JP2007211515A - Prestress introducing method to girder - Google Patents

Prestress introducing method to girder Download PDF

Info

Publication number
JP2007211515A
JP2007211515A JP2006033720A JP2006033720A JP2007211515A JP 2007211515 A JP2007211515 A JP 2007211515A JP 2006033720 A JP2006033720 A JP 2006033720A JP 2006033720 A JP2006033720 A JP 2006033720A JP 2007211515 A JP2007211515 A JP 2007211515A
Authority
JP
Japan
Prior art keywords
girder
prestress
upper edge
edge side
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006033720A
Other languages
Japanese (ja)
Inventor
Akio Shoji
明夫 正司
Takuya Kondo
琢也 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Construction Co
Original Assignee
Oriental Construction Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Construction Co filed Critical Oriental Construction Co
Priority to JP2006033720A priority Critical patent/JP2007211515A/en
Publication of JP2007211515A publication Critical patent/JP2007211515A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prestress introducing method to a girder reducing the number of girder members, girder height and a construction cost and easily coping with the limitation of girder height. <P>SOLUTION: The prestress introducing method to the girder is characterized in that primary prestress to be over-prestress is introduced to the lower edge side of the girder 1 while introducing secondary prestress to the upper edge side of the girder 1 to nullify tensile force generated to the upper edge side of the girder by the over-prestress introduced by a primary prestressed concrete steel member 5 and that the secondary prestress introduced to the upper edge of the girder 1 is released after placing a floor slab 6 on the girder 1 and before placing live load. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、橋梁等に架設されるコンクリート製等の桁にプレストレスを導入する工法に関する。   The present invention relates to a method for introducing prestress into a girder made of concrete or the like installed on a bridge or the like.

従来の橋梁においては、橋脚間に架設される桁部材の本数を低減させた場合、桁部材一本当りに掛かる載荷荷重が増加するため、桁部材に圧縮応力(圧縮ひずみ)を導入する緊張部材(PC鋼材)の本数を増やすとともに、桁断面性能を向上させることにより対応している。   In conventional bridges, if the number of girder members installed between piers is reduced, the load applied to each girder member increases, so tension members that introduce compressive stress (compression strain) to the girder members This is achieved by increasing the number of (PC steel) and improving the cross-section performance.

例えば、図5(a)(b)に示すように、桁部材1を、ウェブ部2の上下のそれぞれ上縁フランジ部3と下縁フランジ部4とが一体の断面I型に形成した桁部材1の場合、図5(c)に示すように、プレストレス導入前においては、桁部材1の自重による曲げモーメントM1が掛かっている。   For example, as shown in FIGS. 5 (a) and 5 (b), the girder member 1 is formed with an I-shaped cross section in which an upper edge flange portion 3 and a lower edge flange portion 4 above and below the web portion 2 are integrated. In the case of 1, as shown in FIG.5 (c), before the prestress introduction, the bending moment M1 by the dead weight of the girder member 1 is applied.

このような桁部材1にプレストレスを導入する場合、従来では、図6(a)に示すように、下縁フランジ部4内に複数本のPC鋼材5を配置して、図6(b)に点線で示すようなプレストレス(圧縮応力)を付与することにより、図5(c)に示すプレストレス導入前の自重による曲げモーメントM1に、図6(c)に示すような曲げモーメントM2を導入し、図6(d)に示すような合成曲げモーメントM3を得た後、図7(a)に示すように、上縁フランジ部3上に、床版6が載荷された際には、床版荷重による曲げモーメントM4を受けて、図6(c)に示す合成曲げモーメントM3に、床版荷重による曲げモーメントM4を加えて、図7(d)に示すような合成曲げモーメントM5を得ている。
特開平05−79016号公報
When prestress is introduced into such a girder member 1, conventionally, as shown in FIG. 6 (a), a plurality of PC steel materials 5 are arranged in the lower edge flange portion 4, and FIG. 6 (b). By applying a prestress (compressive stress) as shown by a dotted line to the bending moment M1 due to its own weight before the introduction of the prestress shown in FIG. 5C, a bending moment M2 as shown in FIG. After introducing and obtaining a composite bending moment M3 as shown in FIG. 6 (d), as shown in FIG. 7 (a), when the floor slab 6 is loaded on the upper edge flange portion 3, In response to the bending moment M4 due to the floor slab load, the bending moment M4 due to the floor slab load is added to the composite bending moment M3 shown in FIG. 6C to obtain a composite bending moment M5 as shown in FIG. ing.
JP 05-79016 A

しかしながら、上記した桁部材1へのプレストレス導入工法では、一次鋼材のみにより桁部材にプレストレスを導入すると、桁上縁に作用する引張応力度の許容値限界までしかプレストレスを導入できないため、引張応力度の許容値限界までのプレストレスの導入として、その後場所打ち床版またはプレキャストコンクリート床版を施工するようになり、桁の撓み量を含めた桁高が大きくなるという問題があり、桁高制限や桁自重増加による運搬等に支承がない場合には、桁高を大きくして桁断面性能を向上させることにより対応可能であるが、しかし、桁高制限や桁自重増加による運搬等に支承がある場合、PC鋼材5の本数を増やすことにより、桁断面性能も上げる必要があるため、桁高を高くしなければならない。桁高を高くすると、桁自重が増加し、工場製作では対応できなくなり、現場で製作ヤードを確保しなければならない。また、桁高制限のある施工場所では、桁高を高くすることができないため、施工作業が非常に困難になるという問題があった。   However, in the prestress introduction method to the above-mentioned girder member 1, when prestress is introduced into the girder member only by the primary steel material, prestress can be introduced only to the allowable value limit of the tensile stress acting on the girder edge. As prestressing up to the allowable limit of the tensile stress level, then cast-in-place slabs or precast concrete slabs were constructed, and there was a problem that the girder height including the bending amount of the girder increased. If there is no support for transportation due to high restrictions or increased weight of the girder, it can be handled by increasing the girder height and improving the cross-sectional performance of the girder. When there is a support, it is necessary to increase the girder cross-sectional performance by increasing the number of PC steel materials 5, so the girder height must be increased. Increasing the girder height increases the weight of the girder, making it impossible for factory production to secure a production yard on site. In addition, there is a problem that the construction work becomes very difficult because the girder height cannot be increased in the construction place where the girder height is limited.

本発明は、上記従来の問題点に鑑み、桁部材の本数を及び桁高の低減化を図り、施工コストを低減させるとともに、桁高制限に容易に対応させることができる桁のプレストレス導入工法を提供することを目的とする。   In view of the above-described conventional problems, the present invention aims to reduce the number of girder members and the girder height, reduce the construction cost, and easily cope with girder height restrictions. The purpose is to provide.

第1発明の桁のプレストレス導入工法においては、桁に一次プレストレスとして、桁の下縁側に、オーバープレストレスとなるような一次プレストレスを導入し、桁の上縁側には、前記一次プレストレスにより導入したオーバープレストレスによる桁の上縁側に生じる引張力を打ち消すような二次プレストレスが導入され、桁に床版を載荷した後、活荷重載荷前に、桁の上縁側に導入した二次プレストレスを解放することを特徴とする   In the prestress introduction method of the girder of the first invention, primary prestress is introduced into the girder as the primary prestress, and over the prestress is introduced to the lower edge side of the girder. Secondary pre-stress was introduced to cancel the tensile force generated on the upper edge of the girders due to over pre-stress introduced by stress. After loading the floor slab on the girders, it was introduced on the upper edge side of the girders before loading the live load. Characterized by releasing secondary prestress

また、第2発明では、第1発明の桁のプレストレス導入工法において、一次プレストレス用のPC鋼材を桁下縁に配置し、二次プレストレス用のPC鋼材を桁上縁に配置したことを特徴とする   In the second invention, in the prestress introduction method of the girder of the first invention, the PC steel material for primary prestress is arranged at the lower edge of the girder, and the PC steel material for secondary prestress is arranged at the upper edge of the girder. Characterized by

また、第3発明では、第1または第2発明の桁のプレストレス導入工法において、桁の上縁に導入した二次プレストレスは、少なくとも床版を桁に設置した場合に、桁の上縁側に加えられるストレスを越えるようにされていることを特徴とする。   In the third invention, in the prestress introduction method of the girder of the first or second invention, the secondary prestress introduced into the upper edge of the girder is at least the upper edge side of the girder when the floor slab is installed on the girder. It is characterized by exceeding the stress applied to.

本発明によれば、桁下縁に配置される一次PC鋼材により、桁にオーバープレストレスとなるような一次プレストレスを導入し、桁上縁に配置される二次PC鋼材により、桁に導入したオーバープレストレスによる桁の上縁側に生じる引張力を打ち消すような二次プレストレスを導入し、桁上縁上に桁に床版を載荷した後、活荷重載荷前に、二次プレストレスを解放させるようにするとともに、一次PC鋼材により、桁下縁に掛かる圧縮応力の許容値限度までストレスを導入することが可能であるため、桁高を高くすることなく、効率よく桁にプレストレスを導入することができると共に、桁の断面性能を格段に向上させることができ、このような断面性能が向上した桁を使用すると少ない桁本数で床版を支持できるため、従来の場合よりも、必要桁部材の本数を減らすことができるため、施工性及び経済性の向上を図ることができる。
そのため、例えば、プレストレストコンクリート合成床版橋に本発明を適用した場合には、桁高を大きくすることなくプレストレスを効率的に導入したプレストレスコンクリート桁部材を組み込んで、従来では、例えば5本必要とされる桁部材を3本にすることも可能になり、経済的な床版橋を構築することができると共に、桁架設本数が少なくなる分、床版橋の施工性を高めることができる。
また、桁の上縁に導入した二次プレストレスは、少なくとも床版を桁に設置した場合に、桁の上縁側に加えられるストレスを越えるようにされているので、少なくとも床版荷重等の死荷重による上縁側に加えられるストレスが一時的に生じても、二次プレストレスが後に開放されて、ほぼ相殺されるので、桁上縁側の負担を軽減でき、桁高方向全体に渡って有効に桁を使用した合理的で経済的な桁とすることができ、桁高の小さい小型で経済的な桁とすることができる。
According to the present invention, the primary PC steel material arranged at the lower edge of the girder introduces a primary prestress that causes overprestress to the girder, and the secondary PC steel material arranged at the upper edge of the girder introduces it to the girder. Secondary pre-stress is introduced to cancel the tensile force generated on the upper edge of the girders due to the over pre-stress, and after the floor slab is loaded on the girders, the secondary pre-stress is applied before the live load is loaded. Since it is possible to release the stress up to the allowable limit of the compressive stress applied to the girder edge by using the primary PC steel, it is possible to efficiently prestress the girder without increasing the girder height. In addition to being able to be introduced, the cross-sectional performance of the girder can be remarkably improved, and when a girder with improved cross-sectional performance is used, the floor slab can be supported with a smaller number of girder, so than in the conventional case It is possible to reduce the number of required beam members, it is possible to improve the workability and economy.
Therefore, for example, when the present invention is applied to a prestressed concrete composite floor slab bridge, a prestressed concrete girder member into which prestress is efficiently introduced without increasing the girder height is incorporated. The required girder members can be made into three, and an economical floor slab bridge can be constructed, and the workability of the floor slab bridge can be improved as the number of girders is reduced. .
In addition, the secondary prestress introduced at the upper edge of the girder is designed to exceed the stress applied to the upper edge of the girder at least when the floor slab is installed on the girder. Even if the stress applied to the upper edge side due to the load temporarily occurs, the secondary pre-stress is released later and is almost offset, so the load on the upper edge side can be reduced and effective throughout the girder height direction. It can be a rational and economical digit using a digit, and can be a small and economical digit with a small digit height.

以下、本発明の実施の形態を図に基づいて説明する。なお、本実施形態において、図5から図7に示す従来工法と、構成が重複する部分は同一符号を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, the same reference numerals are used for the same parts as those in the conventional method shown in FIGS.

本実施形態における桁のプレストレス導入工法に用いる桁としては、例えば、図1(a)(b)に示すように、橋梁等の桁部材1を、ウェブ部2の上下にそれぞれ上縁フランジ部3と下縁フランジ部4とを一体とされた断面I型あるいはH型に形成する。なお、桁部材1の断面形状としては、前記以外の矩形等の断面形状であってもよい。前記のような桁部材1の場合、桁部材1には、図1(c)に示すように、プレストレス導入前には、桁部材1の自重による曲げモーメントM1が掛かっている。   As a girder used in the prestress introduction method of the girder in the present embodiment, for example, as shown in FIGS. 3 and the lower edge flange portion 4 are formed in an integrated cross-sectional I-type or H-type. The cross-sectional shape of the girder member 1 may be a cross-sectional shape such as a rectangle other than those described above. In the case of the spar member 1 as described above, as shown in FIG. 1C, the spar member 1 is subjected to a bending moment M1 due to its own weight before the prestress is introduced.

前記桁部材1にプレストレスを導入する場合、まず、図2(a)に示すように、桁部材1の下縁フランジ部4の長手方向の挿通内に複数本のPC鋼材5を配置して、各PC鋼材5を桁部材1の両端部で緊張定着することにより、桁部材1にオーバープレストレスとなるような一次プレストレスを導入する。このとき、下縁フランジ部4に掛かる圧縮応力の許容値限度またはその近くまで一次プレストレスを導入する。
本発明における前記のオーバープレストレスとなるような1次プレストレスとは、桁部材1の桁高との関係で定義され、桁高は設計荷重が作用する状態で許容値(許容圧縮応力)を満足するように設定されるが、1次プレストレスを導入した時点で許容値(許容圧縮応力)を満足しない状態まで桁高を低くしていく場合に、前記許容値に対応するプレストレスと、これを越えて、許容値を満足しない越えた部分のプレストレスとを含めた全体のプレストレスを言う。
例えば、オーバープレストレスとして、桁の桁下縁に掛かる圧縮応力の許容値限度までストレスを導入するのが、オーバープレストレスのなかでも、最大値であり、実際は、その最大値よりも若干小さい値までの範囲で、適宜設定される。
前記のオーバープレストレスを桁下縁側に導入することにより、桁部材1には、図2(b)に点線で示す状態から実線で示す上に凸に変形するような応力が付与され、これにより、図1(c)に示すプレストレス導入前の桁自重による曲げモーメントM1に、図2(c)に示すようなオーバープレストレスによる曲げモーメントM6が導入され、図2(d)に示すような合成曲げモーメントM7を得ることができる。
なお、前記のように桁部材1の下縁側にオーバープレストレスを導入するために、例えば図8に示すように、桁高を低減した状態あるいは桁高を変えないで、桁部材1の下縁側にPC鋼材5を配置可能にするためには、桁部材1の下縁側に下縁フランジ部4あるいは下縁フランジ4とウェブ部2との隅部にハンチ8を設けることで、断面積を増やして断面性能を高めると共に、PC鋼材の配置の自由度を高め、PC鋼材挿通孔を増やして、下縁側に、より多くのPC鋼材を配置可能にしておくのが好ましい。
When prestress is introduced into the girder member 1, first, as shown in FIG. 2A, a plurality of PC steel materials 5 are arranged in the longitudinal insertion of the lower edge flange portion 4 of the girder member 1. The PC steel material 5 is tension-fixed at both ends of the girder member 1 to introduce primary prestress to the girder member 1 so as to cause over prestress. At this time, the primary prestress is introduced up to or near the allowable limit of compressive stress applied to the lower edge flange portion 4.
In the present invention, the primary prestress that causes the overprestress is defined in relation to the girder height of the girder member 1, and the girder height is an allowable value (allowable compressive stress) in a state where a design load is applied. Although it is set so as to satisfy, when the digit height is lowered to a state where the allowable value (allowable compressive stress) is not satisfied when the primary prestress is introduced, the prestress corresponding to the allowable value, Beyond this, it refers to the total prestress including the prestress of the part that does not satisfy the allowable value.
For example, as the over prestress, the stress is introduced up to the allowable value limit of the compressive stress applied to the lower edge of the girder, but it is the maximum value among the over prestresses. In fact, the value is slightly smaller than the maximum value. Within the range up to, it is set appropriately.
By introducing the over prestress to the lower edge side of the spar, stress is applied to the spar member 1 such that the spar member 1 deforms upwardly as indicated by the solid line from the state indicated by the dotted line in FIG. A bending moment M6 due to over prestress as shown in FIG. 2 (c) is introduced into the bending moment M1 due to the weight of the girder before the prestress introduction shown in FIG. 1 (c), as shown in FIG. 2 (d). A composite bending moment M7 can be obtained.
In order to introduce over prestress on the lower edge side of the beam member 1 as described above, for example, as shown in FIG. 8, the lower edge side of the beam member 1 without changing the beam height or changing the beam height. In order to make it possible to arrange the PC steel material 5 on the lower edge side of the girder member 1, a lower edge flange portion 4 or a haunch 8 is provided at a corner portion of the lower edge flange 4 and the web portion 2 to increase the cross-sectional area. Thus, it is preferable to increase the degree of freedom of arrangement of the PC steel material, increase the PC steel material insertion hole, and increase the number of PC steel materials on the lower edge side.

次いで、桁部材1の上縁フランジ部3の長手方向の複数のPC鋼材挿通孔内には、図3(a)に示すように、複数本のPC鋼材7が挿通配置され、これらPC鋼材7を桁部材1の両端部で緊張定着することにより、下縁フランジ部4内に配置したPC鋼材5によるオーバープレストレスによる桁の上縁側に生じる引張力を打ち消すような二次プレストレスを導入する。前記の二次プレストレスの量は、桁部材1に、後に載荷される死荷重(少なくとも床版荷重等)による桁部材1に作用する曲げモーメントに置き換わるため、これらを考慮して設定される。
このとき、桁部材1は、図3(b)に点線で示すような下向きの圧縮応力となり、図3(c)に示すように、図2(c)に示すオーバープレストレスによる桁の上縁側に生じる引張力を打ち消すような二次プレストレス導入による曲げモーメントM8が付与されて、図3(d)に示すような合成曲げモーメントM9を得ることができる。
Next, as shown in FIG. 3A, a plurality of PC steel materials 7 are inserted into the plurality of PC steel material insertion holes in the longitudinal direction of the upper edge flange portion 3 of the girder member 1. Is fixed at both ends of the girder member 1 to introduce secondary prestress that counteracts the tensile force generated on the upper edge side of the girder due to overprestress by the PC steel material 5 disposed in the lower edge flange portion 4. . The amount of the secondary pre-stress is set in consideration of these because the bending moment acting on the girder member 1 due to a dead load (at least floor slab load or the like) loaded on the girder member 1 is replaced with a bending moment acting on the girder member 1 later.
At this time, the girder member 1 has a downward compressive stress as shown by a dotted line in FIG. 3B, and as shown in FIG. 3C, the upper edge side of the girder due to the over-prestress shown in FIG. A bending moment M8 by introducing a secondary pre-stress that cancels the tensile force generated in FIG. 3 is applied to obtain a combined bending moment M9 as shown in FIG.

図3(d)に示す状態では、桁部材1の曲げ変形が小さい状態であるので、この状態で、図4(a)に示すように、桁部材1の上縁上に床版6を配置すると、図4(c)に示すように、図3(c)に示す曲げモーメントM9に、床版6による曲げモーメントが加わり、図4(d)に示す合成曲げモーメントM10を得ることができる。   In the state shown in FIG. 3D, since the bending deformation of the girder member 1 is small, the floor slab 6 is disposed on the upper edge of the girder member 1 in this state as shown in FIG. Then, as shown in FIG. 4 (c), the bending moment due to the floor slab 6 is added to the bending moment M9 shown in FIG. 3 (c), and the resultant bending moment M10 shown in FIG. 4 (d) can be obtained.

次いで、上縁フランジ部3内のPC鋼材7の緊張を取り除くことにより、前記二次プレストレスを解放させ、この二次プレストレスの解放により、図4(e)に点線で示すM11分が開放されてように、桁部材1の曲げモーメントは、桁自重と、一次プレストレスと、床版6等の載荷荷重となり、図4(b)に示すように、圧縮応力が解放されるとともに、図4(f)に示す曲げモーメントM12に示すように、図7(d)で示す従来の合成曲げモーメントと比較して、大きな合成曲げモーメントM12を桁部材1に効率よく負担させている。
前記のように二次プレストレスの開放時は、桁部材1に少なくとも床版6を載荷した後、活荷重載荷前である。このようにすることにより、少なくとも死荷重のうちの床版6の荷重を効率よく桁部材1により負担することができる。前記の床版6の荷重以外の死荷重を載荷した後、活荷重載荷前でもよい。
Next, by removing the tension of the PC steel material 7 in the upper edge flange portion 3, the secondary prestress is released, and the release of the secondary prestress releases M11 shown by a dotted line in FIG. 4 (e). As shown in FIG. 4B, the bending moment of the girder member 1 becomes the load of the girder's own weight, primary prestress, floor slab 6 and the like, and the compressive stress is released as shown in FIG. As shown by a bending moment M12 shown in FIG. 4 (f), a larger composite bending moment M12 is efficiently borne on the beam member 1 as compared with the conventional composite bending moment shown in FIG. 7 (d).
As described above, when the secondary prestress is released, at least the floor slab 6 is loaded on the beam member 1 and before the live load is loaded. By doing in this way, the load of the floor slab 6 at least among dead loads can be efficiently borne by the girder member 1. After the dead load other than the load of the floor slab 6 is loaded, it may be before the live load is loaded.

前記のように、桁部材1に効率よくプレストレスを導入すると、従来のプレキャストコンクリート床版橋9の設計においては、図9(a)に示すように、プレストレストコンクリート桁部材1aを5本必要とするところ、図9(b)に示すように、プレキャストコンクリート製等の桁部材1を3本程度に少なくすることができ、桁部材1の設置本数を低減できるため、橋梁等を短工期で安価に構築することができる。   As described above, when prestress is efficiently introduced into the girder member 1, the design of the conventional precast concrete floor slab bridge 9 requires five prestressed concrete girder members 1a as shown in FIG. 9 (a). However, as shown in FIG. 9 (b), the number of girders 1 made of precast concrete or the like can be reduced to about three, and the number of installed girders 1 can be reduced. Can be built.

なお、実際にプレストレスを導入する施工手順については、最初に桁部材1における全てのPC鋼材5を緊張定着して一次プレストレスを全て導入してしまうと、桁部材1の上縁側に許容値を越える引張応力が発生する恐れがあるため、これを避けるために、一次プレストレスの一部を導入するか、桁部材1の上縁側に配置のPC鋼材7により二次プレストレスを導入してから、桁部材1の下縁側のPC鋼材5を利用して、一次プレストレスを導入するような下記の施工手順1または2のようにするとよい。   In addition, about the construction procedure which actually introduces pre-stress, if all the PC steel materials 5 in the girder member 1 are first tension-fixed and all primary pre-stress is introduced, an allowable value is provided on the upper edge side of the girder member 1. In order to avoid this, a part of the primary prestress is introduced, or a secondary prestress is introduced by the PC steel material 7 arranged on the upper edge side of the girder member 1 in order to avoid this. Therefore, the following construction procedure 1 or 2 in which primary prestress is introduced using the PC steel material 5 on the lower edge side of the girder member 1 may be used.

<施工手順の第1例>
(1)一次プレストレスとして、桁部材1の下縁側に配置の複数のPC鋼材5の一部を利用してこれらを緊張定着して、桁部材1の下縁の圧縮応力度の許容値または上縁の引張応力度の許容値まで、桁部材1の下縁側にストレスを導入する。
(2)その後、二次プレストレスとして、桁部材1の上縁側に配置の全てのPC鋼材7を緊張定着して、桁部材1の上縁側にストレスを導入する。
(3)その後、下縁側に配置の緊張定着されていない残りのPC鋼材5を緊張定着して、残りの一次プレストレスを導入する。
(4)桁部材1に床版6を架設して床版部を形成する。
(5)活荷重が載荷される前に、前記桁部材1の上縁側に緊張定着されている全てのPC鋼材7の緊張を開放して、二次プレストレスを開放する。
<First example of construction procedure>
(1) As primary pre-stress, using a part of a plurality of PC steel materials 5 arranged on the lower edge side of the girder member 1 to fix them in tension, the allowable value of the compressive stress degree of the lower edge of the girder member 1 or Stress is introduced to the lower edge side of the girder member 1 up to the allowable value of the tensile stress of the upper edge.
(2) Thereafter, as secondary prestress, all the PC steel materials 7 arranged on the upper edge side of the girder member 1 are tension-fixed, and stress is introduced to the upper edge side of the girder member 1.
(3) Thereafter, the remaining PC steel material 5 that is not tension-fixed on the lower edge side is tension-fixed, and the remaining primary prestress is introduced.
(4) A floor slab 6 is formed on the girder member 1 to form a floor slab portion.
(5) Before the live load is loaded, the tension of all the PC steel materials 7 fixed on the upper edge side of the girder member 1 is released, and the secondary prestress is released.

<施工手順の第2例>
(1)最初に、桁部材1の上縁側に配置の全てのPC鋼材7を緊張定着して、桁部材1に二次プレストレスを導入する。但し、この時の二次プレストレスは一次プレストレスよりも緊張力が小さいため、桁部材1の上縁側および下縁側共に応力が許容値を越えることはない。
(2)次に、一次プレストレスとして、桁部材1の下縁側に配置の複数のPC鋼材5の全てを利用してこれらを緊張定着して、桁部材1にストレスを導入する。
(3)桁部材1に床版6を架設して床版部を形成する。
(4)活荷重が載荷される前に、前記桁部材1の上縁側に緊張定着されている全てのPC鋼材7の緊張を開放して、二次プレストレスを開放する。
<Second example of construction procedure>
(1) First, all PC steel materials 7 arranged on the upper edge side of the girder member 1 are tension-fixed, and secondary prestress is introduced into the girder member 1. However, since the secondary pre-stress at this time has a smaller tension than the primary pre-stress, the stress does not exceed the allowable value on the upper edge side and the lower edge side of the girder member 1.
(2) Next, as primary pre-stress, all of the plurality of PC steel materials 5 arranged on the lower edge side of the girder member 1 are used to fix the tension and introduce stress into the girder member 1.
(3) A floor slab 6 is formed on the girder member 1 to form a floor slab portion.
(4) Before the live load is loaded, the tension of all the PC steel materials 7 fixed on the upper edge side of the girder member 1 is released, and the secondary prestress is released.

本発明を実施する場合、桁部材の断面形状としては、I型またはH型の断面形態以外にも、矩形等の適宜の断面形態であってもよく、鋼・コンクリートの合成構造の桁部材であってもよい。   In carrying out the present invention, the cross-sectional shape of the girder member may be an appropriate cross-sectional shape such as a rectangle in addition to the I-type or H-type cross-sectional shape, and may be a steel-concrete composite girder member. There may be.

本発明を実施する場合、二次プレストレスを導入するための二次PC鋼材7の緊張を開放した後、前記PC鋼材7とPC鋼材挿通孔との間に、接着剤等の充填剤を充填して、二次PC鋼材7と桁部材1を一体化し、桁部材1の終局耐力を高めるとよい。
When carrying out the present invention, after releasing the tension of the secondary PC steel material 7 for introducing secondary prestress, a filler such as an adhesive is filled between the PC steel material 7 and the PC steel material insertion hole. Then, the secondary PC steel material 7 and the girder member 1 may be integrated to increase the ultimate strength of the girder member 1.

本発明に係る桁のプレストレス導入工法の一実施形態を示し、(a)は桁部材の正面図、(b)はその側面図、(c)は桁自重による曲げモーメント図である。1 shows an embodiment of a prestress introduction method for a girder according to the present invention, in which (a) is a front view of the girder member, (b) is a side view thereof, and (c) is a bending moment diagram due to the girder's own weight. (a)は桁部材の桁下縁側に一次プレストレスを導入した状態を示す正面図、(b)は側面図、(c)は桁自重による曲げモーメントに一次プレストレスを導入した際の曲げモーメント図、(d)は桁自重による曲げモーメントに一次プレストレスとの合成曲げモーメント図である。(A) is a front view showing a state in which primary prestress is introduced to the lower edge side of the girder member, (b) is a side view, and (c) is a bending moment when primary prestress is introduced into the bending moment due to the girder's own weight. FIG. 4D is a composite bending moment diagram of the bending moment due to the girder weight and the primary prestress. (a)は桁部材の桁上縁側に二次プレストレスを導入した状態を示す正面図、図(b)はその側面図、(c)は桁自重による曲げモーメント及び一次プレストレスに二次プレストレスを導入した際の曲げモーメント図、(d)は桁自重による曲げモーメントと一次プレストレスと二次プレストレスとの合成曲げモーメント図である。(A) is a front view showing a state in which secondary prestress is introduced to the upper edge side of the girder member, FIG. (B) is a side view thereof, and (c) is a secondary prestress in bending moment and primary prestress due to the girder's own weight. Bending moment diagram when stress is introduced, (d) is a combined bending moment diagram of bending moment due to girder weight, primary prestress and secondary prestress. (a)は桁部材の桁上縁に床版を載荷した状態を示す正面図、図(b)は側面図、(c)は床版載荷荷重を受けて桁自重と一次プレストレスと二次プレストレスと床版載荷荷重とによる曲げモーメント図、(d)はその合成曲げモーメント図、(e)は二次プレストレスを解放した際のモーメント図、図(f)は桁自重と一次プレストレスと床版載荷荷重との合成曲げモーメント図である。(A) is a front view showing a state in which a floor slab is loaded on the girder upper edge of the girder member, FIG. (B) is a side view, and (c) is a girder's own weight, primary pre-stress and secondary under a floor slab loading load. Bending moment diagram based on prestress and slab loading load, (d) is a composite bending moment diagram, (e) is a moment diagram when secondary prestress is released, and (f) is a girder weight and primary prestress. FIG. 従来の橋梁におけるプレストレス導入工法を示し、(a)は桁部材の正面図、(b)はその側面図、(c)は桁自重による曲げモーメント図である。The prestress introduction method in the conventional bridge is shown, (a) is a front view of a girder member, (b) is the side view, (c) is a bending moment diagram by girder weight. (a)は桁部材の桁下縁側に一次プレストレスを導入した状態を示す正面図、(b)はその側面図、(c)は桁自重による曲げモーメントに一次プレストレスを導入した際のモーメント図、(d)は桁自重による曲げモーメントと一次プレストレスとの合成曲げモーメント図である。(A) is a front view showing a state where primary prestress is introduced to the lower edge side of the girder member, (b) is a side view thereof, and (c) is a moment when primary prestress is introduced into the bending moment due to the girder's own weight. FIG. 4D is a composite bending moment diagram of the bending moment due to the girder weight and the primary prestress. (a)は桁部材の桁上縁上に床版を載荷した状態を示す正面図、(b)はその側面図、図(c)は桁自重による曲げモーメント及び一次プレストレスに床版載荷荷重を受けた際のモーメント図、(d)は床版載荷荷重と桁自重による曲げモーメントと一次プレストレスとの合成曲げモーメント図である。(A) is a front view showing a state in which a floor slab is loaded on the upper edge of the girder member, (b) is a side view thereof, and (c) is a floor slab loading load due to bending moment and primary prestress due to the girder's own weight. (D) is a composite bending moment diagram of a floor preload, a bending moment due to the girder's own weight, and a primary prestress. 本発明において使用される桁部材の一形態を示す正面図である。It is a front view which shows one form of the girder member used in this invention. 本発明の桁のプレストレス導入工法を採用した場合と、従来の場合と比較した縦断正面図であり、(a)は従来の場合の縦断正面図、(b)は本発明の場合縦断正面図である。It is the longitudinal front view compared with the case where the prestress introduction construction method of the girder of the present invention is adopted, and (a) is a longitudinal front view in the conventional case, (b) is the longitudinal front view in the case of the present invention. It is.

符号の説明Explanation of symbols

1 桁部材
2 ウェブ部
3 桁上縁フランジ部
4 桁下縁フランジ部
5 PC鋼材
6 床版
7 PC鋼材
8 ハンチ部
9 床版橋
DESCRIPTION OF SYMBOLS 1 Girder member 2 Web part 3 Girder upper edge flange part 4 Girder lower edge flange part 5 PC steel material 6 Floor slab 7 PC steel material 8 Haunch part 9 Floor slab bridge

Claims (3)

桁に一次プレストレスとして、桁の下縁側に、オーバープレストレスとなるような一次プレストレスを導入し、桁の上縁側には、前記一次プレストレスにより導入したオーバープレストレスによる桁の上縁側に生じる引張力を打ち消すような二次プレストレスが導入され、桁に床版を載荷した後、活荷重載荷前に、桁の上縁側に導入した二次プレストレスを解放することを特徴とする桁のプレストレス導入工法。   Primary prestress is introduced into the girders as primary prestress on the lower edge side of the girders, and the upper edge side of the girders is placed on the upper edge side of the girders due to the overprestress introduced by the primary prestress. A secondary prestress that cancels the generated tensile force is introduced. After loading the floor slab on the girders, the secondary prestress introduced on the upper edge side of the girders is released before the live load is loaded. Prestressing method. 一次プレストレス用のPC鋼材を桁下縁に配置し、二次プレストレス用のPC鋼材を桁上縁に配置したことを特徴とする請求項1に記載の桁のプレストレス導入工法。   2. The prestress introduction method for a girder according to claim 1, wherein the PC steel material for primary prestress is arranged at the lower edge of the girder, and the PC steel material for secondary prestress is arranged at the upper edge of the girder. 桁の上縁に導入した二次プレストレスは、少なくとも床版を桁に設置した場合に、桁の上縁側に加えられるストレスを越えるようにされていることを特徴とする請求項1または2に記載の桁のプレストレス導入工法。   The secondary pre-stress introduced into the upper edge of the girder is configured to exceed the stress applied to the upper edge side of the girder at least when the floor slab is installed on the girder. Prestress introduction method of the indicated digit.
JP2006033720A 2006-02-10 2006-02-10 Prestress introducing method to girder Withdrawn JP2007211515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033720A JP2007211515A (en) 2006-02-10 2006-02-10 Prestress introducing method to girder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033720A JP2007211515A (en) 2006-02-10 2006-02-10 Prestress introducing method to girder

Publications (1)

Publication Number Publication Date
JP2007211515A true JP2007211515A (en) 2007-08-23

Family

ID=38490198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033720A Withdrawn JP2007211515A (en) 2006-02-10 2006-02-10 Prestress introducing method to girder

Country Status (1)

Country Link
JP (1) JP2007211515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144238B1 (en) 2011-12-20 2012-05-10 진성열 Bridge construction method using the segment block and pretension and release
JP2016211195A (en) * 2015-05-01 2016-12-15 三井住友建設株式会社 Manufacturing method of prestressed concrete girder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144238B1 (en) 2011-12-20 2012-05-10 진성열 Bridge construction method using the segment block and pretension and release
JP2016211195A (en) * 2015-05-01 2016-12-15 三井住友建設株式会社 Manufacturing method of prestressed concrete girder

Similar Documents

Publication Publication Date Title
JP5342312B2 (en) Precast member installation method
JP2009030277A (en) Construction method of composite steel floor slab girder bridge
KR20090090904A (en) Method for introducing pre-stress into the steel girder
JP2007270600A (en) Prestress introducing method to filling part between precast concrete members
JP2007211515A (en) Prestress introducing method to girder
KR100795920B1 (en) Construction method for steel plate girder
JP2009084908A (en) Floor plate unit with void forms, and composite hollow floor plate
JP4492422B2 (en) Structure near the intermediate fulcrum of continuous I-girder bridge
JP2010144512A (en) Structure near intermediate supporting point of continuous i-beam bridge
KR970015932A (en) Re-prestress steel composite beam and its manufacturing method
JP5029271B2 (en) I-girder structure near the continuous I-girder bridge and its intermediate fulcrum
JP5439016B2 (en) Buried formwork
KR101912422B1 (en) Composite beam fabricating method with pre-load process and composite beam using the same
KR20130090455A (en) Construction method for continuous bridge using confined concrete
KR100944005B1 (en) Pre-stressed Steel Girder and Method for introducing pre-stress into the steel girder
JP5039590B2 (en) Precast concrete beams
KR100396713B1 (en) The method of prestressed composite beam made by using the additional compressive materials
KR100866208B1 (en) A prestressed girder with slab and method of making the structure with it
KR102151567B1 (en) Steel composite bridge
KR101325230B1 (en) Manufacturing method for turn-over composite girder
KR101205404B1 (en) Temporary Top Strands in the PSC Precast Beams and Installation Method
JP4967972B2 (en) Continuous I-girder bridge, I-girder structure near its intermediate fulcrum and its construction method
KR101172442B1 (en) Construction method for girder using confined concrete
JP5624261B2 (en) Concrete crack growth control method
KR100995114B1 (en) Method for introducing tension pre-stress using the slab

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512