JP2007214351A - Ccd-type solid-state imaging device - Google Patents

Ccd-type solid-state imaging device Download PDF

Info

Publication number
JP2007214351A
JP2007214351A JP2006032462A JP2006032462A JP2007214351A JP 2007214351 A JP2007214351 A JP 2007214351A JP 2006032462 A JP2006032462 A JP 2006032462A JP 2006032462 A JP2006032462 A JP 2006032462A JP 2007214351 A JP2007214351 A JP 2007214351A
Authority
JP
Japan
Prior art keywords
layer
charge transfer
transfer path
state imaging
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006032462A
Other languages
Japanese (ja)
Other versions
JP4751731B2 (en
Inventor
Shu Takahashi
周 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006032462A priority Critical patent/JP4751731B2/en
Publication of JP2007214351A publication Critical patent/JP2007214351A/en
Application granted granted Critical
Publication of JP4751731B2 publication Critical patent/JP4751731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the smear caused by the asymmetry of the impurity concentration profile in a CCD-type solid-state imaging device. <P>SOLUTION: This CCD-type solid-state imaging device 20 comprises photoelectric conversion elements 23 formed and arranged in a two-dimensional array form on the surface of a semiconductor substrate 21, a first charge transfer path buried channel 24b formed in one side of the photoelectric conversion element 23 via a readout gate 25, a second charge transfer path buried channel 24a formed in the other side of the photoelectric conversion element 23 via a channel stop 26, and a light-shielding film 36 covering the surface of the semiconductor substrate 21 and formed with an opening 36a directly above the photoelectric conversion elements 23. The opening 36a of the light-shielding film 36 is formed deviated from the second charge transfer path buried channel 24a toward the side of the first charge transfer path buried channel 24b. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はCCD(Charge Coupled Devices:電荷結合素子)型固体撮像素子に係り、特に、スミア特性を改善したCCD型固体撮像素子に関する。   The present invention relates to a CCD (Charge Coupled Devices) type solid-state imaging device, and more particularly to a CCD type solid-state imaging device with improved smear characteristics.

図5は、従来のCCD型固体撮像素子の略2画素分の断面模式図である。従来のCCD型固体撮像素子は、半導体基板1の表面部にn領域2が形成されることでpウェル層3との間でpn接合(フォトダイオード)が形成され、n領域2の一側に高濃度p型不純物領域4が形成されることでチャネルストップ(素子分離領域)が形成され、n領域2の他側にp領域の読み出しゲート部5を介して垂直転送路(VCCD)を構成する埋め込みチャネル(n領域)6が形成される。   FIG. 5 is a schematic cross-sectional view of approximately two pixels of a conventional CCD solid-state imaging device. In the conventional CCD type solid-state imaging device, a pn junction (photodiode) is formed with the p well layer 3 by forming the n region 2 on the surface portion of the semiconductor substrate 1. By forming the high-concentration p-type impurity region 4, a channel stop (element isolation region) is formed, and a vertical transfer path (VCCD) is formed on the other side of the n region 2 via the read gate portion 5 of the p region. A buried channel (n region) 6 is formed.

半導体基板1の表面には絶縁層7を介して遮光膜8が積層され、n領域2の直上に遮光膜8の開口8aが設けられる。遮光膜8の下の埋め込みチャネル6の直上には垂直転送路を構成する転送電極膜9が積層される。   A light shielding film 8 is laminated on the surface of the semiconductor substrate 1 via an insulating layer 7, and an opening 8 a of the light shielding film 8 is provided immediately above the n region 2. A transfer electrode film 9 constituting a vertical transfer path is laminated immediately above the buried channel 6 below the light shielding film 8.

従来のCCD型固体撮像素子は、1画素を構成するフォトダイオードの遮光膜開口端のうち隣接画素側開口端から当該隣接画素側チャネルストップ4の遠方端部までの距離W1と、遮光膜開口端のうち反対側隣接画素側開口端から読み出しゲート部5の遠方端部(自身の画素の信号電荷を読み出す埋め込みチャネル6の近方端部)までの距離W2とが等距離(W1=W2)となるように遮光膜9の開口8aが設けられる様になっている。   The conventional CCD type solid-state imaging device has a distance W1 from the adjacent pixel side opening end to the far end of the adjacent pixel side channel stop 4 among the light shielding film opening ends of the photodiodes constituting one pixel, and the light shielding film opening end. The distance W2 from the open end on the opposite adjacent pixel side to the far end of the readout gate 5 (the near end of the buried channel 6 that reads the signal charge of its own pixel) is the same distance (W1 = W2). Thus, an opening 8a of the light shielding film 9 is provided.

尚、従来技術に関連するものとして、例えば下記の特許文献1,2がある。   In addition, there exist the following patent documents 1 and 2 as a thing relevant to a prior art, for example.

特開平9―69621号公報JP-A-9-69621 特開2004―6977号公報Japanese Patent Laid-Open No. 2004-6777

CCD型固体撮像素子は、半導体基板表面部の各所にn型やp型の不純物が注入されることで製造され、その撮像特性を良好にするために不純物濃度プロファイルが細かく制御される。この結果、遮光膜開口部近傍の不純物濃度プロファイルは非対称になっている。   A CCD solid-state imaging device is manufactured by implanting n-type or p-type impurities at various locations on the surface of a semiconductor substrate, and the impurity concentration profile is finely controlled in order to improve the imaging characteristics. As a result, the impurity concentration profile near the opening of the light shielding film is asymmetric.

従来は、不純物濃度プロファイルの非対称性はあまり問題でなかったが、近年のCCD型固体撮像素子は数百万画素以上を搭載するために微細化が進み、この結果、上記の非対称性に起因するスミアの発生が無視できなくなってきている。   Conventionally, the asymmetry of the impurity concentration profile has not been much of a problem, but recent CCD-type solid-state imaging devices have been miniaturized to include more than several million pixels. As a result, the above-described asymmetry is caused. The occurrence of smears can no longer be ignored.

本発明の目的は、不純物濃度プロファイルの非対称に起因するスミアを低減できるCCD型固体撮像素子を提供することにある。   An object of the present invention is to provide a CCD type solid-state imaging device capable of reducing smear caused by an asymmetry of an impurity concentration profile.

本発明のCCD型固体撮像素子は、半導体基板の表面部に二次元アレイ状に配列形成された光電変換素子と、該光電変換素子の一側部に読み出しゲートを介して形成された第1電荷転送路埋め込みチャネルと、該光電変換素子の他側部にチャネルストップを介して形成された第2電荷転送路埋め込みチャネルと、前記半導体基板の表面を覆い前記光電変換素子の直上に開口が形成された遮光膜とを備えるCCD型固体撮像素子において、前記遮光膜の前記開口の位置を、前記第2電荷転送路埋め込みチャネルより前記第1電荷転送路埋め込みチャネル側に偏奇させて形成したことを特徴とする。   The CCD solid-state imaging device of the present invention includes a photoelectric conversion element arranged in a two-dimensional array on the surface of a semiconductor substrate, and a first charge formed on one side of the photoelectric conversion element via a readout gate. A transfer path buried channel, a second charge transfer path buried channel formed on the other side of the photoelectric conversion element via a channel stop, and an opening is formed directly above the photoelectric conversion element covering the surface of the semiconductor substrate. In the CCD type solid-state imaging device provided with the light shielding film, the position of the opening of the light shielding film is formed to be deviated from the second charge transfer path buried channel side to the first charge transfer path buried channel side. And

本発明のCCD型固体撮像素子は、前記光電変換素子の表面部に該光電変換素子の導電型と逆導電型の2層構造の不純物拡散層を備え、該不純物拡散層の表面側の第1層を該第1層の不純物濃度より低濃度の第2層が囲む構造とし、前記第1層の端部と前記チャネルストップとの間の距離より該第1層の端部と前記読み出しゲートとの間の距離が長いことを特徴とする。   The CCD type solid-state imaging device of the present invention includes an impurity diffusion layer having a two-layer structure of a conductivity type and a reverse conductivity type of the photoelectric conversion element on a surface portion of the photoelectric conversion element, and a first on the surface side of the impurity diffusion layer. The layer is surrounded by a second layer having a lower concentration than the impurity concentration of the first layer, and the end of the first layer and the read gate are separated from the distance between the end of the first layer and the channel stop. The distance between is long.

本発明のCCD型固体撮像素子は、前記開口の前記第2電荷転送路側端部と前記第2電荷転送路埋め込みチャネルの近端部との間の距離W1と、前記開口の前記第1電荷転送路側端部と前記第1電荷転送路埋め込みチャネルの近端部との間の距離W2との比W1/W2が、1<W1/W2≦6/5であることを特徴とする。   The CCD type solid-state imaging device of the present invention includes a distance W1 between the second charge transfer path side end of the opening and a near end of the second charge transfer path buried channel, and the first charge transfer of the opening. The ratio W1 / W2 of the distance W2 between the path side end and the near end of the first charge transfer path buried channel is 1 <W1 / W2 ≦ 6/5.

本発明によれば、遮光膜開口近傍における不純物濃度プロファイルの非対称性に基づくスミアを低減することが可能となる。   According to the present invention, it is possible to reduce smear based on the asymmetry of the impurity concentration profile in the vicinity of the opening of the light shielding film.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態に係るCCD型固体撮像素子の略2画素分の断面模式図である。この固体撮像素子20は、n型半導体基板21の受光面(半導体基板のほぼ中央部)に多数の画素(フォトダイオード)がアレイ状に配列形成される。
(First embodiment)
FIG. 1 is a schematic cross-sectional view of approximately two pixels of the CCD type solid-state imaging device according to the first embodiment of the present invention. In the solid-state imaging device 20, a large number of pixels (photodiodes) are arranged in an array on the light receiving surface of the n-type semiconductor substrate 21 (substantially at the center of the semiconductor substrate).

n型半導体基板21の表面部には、pウェル層22が形成されている。pウェル層22の画素領域にn領域23が形成されることでpウェル層22との間でフォトダイオード(光電変換素子)が形成され、電荷転送領域にn領域24が形成されることで電荷転送路の埋め込みチャネルが形成される。   A p-well layer 22 is formed on the surface portion of the n-type semiconductor substrate 21. The n region 23 is formed in the pixel region of the p well layer 22 to form a photodiode (photoelectric conversion element) between the p well layer 22 and the n region 24 is formed in the charge transfer region. A buried channel of the transfer path is formed.

n領域23と、n領域23の蓄積電荷を転送する埋め込みチャネル24との間には蓄積電荷を読み出す読出ゲート(p領域)25が形成され、埋め込みチャネル24の読出ゲート25を設けない反対側のn領域24との間には、素子分離部(p領域(“”は、周りより相対的に濃度が高いこと意味する。):チャネルストップ)26が形成される。n領域23の表面部には、暗電流抑制用の表面p層(不純物拡散層)27が設けられている。 A read gate (p region) 25 for reading the accumulated charge is formed between the n region 23 and the buried channel 24 for transferring the accumulated charge in the n region 23, and the opposite side of the buried channel 24 where the read gate 25 is not provided. An element isolation portion (p + region (“ + ” means that the concentration is relatively higher than the surroundings): channel stop) 26 is formed between the n region 24 and the n region 24. A surface p layer (impurity diffusion layer) 27 for suppressing dark current is provided on the surface portion of the n region 23.

この様な構成の半導体基板21の上層部に、光学層が積層される。先ず、半導体基板21の表面全面に、透明な絶縁層31が積層される。この絶縁層31は、ONO(酸化膜―窒化膜―酸化膜)構造で形成される。そして、電荷転送領域の上に、電荷転送路の転送電極を構成する第1層ポリシリコン層32と第2層ポリシリコン層33とが、酸化シリコン等の電極間絶縁膜34によって相互に分離されて形成される。   An optical layer is laminated on the upper layer portion of the semiconductor substrate 21 having such a configuration. First, a transparent insulating layer 31 is laminated on the entire surface of the semiconductor substrate 21. The insulating layer 31 has an ONO (oxide film-nitride film-oxide film) structure. On the charge transfer region, the first polysilicon layer 32 and the second polysilicon layer 33 constituting the transfer electrode of the charge transfer path are separated from each other by an interelectrode insulating film 34 such as silicon oxide. Formed.

更に、その上の全面に、透明な絶縁層35が積層される。この絶縁層35は、例えば窒化シリコン膜でなる。更にその上に、タングステン等の金属膜が遮光膜36として積層される。この遮光膜36は、光電変換領域の直上に開口36aを有し、開口36a内に入射した光は、窒化シリコン膜35,絶縁層31を通してn領域23に入る。この窒化シリコン膜35は、反射防止の機能を有する。   Further, a transparent insulating layer 35 is laminated on the entire surface. The insulating layer 35 is made of, for example, a silicon nitride film. Further thereon, a metal film such as tungsten is laminated as a light shielding film 36. The light shielding film 36 has an opening 36 a immediately above the photoelectric conversion region, and light incident in the opening 36 a enters the n region 23 through the silicon nitride film 35 and the insulating layer 31. The silicon nitride film 35 has an antireflection function.

遮光膜36の上には、平坦化層を兼用する層間絶縁層37が積層される。層間絶縁層37は、例えば、BPSG膜(borophospho silicate glass)あるいはPSG膜(phospho silicate glass)で形成される。   On the light shielding film 36, an interlayer insulating layer 37 that also serves as a planarization layer is laminated. The interlayer insulating layer 37 is formed of, for example, a BPSG film (borophospho silicate glass) or a PSG film (phospho silicate glass).

平坦化層37の上面は、CPMやエッチバックにより平坦に削成され、その上に、カラーフィルタ層39,平坦化層40,マイクロレンズ(トップレンズ)41が順に積層される。   The upper surface of the flattening layer 37 is flattened by CPM or etchback, and a color filter layer 39, a flattening layer 40, and a microlens (top lens) 41 are sequentially stacked thereon.

図示するCCD型固体撮像素子20の遮光膜開口36a近傍の不純物濃度は、開口36a直下の表面不純物拡散層27が「p」、チャネルストップ26が「p」、読み出しゲート部25が「p」となっている。 The impurity concentration in the vicinity of the light-shielding film opening 36a of the CCD type solid-state imaging device 20 shown in the figure is “p” for the surface impurity diffusion layer 27 immediately below the opening 36a, “p + ” for the channel stop 26, and “p” for the readout gate section 25. It has become.

遮光膜開口36aを中心にして見ると、チャネルストップ26のp濃度が高く、読み出しゲート25側のp濃度が低くなっており、非対称になっている。そして、高濃度のp領域でなるチャネルストップ26は、隣接画素用の埋め込みチャネル24a(図1では左側チャネル24)に接する位置まで形成されている。 When viewed from the light shielding film opening 36a as the center, the p-concentration of the channel stop 26 is high and the p-concentration on the read gate 25 side is low, which is asymmetric. The channel stop 26 composed of the high concentration p + region is formed up to a position in contact with the buried channel 24a for the adjacent pixel (the left channel 24 in FIG. 1).

ここで、入射光のうち斜めに入射する光が遮光膜36と半導体基板21との間の透明絶縁層31,35に入るとスミアが発生する。スミアによる拡散電流はp層を伝うため、p領域の方が、即ち、チャネルストップ26側の方が、読み出しゲート部25側よりスミアが発生し易い。即ち、チャネルストップ26側の方にスミア電流が流れやすく、隣接画素の埋め込みチャネル24a内に入り込む確率が高くなる。 Here, smear is generated when obliquely incident light of incident light enters the transparent insulating layers 31 and 35 between the light shielding film 36 and the semiconductor substrate 21. Since the diffusion current due to smear propagates through the p layer, smear is more likely to occur in the p + region, that is, in the channel stop 26 side than in the read gate portion 25 side. That is, a smear current tends to flow toward the channel stop 26 side, and the probability of entering the embedded channel 24a of the adjacent pixel is increased.

そこで、本実施形態のCCD型固体撮像素子20では、斜め入射光が入り込む入口すなわち、開口36aのチャネルストップ側開口端36bの位置をチャネルストップ26から離す。そして、読み出しゲート側開口端36cを読み出しゲート25側にずらし、開口36aの大きさ自体は変更しない構成とする。   Therefore, in the CCD type solid-state imaging device 20 of the present embodiment, the entrance where obliquely incident light enters, that is, the position of the opening 36a on the channel stop side of the opening 36a is separated from the channel stop 26. Then, the read gate side opening end 36c is shifted to the read gate 25 side, and the size of the opening 36a itself is not changed.

即ち、開口36aのチャネルストップ側開口端36bとチャネルストップ26の遠方端部までの距離W1を、開口36aの読み出しゲート側開口端36cと読み出しゲート部25の遠方端部までの距離W2より長く(W1>W2)する。   That is, the distance W1 between the opening end 36b of the opening 36a and the far end of the channel stop 26 is longer than the distance W2 between the opening end 36c of the reading gate 36a and the far end of the reading gate 25 ( W1> W2).

図2は本実施形態のCCD型固体撮像素子((a)図)と従来のCCD型固体撮像素子((b)図)の比較図であり、本実施形態では、遮光膜開口36aの位置が、従来より、隣接電荷転送路(VCCD)24a即ちチャネルストップ26から離れ自身の電荷転送路24bの方に近づく様に偏奇して形成される。   FIG. 2 is a comparison diagram of the CCD type solid-state imaging device (FIG. 2A) of the present embodiment and the conventional CCD type solid-state imaging device (FIG. 2B). In this embodiment, the position of the light shielding film opening 36a is as follows. Conventionally, the charge transfer path is formed so as to be separated from the adjacent charge transfer path (VCCD) 24a, that is, the channel stop 26, and approach the charge transfer path 24b of itself.

本実施形態のCCD型固体撮像素子20の様に、距離W1を長くすることで、スミアの拡散電流が隣接画素の埋め込みチャネル24a内に流れ込む確率が小さくなり、スミアによる影響を抑制することが可能となる。また、距離W2を短くすることで、開口36aの大きさを小さくせずに済み、この結果、受光感度の低下が抑制される。   Like the CCD type solid-state imaging device 20 of the present embodiment, by increasing the distance W1, the probability that the smear diffusion current flows into the embedded channel 24a of the adjacent pixel is reduced, and the influence of smear can be suppressed. It becomes. Further, by shortening the distance W2, it is not necessary to reduce the size of the opening 36a, and as a result, a decrease in light receiving sensitivity is suppressed.

図3は、スミア(規格値)と遮光膜開口36a位置(W1/W2)との関係をシミュレーションした結果を示すグラフである。遮光膜開口位置に対するスミア特性Iは、W1/W2=1の位置に対して非対称となっている。これは、不純物濃度プロファイルの非対称性に起因する。   FIG. 3 is a graph showing the result of simulating the relationship between smear (standard value) and the position of the light shielding film opening 36a (W1 / W2). The smear characteristic I with respect to the opening position of the light shielding film is asymmetric with respect to the position of W1 / W2 = 1. This is due to the asymmetry of the impurity concentration profile.

遮光膜開口位置がW1/W2<1の方向にずれるに従って急激にスミア特性が劣化するのは、高濃度不純物領域で形成されるチャネルストップ26に近づくからである。本実施形態では、遮光膜開口の大きさを維持するために遮光膜開口端36cを電荷読出側の電荷転送路24bに近づけているが、あまり近づけすぎると、逆に、スミア特性も劣化する。これは、開口端36c側から入射した光によるスミア拡散電流が電荷転送路24bに流れ込む確率が高くなるからである。   The reason why the smear characteristic rapidly deteriorates as the light shielding film opening position shifts in the direction of W1 / W2 <1 is that it approaches the channel stop 26 formed by the high concentration impurity region. In this embodiment, the light shielding film opening end 36c is brought close to the charge transfer path 24b on the charge reading side in order to maintain the size of the light shielding film opening. However, if it is too close, the smear characteristic is also deteriorated. This is because the probability that a smear diffusion current due to light incident from the opening end 36c side flows into the charge transfer path 24b is increased.

図3から分かる様に、スミア特性Iは、1<W1/W2≦6/5の範囲で極小値をとる。このため、この極小値をとる範囲に遮光膜開口位置をずらすことで、スミア特性の改善を図ることができる。   As can be seen from FIG. 3, the smear characteristic I takes a minimum value in the range of 1 <W1 / W2 ≦ 6/5. For this reason, the smear characteristic can be improved by shifting the opening of the light shielding film within the range where the minimum value is obtained.

遮光膜開口は微細な大きさであり、製造バラツキが存在する。このため、W1/W2=1の位置に遮光膜開口を製造しても、その位置はW1/W2=1を中心に前後にばらつくことになる。W1/W2<1の方向にばらついたCCD型固体撮像素子は、スミア特性が悪いために不良品になってしまい、製造歩留まりを低下させる要因になる。   The light-shielding film opening has a minute size and manufacturing variation exists. For this reason, even if the light shielding film opening is manufactured at the position of W1 / W2 = 1, the position varies back and forth around W1 / W2 = 1. CCD type solid-state imaging devices that vary in the direction of W1 / W2 <1 are inferior due to poor smear characteristics, which causes a reduction in manufacturing yield.

これに対し、本実施形態の様に、遮光膜開口位置をスミア特性が極小値をとる位置に製造した場合、製造バラツキでチャネルストップ側に開口位置がずれても、スミア特性は劣化しないため不良品にならず、製造歩留まりが向上することになる。つまり、製造コストの低減とスミア特性の改善の両方を図ることが可能となる。   On the other hand, when the light shielding film opening position is manufactured at a position where the smear characteristic takes the minimum value as in this embodiment, even if the opening position is shifted to the channel stop side due to manufacturing variation, the smear characteristic is not deteriorated, and therefore it is not necessary. It will not be a good product, and the manufacturing yield will be improved. That is, it is possible to reduce both the manufacturing cost and the smear characteristic.

(第2実施形態)
図4は、本発明の第2実施形態に係るCCD型固体撮像素子の略2画素分の断面模式図である。本実施形態のCCD型固体撮像素子50と第1実施形態のCCD型固体撮像素子20との違いは、n領域23の表面に設ける不純物拡散層27の構造にあり、その他の構造は第1実施形態と同様であるため、同一部材には同一符号を付してその説明は省略する。
(Second Embodiment)
FIG. 4 is a schematic cross-sectional view of approximately two pixels of a CCD solid-state imaging device according to the second embodiment of the present invention. The difference between the CCD solid-state imaging device 50 of the present embodiment and the CCD solid-state imaging device 20 of the first embodiment is the structure of the impurity diffusion layer 27 provided on the surface of the n region 23, and the other structures are the first embodiment. Since the configuration is the same as that of the embodiment, the same members are denoted by the same reference numerals, and the description thereof is omitted.

図1に示される第1実施形態の不純物拡散層27(図1では、n領域23と同程度の厚さに図示しているが、実際には薄く製造される。図4においても同様。)は、均一濃度のp層で構成される。   The impurity diffusion layer 27 of the first embodiment shown in FIG. 1 (in FIG. 1, the thickness is shown to be about the same as that of the n region 23, but actually it is manufactured thin. The same applies to FIG. 4). Is composed of a p-layer of uniform concentration.

これに対し、本実施形態の不純物拡散層27は、p層(“”は、周りより相対的に不純物濃度が薄いことを意味する。)27aと、p層27aの表面部に設けられるp層27bの2層構造でなる。 In contrast, the impurity diffusion layer 27 of the present embodiment is provided on the surface of the p layer (“ ” means that the impurity concentration is relatively lower than the surroundings) 27a and the p layer 27a. The p layer 27b has a two-layer structure.

しかも、p層27bの側端部がチャネルストップ26及び読み出しゲート部25に接しないようにp層27bはp層27aの内側に形成される。そして、チャネルストップ26端部とp層27b端部との間のp層27aの幅dに対して、読み出しゲート部25端部とp層27b端部との間のp層27aの幅tが広くなるように形成される。 In addition, the p layer 27 b is formed inside the p layer 27 a so that the side end of the p layer 27 b does not contact the channel stop 26 and the read gate portion 25. Then, between the channel stop 26 ends and the p layer 27b end p - the width d of the layer 27a, p between the readout gate unit 25 ends and the p layer 27b end - the width of the layer 27a It is formed so that t becomes wide.

p層27bをp層27aで囲むように設けるのは、以下の理由による。p層27bをn領域23の表面部に設けるのは、暗電流抑制のためであり、p層27bを設けることにより、暗電流成分として発生した自由電子がp層27b内のホールにトラップされ、撮像画像上の白キズの発生が抑制される。 The p layer 27b is provided so as to be surrounded by the p layer 27a for the following reason. The reason why the p layer 27b is provided on the surface portion of the n region 23 is to suppress dark current. By providing the p layer 27b, free electrons generated as a dark current component are trapped in holes in the p layer 27b. Generation of white scratches on the captured image is suppressed.

しかし、p層27bを設けると、p層27bと読み出しゲート部25との間や、p層27bとn領域23との間の電界が強くなり、この電界によって流れるリーク電流が大きくなる。そこで、p層27bをp層27aで囲み、上記の電界を弱めている。 However, when the p layer 27b is provided, the electric field between the p layer 27b and the read gate portion 25 or between the p layer 27b and the n region 23 becomes strong, and the leak current flowing by this electric field increases. Therefore, the p layer 27b is surrounded by the p layer 27a to weaken the electric field.

本実施形態のCCD型固体撮像素子50でも、図4に示す様に、第1実施形態と同様に、距離W2を短くしている。そこで、本実施形態では、p層27b端部と読み出しゲート部25との距離tを、p層27b端部とチャネルストップ26との距離dより長くして読み出しゲート部25側の電界を弱め、読み出し側へのリーク電流を更に小さくする様にしている。   Also in the CCD solid-state imaging device 50 of the present embodiment, as shown in FIG. 4, the distance W2 is shortened as in the first embodiment. Therefore, in the present embodiment, the distance t between the end portion of the p layer 27b and the read gate portion 25 is made longer than the distance d between the end portion of the p layer 27b and the channel stop 26, thereby weakening the electric field on the read gate portion 25 side. The leakage current to the reading side is further reduced.

本発明に係るCCD型固体撮像素子は、スミア特性が改善されるため、デジタルカメラ等に搭載するイメージセンサとして有用である。   The CCD solid-state imaging device according to the present invention is useful as an image sensor mounted on a digital camera or the like because smear characteristics are improved.

本発明の第1実施形態に係るCCD型固体撮像素子の要部断面模式図である。It is a principal part cross-sectional schematic diagram of the CCD type solid-state image sensor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るCCD型固体撮像素子と従来のCCD型固体撮像素子との比較図である。It is a comparison figure of the CCD type solid-state image sensor concerning a 1st embodiment of the present invention, and the conventional CCD type solid-state image sensor. スミア特性と遮光膜開口位置との相関関係をシミュレートしたグラフである。It is the graph which simulated the correlation with a smear characteristic and a light shielding film opening position. 本発明の第2実施形態に係るCCD型固体撮像素子の要部断面模式図である。It is a principal part cross-sectional schematic diagram of the CCD type solid-state image sensor concerning 2nd Embodiment of this invention. 従来のCCD型固体撮像素子の要部断面模式図である。It is a principal part cross-sectional schematic diagram of the conventional CCD type solid-state image sensor.

符号の説明Explanation of symbols

20,50 CCD型固体撮像素子
21 半導体基板
22 pウェル層
23 n領域(電荷蓄積領域)
24 埋め込みチャネル(VCCD)
25 読み出しゲート部(p領域)
26 チャネルストップ(p領域)
27 表面不純物拡散層(p層)
27a p
27b p層
36 遮光膜
36a 遮光膜開口
36b 遮光膜開口のチャネルストップ側端部
36c 遮光膜開口の読み出しゲート側端部
20, 50 CCD type solid-state imaging device 21 Semiconductor substrate 22 P well layer 23 n region (charge storage region)
24 buried channel (VCCD)
25 Read gate (p region)
26 channel stop (p + region)
27 Surface impurity diffusion layer (p layer)
27a p - layer 27b p layer 36 shielding film 36a shielding film opening 36b shielding film opening channel stop end 36c light shielding film opening the read gate end

Claims (3)

半導体基板の表面部に二次元アレイ状に配列形成された光電変換素子と、該光電変換素子の一側部に読み出しゲートを介して形成された第1電荷転送路埋め込みチャネルと、該光電変換素子の他側部にチャネルストップを介して形成された第2電荷転送路埋め込みチャネルと、前記半導体基板の表面を覆い前記光電変換素子の直上に開口が形成された遮光膜とを備えるCCD型固体撮像素子において、前記遮光膜の前記開口の位置を、前記第2電荷転送路埋め込みチャネルより前記第1電荷転送路埋め込みチャネル側に偏奇させて形成したことを特徴とするCCD型固体撮像素子。   Photoelectric conversion elements arranged in a two-dimensional array on the surface of a semiconductor substrate, a first charge transfer path buried channel formed on one side of the photoelectric conversion element via a read gate, and the photoelectric conversion element CCD type solid-state imaging device comprising: a second charge transfer channel embedded channel formed on the other side of the semiconductor substrate via a channel stop; and a light shielding film covering the surface of the semiconductor substrate and having an opening formed immediately above the photoelectric conversion element. In the device, a CCD solid-state imaging device, wherein the position of the opening of the light shielding film is deviated from the second charge transfer path buried channel side to the first charge transfer path buried channel side. 前記光電変換素子の表面部に該光電変換素子の導電型と逆導電型の2層構造の不純物拡散層を備え、該不純物拡散層の表面側の第1層を該第1層の不純物濃度より低濃度の第2層が囲む構造とし、前記第1層の端部と前記チャネルストップとの間の距離より該第1層の端部と前記読み出しゲートとの間の距離が長いことを特徴とする請求項1に記載のCCD型固体撮像素子。   The surface of the photoelectric conversion element is provided with an impurity diffusion layer having a two-layer structure having a conductivity type opposite to that of the photoelectric conversion element, and the first layer on the surface side of the impurity diffusion layer is defined by the impurity concentration of the first layer. A structure in which the second layer having a low concentration is enclosed, and the distance between the end of the first layer and the read gate is longer than the distance between the end of the first layer and the channel stop. The CCD solid-state imaging device according to claim 1. 前記開口の前記第2電荷転送路側端部と前記第2電荷転送路埋め込みチャネルの近端部との間の距離W1と、前記開口の前記第1電荷転送路側端部と前記第1電荷転送路埋め込みチャネルの近端部との間の距離W2との比W1/W2が、1<W1/W2≦6/5であることを特徴とする請求項1または請求項2に記載のCCD型固体撮像素子。   The distance W1 between the second charge transfer path side end of the opening and the near end of the second charge transfer path buried channel, the first charge transfer path side end of the opening, and the first charge transfer path 3. The CCD type solid-state imaging device according to claim 1, wherein a ratio W1 / W2 with respect to a distance W2 from the near end of the buried channel is 1 <W1 / W2 ≦ 6/5. element.
JP2006032462A 2006-02-09 2006-02-09 CCD type solid-state imaging device Expired - Fee Related JP4751731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032462A JP4751731B2 (en) 2006-02-09 2006-02-09 CCD type solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032462A JP4751731B2 (en) 2006-02-09 2006-02-09 CCD type solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2007214351A true JP2007214351A (en) 2007-08-23
JP4751731B2 JP4751731B2 (en) 2011-08-17

Family

ID=38492515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032462A Expired - Fee Related JP4751731B2 (en) 2006-02-09 2006-02-09 CCD type solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4751731B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000004015A (en) * 1998-06-16 2000-01-07 Sony Corp Solid-state image-pickup element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000004015A (en) * 1998-06-16 2000-01-07 Sony Corp Solid-state image-pickup element

Also Published As

Publication number Publication date
JP4751731B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4839008B2 (en) Single-plate color solid-state image sensor
JP4224036B2 (en) Image sensor with embedded photodiode region and method of manufacturing the same
CN110010549B (en) Solid-state imaging element and electronic apparatus
JP4950703B2 (en) Solid-state image sensor
JP4599417B2 (en) Back-illuminated solid-state image sensor
JP5478217B2 (en) Solid-state imaging device
JP4500706B2 (en) Photoelectric conversion film stack type solid-state imaging device
KR102225297B1 (en) Imaging element and imaging device
US9666617B2 (en) Imaging device, electronic apparatus, and method of manufacturing imaging device
US20070069260A1 (en) Photodetector structure for improved collection efficiency
JP2015111604A (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic equipment
JP4696104B2 (en) Back-illuminated solid-state imaging device and manufacturing method thereof
US20140015026A1 (en) Image sensors including well regions of different concentrations
WO2013146037A1 (en) Solid-state image pickup element and method for manufacturing solid-state image pickup element
JP2010182789A (en) Solid-state imaging element, imaging device, and manufacturing method of solid-state imaging element
JP4751803B2 (en) Back-illuminated image sensor
JP4751731B2 (en) CCD type solid-state imaging device
US20100187582A1 (en) Solid-state imaging device having transmission gates which pass over part of photo diodes when seen from the thickness direction of the semiconductor substrate
JP2007208052A (en) Solid-state image pickup device
US7755091B2 (en) Solid state image pickup device
JP4807719B2 (en) CCD imaging device
JP2012204492A (en) Solid state image pickup device
JP4751846B2 (en) CCD solid-state imaging device
JP2011198850A (en) Solid-state image pickup element
JP2010129735A (en) Solid-state imaging element

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees