JP2000243820A - Electrostatic chuck and its manufacture - Google Patents

Electrostatic chuck and its manufacture

Info

Publication number
JP2000243820A
JP2000243820A JP4144999A JP4144999A JP2000243820A JP 2000243820 A JP2000243820 A JP 2000243820A JP 4144999 A JP4144999 A JP 4144999A JP 4144999 A JP4144999 A JP 4144999A JP 2000243820 A JP2000243820 A JP 2000243820A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
dielectric
layer
ceramic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4144999A
Other languages
Japanese (ja)
Other versions
JP3899379B2 (en
Inventor
Takushi Okita
拓士 沖田
Hidehiro Endo
英宏 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4144999A priority Critical patent/JP3899379B2/en
Publication of JP2000243820A publication Critical patent/JP2000243820A/en
Application granted granted Critical
Publication of JP3899379B2 publication Critical patent/JP3899379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To permit the aegreasing and suppress the generation of worpage by containing conductive metal silicide into the electrode layer of electrostatic chuck consisting of ceramic dielectric body layer, electrode layer and ceramic base body. SOLUTION: As the raw material for a dielectric layer 1 of an electrostatic chuck, an alumina material ceramics, an aluminum nitride material ceramics or the like is used, as the raw material for an insulator substrate 3, an alumina, an aluminum nitride, a silicon nitride or the like can be used and when a compound layer of the same main component as that of the layer 1 is used, the generation of a warpage of an electrode layer 2 and a crack in the layer 2 due to the reaction of the layer 1 to the substrate 3 and a difference between the shrinkage factors of the layer 1 and the substrate 3 at the time of a firing can be prevented. As the conductive material for the layer 2, a paste containing a conductive metal silicide of a high oxidation resistance is pasted on a molded material consisting of the raw material for the layer 1 or the substrate 3 by a screen printing or the like. The molded material consisting of the raw material for the layer 1 and the molded material consisting of the raw material for the substrate 3 are superposed holding the layer 2 between both molded materials and after a degreasing of the molded materials is performed in the atmosphere, the molded materials are set on a hot press device and the molded materials are integrally fired by pressing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置等
においてウェハ等を静電的に吸着保持したり、搬送する
ための静電チャックに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck for electrostatically holding and transporting a wafer or the like in a semiconductor manufacturing apparatus or the like.

【0002】[0002]

【従来技術】従来より、半導体製造用装置において、S
iウェハ等に成膜処理やエッチング処理する際にはウェ
ハの平坦度を保ちながら保持する必要があり、このよう
な保持手段としては機械的保持方式、真空吸着方式、静
電吸着方式が提案されている。これらの内、静電吸着方
式は静電チャックによりウェハを保持する方法であり、
ウェハ加工面の平坦度に優れ、真空中での使用も可能で
あるため多用されつつある。
2. Description of the Related Art Conventionally, in a semiconductor manufacturing apparatus,
When performing film formation processing or etching processing on an i-wafer or the like, it is necessary to hold the wafer while maintaining its flatness. As such holding means, a mechanical holding method, a vacuum suction method, and an electrostatic suction method have been proposed. ing. Of these, the electrostatic chuck method is a method of holding a wafer by an electrostatic chuck,
It has been widely used because of its excellent flatness of the wafer processing surface and its use in vacuum.

【0003】従来の静電チャックは吸着力としてクーロ
ン力を利用したものと、ジョンセンラーベック力を利用
したものがある。クーロン力を利用した静電チャックと
しては誘電体としてCaTiO3、PbTiO3−La2
3系などを用いたものがある(例えば特公平8−31
517号公報など)。
Conventional electrostatic chucks include those utilizing Coulomb force as an attraction force and those utilizing Johnsen-Rahbek force. As an electrostatic chuck utilizing Coulomb force, CaTiO 3 , PbTiO 3 -La 2 are used as dielectrics.
There are those using an O 3 system or the like (for example,
517, etc.).

【0004】また、ジョンセン・ラーベック力は、誘電
体とウェーハとの界面の小さなギャップに微少電流が流
れ、帯電分極して誘起させことによって生じる力であ
り、誘電体の体積固有抵抗率が約1012〜1013Ω・c
m以下になると発生する。ジョンセン・ラーベック力を
利用した静電チャックには、誘電体としてAl23−T
iO2系などアルミナに遷移金属元素を添加したセラミ
ック、あるいはAlNを主成分としたセラミックが用い
られている(例えば、特公平6−97675、特開平2
−16044、特開平8−55899号公報など)。
[0004] The Johnsen-Rahbek force is a force generated when a minute current flows through a small gap at an interface between a dielectric and a wafer, and is induced by charging and polarization. 12 to 10 13 Ω · c
m. Al 2 O 3 -T is used as a dielectric for an electrostatic chuck utilizing the Johnsen-Rahbek force.
Ceramics in which a transition metal element is added to alumina, such as iO 2 , or ceramics containing AlN as a main component are used (for example, Japanese Patent Publication No. 6-97675;
-16044, JP-A-8-55899).

【0005】この静電チャックの製造方法としては、あ
らかじめ成形、焼成したセラミックからなる誘電体と絶
縁体基体のいずれかに、電極層を印刷、メッキ等の方法
により形成し、誘電体と絶縁体基体を接着する方法があ
る。しかし、この方法では、誘電体及び絶縁体基体を別
個に加工し、接着せねばならず、加工コストがかかる。
また、接着材の耐熱性はセラミックに比べると低いた
め、使用可能温度が接着剤の物性により決まってしまう
などの問題点がある。
[0005] As a method of manufacturing the electrostatic chuck, an electrode layer is formed by printing, plating, or the like on one of a dielectric and an insulating base made of ceramic which has been molded and fired in advance. There is a method of bonding a substrate. However, in this method, the dielectric and the insulator base must be separately processed and bonded, and the processing cost is high.
Further, since the heat resistance of the adhesive is lower than that of the ceramic, there is a problem that the usable temperature is determined by the physical properties of the adhesive.

【0006】この問題点を解決する方法として、静電チ
ャックの製造方法として、あらかじめ焼成したセラミッ
クからなる誘電体と絶縁体基体を貼り合わせるのではな
く、あらかじめ成形したセラミック原料からなる誘電体
成形体と絶縁体基体成形体を一体焼成する製造方法があ
る。
As a method for solving this problem, as a method of manufacturing an electrostatic chuck, a dielectric molded body made of a ceramic raw material formed in advance, instead of bonding a dielectric made of a ceramic fired in advance and an insulating substrate. There is a manufacturing method of integrally firing the and the insulator base body.

【0007】[0007]

【発明が解決しようとする問題点】静電チャックの代表
的な一体焼成による製造方法の例を説明する。バインダ
や分散剤を添加したセラミック原料スラリーをテープ成
形する。得られた複数のセラミックスシートを積層し、
その積層体上にW、Mo等の高融点金属を電極材料とし
てスクリーン印刷等で印刷し、更に別のセラミックスシ
ートの積層体を重ね、加圧成形した後、常圧下で一体焼
成して製造するのが一般的である。
An example of a typical method of manufacturing an electrostatic chuck by integral firing will be described. A ceramic raw material slurry to which a binder and a dispersant are added is tape-formed. Laminating the obtained ceramic sheets,
A high-melting point metal such as W or Mo is printed on the laminate as an electrode material by screen printing or the like, and another laminate of ceramic sheets is laminated, pressed, and then integrally fired under normal pressure to manufacture. It is common.

【0008】この様な製造方法において、成形体中や印
刷された電極層に含まれたバインダや分散剤の炭素分が
焼成時に残存すると、誘電体の電気抵抗値が極端に低下
してしまい、使用時に吸着体へのリーク電流が大きくな
るという不都合を生じてしまう。
In such a manufacturing method, when the carbon content of the binder and the dispersant contained in the molded product and the printed electrode layer remains during firing, the electric resistance of the dielectric material is extremely lowered, The disadvantage that the leakage current to the adsorbent during use becomes large occurs.

【0009】この様な不都合を避けるために、通常は、
成形体を脱脂することによりバインダや分散剤中の炭素
分を除去してから焼成を行う。
To avoid such inconvenience, usually,
After removing the carbon content in the binder and the dispersant by degreased the molded body, firing is performed.

【0010】脱脂はアルゴンや窒素など不活性雰囲気中
で行う。これは、電極層に含まれる電極材料が微細な粒
子であるため、大気中での500℃程度の温度で脱脂を
行うと酸化されてしまい、電極としての機能を果たさな
いためである。
[0010] Degreasing is performed in an inert atmosphere such as argon or nitrogen. This is because, since the electrode material contained in the electrode layer is fine particles, if it is degreased at a temperature of about 500 ° C. in the air, it will be oxidized and will not function as an electrode.

【0011】しかし、脱脂を不活性雰囲気中で行った場
合、安定して炭素分を除去することは難しく、得られた
誘電体の電気抵抗値にはバラツキが生じやすい。
However, when degreasing is performed in an inert atmosphere, it is difficult to stably remove the carbon content, and the electrical resistance of the obtained dielectric material tends to vary.

【0012】また、この様な方法では焼成工程において
内部電極に50〜200μm以上の反りが発生すること
を避けられず、吸着面と内部電極の間の距離が一定とな
らないため、吸着力が不均一になってしまう問題があっ
た。更に、ウェハサイズ12インチ以上の大型の静電チ
ャック製造においては、反りが非常に大きくなるため、
製造歩留りが大幅に低下するという問題も発生してい
た。
In addition, in such a method, it is inevitable that the internal electrode is warped by 50 to 200 μm or more in the firing step, and the distance between the suction surface and the internal electrode is not constant, so that the suction force is not sufficient. There was a problem of becoming uniform. Furthermore, in the manufacture of a large electrostatic chuck having a wafer size of 12 inches or more, the warpage becomes extremely large.
There has also been a problem that the manufacturing yield is significantly reduced.

【0013】[0013]

【課題を解決するための手段】本発明者らは誘電体の電
気抵抗値を安定させ、また、成形体の焼成時の反りを低
減する方法として、耐酸化性の高い導電性金属珪化物を
電極材料に用いることにより大気中での脱脂を可能と
し、また、従来の常圧下での一体焼成ではなく、ホット
プレスによる一体焼成を施すことにより、反りを著しく
抑えられることを見い出し、本発明を完成させるに至っ
た。即ち、本発明は以下の通りである。 (1)セラミック誘電体層、電極層、セラミック基体か
らなる静電チャックにおいて、電極層が導電性金属珪化
物を含むことを特徴とする静電チャック。 (2)導電性金属珪化物がTaSi2、NbSi2、WS
2、MoSi2から選ばれた1種もしくは2種以上から
なることを特徴とする(1)項に記載の静電チャック。 (3)誘電体と基体の主組成が同一の化合物であること
を特徴する(1)〜(3)項のいずれかに記載の静電チ
ャック。 (4)セラミック誘電体がアルミナ質セラミックである
ことを特徴とする(1)〜(3)項のいずれかに記載の
静電チャック。 (5)誘電体がTiO2を添加したアルミナであること
を特徴とする(4)項に記載の静電チャック。 (6)誘電体がTi23を添加したアルミナであること
を特徴とする(4)項に記載の静電チャック。 (7)誘電体が窒化アルミニウム質セラミックであるこ
とを特徴とする(1)もしくは(2)項に記載の静電チ
ャック。 (8)セラミック誘電体層、電極層、セラミック基体か
らなる静電チャックの製造方法において、誘電体原料の
成形体(A)と絶縁体基板原料の成形体(B)とを作製
し、次いで成形体(A)および/または成形体(B)の
一主面に導電性金属珪化物を電極材料として含むペース
トを塗布したのちに、大気雰囲気中にて成形体および電
極ペーストの脱脂を行い、次いで成形体(A)と成形体
(B)との間に上記電極層が挟まれるように重ね合わせ
た後、ホットプレスにより一体焼成することを特徴とす
る静電チャックの製造方法。 (9)導電性珪化物がTaSi2、NbSi2、WS
2、MoSi2から選ばれた1種もしくは2種以上から
なることを特徴とする(8)項に記載の静電チャックの
製造方法。 (10)誘電体原料の成形体(A)と絶縁体基板原料の
成形体(B)のうち少なくとも一方がCIP成形により
作製されることを特徴とする(8)もしくは(9)項に
記載の静電チャックの製造方法 (11)誘電体原料の成形体(A)と絶縁体基板原料の
成形体(B)のうち少なくとも一方がドクターブレード
成形により作製されることを特徴とする(8)もしくは
(9)項に記載の静電チャックの製造方法 (12)誘電体と基体の主組成が同一の化合物であるこ
とを特徴する(8)〜(11)項のいずれかに記載の静
電チャックの製造方法 (13)セラミック誘電体がアルミナ質セラミックであ
ることを特徴とする(8)〜(12)項のいずれかに記
載の静電チャックの製造方法 (14)誘電体がTiO2を添加したアルミナであるこ
とを特徴とする(13)項に記載の静電チャックの製造
方法 (15)誘電体がTi23を添加したアルミナであるこ
とを特徴とする(13)項に記載の静電チャックの製造
方法。 (16)誘電体が窒化アルミニウム質セラミックである
ことを特徴とする(8)〜(12)項のいずれかに記載
の静電チャックの製造方法。
As a method for stabilizing the electric resistance of a dielectric and reducing the warpage of a molded body during firing, a conductive metal silicide having high oxidation resistance is used. By using the electrode material, degreasing in the atmosphere is possible, and it is found that warping can be remarkably suppressed by performing integrated firing by hot pressing instead of conventional integrated firing under normal pressure. It was completed. That is, the present invention is as follows. (1) An electrostatic chuck comprising a ceramic dielectric layer, an electrode layer, and a ceramic substrate, wherein the electrode layer contains a conductive metal silicide. (2) The conductive metal silicide is TaSi 2 , NbSi 2 , WS
The electrostatic chuck according to item (1), wherein the electrostatic chuck comprises one or more selected from i 2 and MoSi 2 . (3) The electrostatic chuck according to any one of (1) to (3), wherein the main composition of the dielectric and the base is the same compound. (4) The electrostatic chuck according to any one of (1) to (3), wherein the ceramic dielectric is an alumina ceramic. (5) The electrostatic chuck according to (4), wherein the dielectric is alumina to which TiO 2 is added. (6) The electrostatic chuck according to item (4), wherein the dielectric is alumina to which Ti 2 O 3 is added. (7) The electrostatic chuck according to (1) or (2), wherein the dielectric is an aluminum nitride ceramic. (8) In a method for manufacturing an electrostatic chuck including a ceramic dielectric layer, an electrode layer, and a ceramic substrate, a molded body (A) of a dielectric material and a molded body (B) of an insulating substrate material are formed and then molded. After applying a paste containing a conductive metal silicide as an electrode material to one main surface of the body (A) and / or the molded body (B), the molded body and the electrode paste are degreased in an air atmosphere, and then, A method for manufacturing an electrostatic chuck, comprising: laminating an electrode layer between a compact (A) and a compact (B) so as to be sandwiched between them; (9) The conductive silicide is TaSi 2 , NbSi 2 , WS
The method for manufacturing an electrostatic chuck according to item (8), comprising one or more selected from i 2 and MoSi 2 . (10) The method according to (8) or (9), wherein at least one of the molded body (A) of the dielectric raw material and the molded body (B) of the insulating substrate raw material is manufactured by CIP molding. Manufacturing method of electrostatic chuck (11) wherein at least one of the molded body (A) of the dielectric raw material and the molded body (B) of the insulating substrate raw material is produced by doctor blade molding (8) or (9) The method for manufacturing the electrostatic chuck according to the item (9). (12) The electrostatic chuck according to any one of the items (8) to (11), wherein the main composition of the dielectric and the base is the same compound. (13) The method for manufacturing an electrostatic chuck according to any one of (8) to (12), wherein the ceramic dielectric is an alumina ceramic. (14) TiO 2 is added to the dielectric. Alumina Wherein (13) the production method of the electrostatic chuck according to (13), characterized in that the electrostatic method of manufacturing a chuck (15) dielectric according is alumina with the addition of Ti 2 O 3 in terms . (16) The method for manufacturing an electrostatic chuck according to any one of (8) to (12), wherein the dielectric is an aluminum nitride ceramic.

【0014】[0014]

【発明の実施の形態】本発明によれば耐酸化性の高い導
電性金属珪化物を電極材料に用いることにより、大気雰
囲気での脱脂が可能となり、安定して炭素分を除去する
ことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, by using a conductive metal silicide having high oxidation resistance as an electrode material, degreasing in an air atmosphere becomes possible, and carbon can be stably removed. .

【0015】電極の導電物質として金属珪化物を単独で
用いても良いが、焼結性を良くする、熱膨張率を調整す
る等の目的で、フリットなどの添加物を添加しても良
い。
Metal silicide may be used alone as the conductive material of the electrode, but additives such as frit may be added for the purpose of improving sinterability, adjusting the coefficient of thermal expansion, and the like.

【0016】また、導電性金属珪化物としては、TaS
2、NbSi2、WSi2、MoSi2を用いると、熱膨
張率および融点が、誘電体や基体として用いられている
セラミック、特にアルミナ系セラミックに近いため、電
極層での剥離が生じにくく、より好ましい。
As the conductive metal silicide, TaS
When i 2 , NbSi 2 , WSi 2 , and MoSi 2 are used, the coefficient of thermal expansion and the melting point are close to those of ceramics used as a dielectric or a base, particularly, an alumina-based ceramic. More preferred.

【0017】誘電体としては公知の誘電体セラミックス
が使用可能であり、請求項4〜7に示したようにアルミ
ナ質セラミックス、窒化アルミニウム質セラミックス等
が使用される。アルミナ質セラミックスの場合、TiO
2、Ti23などの遷移金属酸化物の添加により誘電体
の体積固有抵抗率を109〜1013Ω・cmの範囲で制
御でき、ジョンセン・ラーベック力による強い吸着力が
発現する。絶縁体基板としてはアルミナ、窒化アルミニ
ウム、窒化珪素、等が使用可能であるが、請求項3及び
12に示したように、誘電体と主組成が同一の化合物を
用いると焼成時の誘電体、絶縁体基板間の反応や収縮率
の違いによる反り、クラックの発生などのトラブルを防
止することができ、より好ましい。ここで言う主組成が
同一とは、当該セラミックスの焼成収縮挙動、熱膨張率
がほぼ同一となる組成ということである。従って、アル
ミナ、窒化アルミニウムの場合、焼成収縮挙動、熱膨張
率がほぼ同一である限り、添加する助剤の種類、量に若
干の差があってもかまわない。誘電体、絶縁体基板の成
形体は原料粉末にバインダー、分散剤、等を加え、CI
P(静水圧加圧)成形、プレス成形、あるいはドクター
ブレード成形等により作製したものが用いられる。電極
は前述の材料を含んだペーストをスクリーン印刷等によ
り誘電体もしくは絶縁体基板の成形体上に塗布される。
電極を挟んで、誘電体、絶縁体基板の成形体を重ね合わ
せ、大気中にて脱脂を行った後、ホットプレス装置にセ
ットし、加圧一体焼成を行う。焼成後のサンプルを所定
形状に加工し、静電チャックが完成する。焼成時の反り
があまり問題とならない場合には、ホットプレス焼成で
なく、常圧にて一体焼成してもよい。また、両面に吸着
部を形成させるときには、絶縁体基板の成形体の上下面
に、誘電体の成形体を重ね合わせたのちに、脱脂、一体
焼成を行えばよい。
Known dielectric ceramics can be used as the dielectric, and alumina ceramics, aluminum nitride ceramics, and the like are used as described in claims 4 to 7. In the case of alumina ceramics, TiO
2. By adding a transition metal oxide such as Ti 2 O 3 , the volume resistivity of the dielectric can be controlled in the range of 10 9 to 10 13 Ω · cm, and a strong adsorption force due to the Johnsen-Rahbek force is developed. Alumina, aluminum nitride, silicon nitride, and the like can be used as the insulator substrate. As shown in claims 3 and 12, when a compound having the same main composition as the dielectric is used, the dielectric during firing, Troubles such as warpage and cracks due to a reaction between insulator substrates and differences in shrinkage can be prevented, which is more preferable. Here, the term "main composition is the same" means that the ceramics have substantially the same firing shrinkage behavior and thermal expansion coefficient. Therefore, in the case of alumina and aluminum nitride, as long as the firing shrinkage behavior and the coefficient of thermal expansion are substantially the same, there may be a slight difference in the type and amount of the auxiliary agent to be added. For the molded body of the dielectric and insulator substrates, a binder, a dispersant, etc. are added to the raw material powder, and CI
Those manufactured by P (hydrostatic pressure) molding, press molding, doctor blade molding, or the like are used. The electrode is formed by applying a paste containing the above-described material on a molded body of a dielectric or insulating substrate by screen printing or the like.
After sandwiching the electrodes, the molded bodies of the dielectric and insulator substrates are superimposed, degreased in the air, and then set in a hot press apparatus, followed by pressurized integrated firing. The fired sample is processed into a predetermined shape to complete an electrostatic chuck. If the warpage during firing does not cause much problem, firing may be performed integrally at normal pressure instead of hot press firing. Further, when forming the suction portions on both surfaces, the dielectric molded body may be superposed on the upper and lower surfaces of the molded body of the insulator substrate, and then degreasing and integral firing may be performed.

【0018】[0018]

【実施例】以下、実施例に基づき本発明を詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments.

【0019】(実施例1)α−Al23の粉末に5重量
%のTiO2の粉末を加え、蒸留水、バインダー、分散
剤を加えてボールミル混合した。スラリーをスプレード
ライヤーで造粒し、粒径約70μmの造粒粉とした。こ
れを円盤状に2枚、CIP成形し、それぞれ誘電体、絶
縁体基板の成形体とした。誘電体の成形体上にTaSi
2ペーストをスクリーン印刷した後、絶縁体基板の成形
体を重ね合わせた。500℃、大気中で脱脂後、ホット
プレス装置にセットし、アルゴンガス中で1500℃、
30MPaで2時間、加圧焼成した。得られた焼結体の
誘電体部分を厚さ300μmになるように研削加工し、
更に全体を直径200mm、厚さ5mmの円盤状に加工
した。絶縁体部分に直径5mmの穴をあけ、リード電極
を結合し、図1に示すような静電チャックを製造した。
(Example 1) 5% by weight of TiO 2 powder was added to α-Al 2 O 3 powder, distilled water, a binder, and a dispersant were added, followed by ball mill mixing. The slurry was granulated with a spray drier to obtain granulated powder having a particle size of about 70 μm. Two of these were disc-shaped and CIP-molded to obtain molded bodies of dielectric and insulator substrates, respectively. TaSi on dielectric compact
After screen printing of the two pastes, the molded bodies of the insulating substrates were overlaid. After degreasing in the air at 500 ° C., it is set in a hot press, and 1500 ° C. in an argon gas.
It baked under pressure at 30 MPa for 2 hours. Grinding the dielectric part of the obtained sintered body to a thickness of 300 μm,
Further, the whole was processed into a disk shape having a diameter of 200 mm and a thickness of 5 mm. A hole having a diameter of 5 mm was made in the insulator portion, and a lead electrode was connected thereto, thereby producing an electrostatic chuck as shown in FIG.

【0020】この静電チャックの誘電体の電気抵抗率を
測定したところ1×1011Ωcmと安定していた。この
静電チャックに真空中で500Vの直流電圧を20秒間
印加し、シリコンウェーハを吸着したときの吸着力を測
定したところ、4500g/cm2の均一な吸着力を示
した。静電チャックを切断し、内部電極の反りを測定し
たところ、反りは最大11μmと非常に小さいことが分
かった。
When the electric resistivity of the dielectric material of this electrostatic chuck was measured, it was stable at 1 × 10 11 Ωcm. A DC voltage of 500 V was applied to this electrostatic chuck in a vacuum for 20 seconds, and the suction force when the silicon wafer was sucked was measured. As a result, a uniform suction force of 4500 g / cm 2 was shown. The electrostatic chuck was cut, and the warpage of the internal electrode was measured. As a result, it was found that the warpage was extremely small at a maximum of 11 μm.

【0021】(実施例2)焼結助剤としてY23を1.
0重量%含むAlNの粉末にエタノール、バインダー、
分散剤を加えてボールミル混合した。スラリーをスプレ
ードライヤーで造粒し、粒径約50μmの造粒粉とし
た。これを実施例1と同様に円盤状に2枚CIP成形
し、それぞれ誘電体、絶縁体基板の成形体とした。誘電
体の成形体上にNbSi2ペーストをスクリーン印刷し
た後、絶縁体基板の成形体を重ね合わせた。500℃、
大気中で脱脂後、ホットプレス装置にセットし、窒素中
で1850℃、30MPaで2時間、加圧焼成した。得
られた焼結体の誘電体部分を厚さ300μmになるよう
に研削加工し、更に全体を直径200mm、厚さ5mm
の円盤状に加工した。絶縁体部分に直径5mmの穴をあ
け、リード電極を結合し、図1に示すような静電チャッ
クを作製した。この静電チャックの誘電体の電気抵抗率
を300℃にて測定したところ1.1×1010Ωcmと
安定していた。この静電チャックに真空中で500Vの
直流電圧を20秒間印加し、シリコンウェーハを吸着し
たときの吸着力を測定したところ、4800g/cm2
の均一な吸着力を示した。静電チャックを切断し、内部
電極の反りを測定したところ、反りは最大10μmと非
常に小さいことが分かった。
Example 2 Y 2 O 3 was used as a sintering aid.
0 wt% AlN powder, ethanol, binder,
The ball mill was mixed with the dispersant. The slurry was granulated with a spray drier to obtain granulated powder having a particle size of about 50 μm. Two pieces of this were CIP-molded into a disk shape in the same manner as in Example 1 to obtain molded bodies of dielectric and insulator substrates, respectively. After screen printing the NbSi 2 paste onto the molded body of the dielectric, superposed compact of the insulator substrate. 500 ° C,
After degreased in the air, it was set in a hot press and baked under pressure at 1850 ° C. and 30 MPa for 2 hours in nitrogen. The dielectric portion of the obtained sintered body is ground to a thickness of 300 μm, and the entire body is 200 mm in diameter and 5 mm in thickness.
Was processed into a disk shape. A hole having a diameter of 5 mm was made in the insulator portion, and a lead electrode was connected thereto, thereby producing an electrostatic chuck as shown in FIG. When the electrical resistivity of the dielectric material of this electrostatic chuck was measured at 300 ° C., it was stable at 1.1 × 10 10 Ωcm. A DC voltage of 500 V was applied to this electrostatic chuck in a vacuum for 20 seconds, and the suction force when the silicon wafer was suctioned was measured. As a result, 4800 g / cm 2 was obtained.
Showed a uniform adsorption force. The electrostatic chuck was cut, and the warpage of the internal electrode was measured. As a result, it was found that the warpage was as small as 10 μm at the maximum.

【0022】(実施例3)α−Al23の粉末に0.5
重量%のTi23の粉末を加え、蒸留水、アクリルバイ
ンダー、分散剤を加えてボールミル混合し、粘度約15
000cPのスラリーを得た。これをドクターブレード
成形後、乾燥して、厚さ約300μmのシート成形体を
得た。これを数枚ずつ積層し、円盤状に切断して、誘電
体、絶縁体基板の成形体とした。絶縁体基板の成形体上
にWSi2ペーストをスクリーン印刷した後、絶縁体基
板の成形体を積層し加圧成形した。500℃、大気中で
脱脂後、雰囲気焼成炉にてアルゴンガス中で1600
℃、4時間、常圧焼成した。得られた焼結体の誘電体部
分を厚さ2mmになるように研削加工し、更に全体を直
径300mm、厚さ4mmの円盤状に加工した。絶縁体
部分に直径5mmの穴をあけ、リード電極を結合し、静
電チャックを製造した。
Example 3 0.5% of α-Al 2 O 3 powder
Weight% of Ti 2 O 3 powder, distilled water, acrylic binder and dispersant were added and mixed with a ball mill.
A slurry of 000 cP was obtained. This was molded into a doctor blade and then dried to obtain a sheet molded body having a thickness of about 300 μm. This was laminated on several sheets at a time, and cut into a disk to obtain a molded body of a dielectric or insulator substrate. After the WSi 2 paste was screen-printed on the insulator substrate compact, the insulator substrate compact was laminated and pressed. After degreasing in air at 500 ° C., 1600 in argon atmosphere in an atmosphere firing furnace.
It baked at normal pressure for 4 hours. The dielectric portion of the obtained sintered body was ground so as to have a thickness of 2 mm, and the whole was further processed into a disk shape having a diameter of 300 mm and a thickness of 4 mm. A hole having a diameter of 5 mm was made in the insulator portion, and a lead electrode was connected thereto to manufacture an electrostatic chuck.

【0023】この静電チャックの誘電体の電気抵抗率を
測定したところ1×1011Ωcmと安定していた。この
静電チャックに真空中で500Vの直流電圧を20秒間
印加し、シリコンウェーハを吸着したときの吸着力を測
定したところ、平均4300g/cm2の吸着力を示し
た。静電チャックを切断し、内部電極の反りを測定した
ところ、反りは最大150μmと実施例1および実施例
2に比較すると大きいものの、電極層としては問題なく
機能した。
When the electric resistivity of the dielectric material of the electrostatic chuck was measured, it was stable at 1 × 10 11 Ωcm. A DC voltage of 500 V was applied to this electrostatic chuck in a vacuum for 20 seconds, and the suction force when the silicon wafer was sucked was measured. As a result, the suction force was 4300 g / cm 2 on average. When the electrostatic chuck was cut and the warpage of the internal electrode was measured, the warp was 150 μm at the maximum, which was larger than in Examples 1 and 2, but functioned without any problem as an electrode layer.

【0024】比較のため、電極材料をWとして、同様の
方法で作製した誘電体、電極、絶縁体基板の積層成形体
を大気中、500℃で脱脂したところ、電極材料が酸化
されてしまい、内部電極として機能しなかった。
For comparison, a laminate formed of a dielectric, an electrode, and an insulator substrate manufactured by the same method as above was degreased at 500 ° C. in the air, and the electrode material was oxidized. It did not function as an internal electrode.

【0025】[0025]

【発明の効果】以上説明した通り、本発明の静電チャッ
クおよびその製造方法を用いると、吸着力が均一な高性
能の静電チャック得ることができるため、産業上極めて
有益である。
As described above, the use of the electrostatic chuck of the present invention and the method of manufacturing the same makes it possible to obtain a high-performance electrostatic chuck having a uniform suction force, which is extremely useful in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の静電チャック断面の概略を示す図であ
る。
FIG. 1 is a view schematically showing a cross section of an electrostatic chuck according to the present invention.

【符号の説明】[Explanation of symbols]

1.誘電体層 2.電極層 3.絶縁体基板 4.リード電極 5.被着体 1. 1. dielectric layer Electrode layer 3. 3. Insulator substrate Lead electrode 5. Adherend

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 セラミック誘電体層、電極層、セラミッ
ク基体からなる静電チャックにおいて、電極層が導電性
金属珪化物を含むことを特徴とする静電チャック。
1. An electrostatic chuck comprising a ceramic dielectric layer, an electrode layer and a ceramic substrate, wherein the electrode layer contains a conductive metal silicide.
【請求項2】 導電性金属珪化物がTaSi2、NbS
2、WSi2、MoSi2から選ばれた1種もしくは2
種以上からなることを特徴とする請求項1に記載の静電
チャック。
2. The conductive metal silicide is TaSi 2 , NbS.
i 2, WSi 2, 1 kind selected from MoSi 2 or 2
The electrostatic chuck according to claim 1, wherein the electrostatic chuck comprises at least one kind.
【請求項3】 誘電体と基体の主組成が同一の化合物で
あることを特徴する請求項1乃至3のいずれかに記載の
静電チャック。
3. The electrostatic chuck according to claim 1, wherein the main composition of the dielectric and the base is the same compound.
【請求項4】 セラミック誘電体がアルミナ質セラミッ
クであることを特徴とする請求項1乃至3のいずれかに
記載の静電チャック。
4. The electrostatic chuck according to claim 1, wherein the ceramic dielectric is an alumina ceramic.
【請求項5】 誘電体がTiO2を添加したアルミナで
あることを特徴とする請求項4に記載の静電チャック。
5. The electrostatic chuck according to claim 4, wherein the dielectric is alumina to which TiO 2 is added.
【請求項6】 誘電体がTi23を添加したアルミナで
あることを特徴とする請求項4に記載の静電チャック。
6. The electrostatic chuck according to claim 4, wherein the dielectric is alumina to which Ti 2 O 3 is added.
【請求項7】 誘電体が窒化アルミニウム質セラミック
であることを特徴とする請求項1又は請求項2に記載の
静電チャック。
7. The electrostatic chuck according to claim 1, wherein the dielectric is an aluminum nitride ceramic.
【請求項8】 セラミック誘電体層、電極層、セラミッ
ク基体からなる静電チャックの製造方法において、誘電
体原料の成形体(A)と絶縁体基板原料の成形体(B)
とを作製し、次いで成形体(A)および/または成形体
(B)の一主面に導電性金属珪化物を電極材料として含
むペーストを塗布したのちに、大気雰囲気中にて成形体
および電極ペーストの脱脂を行い、次いで成形体(A)
と成形体(B)との間に上記電極層が挟まれるように重
ね合わせた後、ホットプレスにより一体焼成することを
特徴とする静電チャックの製造方法。
8. A method of manufacturing an electrostatic chuck comprising a ceramic dielectric layer, an electrode layer, and a ceramic substrate, wherein a molded body (A) of a dielectric material and a molded body (B) of an insulating substrate material are provided.
And then applying a paste containing a conductive metal silicide as an electrode material to one main surface of the formed body (A) and / or the formed body (B), and then forming the formed body and the electrode in an air atmosphere. The paste is degreased, and then the molded body (A)
A method for manufacturing an electrostatic chuck, comprising: laminating the electrode layer between the substrate and a molded body (B) so as to sandwich the electrode layer;
【請求項9】 導電性珪化物がTaSi2、NbSi2
WSi2、MoSi2から選ばれた1種もしくは2種以上
からなることを特徴とする請求項8に記載の静電チャッ
クの製造方法。
9. The conductive silicide is TaSi 2 , NbSi 2 ,
WSi 2, a manufacturing method of an electrostatic chuck according to claim 8, characterized in that it consists of one or more selected from the MoSi 2.
【請求項10】 誘電体原料の成形体(A)と絶縁体基
板原料の成形体(B)のうち少なくとも一方がCIP成
形により作製されることを特徴とする請求項8又は請求
項9に記載の静電チャックの製造方法。
10. The method according to claim 8, wherein at least one of the molded body (A) of the dielectric raw material and the molded body (B) of the insulating substrate raw material is manufactured by CIP molding. Of manufacturing an electrostatic chuck.
【請求項11】 誘電体原料の成形体(A)と絶縁体基
板原料の成形体(B)のうち少なくとも一方がドクター
ブレード成形により作製されることを特徴とする請求項
8又は請求項9に記載の静電チャックの製造方法。
11. The method according to claim 8, wherein at least one of the molded body (A) of the dielectric material and the molded body (B) of the insulating substrate material is manufactured by doctor blade molding. A manufacturing method of the electrostatic chuck according to the above.
【請求項12】 誘電体と基体の主組成が同一の化合物
であることを特徴する請求項8乃至11のいずれかに記
載の静電チャックの製造方法。
12. The method for manufacturing an electrostatic chuck according to claim 8, wherein the main composition of the dielectric and the base is the same compound.
【請求項13】 セラミック誘電体がアルミナ質セラミ
ックであることを特徴とする請求項8乃至12のいずれ
かに記載の静電チャックの製造方法。
13. The method for manufacturing an electrostatic chuck according to claim 8, wherein the ceramic dielectric is an alumina ceramic.
【請求項14】 誘電体がTiO2を添加したアルミナ
であることを特徴とする請求項13に記載の静電チャッ
クの製造方法。
14. The method according to claim 13, wherein the dielectric is alumina to which TiO 2 is added.
【請求項15】 誘電体がTi23を添加したアルミナ
であることを特徴とする請求項13に記載の静電チャッ
クの製造方法。
15. The method according to claim 13, wherein the dielectric is alumina to which Ti 2 O 3 is added.
【請求項16】 誘電体が窒化アルミニウム質セラミッ
クであることを特徴とする請求項8乃至12のいずれか
に記載の静電チャックの製造方法。
16. The method for manufacturing an electrostatic chuck according to claim 8, wherein the dielectric is an aluminum nitride ceramic.
JP4144999A 1999-02-19 1999-02-19 Electrostatic chuck and manufacturing method thereof Expired - Lifetime JP3899379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4144999A JP3899379B2 (en) 1999-02-19 1999-02-19 Electrostatic chuck and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4144999A JP3899379B2 (en) 1999-02-19 1999-02-19 Electrostatic chuck and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000243820A true JP2000243820A (en) 2000-09-08
JP3899379B2 JP3899379B2 (en) 2007-03-28

Family

ID=12608696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4144999A Expired - Lifetime JP3899379B2 (en) 1999-02-19 1999-02-19 Electrostatic chuck and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3899379B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095665A (en) * 2002-08-29 2004-03-25 Tokyo Electron Ltd Electrostatic attraction device and processor
WO2007055006A1 (en) * 2005-11-10 2007-05-18 Toto Ltd. Electrostatic zipper
JP2007214288A (en) * 2006-02-08 2007-08-23 Toto Ltd Electrostatic chuck
US7450365B2 (en) 2005-11-15 2008-11-11 Toto Ltd. Electrostatic chuck
US7907383B2 (en) 2005-11-15 2011-03-15 Toto Ltd. Electrostatic chuck

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095665A (en) * 2002-08-29 2004-03-25 Tokyo Electron Ltd Electrostatic attraction device and processor
WO2007055006A1 (en) * 2005-11-10 2007-05-18 Toto Ltd. Electrostatic zipper
US7450365B2 (en) 2005-11-15 2008-11-11 Toto Ltd. Electrostatic chuck
US7907383B2 (en) 2005-11-15 2011-03-15 Toto Ltd. Electrostatic chuck
JP2007214288A (en) * 2006-02-08 2007-08-23 Toto Ltd Electrostatic chuck

Also Published As

Publication number Publication date
JP3899379B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP4744855B2 (en) Electrostatic chuck
KR100748924B1 (en) Electrostatic chuck and method of manufacturing electrostatic chuck
JP3975944B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JPH11168134A (en) Electrostatic attracting device and manufacture thereof
US7948735B2 (en) Electrostatic chuck and method for manufacturing the same
TW392277B (en) Electrostatic holding apparatus
KR20110030364A (en) Electrostatic chuck and method for producing same
JP3847198B2 (en) Electrostatic chuck
JPH11176920A (en) Electrostatic chuck device
EP0506537A1 (en) Electrostatic chuck
JP3899379B2 (en) Electrostatic chuck and manufacturing method thereof
JP4023944B2 (en) Manufacturing method of aluminum nitride sintered body and plate heater or electrostatic chuck
JP2000143349A (en) Aluminum nitride-based sintered compact and electrostatic chuck using the same
JP2002110772A (en) Electrode built-in ceramic and its manufacturing method
JP2000243819A (en) Manufacture of electrostatic chuck
JP2003152062A (en) Electrostatic chuck
JP3370532B2 (en) Electrostatic chuck
JP4111013B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP2006319344A (en) Wafer holder for semiconductor production system and semiconductor production system mounting same
JP3991887B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JPH1187479A (en) Electrostatic chuck
JPH10189698A (en) Electrostatic chuck
JP2000252353A (en) Electrostatic chuck and its manufacture
JP2000031254A (en) Ceramic electrostatic chuck and manufacture thereof
JP2004247387A (en) Wafer holder for semiconductor production system and semiconductor production system mounting it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term