JP5561237B2 - Vibrator drive circuit - Google Patents

Vibrator drive circuit Download PDF

Info

Publication number
JP5561237B2
JP5561237B2 JP2011099505A JP2011099505A JP5561237B2 JP 5561237 B2 JP5561237 B2 JP 5561237B2 JP 2011099505 A JP2011099505 A JP 2011099505A JP 2011099505 A JP2011099505 A JP 2011099505A JP 5561237 B2 JP5561237 B2 JP 5561237B2
Authority
JP
Japan
Prior art keywords
vibrator
drive
frequency
drive signal
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011099505A
Other languages
Japanese (ja)
Other versions
JP2012230052A (en
Inventor
長谷川  功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011099505A priority Critical patent/JP5561237B2/en
Publication of JP2012230052A publication Critical patent/JP2012230052A/en
Application granted granted Critical
Publication of JP5561237B2 publication Critical patent/JP5561237B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

本発明は、ジャイロセンサのセンサ回路に用いられる振動子駆動回路に関する。   The present invention relates to a vibrator driving circuit used in a sensor circuit of a gyro sensor.

カーナビゲーションシステム、車両安定化制御(VSC)システム、デジタルカメラ、ビデオカメラ、携帯電話機などの電子機器には、GPS自律航法、挙動安定化制御、手振れ補正制御などで必要となる角速度を検出するジャイロセンサが組み込まれている。駆動用センサエレメントに振動子を使った振動型ジャイロセンサは、振動子駆動回路により振動子を共振周波数で一定振幅に振動させて用いられる(例えば特許文献1参照)。この振動子駆動回路は、ジャイロセンサから出力される振動子の駆動振動の状態に応じたモニタ信号に基づいてループゲインを自動調整する振幅制御回路を備えている。振動子が振動している状態でジャイロセンサに角速度が加わると、コリオリ力によって検出用センサエレメントが振動する。   Gyros that detect angular velocities required for GPS autonomous navigation, behavior stabilization control, camera shake correction control, etc. for electronic devices such as car navigation systems, vehicle stabilization control (VSC) systems, digital cameras, video cameras, and mobile phones A sensor is incorporated. A vibration type gyro sensor using a vibrator as a driving sensor element is used by vibrating a vibrator to a constant amplitude at a resonance frequency by a vibrator driving circuit (see, for example, Patent Document 1). This vibrator driving circuit includes an amplitude control circuit that automatically adjusts the loop gain based on a monitor signal corresponding to the state of driving vibration of the vibrator output from the gyro sensor. When an angular velocity is applied to the gyro sensor while the vibrator is vibrating, the sensor element for detection vibrates due to the Coriolis force.

特許第2666505号公報Japanese Patent No. 2666505

近年、ジャイロセンサの軽量小型化を図るとともに高い感度特性を得るために、高いQ値(機械的品質係数)を持つ振動子が用いられつつある。高いQ値を持つ振動子は、低いQ値を持つ振動子に対し材質、真空封止等において構成を異にする。Q値が高い振動子の場合、振動開始時におけるモニタ信号のレベルが非常に微弱であり、振動子を確実に振動させるためには振動子駆動回路に高いSNR性能が必要となる。また、振動子の共振周波数にはばらつきがあるため、モニタ信号のレベルが一層小さくなる場合がある。このため、通常のSNR性能を持つオペアンプでは振動子駆動回路を構成できない。さらに、高いQ値を持つ振動子では、駆動開始から駆動振動が安定するまでの時間(起動時間)が長くなるという問題がある。   In recent years, vibrators having a high Q value (mechanical quality factor) are being used in order to reduce the size and size of the gyro sensor and obtain high sensitivity characteristics. A vibrator having a high Q value is different from the vibrator having a low Q value in material, vacuum sealing, and the like. In the case of a vibrator having a high Q value, the level of the monitor signal at the start of vibration is very weak, and a high SNR performance is required for the vibrator driving circuit in order to reliably vibrate the vibrator. In addition, since the resonance frequency of the vibrator varies, the level of the monitor signal may be further reduced. For this reason, a vibrator drive circuit cannot be configured with an operational amplifier having normal SNR performance. Furthermore, in a vibrator having a high Q value, there is a problem that the time (start-up time) from the start of driving to the stabilization of driving vibration becomes long.

本発明は上記事情に鑑みてなされたもので、その目的は、振動開始時の駆動振幅レベルが微弱な振動子を短時間で確実に起動する振動子駆動回路を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vibrator drive circuit that reliably activates a vibrator having a weak drive amplitude level at the start of vibration in a short time.

請求項1に記載した振動子駆動回路は、振動子に与える駆動信号を生成する2種類の駆動信号生成手段を備えている。定常駆動信号生成手段は、振動子の駆動振動の状態に応じて出力されるモニタ信号に基づいて振動子を持続的に振動させる定常駆動信号を生成する。初期駆動信号生成手段は、振動子と定常駆動信号生成手段とで閉ループを形成した場合に持続的な振動が励振される駆動周波数を振動子の駆動開始時から含む初期駆動信号または駆動開始後に含むようになる初期駆動信号を生成する。   The vibrator drive circuit according to the first aspect includes two types of drive signal generation means for generating a drive signal to be given to the vibrator. The steady drive signal generating means generates a steady drive signal for continuously vibrating the vibrator based on the monitor signal output according to the state of the drive vibration of the vibrator. The initial drive signal generating means includes an initial drive signal including a drive frequency at which continuous vibration is excited when a closed loop is formed by the vibrator and the steady drive signal generating means from the start of driving of the vibrator or after the start of driving. An initial drive signal is generated.

振動子駆動回路は、振動子と定常駆動信号生成手段とで閉ループを形成した場合に持続的な振動を励振可能な振幅の範囲内にしきい値を設定している。振幅検出手段は、モニタ信号に基づいて振動子の駆動振動の振幅を検出する。駆動切替手段は、振幅検出手段により検出された駆動振動の振幅がしきい値未満の場合には初期駆動信号を選択して振動子を駆動し、しきい値以上となった場合には定常駆動信号を選択して振動子を駆動する。   The vibrator drive circuit sets a threshold value within a range of amplitude that can excite a continuous vibration when a closed loop is formed by the vibrator and the steady drive signal generating means. The amplitude detection means detects the amplitude of the drive vibration of the vibrator based on the monitor signal. The drive switching means selects the initial drive signal to drive the vibrator when the amplitude of the drive vibration detected by the amplitude detection means is less than the threshold value, and steady drive when the amplitude exceeds the threshold value. A signal is selected to drive the transducer.

本手段によれば、振動子の起動に際し、持続的な振動が励振される駆動周波数を含む初期駆動信号を用いることができるので、共振周波数のばらつきにかかわらず振動開始時の駆動振幅レベルが微弱な振動子(例えば高いQ値を持つ振動子)を短時間で確実に起動することができる。また、持続的な振動が励振された後は初期駆動信号に替えて定常駆動信号を用いるので、一定の振動振幅による安定した振動状態を維持できる。   According to this means, when the vibrator is started, an initial drive signal including a drive frequency at which continuous vibration is excited can be used, so that the drive amplitude level at the start of vibration is weak regardless of variations in the resonance frequency. A simple vibrator (for example, a vibrator having a high Q value) can be reliably activated in a short time. Further, since a steady drive signal is used instead of the initial drive signal after the continuous vibration is excited, a stable vibration state with a constant vibration amplitude can be maintained.

そして、初期駆動信号生成手段は、駆動開始時に、ホワイトノイズ発生手段で生成されるホワイトノイズからなる初期駆動信号を選択する。FFT演算手段は、振動子が当該初期駆動信号により駆動されている時に、モニタ信号に対しFFTの演算を実行する。周波数選択手段は、このFFTの演算結果に基づいてモニタ信号に含まれる周波数成分のうち最大振幅を持つ周波数を選択し、駆動信号発生手段は、選択された周波数を持つ初期駆動信号を生成する。 The initial drive signal generation means selects an initial drive signal composed of white noise generated by the white noise generation means at the start of driving. The FFT operation means performs an FFT operation on the monitor signal when the vibrator is driven by the initial drive signal. The frequency selection unit selects a frequency having the maximum amplitude among the frequency components included in the monitor signal based on the result of the FFT operation, and the drive signal generation unit generates an initial drive signal having the selected frequency.

切替手段は、FFTの演算結果に基づいてモニタ信号に所定の判定レベルを超える周波数成分が現れたことを条件として、駆動信号発生手段から出力される初期駆動信号を選択する。本手段によれば、幅広い周波数成分を含む初期駆動信号を振動子に与えて励振させ、実際に駆動振動が増大する周波数を選択して引き続き初期駆動信号を与えるので、初期駆動信号を演算により順次更新するものに比べ短い時間で振動子を駆動できる。   The switching means selects the initial drive signal output from the drive signal generating means on the condition that a frequency component exceeding a predetermined determination level appears in the monitor signal based on the FFT calculation result. According to this means, the initial drive signal including a wide range of frequency components is applied to the vibrator for excitation, the frequency at which the drive vibration actually increases is selected, and the initial drive signal is subsequently given. The vibrator can be driven in a shorter time than the one to be updated.

請求項に記載した手段によれば、初期駆動信号生成手段は、相異なる駆動周波数を持つ初期駆動信号によりそれぞれ振動子が駆動されたときに振幅検出手段により検出された駆動振動の振幅に基づいて、駆動する振動子の共振周波数により近い駆動周波数を順次決定する。これにより、初期駆動信号の駆動周波数の変更回数を減らすことができ、振動子を一層確実に起動できるとともにその起動時間を一層短縮できる。 According to the means described in claim 2 , the initial drive signal generation means is based on the amplitude of the drive vibration detected by the amplitude detection means when the vibrator is driven by the initial drive signals having different drive frequencies. Thus, a driving frequency closer to the resonance frequency of the vibrator to be driven is sequentially determined. As a result, the number of changes in the drive frequency of the initial drive signal can be reduced, and the vibrator can be started more reliably and the startup time can be further shortened.

請求項に記載した手段によれば、初期駆動信号生成手段は、前回の駆動周波数をf0、今回の駆動周波数をf1、当該駆動周波数f0、f1を持つ初期駆動信号により振動子が駆動されたときの検出振幅をM0、M1、制御係数をK(>0)とすれば、
Δf=K・(f1−f0)/(M1−M0)
f2=f1+Δf
により、次回の駆動周波数f2を決定する。
According to the means described in claim 3 , the initial drive signal generating means drives the vibrator by the initial drive signal having the previous drive frequency f0, the current drive frequency f1, and the drive frequencies f0 and f1. If the detected amplitude is M0, M1 and the control coefficient is K (> 0),
Δf = K · (f1−f0) / (M1−M0)
f2 = f1 + Δf
Thus, the next drive frequency f2 is determined.

振動子は、共振周波数から遠いほど周波数に対する振幅の傾き(=(M1−M0)/(f1−f0))が小さくなり、共振周波数の直近を除いて共振周波数に近いほど周波数に対する振幅の傾きが大きくなる周波数−振幅特性を有している。従って、本手段によれば、共振周波数から遠い周波数では差分周波数Δfが大きくなり、共振周波数に近づくにつれて差分周波数Δfが小さくなる。これにより、差分周波数Δfの値を固定した場合に比べて起動時間が短くなる。   In the vibrator, the gradient of the amplitude with respect to the frequency (= (M1-M0) / (f1-f0)) decreases as the distance from the resonance frequency increases. It has a frequency-amplitude characteristic that increases. Therefore, according to this means, the difference frequency Δf increases at a frequency far from the resonance frequency, and the difference frequency Δf decreases as the resonance frequency is approached. As a result, the startup time is shorter than when the value of the difference frequency Δf is fixed.

請求項に記載した手段によれば、初期駆動信号生成手段は、決定した駆動周波数f1を持つ初期駆動信号とf1+Δf(Δfは制御定数)の駆動周波数f2を持つ初期駆動信号を順次出力し、当該駆動周波数f1、f2を持つ初期駆動信号により振動子が駆動されたときの検出振幅をM1、M2、制御係数をK(>0)とすれば、
f1=f1+K・(M2−M1)
により、次回の駆動周波数f1を決定する。本手段によれば、上述した振動子の周波数−振幅特性に基づいて共振周波数に近づくように駆動周波数f1が決定される。また、除算を含まない比較的簡単な計算で駆動周波数を更新できるので、回路規模が低減され、処理負荷が軽減される。
According to the means described in claim 4 , the initial drive signal generating means sequentially outputs the initial drive signal having the determined drive frequency f1 and the initial drive signal having the drive frequency f2 of f1 + Δf (Δf is a control constant), If the detected amplitude when the vibrator is driven by the initial drive signal having the drive frequencies f1 and f2 is M1 and M2, and the control coefficient is K (> 0),
f1 = f1 + K · (M2−M1)
Thus, the next drive frequency f1 is determined. According to this means, the drive frequency f1 is determined so as to approach the resonance frequency based on the frequency-amplitude characteristics of the vibrator described above. In addition, since the drive frequency can be updated by a relatively simple calculation that does not include division, the circuit scale is reduced and the processing load is reduced.

請求項に記載した手段によれば、初期駆動信号生成手段は、不揮発性記憶手段を備え、振幅検出手段により検出された駆動振動の振幅がしきい値以上になったときの駆動周波数を不揮発性記憶手段に記憶し、振動子の駆動開始時に不揮発性記憶手段に記憶されている周波数を駆動開始周波数に設定する。これにより、実際に持続的な振動が励振された実績のある周波数から駆動周波数の更新を開始するので、起動時間を一層短縮することができる。 According to the means described in claim 5 , the initial drive signal generating means includes the nonvolatile storage means, and the drive frequency when the amplitude of the drive vibration detected by the amplitude detection means is equal to or greater than the threshold value is nonvolatile. The frequency stored in the non-volatile storage means at the start of driving the vibrator is set as the drive start frequency. Thereby, the update of the drive frequency is started from a frequency with a proven record of actual sustained vibration being excited, so that the startup time can be further shortened.

請求項に記載した手段によれば、定常駆動信号生成手段は、モニタ信号の振幅を検出する振幅検出回路と振幅制御回路とからなるAGC回路を備え、振幅検出手段は、AGC回路に含まれる振幅検出回路と共用の回路とされている。これにより、回路規模の増加を最小限に抑えることが可能になる。
According to the means described in claim 6 , the steady drive signal generating means comprises an AGC circuit comprising an amplitude detection circuit for detecting the amplitude of the monitor signal and an amplitude control circuit, and the amplitude detection means is included in the AGC circuit. The circuit is shared with the amplitude detection circuit. This makes it possible to minimize the increase in circuit scale.

本発明の第1の実施形態を示すセンサ回路のブロック構成図The block block diagram of the sensor circuit which shows the 1st Embodiment of this invention 振動子の周波数と振幅との関係を示す図Diagram showing the relationship between the frequency and amplitude of the vibrator 本発明の第2の実施形態を示す初期駆動信号生成回路のブロック構成図The block diagram of the initial stage drive signal generation circuit which shows the 2nd Embodiment of this invention 本発明の第3の実施形態を示す図3相当図FIG. 3 equivalent view showing a third embodiment of the present invention ホワイトノイズ発生回路の構成図Configuration diagram of white noise generation circuit 本発明の第4の実施形態を示す図3相当図FIG. 3 equivalent view showing the fourth embodiment of the present invention 駆動周波数の演算処理を示すフローチャートFlow chart showing drive frequency calculation processing 図2相当図2 equivalent diagram 本発明の第5の実施形態を示す図7相当図FIG. 7 equivalent view showing the fifth embodiment of the present invention 本発明の第6の実施形態を示す図3相当図FIG. 3 equivalent view showing the sixth embodiment of the present invention 本発明の第7の実施形態を示す図3相当図FIG. 3 equivalent view showing a seventh embodiment of the present invention 本発明の第8の実施形態を示す図1相当図FIG. 1 equivalent view showing an eighth embodiment of the present invention AGC回路のブロック構成図Block diagram of AGC circuit

各実施形態において実質的に同一部分には同一符号を付して説明を省略する。
(第1の実施形態)
以下、本発明の第1の実施形態について図1および図2を参照しながら説明する。
図1は、カーナビゲーションシステム、車両安定化制御(VSC)システムなどに適用されて角速度を検出するセンサ回路のブロック構成を示している。静電駆動・容量検出型のマイクロジャイロセンサは、単結晶シリコン等で形成された基板上に、基板面に平行な第1方向に駆動振動し、第1方向と直交する第2方向に検出振動するように配置された振動子1を備えている。図示しないが、振動子1の周囲には振動子1に対向して、振動子1を第1方向に駆動振動させるための駆動電極、振動子1の駆動振動の状態をモニタするためのモニタ電極、振動子1の第2方向の振動を検出するための一対の検出電極が形成されている。
In each embodiment, substantially the same parts are denoted by the same reference numerals and description thereof is omitted.
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 shows a block configuration of a sensor circuit that is applied to a car navigation system, a vehicle stabilization control (VSC) system, and the like and detects an angular velocity. An electrostatic drive / capacitance detection type micro gyro sensor is driven and vibrated in a first direction parallel to the substrate surface and detected in a second direction orthogonal to the first direction on a substrate formed of single crystal silicon or the like. The vibrator 1 is arranged so as to be. Although not shown, a drive electrode for driving and vibrating the vibrator 1 in the first direction around the vibrator 1 and a monitor electrode for monitoring the state of the drive vibration of the vibrator 1 are arranged around the vibrator 1. A pair of detection electrodes for detecting vibration in the second direction of the vibrator 1 are formed.

振動子駆動回路2は、定常駆動状態において駆動電極に振動子1の固有の共振周波数に対応した定常駆動信号を与えることにより、振動子1と駆動電極との間に静電力を作用させて振動子1を第1方向に駆動振動させる。振動子1が駆動振動している状態でマイクロジャイロセンサに基板面に垂直な軸を中心とする角速度が加わると、振動子1はコリオリ力によって第2方向に検出振動する。検出回路3は、この検出振動による振動子1と検出電極との間の静電容量の変化に基づいて角速度を検出する。以下、具体的な構成を説明する。   The vibrator drive circuit 2 vibrates by applying an electrostatic force between the vibrator 1 and the drive electrode by applying a steady drive signal corresponding to the inherent resonance frequency of the vibrator 1 to the drive electrode in the steady drive state. The child 1 is driven to vibrate in the first direction. When an angular velocity centered on an axis perpendicular to the substrate surface is applied to the micro gyro sensor while the vibrator 1 is driven to vibrate, the vibrator 1 is detected and vibrated in the second direction by Coriolis force. The detection circuit 3 detects the angular velocity based on the change in capacitance between the vibrator 1 and the detection electrode due to the detection vibration. A specific configuration will be described below.

振動子駆動回路2は、定常駆動信号生成回路4、振幅検出回路5、初期駆動信号生成回路6および駆動切替回路7から構成されている。定常駆動信号生成回路4(定常駆動信号生成手段)は、振動子1の駆動振動の状態に応じてモニタ電極から出力されるモニタ信号に基づいて、振動子1を持続的に振動させる定常駆動信号を生成する。増幅回路8はモニタ信号を増幅する。AGC(Automatic Gain Control)回路9は、マイクロジャイロセンサの感度を一定に保持するため、増幅されたモニタ信号の振幅すなわち振動子1の振動速度が一定となるように閉ループゲインを自動調整する。その結果、定常駆動状態の振動子1は、共振周波数で第1方向に振動を継続する。   The vibrator drive circuit 2 includes a steady drive signal generation circuit 4, an amplitude detection circuit 5, an initial drive signal generation circuit 6, and a drive switching circuit 7. The steady drive signal generation circuit 4 (steady drive signal generation means) is a steady drive signal that continuously vibrates the vibrator 1 based on the monitor signal output from the monitor electrode according to the drive vibration state of the vibrator 1. Is generated. The amplifier circuit 8 amplifies the monitor signal. An AGC (Automatic Gain Control) circuit 9 automatically adjusts the closed-loop gain so that the amplitude of the amplified monitor signal, that is, the vibration speed of the vibrator 1 becomes constant, in order to keep the sensitivity of the micro gyro sensor constant. As a result, the vibrator 1 in the steady drive state continues to vibrate in the first direction at the resonance frequency.

上述したように、Q値が高い振動子1は、振動開始時における駆動振動の大きさ(モニタ信号のレベル)が非常に微弱となる。さらに、振動子1の共振周波数にはばらつきがあるため、駆動周波数と共振周波数とのずれに応じてモニタ信号のレベルは一層小さくなる。そこで、初期駆動信号生成回路6(初期駆動信号生成手段)は、振動子1と定常駆動信号生成回路4とで閉ループを形成した場合に持続的な振動が励振される駆動周波数を含む初期駆動信号を生成する。この場合、駆動開始時から上記持続振動を励振可能な駆動周波数を含む初期駆動信号を生成する場合と、駆動開始後に駆動周波数を更新することにより上記持続振動を励振可能な駆動周波数を含む初期駆動信号を生成する場合とがある。   As described above, the vibrator 1 having a high Q value has a very weak drive vibration level (monitor signal level) at the start of vibration. Further, since the resonance frequency of the vibrator 1 varies, the level of the monitor signal is further reduced according to the deviation between the drive frequency and the resonance frequency. Therefore, the initial drive signal generation circuit 6 (initial drive signal generation means) includes an initial drive signal including a drive frequency at which continuous vibration is excited when the vibrator 1 and the steady drive signal generation circuit 4 form a closed loop. Is generated. In this case, an initial drive signal including a drive frequency that can excite the continuous vibration from the start of driving is generated, and an initial drive that includes the drive frequency that can excite the continuous vibration by updating the drive frequency after the drive starts. In some cases, a signal is generated.

振幅検出回路5(振幅検出手段)は、増幅されたモニタ信号に基づいて振動子1の駆動振動の振幅を検出する。駆動切替回路7(駆動切替手段)には、振幅検出回路5により検出された駆動振動の振幅(検出振幅)が、振動子1と定常駆動信号生成回路4とで閉ループを形成した場合に持続的な振動を励振可能な振幅範囲内のしきい値Mthが設定されている。駆動切替回路7は、検出振幅がしきい値Mth未満の場合には、初期駆動信号生成回路6が出力する初期駆動信号を選択して振動子1の駆動電極に出力し、検出振幅がしきい値Mth以上となった場合には、定常駆動信号生成回路4が出力する定常駆動信号を選択して振動子1の駆動電極に出力する。   The amplitude detection circuit 5 (amplitude detection means) detects the amplitude of the drive vibration of the vibrator 1 based on the amplified monitor signal. In the drive switching circuit 7 (drive switching means), the amplitude (detected amplitude) of the drive vibration detected by the amplitude detection circuit 5 is continuous when the vibrator 1 and the steady drive signal generation circuit 4 form a closed loop. A threshold value Mth within an amplitude range that can excite various vibrations is set. When the detected amplitude is less than the threshold value Mth, the drive switching circuit 7 selects the initial drive signal output from the initial drive signal generation circuit 6 and outputs it to the drive electrode of the vibrator 1 so that the detected amplitude is the threshold. When the value is equal to or greater than the value Mth, the steady drive signal output by the steady drive signal generation circuit 4 is selected and output to the drive electrode of the vibrator 1.

検出回路3は、2値化回路10、増幅回路11、同期検波回路12およびフィルタ回路13から構成されている。2値化回路10は、増幅回路8により増幅されたモニタ信号をコンパレータで2値化して90°位相シフトすることにより、同期検波のための基準信号を発生する。増幅回路11は、検出電極から出力される互いに逆相の検出信号を差動増幅する。同期検波回路12は、基準信号を用いて検出信号を同期検波する。これにより、検出信号は基準信号に同期して全波整流される。フィルタ回路13は、例えばCRフィルタからなるローパスフィルタであって、同期検波回路12で生じる高周波ノイズを平滑化することにより角速度に応じた所望の角速度信号を出力する。   The detection circuit 3 includes a binarization circuit 10, an amplification circuit 11, a synchronous detection circuit 12, and a filter circuit 13. The binarization circuit 10 generates a reference signal for synchronous detection by binarizing the monitor signal amplified by the amplifier circuit 8 with a comparator and shifting the phase by 90 °. The amplifier circuit 11 differentially amplifies the detection signals output from the detection electrodes and having opposite phases to each other. The synchronous detection circuit 12 synchronously detects the detection signal using the reference signal. As a result, the detection signal is full-wave rectified in synchronization with the reference signal. The filter circuit 13 is a low-pass filter composed of, for example, a CR filter, and outputs a desired angular velocity signal corresponding to the angular velocity by smoothing high frequency noise generated in the synchronous detection circuit 12.

次に、本実施形態の作用および効果を説明する。
図2は、振動子1の周波数と振幅との関係を示している。振動の振幅は、振動子1が共振周波数で振動したときに最大となり、共振周波数からずれるに従って低下する。周波数の変化割合に対する振幅の変化割合すなわち傾きは、共振周波数よりも低い周波数領域で正の値となり、共振周波数よりも高い周波数領域で負の値となる。傾きは、共振周波数の近傍を除き、振動周波数と共振周波数との差が大きくなるほど小さくなる。図中に示すしきい値Mthは、上述したように振動子1と定常駆動信号生成回路4とで閉ループを形成した場合に持続的な振動を励振可能な振幅である。
Next, the operation and effect of this embodiment will be described.
FIG. 2 shows the relationship between the frequency and the amplitude of the vibrator 1. The amplitude of vibration becomes maximum when the vibrator 1 vibrates at the resonance frequency, and decreases as it deviates from the resonance frequency. The amplitude change rate, that is, the slope, with respect to the frequency change rate has a positive value in a frequency region lower than the resonance frequency and a negative value in a frequency region higher than the resonance frequency. The inclination decreases as the difference between the vibration frequency and the resonance frequency increases, except in the vicinity of the resonance frequency. The threshold value Mth shown in the figure is an amplitude capable of exciting a continuous vibration when a closed loop is formed by the vibrator 1 and the steady drive signal generation circuit 4 as described above.

定常駆動信号生成回路4だけを備えた従来の振動子駆動回路では、駆動開始時の駆動周波数が1つの周波数に固定されていた。このため、振動子1の共振周波数のばらつき等により、駆動周波数が図2に示すfaからfbの周波数範囲から外れていると、振動子1を起動できず或いは起動に長時間を要していた。   In the conventional vibrator driving circuit including only the steady driving signal generation circuit 4, the driving frequency at the start of driving is fixed to one frequency. For this reason, if the drive frequency is out of the frequency range from fa to fb shown in FIG. 2 due to variations in the resonance frequency of the vibrator 1, the vibrator 1 cannot be started or it takes a long time to start. .

これに対し、本実施形態の振動子駆動回路2は、例えばイグニッションスイッチがオンされた駆動開始時に、駆動切替回路7を初期駆動信号生成回路6側に切り替える。初期駆動信号生成回路6が出力する初期駆動信号は、駆動開始時にまたは駆動を開始した後の駆動周波数の更新処理により、しきい値Mth以上の駆動振動の振幅が得られる駆動周波数(図2に示すfaからfbの範囲内にある駆動周波数)を持つようになる。   On the other hand, the vibrator drive circuit 2 according to the present embodiment switches the drive switching circuit 7 to the initial drive signal generation circuit 6 side at the start of driving when the ignition switch is turned on, for example. The initial drive signal output from the initial drive signal generation circuit 6 is a drive frequency (see FIG. 2) at which the drive vibration amplitude greater than or equal to the threshold value Mth is obtained at the start of drive or after the drive frequency is updated. Drive frequency within the range of fa to fb).

その結果、製造ばらつき等の原因により共振周波数にばらつきがある振動子1を確実に且つ短時間で起動できるようになる。特に、高いQ値を持つ振動子1では振動開始時の駆動振動の振幅レベルが微弱となるが、本実施形態では従来よりも高い振幅レベルが得られるので、振動子駆動回路2を一般的なSNR性能を持つオペアンプを用いて構成することができる。また、持続的な振動が励振された後は、駆動切替回路7は定常駆動信号生成回路4側に切り替えるので、一定の振動振幅による安定した振動状態を維持できる。   As a result, it is possible to reliably start the vibrator 1 having a variation in resonance frequency due to manufacturing variation or the like in a short time. In particular, in the vibrator 1 having a high Q value, the amplitude level of the drive vibration at the start of vibration is weak, but in this embodiment, a higher amplitude level than that in the past can be obtained. An operational amplifier having SNR performance can be used. Further, after the continuous vibration is excited, the drive switching circuit 7 switches to the steady drive signal generation circuit 4 side, so that a stable vibration state with a constant vibration amplitude can be maintained.

(第2の実施形態)
第2の実施形態について、初期駆動信号生成回路6の具体的な構成を示す図3を参照しながら説明する。駆動周波数保持回路21は、出力する駆動周波数の値を保持するメモリまたはレジスタから構成されている。矩形波信号発生回路22(駆動信号発生手段)は、駆動周波数保持回路21に保持されている駆動周波数を所定周期で読み出して、その駆動周波数を持つ矩形波からなる初期駆動信号を生成する。加算回路23は、上記所定周期で、駆動周波数保持回路21に保持されている駆動周波数に予め定めた差分周波数Δfを加算する。加算演算により更新された駆動周波数は駆動周波数保持回路21に保持される。
(Second Embodiment)
The second embodiment will be described with reference to FIG. 3 showing a specific configuration of the initial drive signal generation circuit 6. The drive frequency holding circuit 21 includes a memory or a register that holds the value of the output drive frequency. The rectangular wave signal generating circuit 22 (driving signal generating means) reads the driving frequency held in the driving frequency holding circuit 21 at a predetermined cycle, and generates an initial driving signal composed of a rectangular wave having the driving frequency. The adding circuit 23 adds a predetermined difference frequency Δf to the driving frequency held in the driving frequency holding circuit 21 in the predetermined cycle. The drive frequency updated by the addition operation is held in the drive frequency holding circuit 21.

駆動開始時に駆動周波数保持回路21に保持される駆動開始周波数は、振動子1の共振周波数のばらつきの範囲内において最も低い共振周波数または最も高い共振周波数に設定される。前者の場合、加算回路23は、駆動開始周波数から始めて所定の差分周波数Δf(>0)を単調に加算することにより初期駆動信号を順次更新する。後者の場合、加算回路23は、駆動開始周波数から始めて所定の差分周波数Δf(>0)を単調に減算する(換言すれば差分周波数Δf(<0)を単調に加算する)ことにより初期駆動信号を順次更新する。   The driving start frequency held in the driving frequency holding circuit 21 at the start of driving is set to the lowest resonance frequency or the highest resonance frequency within the range of variations in the resonance frequency of the vibrator 1. In the former case, the addition circuit 23 sequentially updates the initial drive signal by monotonically adding a predetermined difference frequency Δf (> 0) starting from the drive start frequency. In the latter case, the adding circuit 23 monotonously subtracts a predetermined difference frequency Δf (> 0) starting from the driving start frequency (in other words, monotonously adding the difference frequency Δf (<0)). Are updated sequentially.

初期駆動信号生成回路6は、検出振幅がしきい値Mth以上になると動作を停止する。また、起動性能を高めた本実施形態では通常生じ得ないが、初期駆動信号の更新により駆動周波数が最も高い共振周波数まで加算された場合または最も低い共振周波数まで減算された場合にも動作を停止する。この後者の場合には、駆動周波数保持回路21に更に低い駆動開始周波数または更に高い駆動開始周波数を再設定し、駆動周波数の更新処理を繰り返せばよい。   The initial drive signal generation circuit 6 stops its operation when the detected amplitude becomes equal to or greater than the threshold value Mth. In addition, this embodiment with improved start-up performance cannot normally occur, but the operation is also stopped when the drive frequency is added to the highest resonance frequency or subtracted to the lowest resonance frequency by updating the initial drive signal. To do. In this latter case, a lower drive start frequency or a higher drive start frequency may be reset in the drive frequency holding circuit 21 and the drive frequency update process may be repeated.

差分周波数Δfの絶対値はΔfw=|fb−fa|(図2参照)以下に設定する必要がある。Δfwよりも大きく設定すると、更新の際に振動子1に持続的な振動を励振可能な駆動周波数範囲を飛び越えてしまう虞がある。一方、差分周波数Δfが小さ過ぎると、振動子1に持続的な振動が励振されるまでの時間、すなわち駆動開始から駆動振動が安定するまでの時間(起動時間)が長くなる。従って、これらの条件を勘案した上で差分周波数Δfを決定する。   The absolute value of the difference frequency Δf needs to be set to Δfw = | fb−fa | (see FIG. 2) or less. If it is set to be larger than Δfw, there is a possibility that it will jump over the drive frequency range in which the vibrator 1 can excite continuous vibration during the update. On the other hand, if the difference frequency Δf is too small, the time until the vibrator 1 is excited with continuous vibration, that is, the time from the start of driving to the stabilization of the driving vibration (start-up time) becomes long. Therefore, the difference frequency Δf is determined in consideration of these conditions.

本実施形態によれば、共振周波数の製造ばらつきが大きい場合でも、励振に適した初期駆動周波数により振動子1を確実に起動することができる。また、上述したように差分周波数Δfの大きさを適切に決定することにより起動時間を極力短縮できる。   According to the present embodiment, the vibrator 1 can be reliably started up with the initial drive frequency suitable for excitation even when the manufacturing variation of the resonance frequency is large. Further, as described above, the startup time can be shortened as much as possible by appropriately determining the magnitude of the difference frequency Δf.

(第3の実施形態)
第3の実施形態について図4および図5を参照しながら説明する。図4は、初期駆動信号生成回路6の具体的な構成を示している。ホワイトノイズ発生回路24(ホワイトノイズ発生手段)は、図5に示すようにDフリップフロップからなるシフトレジスタの出力データと途中段階のデータとのExORを入力に戻すことによりホワイトノイズ(M系列信号)を生成する。
(Third embodiment)
A third embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 shows a specific configuration of the initial drive signal generation circuit 6. As shown in FIG. 5, the white noise generating circuit 24 (white noise generating means) returns white noise (M-sequence signal) by returning ExOR between the output data of the shift register composed of the D flip-flop and the intermediate stage data. Is generated.

FFT演算回路25(FFT演算手段)は、マイクロコンピュータ、専用のハードウェア等により構成され、増幅回路8(図1参照)から出力されたモニタ信号に対しFFTの演算を実行する。周波数選択回路26(周波数選択手段)は、FFTの演算結果に基づいてモニタ信号に含まれる周波数成分のうち最大振幅を持つ周波数を選択する。矩形波信号発生回路22は、選択された周波数を持つ初期駆動信号を生成する。   The FFT operation circuit 25 (FFT operation means) is composed of a microcomputer, dedicated hardware, and the like, and performs an FFT operation on the monitor signal output from the amplifier circuit 8 (see FIG. 1). The frequency selection circuit 26 (frequency selection means) selects the frequency having the maximum amplitude among the frequency components included in the monitor signal based on the FFT calculation result. The rectangular wave signal generation circuit 22 generates an initial drive signal having a selected frequency.

切替回路27(切替手段)は、駆動開始時にはホワイトノイズ発生回路24から出力される初期駆動信号を選択し、FFTの演算結果に基づいてモニタ信号に所定の判定レベルを超える周波数成分が現れたときに、矩形波信号発生回路22から出力される初期駆動信号を選択する。なお、判定レベルは、しきい値Mthよりも小さい値に設定されている。   The switching circuit 27 (switching means) selects the initial drive signal output from the white noise generating circuit 24 at the start of driving, and when a frequency component exceeding a predetermined determination level appears in the monitor signal based on the FFT calculation result. The initial drive signal output from the rectangular wave signal generation circuit 22 is selected. The determination level is set to a value smaller than the threshold value Mth.

この構成によれば、初期駆動信号生成回路6は、駆動開始時に、振動子1の共振周波数のばらつき範囲を含む幅広い周波数成分を持つ初期駆動信号を振動子1に与える。振動子1の駆動振動は、この初期駆動信号により次第に増大する。本実施形態では、判定レベルを超える周波数成分が現れると、その周波数つまりFFT演算結果において最大振幅を持つ周波数を持つ振幅の大きい矩形波信号を初期駆動信号として振動子1に与える。その結果、駆動振動の増大が加速されるので、駆動開始から定常駆動信号に切り替えるまでの時間、ひいては安定した定常駆動状態に至るまでの時間を短縮することができる。   According to this configuration, the initial drive signal generation circuit 6 supplies the vibrator 1 with an initial drive signal having a wide frequency component including the range of variation in the resonance frequency of the vibrator 1 at the start of driving. The drive vibration of the vibrator 1 gradually increases with this initial drive signal. In the present embodiment, when a frequency component exceeding the determination level appears, a rectangular wave signal having a large amplitude having a frequency having the maximum amplitude in the frequency, that is, the FFT calculation result, is given to the vibrator 1 as an initial drive signal. As a result, since the increase in drive vibration is accelerated, the time from the start of driving to switching to the steady drive signal, and thus the time to reach a stable steady drive state can be shortened.

(第4の実施形態)
第4の実施形態について図6ないし図8を参照しながら説明する。図6は、初期駆動信号生成回路6の具体的な構成を示している。記憶回路28は、メモリまたはレジスタから構成されており、所定の周期ごとに、更新された駆動周波数fと当該駆動周波数fを持つ初期駆動信号で振動子1を駆動したときの検出振幅Mとを対応付けて記憶する。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIGS. FIG. 6 shows a specific configuration of the initial drive signal generation circuit 6. The memory circuit 28 is configured by a memory or a register, and has an updated drive frequency f and a detected amplitude M when the vibrator 1 is driven with an initial drive signal having the drive frequency f for each predetermined period. Store in association with each other.

共振周波数予測回路29は、マイクロコンピュータ、専用のハードウェア等により構成されており、記憶回路28に記憶された直近2組の駆動周波数fと振幅Mに基づいて、振動子1の共振周波数により近い駆動周波数を順次演算する。演算された駆動周波数は駆動周波数保持回路21に保持される。矩形波信号発生回路22は、駆動周波数保持回路21に保持された駆動周波数を読み出して、その駆動周波数を持つ矩形波からなる初期駆動信号を生成する。所定周期だけ出力した後は、上述したように駆動周波数fと検出振幅Mとが記憶回路28に記憶される。   The resonance frequency prediction circuit 29 is configured by a microcomputer, dedicated hardware, and the like, and is closer to the resonance frequency of the vibrator 1 based on the two most recent drive frequencies f and amplitude M stored in the storage circuit 28. The drive frequency is calculated sequentially. The calculated drive frequency is held in the drive frequency holding circuit 21. The rectangular wave signal generation circuit 22 reads the driving frequency held in the driving frequency holding circuit 21 and generates an initial driving signal composed of a rectangular wave having the driving frequency. After outputting for a predetermined period, the drive frequency f and the detected amplitude M are stored in the storage circuit 28 as described above.

図7は、初期駆動信号生成回路6による駆動周波数の演算処理を示すフローチャートである。初期駆動信号生成回路6は、演算処理の開始直後のステップS1で、共振周波数予測回路29内で用いるf1に駆動開始周波数を設定し、Δfに差分初期値を設定する。ここでの駆動開始周波数f1は、第2の実施形態で説明したように、振動子1の共振周波数のばらつきの範囲内において最も低い共振周波数または最も高い共振周波数である。   FIG. 7 is a flowchart showing a driving frequency calculation process performed by the initial driving signal generation circuit 6. The initial drive signal generation circuit 6 sets a drive start frequency to f1 used in the resonance frequency prediction circuit 29 and sets a difference initial value to Δf in step S1 immediately after the start of the arithmetic processing. The drive start frequency f1 here is the lowest resonance frequency or the highest resonance frequency within the range of variations in the resonance frequency of the vibrator 1, as described in the second embodiment.

ステップS2において、駆動開始周波数f1は駆動周波数保持回路21に保持され、矩形波信号発生回路22は、駆動周波数f1を持つ矩形波からなる初期駆動信号を一定時間(所定周期)だけ出力する。その後、初期駆動信号生成回路6は、ステップS3で振幅検出回路5から検出振幅M1を入力し、駆動周波数f1と検出振幅M1を記憶回路28に記憶する。続くステップS4で検出振幅M1がしきい値Mthより大きいか否かを判断する。検出振幅M1がしきい値Mthより大きい場合(S4:YES)には、駆動切替回路7により初期駆動信号から定常駆動信号に切り替えられるので演算処理を終了する。   In step S2, the drive start frequency f1 is held in the drive frequency holding circuit 21, and the rectangular wave signal generation circuit 22 outputs an initial drive signal composed of a rectangular wave having the drive frequency f1 for a predetermined time (predetermined period). Thereafter, the initial drive signal generation circuit 6 inputs the detection amplitude M1 from the amplitude detection circuit 5 in step S3, and stores the drive frequency f1 and the detection amplitude M1 in the storage circuit 28. In subsequent step S4, it is determined whether or not the detected amplitude M1 is larger than a threshold value Mth. If the detected amplitude M1 is larger than the threshold value Mth (S4: YES), the drive switching circuit 7 switches from the initial drive signal to the steady drive signal, and the calculation process is terminated.

一方、検出振幅M1がしきい値Mth以下である場合(S4:NO)には、共振周波数予測回路29は、ステップS5で駆動周波数f1(この時点では駆動開始周波数)に差分周波数Δf(この時点では差分初期値)を加算して駆動周波数f2を求める。初期駆動信号生成回路6は、続くステップS6、S7、S8で駆動周波数f2について上記ステップS2、S3、S4と同様の処理を実行する。すなわち、検出振幅M2を入力し、駆動周波数f2と検出振幅M2を記憶回路28に記憶する。   On the other hand, when the detected amplitude M1 is equal to or less than the threshold value Mth (S4: NO), the resonance frequency prediction circuit 29 sets the difference frequency Δf (at this time) to the drive frequency f1 (the drive start frequency at this time) in step S5. Then, the difference frequency initial value) is added to obtain the drive frequency f2. The initial drive signal generation circuit 6 executes the same processing as in steps S2, S3, and S4 for the drive frequency f2 in subsequent steps S6, S7, and S8. That is, the detection amplitude M2 is input, and the drive frequency f2 and the detection amplitude M2 are stored in the storage circuit 28.

検出振幅M2がしきい値Mth以下である場合(S8:NO)には、共振周波数予測回路29は、ステップS9で(1)式により差分周波数Δfを演算する。ここで、K(>0)は制御係数である。また、f1は前回の駆動周波数、f2は今回の駆動周波数に相当する。駆動周波数f1、f2と検出振幅M1、M2を演算に使用した後、次回の演算に備えて今回値f2、M2を前回値f1、M1にする。
Δf=K・(f2−f1)/(M2−M1) …(1)
When the detected amplitude M2 is equal to or smaller than the threshold value Mth (S8: NO), the resonance frequency prediction circuit 29 calculates the difference frequency Δf by the equation (1) in step S9. Here, K (> 0) is a control coefficient. F1 corresponds to the previous drive frequency, and f2 corresponds to the current drive frequency. After using the drive frequencies f1 and f2 and the detected amplitudes M1 and M2 for the calculation, the current values f2 and M2 are set to the previous values f1 and M1 in preparation for the next calculation.
Δf = K · (f2−f1) / (M2−M1) (1)

続いて再びステップS5に移行し、(2)式により次に用いる駆動周波数f2を演算する。
f2=f1+Δf …(2)
このようにしてステップS5からS9の処理を繰り返し、検出振幅M2がしきい値Mthより大きくなると(S8:YES)演算処理を終了する。
Subsequently, the process proceeds to step S5 again, and the drive frequency f2 to be used next is calculated by equation (2).
f2 = f1 + Δf (2)
In this way, the processing of steps S5 to S9 is repeated, and when the detected amplitude M2 becomes larger than the threshold value Mth (S8: YES), the calculation processing is ended.

図8は、振動子1の周波数と振幅との関係を示している。既述したように、周波数の変化割合に対する振幅の変化割合すなわち傾きは、共振周波数の近傍を除き振動周波数と共振周波数との差が大きくなるほど小さくなる。(1)式に示す差分周波数Δfは(K/傾き)に等しいので、傾きが小さいほど差分周波数Δfが大きくなり、共振周波数に向かって加速的に次の駆動周波数f2が設定される。なお、傾きが小さくなる共振周波数の近傍でも差分周波数Δfが大きくなるが、駆動周波数が共振周波数の近傍に至る前に検出振幅M2がしきい値Mth以上になるので、初期駆動信号生成回路6は共振周波数の近傍では動作を停止している。   FIG. 8 shows the relationship between the frequency and amplitude of the vibrator 1. As described above, the amplitude change rate, that is, the inclination with respect to the frequency change rate becomes smaller as the difference between the vibration frequency and the resonance frequency becomes larger except in the vicinity of the resonance frequency. Since the difference frequency Δf shown in the equation (1) is equal to (K / inclination), the smaller the inclination, the larger the difference frequency Δf, and the next drive frequency f2 is set to be accelerated toward the resonance frequency. Note that the difference frequency Δf increases even in the vicinity of the resonance frequency where the inclination becomes small, but the detected amplitude M2 becomes equal to or greater than the threshold value Mth before the drive frequency reaches the vicinity of the resonance frequency. The operation is stopped in the vicinity of the resonance frequency.

差分周波数Δfは、図2に示すΔfwを用いて(3)式が成立するように決定される。この関係を満たさないと、次回の駆動周波数f2が持続的な振動を励振可能な駆動周波数範囲を飛び越えてしまう虞がある。この調整は、制御係数Kの設定により行えばよい。
f1+Δf≦共振周波数+Δfw/2 …(3)
The difference frequency Δf is determined so that Equation (3) is established using Δfw shown in FIG. If this relationship is not satisfied, the next drive frequency f2 may jump over the drive frequency range in which continuous vibration can be excited. This adjustment may be performed by setting the control coefficient K.
f1 + Δf ≦ resonance frequency + Δfw / 2 (3)

以上説明したように、本実施形態の初期駆動信号生成回路6は、相異なる駆動周波数f1、f2を持つ初期駆動信号によりそれぞれ振動子1を駆動したときの検出振幅M1、M2に基づいて、振動子1の共振周波数により近い駆動周波数を順次決定する。これにより、初期駆動信号の駆動周波数の変更回数を減らすことができ、振動子1を確実に起動できるとともにその起動時間を短縮できる。さらに、(1)式に示すように駆動周波数が共振周波数から離れるほど差分周波数Δfが大きくなるので、起動時間が一層短くなる。   As described above, the initial drive signal generation circuit 6 according to the present embodiment vibrates based on the detected amplitudes M1 and M2 when the vibrator 1 is driven by the initial drive signals having different drive frequencies f1 and f2. A drive frequency closer to the resonance frequency of the child 1 is sequentially determined. As a result, the number of changes in the drive frequency of the initial drive signal can be reduced, and the vibrator 1 can be reliably started and its start-up time can be shortened. Furthermore, as shown in the equation (1), the difference frequency Δf increases as the drive frequency is further away from the resonance frequency, so that the startup time is further shortened.

(第5の実施形態)
第5の実施形態について図9を参照しながら説明する。本実施形態の初期駆動信号生成回路6も第4の実施形態と同様に図6に示す構成を備えている。第4の実施形態とは、共振周波数予測回路29の演算方法が一部異なる。図9に示すフローチャートでは図7に示す処理と同一の処理に同一のステップ番号を付している。
(Fifth embodiment)
A fifth embodiment will be described with reference to FIG. Similar to the fourth embodiment, the initial drive signal generation circuit 6 of the present embodiment also has the configuration shown in FIG. The calculation method of the resonance frequency prediction circuit 29 is partially different from the fourth embodiment. In the flowchart shown in FIG. 9, the same steps as those shown in FIG.

本実施形態において差分周波数Δf(>0)は制御定数である。初期駆動信号生成回路6は、演算処理の開始直後のステップS10でf1に駆動開始周波数を設定する。その後ステップS2〜S8を実行して、駆動周波数f1、f2(=f1+Δf)を持つ初期駆動信号によりそれぞれ振動子1を駆動したときの検出振幅M1、M2を得る。共振周波数予測回路29は、ステップS11で(4)式により駆動周波数f1を演算する。ここで、K(>0)は制御係数である。
f1=f1+K・(M2−M1) …(4)
In the present embodiment, the difference frequency Δf (> 0) is a control constant. The initial drive signal generation circuit 6 sets the drive start frequency to f1 in step S10 immediately after the start of the arithmetic processing. Thereafter, Steps S2 to S8 are executed to obtain detected amplitudes M1 and M2 when the vibrator 1 is driven by an initial drive signal having drive frequencies f1 and f2 (= f1 + Δf), respectively. The resonance frequency prediction circuit 29 calculates the drive frequency f1 by the equation (4) in step S11. Here, K (> 0) is a control coefficient.
f1 = f1 + K · (M2−M1) (4)

初期駆動信号生成回路6は、駆動周波数f1を演算すると、再びステップS2、S3において駆動周波数f1に対応した検出振幅M1を取得し、これら駆動周波数f1と検出振幅M1とを対応付けて記憶回路28に記憶する。検出振幅M1がしきい値Mth以下である場合(S4:NO)には、さらにステップS5に移行し、上述した(2)式により駆動周波数f2を演算する。(2)式で用いるΔfは制御定数である。続くステップS6、S7で駆動周波数f2に対応した検出振幅M2を取得し、これら駆動周波数f2と検出振幅M2とを対応付けて記憶回路28に記憶する。検出振幅M2がしきい値Mth以下である場合(S8:NO)には、再びステップS11に移行して(4)式により駆動周波数f1を演算する。   When the drive frequency f1 is calculated, the initial drive signal generation circuit 6 acquires the detection amplitude M1 corresponding to the drive frequency f1 again in steps S2 and S3, and associates the drive frequency f1 with the detection amplitude M1 to store the memory circuit 28. To remember. If the detected amplitude M1 is less than or equal to the threshold value Mth (S4: NO), the process further proceeds to step S5, and the drive frequency f2 is calculated by the above-described equation (2). Δf used in equation (2) is a control constant. In subsequent steps S6 and S7, the detection amplitude M2 corresponding to the drive frequency f2 is acquired, and the drive frequency f2 and the detection amplitude M2 are associated with each other and stored in the storage circuit 28. When the detected amplitude M2 is less than or equal to the threshold value Mth (S8: NO), the process proceeds to step S11 again, and the drive frequency f1 is calculated by the equation (4).

本実施形態の初期駆動信号生成回路6も、相異なる駆動周波数f1、f2を持つ初期駆動信号によりそれぞれ振動子1を駆動したときの検出振幅M1、M2に基づいて、振動子1の共振周波数により近い駆動周波数を順次決定する。これにより、共振周波数に近づくように駆動周波数f1が決定される。また、第4の実施形態と異なり、除算を含まない比較的簡単な計算で駆動周波数f1を求めるので、回路規模を低減でき、処理負荷が軽減される。   The initial drive signal generation circuit 6 according to the present embodiment also uses the resonance frequencies of the vibrator 1 based on the detected amplitudes M1 and M2 when the vibrator 1 is driven by initial drive signals having different drive frequencies f1 and f2. Close drive frequencies are determined sequentially. As a result, the drive frequency f1 is determined so as to approach the resonance frequency. Further, unlike the fourth embodiment, the drive frequency f1 is obtained by a relatively simple calculation that does not include division, so that the circuit scale can be reduced and the processing load is reduced.

(第6の実施形態)
図10に示す第6の実施形態の初期駆動信号生成回路6は、図6に示す第4の実施形態および第5の実施形態の初期駆動信号生成回路6に対し不揮発性記憶回路30(不揮発性記憶手段)を付加した構成となっている。初期駆動信号生成回路6は、図7または図9におけるステップS4またはステップS8でYESと判断すると、そのときの駆動周波数f1またはf2を不揮発性記憶回路30に記憶する。
(Sixth embodiment)
The initial drive signal generation circuit 6 of the sixth embodiment shown in FIG. 10 is different from the initial drive signal generation circuit 6 of the fourth embodiment and the fifth embodiment shown in FIG. The storage means) is added. When the initial drive signal generation circuit 6 determines YES in step S4 or step S8 in FIG. 7 or FIG. 9, the drive frequency f1 or f2 at that time is stored in the nonvolatile memory circuit 30.

一方、初期駆動信号生成回路6は、振動子1の駆動開始時であるステップS1またはステップS10において、不揮発性記憶回路30に記憶されている周波数を読み出して駆動開始周波数としてf1に設定する。本実施形態によれば、実際に持続的な振動が励振された実績のある周波数から駆動周波数の演算を開始するので、起動時間を一層短縮することができる。   On the other hand, the initial drive signal generation circuit 6 reads the frequency stored in the nonvolatile memory circuit 30 and sets it as f1 as the drive start frequency in step S1 or step S10 when the drive of the vibrator 1 is started. According to the present embodiment, since the calculation of the drive frequency is started from a frequency with a proven record of actual sustained vibration, the startup time can be further shortened.

(第7の実施形態)
第7の実施形態について図11を参照しながら説明する。本実施形態の初期駆動信号生成回路6は、ホワイトノイズ(M系列信号)を生成するホワイトノイズ発生回路24(図5参照)から構成されている。ホワイトノイズは、振動子1の共振周波数のばらつき範囲を含む幅広い周波数成分を有している。このため、駆動開始時にホワイトノイズを初期駆動信号として振動子1を与えると、振動子1の共振周波数に対応する周波数成分が次第に増大する。検出振幅がしきい値Mth以上になると、駆動切替回路7は初期駆動信号に替えて定常駆動信号を選択して振動子1を駆動するので、初期駆動信号生成回路6は動作を停止する。本実施形態によれば、駆動周波数を変更することなく振動子1を励振させることができるとともに、初期駆動信号生成回路6の構成を簡単化できる。
(Seventh embodiment)
A seventh embodiment will be described with reference to FIG. The initial drive signal generation circuit 6 of the present embodiment includes a white noise generation circuit 24 (see FIG. 5) that generates white noise (M-sequence signal). The white noise has a wide frequency component including a variation range of the resonance frequency of the vibrator 1. For this reason, when the vibrator 1 is given with white noise as an initial drive signal at the start of driving, the frequency component corresponding to the resonance frequency of the vibrator 1 gradually increases. When the detected amplitude is equal to or greater than the threshold value Mth, the drive switching circuit 7 selects the steady drive signal instead of the initial drive signal and drives the vibrator 1, so that the initial drive signal generation circuit 6 stops its operation. According to the present embodiment, the vibrator 1 can be excited without changing the drive frequency, and the configuration of the initial drive signal generation circuit 6 can be simplified.

(第8の実施形態)
上述した各実施形態に適用可能な第8の実施形態について図12および図13を参照しながら説明する。図12はセンサ回路のブロック構成を示し、図13はAGC回路のブロック構成を示している。振動子駆動回路31は、図1に示す振幅検出回路5をAGC回路9に含まれる振幅検出回路32と共用する回路構成を備えている。
(Eighth embodiment)
An eighth embodiment applicable to each of the above-described embodiments will be described with reference to FIGS. FIG. 12 shows a block configuration of the sensor circuit, and FIG. 13 shows a block configuration of the AGC circuit. The vibrator drive circuit 31 has a circuit configuration in which the amplitude detection circuit 5 shown in FIG. 1 is shared with the amplitude detection circuit 32 included in the AGC circuit 9.

AGC回路9は、振幅検出回路32と振幅制御回路33とから構成されている。このうち振幅検出回路32は、増幅回路8で増幅されたモニタ信号を整流し平滑する整流回路34と平滑回路35を備えており、駆動振幅の大きさに応じた検出振幅を出力する。この検出振幅は、駆動切替回路7における初期駆動信号から定常駆動信号への切り替え判定および定常駆動信号の生成に利用される。従って、AGC回路9のうち振幅検出回路32は、駆動切替回路7の切り替え前後にかかわらず常に動作させる必要がある。   The AGC circuit 9 includes an amplitude detection circuit 32 and an amplitude control circuit 33. Of these, the amplitude detection circuit 32 includes a rectification circuit 34 and a smoothing circuit 35 that rectifies and smoothes the monitor signal amplified by the amplification circuit 8, and outputs a detection amplitude corresponding to the magnitude of the drive amplitude. This detected amplitude is used for determination of switching from the initial drive signal to the steady drive signal and generation of the steady drive signal in the drive switching circuit 7. Therefore, the amplitude detection circuit 32 in the AGC circuit 9 needs to be always operated regardless of before and after the switching of the drive switching circuit 7.

一方、振幅制御回路33は、位相シフタ36、比較回路37および駆動電圧調整回路38を備えている。振動子1の駆動電極に駆動信号を印加して振動させると、その駆動信号とモニタ電極から出力されるモニタ信号とは約90°の位相差が生じる。そこで、位相シフタ36は、モニタ信号と駆動信号の位相が一致するように増幅回路8の出力信号の位相を約90°シフトさせる。   On the other hand, the amplitude control circuit 33 includes a phase shifter 36, a comparison circuit 37, and a drive voltage adjustment circuit 38. When a drive signal is applied to the drive electrode of the vibrator 1 to vibrate, a phase difference of about 90 ° occurs between the drive signal and the monitor signal output from the monitor electrode. Therefore, the phase shifter 36 shifts the phase of the output signal of the amplifier circuit 8 by about 90 ° so that the phases of the monitor signal and the drive signal match.

比較回路37は、検出振幅と目標振幅とを比較して両振幅の差を出力する。駆動電圧調整回路38は、位相シフタ36から出力される位相シフト後のモニタ信号に同期した駆動信号を生成する。その際、振動子1の駆動振動の振幅の大きさが目標振幅に等しくなるように、比較回路37から出力される振幅差に基づいて、駆動信号を生成する際のゲイン調整を行う。その結果、振動子1は、駆動振動の振幅の大きさが一定となるように励振される。本実施形態によれば、振幅検出回路5(図1参照)とAGC回路9に含まれる振幅検出回路32とを共用の回路にできるので、回路規模の増加を最小限に抑えることが可能になる。   The comparison circuit 37 compares the detected amplitude with the target amplitude and outputs a difference between the two amplitudes. The drive voltage adjustment circuit 38 generates a drive signal synchronized with the phase-shifted monitor signal output from the phase shifter 36. At that time, the gain adjustment when generating the drive signal is performed based on the amplitude difference output from the comparison circuit 37 so that the amplitude of the drive vibration of the vibrator 1 becomes equal to the target amplitude. As a result, the vibrator 1 is excited so that the amplitude of the drive vibration is constant. According to this embodiment, since the amplitude detection circuit 5 (see FIG. 1) and the amplitude detection circuit 32 included in the AGC circuit 9 can be shared, it is possible to minimize an increase in circuit scale. .

(その他の実施形態)
以上、本発明の好適な実施形態について説明したが、本発明は上述した実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲内で種々の変形、拡張を行うことができる。
本発明は、振動方式にかかわらず振動型ジャイロセンサ一般に適用できる。
駆動信号発生手段は、矩形波信号発生回路22に限らず正弦波信号発生回路などで構成してもよい。
(Other embodiments)
As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to embodiment mentioned above, A various deformation | transformation and expansion | extension can be performed within the range which does not deviate from the summary of invention.
The present invention can be generally applied to a vibration type gyro sensor regardless of a vibration system.
The drive signal generating means is not limited to the rectangular wave signal generating circuit 22 and may be composed of a sine wave signal generating circuit or the like.

第2、第3の実施形態についても、第6の実施形態と同様に不揮発性記憶回路30を備え、検出振幅がしきい値Mth以上になったときの駆動周波数を不揮発性記憶回路30に記憶し、振動子1の駆動開始時に不揮発性記憶回路30に記憶されている周波数を駆動開始周波数に設定するように構成してもよい。第3の実施形態では、最初の起動時にはホワイトノイズ発生回路24を使用し、2回目以降の起動時には不揮発性記憶回路30に記憶されている周波数を駆動開始周波数として起動してもよい。   The second and third embodiments also include the nonvolatile memory circuit 30 as in the sixth embodiment, and the drive frequency when the detected amplitude is equal to or greater than the threshold value Mth is stored in the nonvolatile memory circuit 30. The frequency stored in the nonvolatile memory circuit 30 at the start of driving of the vibrator 1 may be set as the drive start frequency. In the third embodiment, the white noise generation circuit 24 may be used at the first activation, and the frequency stored in the nonvolatile memory circuit 30 may be activated as the drive start frequency at the second and subsequent activations.

ホワイトノイズ発生手段は、図5に示す回路に限らず、振動子1の共振周波数の成分を含むホワイトノイズまたは疑似ホワイトノイズを生成するものであればよい。   The white noise generating means is not limited to the circuit shown in FIG. 5, and any white noise or pseudo white noise including a resonance frequency component of the vibrator 1 may be used.

図面中、1は振動子、2、31は振動子駆動回路、4は定常駆動信号生成回路(定常駆動信号生成手段)、5は振幅検出回路(振幅検出手段)、6は初期駆動信号発生回路(初期駆動信号生成手段)、7は駆動切替回路(駆動切替手段)、9はAGC回路、22は矩形波信号発生回路(駆動信号発生手段)、24はホワイトノイズ発生回路(ホワイトノイズ発生手段)、25はFFT演算回路(FFT演算手段)、26は周波数選択回路(周波数選択手段)、27は切替回路(切替手段)、30は不揮発性記憶回路(不揮発性記憶手段)、32は振幅検出回路、33は振幅制御回路である。   In the drawings, 1 is a vibrator, 2 and 31 are vibrator drive circuits, 4 is a steady drive signal generation circuit (steady drive signal generation means), 5 is an amplitude detection circuit (amplitude detection means), and 6 is an initial drive signal generation circuit. (Initial drive signal generation means), 7 is a drive switching circuit (drive switching means), 9 is an AGC circuit, 22 is a rectangular wave signal generation circuit (drive signal generation means), and 24 is a white noise generation circuit (white noise generation means). , 25 is an FFT operation circuit (FFT operation means), 26 is a frequency selection circuit (frequency selection means), 27 is a switching circuit (switching means), 30 is a nonvolatile memory circuit (nonvolatile memory means), and 32 is an amplitude detection circuit. 33 are amplitude control circuits.

Claims (6)

振動子の駆動振動の状態に応じて出力されるモニタ信号に基づいて前記振動子を持続的に振動させる定常駆動信号を生成する定常駆動信号生成手段と、
前記モニタ信号に基づいて前記振動子の駆動振動の振幅を検出する振幅検出手段と、
前記振動子と前記定常駆動信号生成手段とで閉ループを形成した場合に持続的な振動が励振される駆動周波数を前記振動子の駆動開始時から含むまたは駆動開始後に含むように初期駆動信号を生成する初期駆動信号生成手段と、
前記振幅検出手段により検出された駆動振動の振幅が、前記閉ループを形成した場合に持続的な振動を励振可能な振幅範囲内に設定されたしきい値未満の場合には前記初期駆動信号を選択して前記振動子を駆動し、前記しきい値以上となった場合には前記定常駆動信号を選択して前記振動子を駆動する駆動切替手段とを備え
前記初期駆動信号生成手段は、
ホワイトノイズからなる初期駆動信号を生成するホワイトノイズ発生手段と、
前記モニタ信号に対しFFTの演算を実行するFFT演算手段と、
前記FFTの演算結果に基づいて前記モニタ信号に含まれる周波数成分のうち最大振幅を持つ周波数を選択する周波数選択手段と、
前記選択された周波数を持つ初期駆動信号を生成する駆動信号発生手段と、
駆動開始時には前記ホワイトノイズ発生手段から出力される初期駆動信号を選択し、前記FFTの演算結果に基づいて前記モニタ信号に所定の判定レベルを超える周波数成分が現れたことを条件として前記駆動信号発生手段から出力される初期駆動信号を選択する切替手段とを備えていることを特徴とする振動子駆動回路。
A steady drive signal generating means for generating a steady drive signal for continuously vibrating the vibrator based on a monitor signal output according to the state of drive vibration of the vibrator;
Amplitude detecting means for detecting the amplitude of the drive vibration of the vibrator based on the monitor signal;
When the closed loop is formed by the vibrator and the steady drive signal generating means, an initial drive signal is generated so that a drive frequency at which a continuous vibration is excited is included from the start of driving of the vibrator or after the start of driving. Initial drive signal generating means for
The initial drive signal is selected when the amplitude of the drive vibration detected by the amplitude detection means is less than a threshold value set within an amplitude range in which continuous vibration can be excited when the closed loop is formed. Driving the vibrator, and when it becomes equal to or greater than the threshold value, a drive switching means for driving the vibrator by selecting the steady drive signal ,
The initial drive signal generating means includes
White noise generating means for generating an initial drive signal composed of white noise;
FFT calculation means for performing FFT calculation on the monitor signal;
Frequency selection means for selecting a frequency having a maximum amplitude among frequency components included in the monitor signal based on the calculation result of the FFT;
Drive signal generating means for generating an initial drive signal having the selected frequency;
An initial drive signal output from the white noise generating means is selected at the start of driving, and the drive signal is generated on the condition that a frequency component exceeding a predetermined determination level appears in the monitor signal based on the calculation result of the FFT A vibrator drive circuit comprising switching means for selecting an initial drive signal output from the means .
振動子の駆動振動の状態に応じて出力されるモニタ信号に基づいて前記振動子を持続的に振動させる定常駆動信号を生成する定常駆動信号生成手段と、
前記モニタ信号に基づいて前記振動子の駆動振動の振幅を検出する振幅検出手段と、
前記振動子と前記定常駆動信号生成手段とで閉ループを形成した場合に持続的な振動が励振される駆動周波数を前記振動子の駆動開始時から含むまたは駆動開始後に含むように初期駆動信号を生成する初期駆動信号生成手段と、
前記振幅検出手段により検出された駆動振動の振幅が、前記閉ループを形成した場合に持続的な振動を励振可能な振幅範囲内に設定されたしきい値未満の場合には前記初期駆動信号を選択して前記振動子を駆動し、前記しきい値以上となった場合には前記定常駆動信号を選択して前記振動子を駆動する駆動切替手段とを備え、
前記初期駆動信号生成手段は、相異なる駆動周波数を持つ初期駆動信号によりそれぞれ前記振動子が駆動されたときに前記振幅検出手段により検出された駆動振動の振幅に基づいて、駆動する振動子の共振周波数により近い駆動周波数を順次決定することを特徴とする振動子駆動回路。
A steady drive signal generating means for generating a steady drive signal for continuously vibrating the vibrator based on a monitor signal output according to the state of drive vibration of the vibrator;
Amplitude detecting means for detecting the amplitude of the drive vibration of the vibrator based on the monitor signal;
When the closed loop is formed by the vibrator and the steady drive signal generating means, an initial drive signal is generated so that a drive frequency at which a continuous vibration is excited is included from the start of driving of the vibrator or after the start of driving. Initial drive signal generating means for
The initial drive signal is selected when the amplitude of the drive vibration detected by the amplitude detection means is less than a threshold value set within an amplitude range in which continuous vibration can be excited when the closed loop is formed. Driving the vibrator, and when it becomes equal to or greater than the threshold value, a drive switching means for driving the vibrator by selecting the steady drive signal,
The initial drive signal generation means is configured to resonate a vibrator to be driven based on the amplitude of the drive vibration detected by the amplitude detection means when the vibrator is driven by initial drive signals having different drive frequencies. A vibrator driving circuit characterized by sequentially determining a driving frequency closer to the frequency .
前記初期駆動信号生成手段は、前回の駆動周波数をf0、今回の駆動周波数をf1、当該駆動周波数f0、f1を持つ初期駆動信号により前記振動子が駆動されたときの検出振幅をM0、M1、制御係数をK(>0)とすれば、
Δf=K・(f1−f0)/(M1−M0)
f2=f1+Δf
により、次回の駆動周波数f2を決定することを特徴とする請求項2記載の振動子駆動回路。
The initial drive signal generating means sets the detected amplitude when the vibrator is driven by the initial drive signal having the previous drive frequency f0, the current drive frequency f1, and the drive frequencies f0, f1 to M0, M1, If the control coefficient is K (> 0),
Δf = K · (f1−f0) / (M1−M0)
f2 = f1 + Δf
The vibrator driving circuit according to claim 2 , wherein the next driving frequency f2 is determined by
前記初期駆動信号生成手段は、決定した駆動周波数f1を持つ初期駆動信号とf1+Δf(Δfは制御定数)の駆動周波数f2を持つ初期駆動信号を順次出力し、当該駆動周波数f1、f2を持つ初期駆動信号により前記振動子が駆動されたときの検出振幅をM1、M2、制御係数をK(>0)とすれば、
f1=f1+K・(M2−M1)
により、次回の駆動周波数f1を決定することを特徴とする請求項2記載の振動子駆動回路。
The initial drive signal generating means sequentially outputs an initial drive signal having a determined drive frequency f1 and an initial drive signal having a drive frequency f2 of f1 + Δf (Δf is a control constant), and an initial drive having the drive frequencies f1 and f2. If the detected amplitude when the vibrator is driven by a signal is M1, M2, and the control coefficient is K (> 0),
f1 = f1 + K · (M2−M1)
The vibrator driving circuit according to claim 2, wherein the next driving frequency f1 is determined by
前記初期駆動信号生成手段は、不揮発性記憶手段を備え、前記振幅検出手段により検出された駆動振動の振幅が前記しきい値以上になったときの駆動周波数を前記不揮発性記憶手段に記憶し、前記振動子の駆動開始時に前記不揮発性記憶手段に記憶されている周波数を駆動開始周波数に設定することを特徴とする請求項1から4の何れか一項に記載の振動子駆動回路。 The initial drive signal generating means includes nonvolatile storage means, and stores the drive frequency when the amplitude of the drive vibration detected by the amplitude detection means is equal to or greater than the threshold value in the nonvolatile storage means, 5. The vibrator driving circuit according to claim 1, wherein a frequency stored in the non-volatile storage unit is set as a driving start frequency when driving of the vibrator is started. 6. 振動子の駆動振動の状態に応じて出力されるモニタ信号に基づいて前記振動子を持続的に振動させる定常駆動信号を生成する定常駆動信号生成手段と、
前記モニタ信号に基づいて前記振動子の駆動振動の振幅を検出する振幅検出手段と、
前記振動子と前記定常駆動信号生成手段とで閉ループを形成した場合に持続的な振動が励振される駆動周波数を前記振動子の駆動開始時から含むまたは駆動開始後に含むように初期駆動信号を生成する初期駆動信号生成手段と、
前記振幅検出手段により検出された駆動振動の振幅が、前記閉ループを形成した場合に持続的な振動を励振可能な振幅範囲内に設定されたしきい値未満の場合には前記初期駆動信号を選択して前記振動子を駆動し、前記しきい値以上となった場合には前記定常駆動信号を選択して前記振動子を駆動する駆動切替手段とを備え、
前記定常駆動信号生成手段は、前記モニタ信号の振幅を検出する振幅検出回路と振幅制御回路とからなるAGC回路を備え、
前記振幅検出手段は、前記AGC回路に含まれる振幅検出回路と共用の回路とされていることを特徴とする振動子駆動回路。
A steady drive signal generating means for generating a steady drive signal for continuously vibrating the vibrator based on a monitor signal output according to the state of drive vibration of the vibrator;
Amplitude detecting means for detecting the amplitude of the drive vibration of the vibrator based on the monitor signal;
When the closed loop is formed by the vibrator and the steady drive signal generating means, an initial drive signal is generated so that a drive frequency at which a continuous vibration is excited is included from the start of driving of the vibrator or after the start of driving. Initial drive signal generating means for
The initial drive signal is selected when the amplitude of the drive vibration detected by the amplitude detection means is less than a threshold value set within an amplitude range in which continuous vibration can be excited when the closed loop is formed. Driving the vibrator, and when it becomes equal to or greater than the threshold value, a drive switching means for driving the vibrator by selecting the steady drive signal,
The steady drive signal generating means includes an AGC circuit including an amplitude detection circuit and an amplitude control circuit for detecting the amplitude of the monitor signal,
The vibrator driving circuit , wherein the amplitude detecting means is a circuit shared with an amplitude detecting circuit included in the AGC circuit.
JP2011099505A 2011-04-27 2011-04-27 Vibrator drive circuit Expired - Fee Related JP5561237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011099505A JP5561237B2 (en) 2011-04-27 2011-04-27 Vibrator drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099505A JP5561237B2 (en) 2011-04-27 2011-04-27 Vibrator drive circuit

Publications (2)

Publication Number Publication Date
JP2012230052A JP2012230052A (en) 2012-11-22
JP5561237B2 true JP5561237B2 (en) 2014-07-30

Family

ID=47431703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099505A Expired - Fee Related JP5561237B2 (en) 2011-04-27 2011-04-27 Vibrator drive circuit

Country Status (1)

Country Link
JP (1) JP5561237B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9118334B2 (en) * 2013-03-15 2015-08-25 Freescale Semiconductor, Inc. System and method for improved MEMS oscillator startup
JPWO2015079678A1 (en) * 2013-11-26 2017-03-16 旭化成株式会社 Angular velocity sensor driving circuit, angular velocity sensor, excitation method thereof, and driving IC chip
CN105896572B (en) * 2016-05-23 2018-10-23 上海交通大学 The calm system of electrical oscillation for voltage converter and its method for building up

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2666505B2 (en) * 1990-01-31 1997-10-22 松下電器産業株式会社 Angular velocity sensor drive
JPH0933262A (en) * 1995-07-25 1997-02-07 Nikon Corp Exciting/driving circuit, method therefor and piezoelectric vibration angular velocity meter using the circuit
US6585338B2 (en) * 2000-12-22 2003-07-01 Honeywell International Inc. Quick start resonant circuit control
JP4449262B2 (en) * 2001-07-09 2010-04-14 セイコーエプソン株式会社 Measuring method, measuring apparatus using vibrator, and driving apparatus for vibrator
JP2006349409A (en) * 2005-06-14 2006-12-28 Denso Corp Sensor circuit of electrostatically-actuated/capacity sensing type gyroscope sensor
DE102005034702A1 (en) * 2005-07-26 2007-02-01 Robert Bosch Gmbh Method and circuit arrangement for safe startup of a rotation rate sensor
DE102005043592A1 (en) * 2005-09-12 2007-03-15 Siemens Ag Method for operating a vibration gyro and sensor arrangement
JP2007235484A (en) * 2006-02-28 2007-09-13 Kyocera Kinseki Corp Piezoelectric oscillation circuit
JP5200491B2 (en) * 2006-11-06 2013-06-05 セイコーエプソン株式会社 Drive device, physical quantity measuring device and electronic device
JP5365173B2 (en) * 2008-02-29 2013-12-11 セイコーエプソン株式会社 Physical quantity measuring device and electronic device
JP5752441B2 (en) * 2011-02-25 2015-07-22 セイコーエプソン株式会社 Drive circuit, physical quantity detection device, angular velocity detection device, integrated circuit device, and electronic apparatus

Also Published As

Publication number Publication date
JP2012230052A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
US8183944B2 (en) Method and system for using a MEMS structure as a timing source
JP4741668B2 (en) Method for starting use of yaw rate sensor and circuit device for starting use of yaw rate sensor
JP5360361B2 (en) Angular velocity detector circuit, angular velocity detector, and failure determination system
JP2004286503A (en) Vibrator driving method and vibrator driving device
WO2005103618A1 (en) Gyroscope device
CN108844531B (en) Quick oscillation starting control method and device for high-Q-value micro-electromechanical gyroscope
JP2008209182A (en) Detection apparatus, sensor, and electronic apparatus
JP2004521335A (en) Quick start resonance circuit control
JP2010054431A (en) External force detecting apparatus and method of correcting output signal
JP5561237B2 (en) Vibrator drive circuit
JP5360362B2 (en) Angular velocity detector circuit, angular velocity detector, and failure determination system
JP2013527920A (en) Sensor
JP2010016700A (en) Vibration correcting device
JP2008089577A (en) Drive unit, physical quantity measuring apparatus, and electronic apparatus
TWI724127B (en) Gyro device and control method of gyro device
US9252707B2 (en) MEMS mass bias to track changes in bias conditions and reduce effects of flicker noise
JP2000028364A (en) Angular velocity sensor and its driving method
WO2012077314A1 (en) Inertial force sensor
JP2008089572A (en) Drive unit, physical quantity measuring apparatus, and electronic apparatus
JP4600031B2 (en) Angular velocity detector
JP4930253B2 (en) Drive device, physical quantity measuring device and electronic device
JP5708458B2 (en) Angular velocity detector
JP2005345404A (en) Vibrator for piezoelectric vibration gyroscope, and its manufacturing method
WO2024057606A1 (en) Mechanical resonator-based oscillators and related methods for generation of a phase used to compensate for temperature-dependent frequency errors
JP5040117B2 (en) Oscillation circuit, physical quantity transducer, and vibration gyro sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R151 Written notification of patent or utility model registration

Ref document number: 5561237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees