and an inertia. A sensing circuit 8 that senses distortion of the vibrator 2 caused by force (Coriolis force), and a power supply circuit (not shown) for supplying power to the drive circuit 4 and the sensing circuit 8 are provided.

振動子2は、AgやAu等の金属導体からなる電極でPZTからなる圧電薄膜を挟み込んで形成した多層構造の駆動電極10、感知電極12、モニタ電極14を、音叉形状のシリコン基板上に配置して形成したものである。なお、シリコン基板の形状はH形状やT形状や音片形状等でもよい。   The vibrator 2 includes a drive electrode 10, a sensing electrode 12, and a monitor electrode 14 having a multilayer structure formed by sandwiching a piezoelectric thin film made of PZT with electrodes made of a metal conductor such as Ag or Au on a tuning fork-shaped silicon substrate. Formed. The shape of the silicon substrate may be an H shape, a T shape, a sound piece shape, or the like.

駆動回路4は、電圧を制御するAGC回路16やBPF回路18や駆動電極10に通電するための電圧を増幅する増幅回路20により構成されており、モニタ回路6による振動子2の振動状態に応じて、振動子2の振幅値が小さいとモニタすれば、AGC回路16を介して振動子2に通電するための電圧を増やし、振動子2の振幅値が大きいとモニタすれば、AGC回路16を介して振動子2に通電するための電圧を減らし、振動子2の振動が一定の周期および振幅で振動するように、振動子2に通電するための電圧を制御している。   The drive circuit 4 includes an AGC circuit 16 that controls the voltage, a BPF circuit 18, and an amplification circuit 20 that amplifies the voltage for energizing the drive electrode 10, and depends on the vibration state of the vibrator 2 by the monitor circuit 6. If the amplitude value of the vibrator 2 is monitored to be small, the voltage for energizing the vibrator 2 via the AGC circuit 16 is increased. If the amplitude value of the vibrator 2 is monitored to be large, the AGC circuit 16 is The voltage for energizing the vibrator 2 is controlled so that the voltage for energizing the vibrator 2 is reduced and the vibration of the vibrator 2 vibrates with a constant period and amplitude.

感知回路8は慣性力に起因した振動子2の歪を感知して感知電極12から電気的に出力された感知信号を処理する回路であり、差動増幅回路や同期検波回路等により構成されている。   The sensing circuit 8 is a circuit that senses distortion of the vibrator 2 due to inertial force and processes a sensing signal electrically output from the sensing electrode 12, and is configured by a differential amplifier circuit, a synchronous detection circuit, and the like. Yes.

上記の慣性力センサには、特に、定常時(振動子2が安定な状態で振動している時)に振動子2へ付加する電圧よりも起動時(電源投入時等の振動子2が不安定な状態で振動している時)に振動子2へ付加する電圧を小さくし、定常時(振動子2が安定な状態で振動している時)に振動子2へ付加する電流よりも起動時(電源投入時等の振動子2が不安定な状態で振動している時)に振動子2へ付加する電流を大きくする電圧電流制御手段22を設けている。   In particular, the inertial force sensor described above is more resistant to vibration at the start-up (when the power is turned on, etc.) than the voltage applied to the vibrator 2 at steady state (when the vibrator 2 vibrates in a stable state). The voltage applied to the vibrator 2 is reduced when the vibrator 2 is oscillating in a stable state, and is activated more than the current applied to the vibrator 2 at a steady state (when the vibrator 2 is oscillating in a stable state). Voltage / current control means 22 is provided to increase the current applied to the vibrator 2 when the vibrator 2 vibrates in an unstable state (eg, when the power is turned on).

この電圧電流制御手段22は、DC変換回路24と比較回路26とメモリ部28とから構成され、モニタ回路6によってモニタされた振動子2の振幅値(振幅値から算出した算出値も含む)と、あらかじめメモリ部28に記憶された定常時における振動子2の振幅値(振幅値から算出した算出値も含む)または起動時における振動子2の振幅値(振幅値から算出した算出値も含む)と比較して、振動子2の振動時期を判断するとともに、振動時期に応じて振動子2へ付加する電圧および電流を制御する手段としている。   The voltage / current control means 22 includes a DC conversion circuit 24, a comparison circuit 26, and a memory unit 28, and an amplitude value (including a calculated value calculated from the amplitude value) of the vibrator 2 monitored by the monitor circuit 6. The amplitude value of the vibrator 2 at the normal time (including the calculated value calculated from the amplitude value) or the amplitude value of the vibrator 2 at the startup (including the calculated value calculated from the amplitude value) stored in the memory unit 28 in advance. Compared to the above, the vibration timing of the vibrator 2 is determined, and the voltage and current applied to the vibrator 2 are controlled according to the vibration timing.

具体的には、図2に示すとおりである。   Specifically, it is as shown in FIG.

図2(a)は図1のA点におけるDC変換回路で変換されたDC変換値の特性波形図、図2(b)は図1のB点におけるモニタ回路から出力された振動子の振動(振幅)を示す特性波形図、図2(c)は図1のC点における振動子を振動させるための駆動回路の電圧の振幅を示す特性波形図である。電圧電流制御手段22によって、図2(c)に示すように、振動子2の起動時においては振動子2の起動に必要な電圧を確保して所定の通電を行い、振動子2の定常時においては起動時に必要な電圧よりも電圧を下げて定常時に必要な所定の通電を行っている。図2(b)に示すように、振動子2の振動を示す特性波形に応じて、図2(a)に示すように、DC変換回路24にてDC変換したDC変換値をメモリ部28にあらかじめ記憶させておいた所定の基準値(定常時における振動子2の振幅値または起動時における振動子2の振幅値)と比較回路26にて比較することにより、振動子2の振動時期が起動時であるか定常時であるかを判断している。   2A is a characteristic waveform diagram of the DC conversion value converted by the DC conversion circuit at point A in FIG. 1, and FIG. 2B is a vibration of the vibrator output from the monitor circuit at point B in FIG. (C) is a characteristic waveform diagram showing the amplitude of the voltage of the drive circuit for vibrating the vibrator at point C in FIG. As shown in FIG. 2C, the voltage / current control means 22 secures a voltage necessary for starting the vibrator 2 and performs predetermined energization when the vibrator 2 is started. In the method, the predetermined energization necessary for the steady state is performed by lowering the voltage from the voltage necessary for starting. As shown in FIG. 2B, the DC conversion value DC-converted by the DC conversion circuit 24 is stored in the memory unit 28 as shown in FIG. 2A according to the characteristic waveform indicating the vibration of the vibrator 2. The comparison circuit 26 compares the predetermined reference value (amplitude value of the vibrator 2 at a steady state or the amplitude value of the vibrator 2 at the time of activation) stored in advance, so that the vibration timing of the vibrator 2 is activated. It is judged whether it is time or steady time.

さらに、駆動回路4の増幅回路20には容量値の異なる2つの位相補償コンデンサを設けるとともに、定常時に振動子2へ電圧を付加する際は容量値の小さい方の位相補償コンデンサに通電し、起動時に振動子2へ電圧を付加する際は容量値の大きい方の位相補償コンデンサに通電する切替手段を設けている。   Further, the amplifier circuit 20 of the drive circuit 4 is provided with two phase compensation capacitors having different capacitance values, and when a voltage is applied to the vibrator 2 in a steady state, the phase compensation capacitor having the smaller capacitance value is energized to start. When a voltage is sometimes applied to the vibrator 2, switching means is provided for energizing the phase compensation capacitor having the larger capacitance value.

一般的に、広帯域、高利得の増幅回路20では帰還をかけて使用するが、増幅回路20自体の位相が180度を越すと、帰還回路から正帰還されるために発振してしまう。このため適正な利得周波数特性を保つために、位相補償コンデンサを用いて、位相をコントロールして発振を防止、安定動作させる。振動子2の起動時には、電圧を大きくする必要があるため、増幅回路20によって増幅する際は、容量値の大きい位相補償コンデンサに通電して、増幅回路20を安定動作させ、振動子2の定常時には、消費電力抑制のため電圧を小さくするので、増幅回路20によって増複する際は、容量値の小さい位相補償コンデンサに通電すれば、増幅回路20を安定動作できる。   In general, the wideband and high gain amplifier circuit 20 is used with feedback, but if the phase of the amplifier circuit 20 exceeds 180 degrees, the feedback circuit oscillates because it is positively fed back. Therefore, in order to maintain an appropriate gain frequency characteristic, a phase compensation capacitor is used to control the phase to prevent oscillation and perform stable operation. Since the voltage needs to be increased when the vibrator 2 is started up, when amplifying by the amplifier circuit 20, the phase compensation capacitor having a large capacitance value is energized to stably operate the amplifier circuit 20, so that the vibrator 2 is steady. In some cases, the voltage is reduced to suppress power consumption. Therefore, when the voltage is amplified by the amplifier circuit 20, the amplifier circuit 20 can be stably operated by supplying current to a phase compensation capacitor having a small capacitance value.

図3(a)は図1のB点におけるモニタ回路から出力された振動子の振動(振幅)を示す特性波形図、図3(b)は図1のC点における駆動回路の定常時電圧の振幅を示す特性波形図、図3(c)は図1のC点における駆動回路の起動時電圧の振幅を示す特性波形図である。図3(b)、図3(c)に示すように、電圧の振幅は、起動時は矩形波、定常時は正弦波であり、特に、図3(c)に示すように、起動時における電圧矩形波に対して、通電される電流が小さいと位相が遅れやすく、通電される電流が大きいと位相が遅れにくい。   3A is a characteristic waveform diagram showing the vibration (amplitude) of the vibrator output from the monitor circuit at the point B in FIG. 1, and FIG. 3B is a graph showing the steady-state voltage of the drive circuit at the point C in FIG. FIG. 3C is a characteristic waveform diagram showing the amplitude of the starting voltage of the drive circuit at the point C in FIG. As shown in FIGS. 3 (b) and 3 (c), the amplitude of the voltage is a rectangular wave at the time of startup, and a sine wave at the time of steady state. In particular, as shown in FIG. With respect to the voltage rectangular wave, the phase is likely to be delayed if the energized current is small, and the phase is difficult to be delayed if the energized current is large.

この位相遅れによる影響は、図4(a)、図4(b)に示すように、共振周波数のずれの原因となって、本来、振動効率の最も良い共振周波数で振動子2が振動しない。すなわち、起動時間が長引いたり、起動時における感度が低下したりするため、位相遅れの抑制には、起動時の電流は大きい方が有利である。ただし、必要以上に大きければ、単に消費電力の増大につながる。   As shown in FIGS. 4A and 4B, the influence of this phase delay causes a shift in the resonance frequency, and the vibrator 2 does not vibrate at the resonance frequency with the best vibration efficiency. That is, since the startup time is prolonged or the sensitivity at startup is reduced, it is advantageous that the current at startup is large in order to suppress the phase delay. However, if it is larger than necessary, it simply leads to an increase in power consumption.

上記構成により、定常時(振動子2が安定な状態で振動している時)に振動子2へ付加される電圧は起動時(電源投入時等の振動子2が不安定な状態で振動している時)に振動子2へ付加される電圧よりも小さいので、振動子2に通電するための電圧は、振動子2を振動させるために必要な最大値(起動時に必要な電圧)に常時設定しておく必要がなく消費電力を低減できる。特に、定常時に振動子2へ付加する電流よりも起動時に振動子2へ付加する電流を大きくしているので、電圧波形の立ち上がりと立ち下がりを急峻にし、振動子2を振動させるために必要な最大値を確保できる時間が長くなり、起動効率を向上できる。また、起動時における電圧波形に対して、通電される電流が大きいので位相が遅れにくく、振動子の振動効率を向上できる。   With the above configuration, the voltage applied to the vibrator 2 during steady state (when the vibrator 2 vibrates in a stable state) vibrates in an unstable state when the vibrator 2 is activated (eg when the power is turned on). Therefore, the voltage for energizing the vibrator 2 is always set to the maximum value required for vibrating the vibrator 2 (the voltage required at startup). Power consumption can be reduced without the need for setting. In particular, since the current to be added to the vibrator 2 at the time of startup is larger than the current to be added to the vibrator 2 at the steady state, it is necessary to make the rise and fall of the voltage waveform steep and to vibrate the vibrator 2. The time for which the maximum value can be secured becomes longer, and the startup efficiency can be improved. In addition, since the energized current is large with respect to the voltage waveform at the time of activation, the phase is hardly delayed and the vibration efficiency of the vibrator can be improved.

また、増幅回路20には容量値の異なる2つの位相補償コンデンサを設け、定常時に振動子2へ電圧を付加する際は容量値の小さい方の位相補償コンデンサに通電し、起動時に振動子2へ電圧を付加する際は容量値の大きい方の位相補償コンデンサに通電する切替手段を設けているので、増幅回路20を安定動作させることができる。特に、振動子2の定常時には、消費電力抑制のため電圧を小さくするが、この際には、容量値の小さい方の位相補償コンデンサに通電することにより、電圧が大きいときも小さいときも的確に増幅回路20を安定動作させることができる。   The amplifier circuit 20 is provided with two phase compensation capacitors having different capacitance values. When a voltage is applied to the vibrator 2 in a steady state, the phase compensation capacitor having the smaller capacitance value is energized, and to the vibrator 2 at startup. When applying the voltage, since the switching means for energizing the phase compensation capacitor having the larger capacitance value is provided, the amplifier circuit 20 can be stably operated. In particular, when the vibrator 2 is in a steady state, the voltage is reduced to suppress power consumption. In this case, the phase compensation capacitor having the smaller capacitance value is energized, so that the voltage can be accurately increased and decreased. The amplifier circuit 20 can be stably operated.

さらに、電圧電流制御手段22は、モニタ回路6によってモニタされた振動子2の振幅値(振幅値から算出した算出値も含む)と、あらかじめ記憶された定常時における振動子2の振幅値(振幅値から算出した算出値も含む)または起動時における振動子2の振幅値(振幅値から算出した算出値も含む)と比較して、振動子2の振動時期を判断するとともに振動子2へ付加する電圧を制御する手段としているので、振動の振動時期が起動時であるか定常時であるかを的確に判断して振動子2へ付加する電圧を制御できる。   Further, the voltage / current control means 22 includes the amplitude value (including the calculated value calculated from the amplitude value) of the vibrator 2 monitored by the monitor circuit 6 and the amplitude value (amplitude) of the vibrator 2 stored in a steady state in advance. In addition, the vibration time of the vibrator 2 is judged and added to the vibrator 2 in comparison with the amplitude value of the vibrator 2 at the time of activation (including the computed value calculated from the amplitude value). Therefore, the voltage applied to the vibrator 2 can be controlled by accurately determining whether the vibration timing is the start time or the steady time.

なお、本発明の実施の形態において、感知回路8には電圧を付加せずに駆動回路4とモニタ回路6には電圧を付加するスリープモード手段を設け、定常時に振動子2へ付加する電圧よりもスリープモード時に振動子2へ付加する電圧を小さくする構成を設けても良い。これにより、さらに消費電力を抑制できる。また、スリープモード時から定常時への復帰は、本発明の実施の形態における起動時と同様である。起動時が電源投入時であるかスリープモード時であるかの違いである。   In the embodiment of the present invention, the drive circuit 4 and the monitor circuit 6 are provided with a sleep mode means for applying a voltage without applying a voltage to the sensing circuit 8, and the voltage applied to the vibrator 2 in a steady state is provided. Alternatively, a configuration may be provided in which the voltage applied to the vibrator 2 is reduced during the sleep mode. Thereby, power consumption can be further suppressed. Further, the return from the sleep mode to the steady state is the same as that at the time of activation in the embodiment of the present invention. The difference is whether the startup is at power-on or in sleep mode.

以上のように本発明の慣性力センサは、消費電力を低減でき各種の機器に適用できる。   As described above, the inertial force sensor of the present invention can reduce power consumption and can be applied to various devices.

本発明の一実施の形態における慣性力センサのブロック図The block diagram of the inertial force sensor in one embodiment of this invention 図1のA点〜C点における特性波形図Characteristic waveform diagram at points A to C in FIG. 図1のB点における特性波形に対するC点における定常時および起動時の特性波形図Characteristic waveform diagram at the time of steady and starting at point C with respect to the characteristic waveform at point B in FIG. 位相遅れと共振周波数のずれを示す特性波形図Characteristic waveform diagram showing phase lag and resonance frequency deviation

符号の説明Explanation of symbols

2 振動子
4 駆動回路
6 モニタ回路
8 感知回路
10 駆動電極
12 感知電極
14 モニタ電極
16 AGC回路
18 BPF回路
20 増幅回路
22 電圧電流制御手段
24 DC変換回路
26 比較回路
28 メモリ部
2 vibrator 4 drive circuit 6 monitor circuit 8 sensing circuit 10 drive electrode 12 sense electrode 14 monitor electrode 16 AGC circuit 18 BPF circuit 20 amplifier circuit 22 voltage current control means 24 DC conversion circuit 26 comparison circuit 28 memory unit

Claims (4)

振動子と、前記振動子へ電圧および電流を付加して前記振動子を振動させる駆動回路と、前記振動子の振動状態をモニタするモニタ回路と、慣性力に起因した前記振動子の歪を感知する感知回路とを備え、前記駆動回路は前記振動子へ付加する電圧および電流に応じて前記振動子を振動させるとともに前記振動子の振幅値を変化させており、
定常時に前記振動子へ付加する電圧よりも起動時に前記振動子へ付加する電圧を小さくし、定常時に前記振動子へ付加する電流よりも起動時に前記振動子へ付加する電流を大きくする電圧電流制御手段を設けた慣性力センサ。
A vibrator, a drive circuit that vibrates the vibrator by applying voltage and current to the vibrator, a monitor circuit that monitors the vibration state of the vibrator, and senses distortion of the vibrator due to inertial force And the drive circuit oscillates the vibrator according to the voltage and current applied to the vibrator and changes the amplitude value of the vibrator.
Voltage / current control that reduces the voltage applied to the vibrator at startup than the voltage applied to the vibrator at steady state and increases the current applied to the vibrator at startup than the current applied to the vibrator at steady state Inertial force sensor provided with means.
前記駆動回路は増幅回路を有し、前記増幅回路には容量値の異なる2つの位相補償コンデンサを設け、定常時に前記振動子へ電圧を付加する際は容量値の小さい方の前記位相補償コンデンサに通電し、起動時に前記振動子へ電圧を付加する際は容量値の大きい方の前記位相補償コンデンサに通電する切替手段を設けた請求項1記載の慣性力センサ。 The drive circuit includes an amplifier circuit, and the amplifier circuit is provided with two phase compensation capacitors having different capacitance values. When voltage is applied to the vibrator in a steady state, the phase compensation capacitor having the smaller capacitance value is used. The inertial force sensor according to claim 1, further comprising a switching unit that energizes the phase compensation capacitor having a larger capacitance value when energizing and applying a voltage to the vibrator at the time of activation. 前記電圧電流制御手段は、前記モニタ回路によってモニタされた前記振動子の振幅値と、あらかじめ記憶された定常時の前記振動子の振幅値または起動時の前記振動子の振幅値と比較して、前記振動子の振動時期を判断するとともに前記振動子ヘ付加する電圧および電流を制御する手段とした請求項1記載の慣性力センサ。 The voltage / current control means compares the amplitude value of the vibrator monitored by the monitor circuit with the amplitude value of the vibrator at steady state or the amplitude value of the vibrator at startup stored in advance, The inertial force sensor according to claim 1, wherein the inertial force sensor is configured to determine a vibration timing of the vibrator and to control a voltage and a current applied to the vibrator. 前記感知回路には電圧を付加せずに前記駆動回路と前記モニタ回路には電圧を付加するスリープモード手段を設け、定常時に前記振動子へ付加する電圧よりもスリープモード時に前記振動子へ付加する電圧を小さくした請求項1記載の慣性力センサ。 The sensing circuit is provided with sleep mode means for applying voltage to the driving circuit and the monitor circuit without applying voltage, and is applied to the vibrator in the sleep mode rather than the voltage to be applied to the vibrator during steady state. The inertial force sensor according to claim 1, wherein the voltage is reduced.
JP2006039002A 2006-02-16 2006-02-16 Inertial force sensor Pending JP2007218717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039002A JP2007218717A (en) 2006-02-16 2006-02-16 Inertial force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039002A JP2007218717A (en) 2006-02-16 2006-02-16 Inertial force sensor

Publications (2)

Publication Number Publication Date
JP2007218717A true JP2007218717A (en) 2007-08-30
JP2007218717A5 JP2007218717A5 (en) 2009-04-02

Family

ID=38496187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039002A Pending JP2007218717A (en) 2006-02-16 2006-02-16 Inertial force sensor

Country Status (1)

Country Link
JP (1) JP2007218717A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7891245B2 (en) 2006-11-22 2011-02-22 Panasonic Corporation Inertial force sensor including a sense element, a drive circuit, a sigma-delta modulator and a signal processing circuit
US9392171B2 (en) 2012-04-12 2016-07-12 Panasonic Intellectual Property Management Co., Ltd. Angular velocity sensor, and electronic apparatus using same
CN106052665A (en) * 2015-04-10 2016-10-26 株式会社东芝 Method for acquiring angular velocity of gyro sensor and device for doing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289416A (en) * 1996-04-23 1997-11-04 Nec Shizuoka Ltd Crystal oscillation circuit
JP2002174520A (en) * 2000-12-08 2002-06-21 Kinseki Ltd Oscillating circuit and angular velocity sensor using the same
JP2002350139A (en) * 2001-05-30 2002-12-04 Ngk Insulators Ltd Detection method and detection apparatus using vibrator
JP2003240556A (en) * 2002-02-14 2003-08-27 Ngk Insulators Ltd Measuring device of physical quantity and drive device of vibrator
JP2004153433A (en) * 2002-10-29 2004-05-27 Niigata Seimitsu Kk Crystal oscillator and semiconductor device
JP2004267402A (en) * 2003-03-07 2004-09-30 Hitachi Medical Corp Multislice x-ray ct apparatus
JP2005227234A (en) * 2004-02-16 2005-08-25 Jaitoronikusu:Kk Angular velocity sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289416A (en) * 1996-04-23 1997-11-04 Nec Shizuoka Ltd Crystal oscillation circuit
JP2002174520A (en) * 2000-12-08 2002-06-21 Kinseki Ltd Oscillating circuit and angular velocity sensor using the same
JP2002350139A (en) * 2001-05-30 2002-12-04 Ngk Insulators Ltd Detection method and detection apparatus using vibrator
JP2003240556A (en) * 2002-02-14 2003-08-27 Ngk Insulators Ltd Measuring device of physical quantity and drive device of vibrator
JP2004153433A (en) * 2002-10-29 2004-05-27 Niigata Seimitsu Kk Crystal oscillator and semiconductor device
JP2004267402A (en) * 2003-03-07 2004-09-30 Hitachi Medical Corp Multislice x-ray ct apparatus
JP2005227234A (en) * 2004-02-16 2005-08-25 Jaitoronikusu:Kk Angular velocity sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7891245B2 (en) 2006-11-22 2011-02-22 Panasonic Corporation Inertial force sensor including a sense element, a drive circuit, a sigma-delta modulator and a signal processing circuit
US9392171B2 (en) 2012-04-12 2016-07-12 Panasonic Intellectual Property Management Co., Ltd. Angular velocity sensor, and electronic apparatus using same
CN106052665A (en) * 2015-04-10 2016-10-26 株式会社东芝 Method for acquiring angular velocity of gyro sensor and device for doing same
CN106052665B (en) * 2015-04-10 2019-09-20 株式会社东芝 The adquisitiones and acquisition device of the angular speed of gyro sensor

Similar Documents

Publication Publication Date Title
JP4633058B2 (en) Vibration type inertial force sensor
JP2006349409A (en) Sensor circuit of electrostatically-actuated/capacity sensing type gyroscope sensor
US8015874B2 (en) Inertia force sensor
JP2007256233A5 (en)
JPH0933262A (en) Exciting/driving circuit, method therefor and piezoelectric vibration angular velocity meter using the circuit
JP2007218717A (en) Inertial force sensor
JP4573017B2 (en) Detection method and detection apparatus using vibrator
JP2007218717A5 (en)
JP2007221575A (en) Oscillation circuit, physical quantity transducer and vibrating gyrosensor
JP5362097B2 (en) Vibration type inertial force sensor
JP2007071654A (en) Vibration gyro
JP2009130587A (en) Oscillation circuit and oscillator
JP5561237B2 (en) Vibrator drive circuit
JP2008099257A (en) Oscillation circuit
JP2007178298A (en) Oscillatory type inertial force detection sensor
JP4631537B2 (en) Sensor circuit of capacitive physical quantity sensor
JP2008157766A (en) Acceleration detecting device
JP6318562B2 (en) Pulse laser equipment
JP2007235484A (en) Piezoelectric oscillation circuit
JP5040117B2 (en) Oscillation circuit, physical quantity transducer, and vibration gyro sensor
JP6662254B2 (en) Drive circuit and physical quantity sensor device
JP4564764B2 (en) Level detector
JP3227975B2 (en) Vibration detection circuit
JP2010206288A (en) Solid vibrator oscillation circuit, and physical quantity sensor using the same
JP2009284375A (en) Oscillator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121031

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121212

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121228

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417