JP2007214288A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP2007214288A
JP2007214288A JP2006031546A JP2006031546A JP2007214288A JP 2007214288 A JP2007214288 A JP 2007214288A JP 2006031546 A JP2006031546 A JP 2006031546A JP 2006031546 A JP2006031546 A JP 2006031546A JP 2007214288 A JP2007214288 A JP 2007214288A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
dielectric substrate
less
alumina
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006031546A
Other languages
Japanese (ja)
Inventor
Masami Ando
正美 安藤
Atsushi Miyaji
淳 宮地
Osamu Okamoto
修 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2006031546A priority Critical patent/JP2007214288A/en
Publication of JP2007214288A publication Critical patent/JP2007214288A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Coulomb force type electrostatic chuck capable of acquiring a sufficient chucking force and preventing cracks during processing. <P>SOLUTION: The electrostatic chuck includes a dielectric substrate 24 for an electrostatic chuck made of a polysilicon alumina containing 99.9 wt.% or more of alumina, and having a bulk density of 3.98 or more, a Vickers hardness of 17 GPa, a flexural strength of 400 MPa or more, and a volume resistivity of 10<SP>14</SP>Ω cm or more at a room temperature. The dielectric substrate 24 has a thickness of not less than 0.2 mm and also less than 0.5 mm. Further, a plurality of concave portions are formed and a ratio of the total area of the top surface of the concave portions to the area of the surface of the dielectric substrate 24 is ≥0.001% and also <0.5%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体ウエハおよびFPD用ガラス基板等の被吸着物を静電力で吸着固定する静電チャックに関する発明である。   The present invention relates to an electrostatic chuck for attracting and fixing an object to be adsorbed such as a semiconductor wafer and a glass substrate for FPD by electrostatic force.

エッチング、CVD、スパッタリング、イオン注入、アッシングなどを行うプラズマ処理チャンバー内で、半導体基板やガラス基板を吸着保持する手段として、特許文献1〜3に開示される静電チャックが用いられている。   As means for adsorbing and holding a semiconductor substrate or a glass substrate in a plasma processing chamber that performs etching, CVD, sputtering, ion implantation, ashing, and the like, electrostatic chucks disclosed in Patent Documents 1 to 3 are used.

銅配線デバイスなどのエッチングにおける業界の最近の動向として、異なる大きさのプラズマパワーに対応できる装置が求められている。この場合、プラズマパワーは異なるが、エッチング時のウェーハの温度はおよそ80℃前後で固定化されているため、プラズマパワーの大きさに合わせ、静電チャック部の温度を変化させて、ウェーハの温度を一定にする必要がある。   As a recent trend in the industry for etching copper wiring devices and the like, there is a demand for an apparatus that can handle plasma powers of different sizes. In this case, although the plasma power is different, the temperature of the wafer at the time of etching is fixed at around 80 ° C. Therefore, the temperature of the wafer is changed by changing the temperature of the electrostatic chuck portion according to the magnitude of the plasma power. Must be constant.

静電チャックの分類には使用温度における誘電層の体積抵抗率が1×1013Ωcm以下である、いわゆるジョンセン・ラーベック力型の静電チャックと、使用温度における誘電層の体積抵抗率が1×1014Ωcm以上である、いわゆるクーロン力型の静電チャックがあるが、上記のように静電チャック部の温度を変化させて使用するような場合、温度変化による誘電体基板の体積抵抗率の変化が静電チャックの吸着・離脱特性やリーク電流に大きな影響を与えない、クーロン力型の静電チャックが望ましい。ただ、クーロン力型の静電チャックはジョンセン・ラーベック力型よりも吸着力が弱いため、吸着力を高くすることが望まれている。クーロン力型の静電チャックでは、誘電体の厚みが薄い方が吸着力が強くなることが知られているが、誘電体基板を薄くすると加工時にクラックが生じやすくなるという課題があった。 The electrostatic chuck is classified into a so-called Johnsen-Rahbek type electrostatic chuck in which the dielectric layer has a volume resistivity of 1 × 10 13 Ωcm or less at the operating temperature, and the dielectric layer has a volume resistivity of 1 × at the operating temperature. There is a so-called Coulomb force type electrostatic chuck of 10 14 Ωcm or more. However, when the electrostatic chuck temperature is changed as described above, the volume resistivity of the dielectric substrate due to the temperature change is reduced. It is desirable to use a Coulomb force type electrostatic chuck in which the change does not significantly affect the electrostatic chuck adsorption / release characteristics and leakage current. However, since the electrostatic chuck of the Coulomb force type is weaker than the Johnsen-Rahbek force type, it is desired to increase the adsorption force. In the Coulomb force type electrostatic chuck, it is known that the thinner the dielectric, the stronger the attractive force. However, when the dielectric substrate is thin, there is a problem that cracks are likely to occur during processing.

この加工時のクラックに対しては誘電体基板の強度を上げることで、より薄くまで加工できる。このため誘電体基板として単結晶アルミナを用いることもできるが、単結晶アルミナを得るためには、溶融物からの単結晶引き上げ法という特殊な方法を用いることが必要であり、この単結晶引き上げ法は生産工程が長時間を要し、しかも生産性が低いという問題を有している。(例えば、特許文献4)   The cracks during the processing can be processed to be thinner by increasing the strength of the dielectric substrate. For this reason, single crystal alumina can be used as the dielectric substrate, but in order to obtain single crystal alumina, it is necessary to use a special method called single crystal pulling method from the melt. Has a problem that the production process takes a long time and the productivity is low. (For example, Patent Document 4)

特許第3084869号公報Japanese Patent No. 3084869 実開平4−133443号公報Japanese Utility Model Publication No. 4-133443 特開2001−338970公報JP 2001-338970 A 特開平7−29959号公報JP-A-7-29959

本発明は、上記単結晶引き上げ法の様な特殊な方法を用いることなく、一般的な焼結法を採用することを前提とし、十分な吸着力を得ることが可能で、加工中にクラックの生じないクーロン力型静電チャックを提供することである。   The present invention is based on the premise of adopting a general sintering method without using a special method such as the above-described single crystal pulling method. It is to provide a Coulomb force type electrostatic chuck that does not occur.

上記目的を達成するために本発明においては、アルミナが99.9wt%以上、嵩密度が3.98以上、体積抵抗率が室温において1014Ωcm以上の多結晶アルミナからなる静電チャック用誘電体基板を備え、前記誘電体基板の厚みが0.2mm以上0.5mm未満であることを特徴とする静電チャックを開示した。その結果十分な吸着力を得ることが可能で、加工中にクラックの生じないクーロン力型静電チャックを提供することができるようにした。 In order to achieve the above object, in the present invention, dielectric for electrostatic chuck comprising polycrystalline alumina having 99.9 wt% or more of alumina, 3.98 or more in bulk density, and 10 14 Ωcm or more in volume resistivity at room temperature. Disclosed is an electrostatic chuck comprising a substrate, wherein the dielectric substrate has a thickness of 0.2 mm or more and less than 0.5 mm. As a result, it is possible to provide a coulomb force type electrostatic chuck that can obtain a sufficient attracting force and does not cause cracks during processing.

前記誘電体基板の体積抵抗率は室温において1×1014Ωcm以上であることが望ましい。上記のような体積抵抗率にすることで、前記誘電体基板の温度変化による体積抵抗率の変化が、基板の吸着離脱特性やリーク電流などにほとんど影響を与えない、いわゆるクーロン力型静電チャックとすることができる。 The volume resistivity of the dielectric substrate is preferably 1 × 10 14 Ωcm or more at room temperature. By making the volume resistivity as described above, the so-called Coulomb force type electrostatic chuck in which the change in volume resistivity due to the temperature change of the dielectric substrate hardly affects the adsorption / desorption characteristics of the substrate and the leakage current. It can be.

前記クーロン力型静電チャックを実用的な電圧範囲(±1kV〜±5kV、より好ましくは±2kV〜±5kV)で十分な吸着力で使用するためには、前記誘電体基板の厚みを0.5mm未満とすることが望ましい。一方、加工中に前記誘電体基板にクラックを生じないようにするためには0.2mm以上、より好ましくは0.3mm以上の厚みが必要である。このため前記誘電体基板の厚みを0.2mm以上0.5mm未満、より好ましくは0.3mm以上0.5mm未満にすることにより、所望の静電チャックを提供することができる。   In order to use the Coulomb force type electrostatic chuck with a sufficient attracting force in a practical voltage range (± 1 kV to ± 5 kV, more preferably ± 2 kV to ± 5 kV), the thickness of the dielectric substrate is set to 0. It is desirable to be less than 5 mm. On the other hand, a thickness of 0.2 mm or more, more preferably 0.3 mm or more is required so as not to cause cracks in the dielectric substrate during processing. Therefore, a desired electrostatic chuck can be provided by setting the thickness of the dielectric substrate to 0.2 mm or more and less than 0.5 mm, more preferably 0.3 mm or more and less than 0.5 mm.

前記誘電体基板の多結晶アルミナは99.9wt%以上、嵩密度3.98以上であることが望ましい。上記のような純度、嵩密度にすることで、誘電体基板の厚みが0.2mm以上0.5mm未満でも充分な耐電圧を確保できる。   The polycrystalline alumina of the dielectric substrate is preferably 99.9 wt% or more and a bulk density of 3.98 or more. By setting the purity and bulk density as described above, a sufficient withstand voltage can be ensured even when the thickness of the dielectric substrate is 0.2 mm or more and less than 0.5 mm.

本発明の他の実施形態においては、アルミナが99.9wt%以上、嵩密度が3.98以上、ビッカース硬度が17GPa以上、体積抵抗率が室温において1014Ωcm以上の多結晶アルミナからなる静電チャック用誘電体基板を備え、前記誘電体基板の厚みが0.2mm以上0.5mm未満であることを特徴とする静電チャックを開示した。その結果十分な吸着力を得ることが可能で、加工中にクラックの生じないクーロン力型静電チャックを提供することができるようにした。 In another embodiment of the present invention, an electrostatic material comprising alumina of 99.9 wt% or more, a bulk density of 3.98 or more, a Vickers hardness of 17 GPa or more, and a volume resistivity of 10 14 Ωcm or more at room temperature. An electrostatic chuck comprising a dielectric substrate for chuck and having a thickness of 0.2 mm or more and less than 0.5 mm is disclosed. As a result, it is possible to provide a coulomb force type electrostatic chuck that can obtain a sufficient attracting force and does not cause cracks during processing.

前記誘電体基板の多結晶アルミナはビッカース硬度が17GPa以上、より好ましくは18GPa以上であることが望ましい。上記のようなビッカース硬度にすることで、加工中に前記誘電体基板にクラックを生じることなく、厚みを0.2mm以上0.5mm未満に加工できる。   The polycrystalline alumina of the dielectric substrate preferably has a Vickers hardness of 17 GPa or more, more preferably 18 GPa or more. By setting the Vickers hardness as described above, the thickness can be processed to 0.2 mm or more and less than 0.5 mm without causing cracks in the dielectric substrate during processing.

本発明の他の実施形態においては、アルミナが99.9wt%以上、嵩密度が3.98以上、曲げ強度が400MPa以上、体積抵抗率が室温において1014Ωcm以上の多結晶アルミナからなる静電チャック用誘電体基板を備え、前記誘電体基板の厚みが0.2mm以上0.5mm未満であることを特徴とする静電チャックを開示した。その結果十分な吸着力を得ることが可能で、加工中にクラックの生じないクーロン力型静電チャックを提供することができるようにした。 In another embodiment of the present invention, electrostatic is composed of polycrystalline alumina having alumina of 99.9 wt% or more, bulk density of 3.98 or more, bending strength of 400 MPa or more, and volume resistivity of 10 14 Ωcm or more at room temperature. An electrostatic chuck comprising a dielectric substrate for chuck and having a thickness of 0.2 mm or more and less than 0.5 mm is disclosed. As a result, it is possible to provide a coulomb force type electrostatic chuck that can obtain a sufficient attracting force and does not cause cracks during processing.

前記誘電体基板の多結晶アルミナは曲げ強度は400MPa以上、より好ましくは500MPa以上であることが望ましい。上記のような曲げ強度にすることで、加工中に前記誘電体基板にクラックを生じることなく、厚みを0.2mm以上0.5mm未満に加工できる。   It is desirable that the polycrystalline alumina of the dielectric substrate has a bending strength of 400 MPa or more, more preferably 500 MPa or more. By setting the bending strength as described above, the thickness can be processed to 0.2 mm or more and less than 0.5 mm without causing cracks in the dielectric substrate during processing.

前記誘電体基板の厚みを0.2mm以上0.5mm未満にすることにより大きな吸着力を発生することができ、その結果としてクーロン力型の静電チャックの表面に凸部を設けることが可能となり、被吸着物との接触面積を吸着面の面積に対して1〜10%と少なくすることができる。   By making the thickness of the dielectric substrate 0.2 mm or more and less than 0.5 mm, a large attracting force can be generated, and as a result, a convex portion can be provided on the surface of the Coulomb force type electrostatic chuck. The contact area with the object to be adsorbed can be reduced to 1 to 10% with respect to the area of the adsorption surface.

更に、表面に設けた凸部の高さを5〜15μmにすることによって被接触部でも吸着力がはたらかせることができる。その結果凸部の面積を吸着面の面積に対して0.001%以上0.5%未満にすることができる。被吸着物の温度は凸部の接触面積が小さくなるにつれ接触部を介して伝熱がなされるため、例え凸部の組織がプラズマによる侵食を受けてもその影響は小さくなる。従って、プラズマ耐性をあげることと、被吸着物との接触を極力少なくすることで結果的に経時変化の少ない静電チャックが実現できる。   Further, by making the height of the convex portion provided on the surface 5 to 15 μm, the attracting force can be exerted even in the contacted portion. As a result, the area of the convex portion can be made 0.001% or more and less than 0.5% with respect to the area of the suction surface. Since the temperature of the object to be adsorbed is transferred through the contact portion as the contact area of the convex portion becomes small, even if the structure of the convex portion is eroded by plasma, the influence is small. Therefore, an electrostatic chuck with little change with time can be realized as a result of increasing plasma resistance and minimizing contact with the object to be adsorbed.

本発明の好ましい形態においては、複数の凸部が形成され被吸着体を該凸部上面に載置する平滑な表面を有する誘電体基板から構成され、前記複数の凸部上面の合計の面積と前記誘電体基板表面の面積との比率が0.001%以上0.5%未満でありかつ凸部の高さが5〜15μmであることを特徴とする請求項1乃至3のいずれかに記載の静電チャックを開示した。その結果、被吸着物との接触部分のプラズマによる侵食による表面の荒れの影響による被吸着物への吸着状態の変化の影響を最小限にすることができる。このとき接触面積の比率が0.001%以下になると凸部1ケあたりの寸法が微細になりすぎ加工が困難になる。また1%より大きくなると被吸着体と接触する凸部の面のプラズマに対する浸食の影響が無視できなくなってくる。   In a preferred embodiment of the present invention, a plurality of convex portions are formed, and the dielectric substrate has a smooth surface on which the object to be adsorbed is placed on the upper surface of the convex portions. The ratio with respect to the area of the dielectric substrate surface is 0.001% or more and less than 0.5%, and the height of the convex portion is 5 to 15 μm. Disclosed an electrostatic chuck. As a result, it is possible to minimize the influence of the change in the adsorption state on the object to be adsorbed due to the influence of surface roughness due to the erosion by the plasma at the contact portion with the object to be adsorbed. At this time, if the ratio of the contact area is 0.001% or less, the size per one convex portion becomes too fine, and the processing becomes difficult. On the other hand, if it exceeds 1%, the influence of erosion on the plasma on the surface of the convex portion that comes into contact with the adsorbed body cannot be ignored.

前記誘電体基板を構成する多結晶アルミナの粒子径としては平均粒子径が4μm以下、より好ましくは2μm以下のものが耐プラズマ性を向上させる上で好ましい。平均粒子径を4μm以下、より好ましくは2μm以下とすることで、ウェーハレスクリーニングを繰返し行っても、誘電体基板の吸着面粗さの変化が小さい静電チャックを提供することができる。   The average particle diameter of the polycrystalline alumina constituting the dielectric substrate is preferably 4 μm or less, more preferably 2 μm or less in terms of improving plasma resistance. By setting the average particle size to 4 μm or less, more preferably 2 μm or less, it is possible to provide an electrostatic chuck with a small change in the attracting surface roughness of the dielectric substrate even when wafer rescreening is repeated.

本発明によれば、十分な吸着力を得ることが可能で、加工中にクラックの生じないクーロン力型静電チャックを製作できるという効果がある。   According to the present invention, it is possible to obtain a sufficient attracting force and to produce a Coulomb force type electrostatic chuck that does not cause cracks during processing.

以下に本件明細書で使用する語句の説明を行う。
(スラリー調整、造粒、生加工)
上記アルミナ原料粉末にアクリル系バインダーを添加、調整後スプレードライヤーで造粒し顆粒粉を作製した。この顆粒粉をCIP(ラバープレス)成形またはメカプレス成形後、所定の形状に加工した。CIP成形では顆粒粉はゴム型に詰めた後圧力1ton/cm2を実施してインゴットを作製し、その後所定の形状に加工し生成形体を作製した。
(焼成)
上記生加工体を大気中または窒素、水素ガス還元雰囲気下で焼成した。実施例1は還元雰囲気で焼成、実施例2、3は大気中で焼成した。焼成温度は1250〜1450℃、焼成時間は1〜8時間とし、最も嵩密度が高い条件を選択した。
(HIP処理)
さらにHIP処理をおこない、誘電体基板を作製した。HIP条件はArガス1000気圧以上とし、温度は1250〜1450℃とした。
(電極作製)
前記誘電体基板の表面を研削加工した後に片面側にCVDやPVDによってTiCやTiなどの導電膜を形成し、この導電膜をサンドブラストやエッチングすることで、所定の電極パターンを得た。
(接合)
前記電極が形成された誘電体基板を、予めアルミナ溶射により絶縁体膜を形成した金属プレートに、金属プレートの絶縁体膜と誘電体基板の電極が対向するようにして絶縁性接着剤を介して両者を接合した。
(表面パターン作製)
金属プレートに接合した誘電体基板を0.2mm以上0.5mm未満の所定の厚みになるように研削加工した後、サンドブラストにより表面に所定の大きさ、高さの凸部を形成した。
The terms used in this specification will be explained below.
(Slurry adjustment, granulation, raw processing)
An acrylic binder was added to the alumina raw material powder, and after adjustment, the mixture was granulated with a spray dryer to prepare granule powder. The granulated powder was processed into a predetermined shape after CIP (rubber press) molding or mechanical press molding. In CIP molding, the granulated powder was packed in a rubber mold and then subjected to a pressure of 1 ton / cm 2 to produce an ingot, which was then processed into a predetermined shape to produce a formed shape.
(Baking)
The raw processed body was fired in the air or in a nitrogen or hydrogen gas reducing atmosphere. Example 1 was fired in a reducing atmosphere, and Examples 2 and 3 were fired in air. The firing temperature was 1250 to 1450 ° C., the firing time was 1 to 8 hours, and the conditions with the highest bulk density were selected.
(HIP processing)
Further, HIP treatment was performed to produce a dielectric substrate. The HIP conditions were Ar gas of 1000 atm or higher and the temperature was 1250 to 1450 ° C.
(Electrode production)
After grinding the surface of the dielectric substrate, a conductive film such as TiC or Ti was formed on one side by CVD or PVD, and this conductive film was sandblasted or etched to obtain a predetermined electrode pattern.
(Joining)
The dielectric substrate on which the electrodes are formed is placed on a metal plate on which an insulator film has been previously formed by alumina spraying so that the insulator film on the metal plate and the electrode on the dielectric substrate face each other via an insulating adhesive. Both were joined.
(Surface pattern production)
The dielectric substrate bonded to the metal plate was ground so as to have a predetermined thickness of 0.2 mm or more and less than 0.5 mm, and then a convex portion having a predetermined size and height was formed on the surface by sandblasting.

(物性測定)
上記HIP処理により得られたものは焼成嵩密度、焼成体組織SEM観察による平均粒子径測定、曲げ強度、ビッカース硬度、体積抵抗率測定、真空中での摩擦力測定を行った。曲げ強さの測定は、JIS R1601による室温三点曲げ強度を測定した。測定機は島津製作所製小型卓上試験機イージーグラフを用い、試験片寸法は、幅4mm、厚み3mm、長さ40mm、下部支点間長さは30mmとした。ビッカース硬度の測定は、JIS R1610による室温ビッカース硬度を測定した。測定機は、アカシ製ビッカース硬度試験機HV−113を用い、試験荷重は9.807N、試験力速度100μm/s、保持時間15Sで行った。
また、実際にプラズマを照射しセラミックスの表面粗さ(中心線平均粗さRa)変化を測定した。初期状態では表面粗さはRa0.02μm以下にした。プラズマはリアクティブイオンエッチング装置、エッチングガスはCF4+O2で1000W、30時間プラズマ放電させた。
(Physical property measurement)
What was obtained by the HIP treatment was subjected to firing bulk density, average particle size measurement by observation of the fired body structure SEM, bending strength, Vickers hardness, volume resistivity measurement, and friction force measurement in vacuum. The bending strength was measured by room temperature three-point bending strength according to JIS R1601. The measuring machine was a small table tester Easy Graph manufactured by Shimadzu Corporation. The test piece dimensions were 4 mm wide, 3 mm thick, 40 mm long, and the length between the lower fulcrums was 30 mm. Vickers hardness was measured by measuring room temperature Vickers hardness according to JIS R1610. The measuring machine used was a Vickers hardness tester HV-113 manufactured by Akashi, and the test load was 9.807 N, the test force speed was 100 μm / s, and the holding time was 15S.
Moreover, plasma was actually irradiated and the change in the surface roughness (centerline average roughness Ra) of the ceramic was measured. In the initial state, the surface roughness was Ra 0.02 μm or less. The plasma was a reactive ion etching apparatus, and the etching gas was CF4 + O2 at 1000 W for 30 hours for plasma discharge.

(比較品)
また比較のため従来の製法によるアルミナセラミックスを例示した。その配合は平均粒子径0.5μmのアルミナ99.7wt%で焼成温度は1580℃である。比較品はHIP処理していない。尚、プラズマを照射は実施例の条件と同じとし、表面粗さは初期状態でRa0.02μm以下にした。本比較例の誘電体基板は金属プレートに接合し、誘電体基板を0.2mm以上0.5mm未満の所定の厚みになるように研削加工した。
(Comparative product)
For comparison, alumina ceramics produced by a conventional manufacturing method is illustrated. The composition is 99.7 wt% of alumina having an average particle size of 0.5 μm and the firing temperature is 1580 ° C. The comparative product is not HIP processed. The plasma irradiation was the same as in the example, and the surface roughness was Ra 0.02 μm or less in the initial state. The dielectric substrate of this comparative example was bonded to a metal plate, and the dielectric substrate was ground to a predetermined thickness of 0.2 mm or more and less than 0.5 mm.

Figure 2007214288
Figure 2007214288

Figure 2007214288
上記試験の結果を表1に示す。実施例の誘電体基板は全て、金属プレートに接合した後、誘電体基板厚みを0.2mmまで研削加工でき、さらに表面に凸部を形成してもクラック等の発生はなかった。ただし、0.2mmより薄くすると基板にクラックが発生した。一方、比較例では厚み0.5mmまでは加工できたが、それ以下の厚みではクラックが発生した。この違いは基板の強度の差によるものと考えられた。すなわち、研削加工時の応力に対して基板の強度が弱い場合にクラックが発生する。本実施例のように金属プレートに接合した後で研削加工する場合には、曲げ強度で400MPa以上が必要であることがわかった。また、曲げ強度とビッカース硬度には相関があることが知られており、同じようにビッカース硬度で17GPa以上が必要であることがわかった。
Figure 2007214288
The results of the above test are shown in Table 1. All of the dielectric substrates of the examples could be ground to a thickness of 0.2 mm after being bonded to a metal plate, and no cracks or the like were generated even if convex portions were formed on the surface. However, when the thickness was less than 0.2 mm, cracks occurred in the substrate. On the other hand, in the comparative example, processing was possible up to a thickness of 0.5 mm, but cracks occurred at a thickness less than that. This difference was thought to be due to the difference in strength of the substrates. That is, cracks occur when the strength of the substrate is weak against the stress during grinding. When grinding was performed after joining to a metal plate as in this example, it was found that a bending strength of 400 MPa or more was necessary. Further, it is known that there is a correlation between the bending strength and the Vickers hardness, and similarly, it was found that a Vickers hardness of 17 GPa or more is necessary.

本発明では全ての焼成条件で体積低効率が1014Ωcm以上になっており、クーロンチャック用の誘電体に要求される室温における体積抵抗率1014Ωcm以上を満足してすることがわかった。さらに、誘電体基板の厚みを0.2mm以上0.5mm未満にすることにより、誘電体基板の表面に凸部を形成しても十分な吸着力を発生することができた。 In the present invention, the volume low efficiency is 10 14 Ωcm or more under all firing conditions, and it was found that the volume resistivity at room temperature of 10 14 Ωcm or more required for a dielectric for a Coulomb chuck was satisfied. Furthermore, by setting the thickness of the dielectric substrate to 0.2 mm or more and less than 0.5 mm, a sufficient attracting force could be generated even when a convex portion was formed on the surface of the dielectric substrate.

さらに、誘電体基板のアルミナ純度を99.9wt%以上、嵩密度3.98以上にすることにより、誘電体基板の厚み0.2mm以上0.5mm未満でも充分な耐電圧を確保できた。   Furthermore, by setting the alumina purity of the dielectric substrate to 99.9 wt% or more and the bulk density to 3.98 or more, a sufficient withstand voltage can be secured even when the thickness of the dielectric substrate is 0.2 mm or more and less than 0.5 mm.

本発明では平均粒子径0.2μm未満、純度99.9%以上の高純度で微粒のアルミナ原料を用いることにより、焼成温度1450℃以下での焼成が可能となり、比較例に比べて大幅に低温で焼成することが可能となった。この低温での焼成により、粒子径が小さく、均一そろったまま焼成できたことで、曲げ強度やビッカース硬度が大幅に向上したものと考えられる。本実施例では、アルミナ原料として平均粒子径0.1μm、純度99.99%以上のものを用いた。   In the present invention, by using a fine alumina raw material having an average particle diameter of less than 0.2 μm and a purity of 99.9% or more, firing can be performed at a firing temperature of 1450 ° C. or lower, which is significantly lower than the comparative example. It became possible to fire at. It is considered that the bending strength and the Vickers hardness are greatly improved by firing at such a low temperature, with the particle size being small and uniform firing. In this example, an alumina raw material having an average particle diameter of 0.1 μm and a purity of 99.99% or more was used.

複数の凸部が形成され被吸着体を該凸部上面に載置する平滑な表面を有し、体積抵抗率が1014Ωcm以上である静電チャック用誘電体を含む静電チャックの凸部上面の合計の面積と前記誘電体表面の面積との比率が0.089%である静電チャックを作製した。このとき表面にはφ0.25mmの凸部を一辺が8mmの正三角形の各頂点に連続して配置している。凸部の高さは10μmである。 Convex part of electrostatic chuck having a smooth surface on which a plurality of convex parts are formed and an object to be adsorbed placed on the upper surface of the convex part, and including a dielectric for electrostatic chuck having a volume resistivity of 10 14 Ωcm or more An electrostatic chuck in which the ratio of the total area of the upper surface to the area of the dielectric surface was 0.089% was produced. At this time, convex portions having a diameter of 0.25 mm are continuously arranged on the surface of each apex of a regular triangle having a side of 8 mm. The height of the convex portion is 10 μm.

その結果、プラズマ照射後の表面粗さの変化が少なかったことおよび、被吸着物との接触面積が非常に少ないことが重畳し、被吸着物であるシリコンウェハのプロセス時の温度変化の経時変化がきわめて少なくすることができた。
As a result, the change in temperature during processing of the silicon wafer that is the object to be adsorbed overlaps with the fact that the change in surface roughness after plasma irradiation is small and the contact area with the object to be adsorbed is very small. Could be very little.

本発明の静電チャックを表す図である。It is a figure showing the electrostatic chuck of this invention. 本発明の静電チャックの表面パターンの拡大図である。It is an enlarged view of the surface pattern of the electrostatic chuck of this invention.

符号の説明Explanation of symbols

21…金属プレート、21a…冷媒通路、22…絶縁体膜、23…絶縁性接着剤層、24…誘電体基板、25…電極、26…リード線、




21 ... Metal plate, 21a ... Refrigerant passage, 22 ... Insulator film, 23 ... Insulating adhesive layer, 24 ... Dielectric substrate, 25 ... Electrode, 26 ... Lead wire,




Claims (4)

アルミナが99.9wt%以上、嵩密度が3.98以上、体積抵抗率が室温において1014Ωcm以上の多結晶アルミナからなる静電チャック用誘電体基板を備え、前記誘電体基板の厚みが0.2mm以上0.5mm未満であることを特徴とする静電チャック。 An electrostatic chuck dielectric substrate made of polycrystalline alumina having an alumina content of 99.9 wt% or more, a bulk density of 3.98 or more, and a volume resistivity of 10 14 Ωcm or more at room temperature, and the thickness of the dielectric substrate is 0 An electrostatic chuck characterized by being 2 mm or more and less than 0.5 mm. アルミナが99.9wt%以上、嵩密度が3.98以上、ビッカース硬度が17GPa以上、体積抵抗率が室温において1014Ωcm以上の多結晶アルミナからなる静電チャック用誘電体基板を備え、前記誘電体基板の厚みが0.2mm以上0.5mm未満であることを特徴とする静電チャック。 A dielectric substrate for an electrostatic chuck comprising alumina of 99.9 wt% or more, a bulk density of 3.98 or more, a Vickers hardness of 17 GPa or more, and a volume resistivity of 10 14 Ωcm or more at room temperature; An electrostatic chuck characterized in that the thickness of the body substrate is 0.2 mm or more and less than 0.5 mm. アルミナが99.9wt%以上、嵩密度が3.98以上、曲げ強度が400MPa以上、体積抵抗率が室温において1014Ωcm以上の多結晶アルミナからなる静電チャック用誘電体基板を備え、前記誘電体基板の厚みが0.2mm以上0.5mm未満であることを特徴とする静電チャック。 A dielectric substrate for electrostatic chuck comprising alumina of 99.9 wt% or more, bulk density of 3.98 or more, bending strength of 400 MPa or more, and volume resistivity of 10 14 Ωcm or more at room temperature, An electrostatic chuck characterized in that the thickness of the body substrate is 0.2 mm or more and less than 0.5 mm. 複数の凸部が形成され被吸着体を該凸部上面に載置する平滑な表面を有する誘電体基板から構成され、前記複数の凸部上面の合計の面積と前記誘電体基板表面の面積との比率が0.001%以上0.5%未満でありかつ凸部の高さが5〜15μmであることを特徴とする請求項1乃至3のいずれかに記載の静電チャック。




A plurality of convex portions are formed, and the dielectric substrate has a smooth surface on which the adherend is placed on the upper surface of the convex portion. The total area of the upper surfaces of the plurality of convex portions and the area of the dielectric substrate surface The electrostatic chuck according to claim 1, wherein the ratio is 0.001% or more and less than 0.5%, and the height of the convex portion is 5 to 15 μm.




JP2006031546A 2006-02-08 2006-02-08 Electrostatic chuck Pending JP2007214288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006031546A JP2007214288A (en) 2006-02-08 2006-02-08 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006031546A JP2007214288A (en) 2006-02-08 2006-02-08 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JP2007214288A true JP2007214288A (en) 2007-08-23

Family

ID=38492459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006031546A Pending JP2007214288A (en) 2006-02-08 2006-02-08 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP2007214288A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514213A (en) * 2006-12-19 2010-04-30 アクセリス テクノロジーズ, インコーポレイテッド Electrostatic clamp for annular fixing and backside cooling
JP2010114416A (en) * 2008-10-09 2010-05-20 Ngk Insulators Ltd Wafer placing table and method of manufacturing the same
WO2012020832A1 (en) * 2010-08-11 2012-02-16 Toto株式会社 Electrostatic chuck and production method thereof
WO2012020831A1 (en) * 2010-08-11 2012-02-16 Toto株式会社 Electrostatic chuck

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169755A (en) * 1995-08-14 1996-07-02 Toto Ltd Polycrystalline ceramic product and its production
JPH1092796A (en) * 1996-09-10 1998-04-10 Tokyo Electron Ltd Plasma treatment device
JP2000243820A (en) * 1999-02-19 2000-09-08 Nippon Steel Corp Electrostatic chuck and its manufacture
JP2001019538A (en) * 1999-07-09 2001-01-23 Konoshima Chemical Co Ltd Alumina-based composite ceramic and its production
JP2003168726A (en) * 2001-11-30 2003-06-13 Toshiba Ceramics Co Ltd Electrostatic chuck for semiconductor manufacturing device and its manufacturing method
JP2005033125A (en) * 2003-07-11 2005-02-03 Toto Ltd Electrostatic chuck and device mounted with electrostatic chuck

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169755A (en) * 1995-08-14 1996-07-02 Toto Ltd Polycrystalline ceramic product and its production
JPH1092796A (en) * 1996-09-10 1998-04-10 Tokyo Electron Ltd Plasma treatment device
JP2000243820A (en) * 1999-02-19 2000-09-08 Nippon Steel Corp Electrostatic chuck and its manufacture
JP2001019538A (en) * 1999-07-09 2001-01-23 Konoshima Chemical Co Ltd Alumina-based composite ceramic and its production
JP2003168726A (en) * 2001-11-30 2003-06-13 Toshiba Ceramics Co Ltd Electrostatic chuck for semiconductor manufacturing device and its manufacturing method
JP2005033125A (en) * 2003-07-11 2005-02-03 Toto Ltd Electrostatic chuck and device mounted with electrostatic chuck

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514213A (en) * 2006-12-19 2010-04-30 アクセリス テクノロジーズ, インコーポレイテッド Electrostatic clamp for annular fixing and backside cooling
JP2010114416A (en) * 2008-10-09 2010-05-20 Ngk Insulators Ltd Wafer placing table and method of manufacturing the same
WO2012020832A1 (en) * 2010-08-11 2012-02-16 Toto株式会社 Electrostatic chuck and production method thereof
WO2012020831A1 (en) * 2010-08-11 2012-02-16 Toto株式会社 Electrostatic chuck
JP2012060106A (en) * 2010-08-11 2012-03-22 Toto Ltd Electrostatic chuck and method of manufacturing electrostatic chuck
CN103038874A (en) * 2010-08-11 2013-04-10 Toto株式会社 Electrostatic chuck
CN103053018A (en) * 2010-08-11 2013-04-17 Toto株式会社 Electrostatic chuck and production method thereof
KR101386021B1 (en) 2010-08-11 2014-04-16 토토 가부시키가이샤 Electrostatic chuck
KR101450025B1 (en) * 2010-08-11 2014-10-13 토토 가부시키가이샤 Electrostatic chuck and production method thereof
US8971010B2 (en) 2010-08-11 2015-03-03 Toto Ltd. Electrostatic chuck and method of manufacturing electrostatic chuck
US9030798B2 (en) 2010-08-11 2015-05-12 Toto Ltd. Electrostatic chuck

Similar Documents

Publication Publication Date Title
CN105074901B (en) Electrostatic chuck
JP4744855B2 (en) Electrostatic chuck
KR101531726B1 (en) Electrostatic chuck and method for producing same
JP2008160093A (en) Electrostatic chuck and manufacturing method thereof, and substrate-treating device
JP2006332204A (en) Electrostatic chuck
JP5293211B2 (en) Electrostatic chuck and method of manufacturing electrostatic chuck
US20070146961A1 (en) Electrostatic chuck
JP6100703B2 (en) Electrostatic chuck and manufacturing method thereof
JP2003282688A (en) Electrostatic chuck
JP2007214288A (en) Electrostatic chuck
JP4312372B2 (en) Electrostatic chuck and manufacturing method thereof
TWI612186B (en) Polycrystalline CaF crucible member, member for plasma processing apparatus, plasma processing apparatus, and manufacturing method of focus ring
JP4244229B2 (en) Electrostatic chuck
JP2008177339A (en) Electrostatic chuck
EP1532728B1 (en) Improved platen for electrostatic wafer clamping apparatus
JP2009302518A (en) Electrostatic chuck
JP2006060040A (en) Electrostatically chucking plate, and manufacturing method thereof
JP2006049356A (en) Electrostatic chuck
JP2010238909A (en) Electrostatic chuck and method of manufacturing electrostatic chuck
JP4623159B2 (en) Electrostatic chuck
JP2007326744A (en) Plasma resistant ceramic member
JP2008227190A (en) Electrostatic chuck, method of manufacturing the same, and substrate processing apparatus
WO2023013211A1 (en) Wafer support
WO2023223646A1 (en) Wafer support
JP2009004752A (en) Electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100826

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101227