JP2007205104A - Rotating mechanism and excavator - Google Patents

Rotating mechanism and excavator Download PDF

Info

Publication number
JP2007205104A
JP2007205104A JP2006027573A JP2006027573A JP2007205104A JP 2007205104 A JP2007205104 A JP 2007205104A JP 2006027573 A JP2006027573 A JP 2006027573A JP 2006027573 A JP2006027573 A JP 2006027573A JP 2007205104 A JP2007205104 A JP 2007205104A
Authority
JP
Japan
Prior art keywords
blade member
rotation
center line
sub
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006027573A
Other languages
Japanese (ja)
Inventor
Kazuhiko Isoda
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2006027573A priority Critical patent/JP2007205104A/en
Publication of JP2007205104A publication Critical patent/JP2007205104A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To excavate a noncircular excavation cross section, by providing circular and noncircular loci in the same center, while reducing rotational run-out and vibration of a driving system and reducing the driving system and design cost. <P>SOLUTION: This rotating mechanism has a central shaft 31 rotatably arranged around the predetermined fixed center line O, a main blade member 211 (a main excavation cutter 21) extendedly arranged in the radial outward direction of the central shaft 31, a rotary shaft 33 rotatably arranged to the main blade member 211 around the moving center line P parallel to the fixed center line O, a sub-blade member 221 (a sub-excavation cutter 22) extending in the radial outward direction of the rotary shaft 33 and arranged in a mode of changing a projecting dimension from the tip of the main blade member 211 in response to rotation of the rotary shaft 33, a driving part rotatingly driving the central shaft 31, and a rotation transmitting mechanism 34 transmitting rotation of the central shaft 31 as rotation of the rotary shaft 33 in the same direction as the central shaft 31. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、同一中心で円形状および非円形状の軌跡をなす回転機構、および当該回転機構を用いて地盤などを掘削する掘削機に関するものである。   The present invention relates to a rotation mechanism that forms circular and non-circular trajectories at the same center, and an excavator that excavates the ground using the rotation mechanism.

一般的な掘削機は、回転機構によってカッタヘッドを回転させて当該カッタヘッドで地盤を掘削するものが知られている。このような掘削機は、カッタヘッドが所定の中心を以て回転することから必然的に断面形状が円形になる。しかし、鉄道や道路などのトンネル利用空間においては、必要とされる断面形状が非円形状であることが多く、上記円形の掘削断面内に非円形状とした鉄道や道路などの空間を構築する。このため、利用空間以上の掘削を行うことになるので、用地面積が多く必要となることに加えて建設費が嵩むという問題がある。   A general excavator is known in which a cutter head is rotated by a rotating mechanism and the ground is excavated by the cutter head. Such an excavator inevitably has a circular cross-section because the cutter head rotates about a predetermined center. However, in tunnel use spaces such as railways and roads, the required cross-sectional shape is often non-circular, and a non-circular railway or road space is constructed within the circular excavation cross-section. . For this reason, since excavation more than utilization space is performed, in addition to requiring a lot of land area, there exists a problem that construction cost increases.

従来、例えばルーロー三角形なるルーロー三角形回転体に切削用バイトを設け、当該ルーロー三角形回転体を回転することで、被加工物に正方形状の穴明けを行う正方形穴明け加工装置がある(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, for example, there is a square drilling device for forming a square hole in a workpiece by providing a cutting tool on a Rouleau triangle rotating body such as a Rouleau triangle and rotating the Rouleau triangle rotating body (for example, patents) Reference 1).

他に、加工部材をその中心周りに回転自在に加工部材自転支持装置に取り付け、当該加工部材自転支持装置を加工部材公転支持装置に取り付けた掘削機がある。加工部材には、中心と同芯状のほぼ正三角形の各頂点とその内方に掘削刃を設けて掘削作用面が形成してある。加工部材自転支持装置は、加工部材を前記正三角形の一辺の((1/2)/cos30°−(1/2))倍の半径で中心が回転するように加工部材公転支持装置に取り付けてある。そして、加工部材を自転させながらその自転方向とは逆の方向に3倍公転させる駆動手段を設けてある(例えば、特許文献2参照)。   In addition, there is an excavator in which a machining member is attached to a machining member rotation support device so as to be rotatable about its center, and the machining member rotation support device is attached to the machining member revolution support device. The processed member is provided with an excavation working surface by providing excavation blades at the apexes of substantially equilateral triangles concentric with the center and inward thereof. The processed member rotation support device is attached to the processed member revolving support device so that the center rotates at a radius ((1/2) / cos30 ° − (1/2)) times one side of the equilateral triangle. is there. And the drive means which revolves 3 times in the direction opposite to the rotation direction while rotating a process member is provided (for example, refer patent document 2).

また他に、正三角形の各頂点を中心とし、その一辺の長さを半径とする円弧を各対辺の外側に描き、これらの3つの円弧により囲まれたルーロー三角形を外形とするカッタを、矩形状スキンプレートの中心軸の回りに公転させながら自転させて掘削する矩形シールド工法がある。スキンプレートの中心軸に対するカッタの回転軸の偏心距離は、(L/2)/cos30°−(L/2)を満足するように設定してある(L:ルーロー三角形の頂点間の距離)。なお、カッタの公転数は自転数の3倍で、公転方向と自転方向が逆方向である(例えば、特許文献3参照)。   In addition, a circular arc centered on each vertex of the regular triangle and having the length of one side as a radius is drawn on the outside of each opposite side, and a cutter having an outline of a Rouleau triangle surrounded by these three circular arcs is defined as a rectangle. There is a rectangular shield method in which excavation is performed by rotating while revolving around the central axis of the shape skin plate. The eccentric distance of the rotation axis of the cutter with respect to the center axis of the skin plate is set so as to satisfy (L / 2) / cos 30 ° − (L / 2) (L: distance between vertices of the Rouleau triangle). The revolution number of the cutter is three times the revolution number, and the revolution direction and the revolution direction are opposite directions (see, for example, Patent Document 3).

さらに、掘削断面の円形中心部を主カッタが掘削し、その外周部を複数の遊星カッタが掘削する自由断面シールド工法がある。遊星カッタは、主カッタの回転につれて主カッタの外周部を自転しながら公転する。この公転軌道は、遊星カッタを設置したスイングアームの角度調整によって任意に変えることができる。この結果、同一中心で矩形、楕円形、馬蹄形、卵形など様々な掘削断面形状を選択できる(例えば、非特許文献1参照)。   Furthermore, there is a free section shield method in which a main cutter excavates a circular center part of an excavation section and a plurality of planetary cutters excavate an outer peripheral part thereof. The planetary cutter revolves while rotating around the outer periphery of the main cutter as the main cutter rotates. This revolution trajectory can be arbitrarily changed by adjusting the angle of the swing arm provided with the planetary cutter. As a result, various excavation cross-sectional shapes, such as a rectangle, an ellipse, a horseshoe shape, and an egg shape, can be selected at the same center (for example, refer nonpatent literature 1).

特開平11−267950号公報JP-A-11-267950 特開平1−158196号公報JP-A-1-158196 特許第2926125号公報Japanese Patent No. 2926125 シールド工法技術協会、“自由断面シールド工法”、[online]、平成17年9月16日検索、インターネット<URL:http://www.shield-method.gr.jp/pdf_data/jiyu.pdf>Shield Construction Method Association, “Free Section Shield Construction Method”, [online], searched on September 16, 2005, Internet <URL: http://www.shield-method.gr.jp/pdf_data/jiyu.pdf>

ところで、ルーロー三角形を利用して非円形状である略矩形状に掘削を行う場合には、ルーロー三角形をその重心を中心として回転させ、かつルーロー三角形の重心を正方形の中心の周りに公転させる必要がある。   By the way, when digging into a non-circular, substantially rectangular shape using the rouleau triangle, it is necessary to rotate the rouleau triangle around its center of gravity and revolve the lureau triangle center of gravity around the center of the square. There is.

特許文献1の発明は、モータのトルクを伝達する軸と、ルーロー三角形回転体の重心の軸とを自在継手で連結してある。しかし、この構成では駆動伝達系に回転ぶれや振動が生じることになり、さらに大きなトルクが必要となる掘削機では自在継手は高価であり製造コストが嵩む。   In the invention of Patent Document 1, a shaft for transmitting the torque of the motor and a shaft at the center of gravity of the Rouleau triangle rotating body are connected by a universal joint. However, in this configuration, rotational vibration and vibration are generated in the drive transmission system, and in an excavator that requires a larger torque, the universal joint is expensive and the manufacturing cost increases.

特許文献2の発明では、モータからのトルクをクランク軸によって加工部材に伝達して公転装置を構成してある。しかし、クランクさせることによって回転軸部材にせん断力や曲げモーメントが生じて回転ぶれや振動の原因となる。   In the invention of Patent Document 2, a revolution device is configured by transmitting torque from a motor to a machining member by a crankshaft. However, cranking causes shearing force and bending moment to the rotating shaft member, which causes rotational vibration and vibration.

特許文献3の発明は、矩形状スキンプレートの中心に公転駆動盤を設けてこの公転駆動盤にカッタ回転軸を設けてある。そして、公転駆動盤を回転させるモータと、カッタ回転軸を回転させるモータを設けてある。しかし、カッタ回転軸を回転させるモータは、公転駆動盤に設けてあるため、配線や配管の処理を十分検討して設計する必要がある。さらに、各モータの回転数や回転方向を調整してそれぞれ同期させる必要がある。この結果、設計コストが嵩むことになる。   In the invention of Patent Document 3, a revolution drive board is provided at the center of a rectangular skin plate, and a cutter rotation shaft is provided on the revolution drive board. A motor for rotating the revolution drive board and a motor for rotating the cutter rotating shaft are provided. However, since the motor for rotating the cutter rotating shaft is provided on the revolution drive board, it is necessary to design the wiring and pipes after careful examination. Furthermore, it is necessary to synchronize by adjusting the rotation speed and rotation direction of each motor. As a result, the design cost increases.

このように、ほぼ矩形状の軌跡をなすためにルーロー三角形の原理を利用した回転機構についての出願はあるものの、いずれも合理的な駆動を実現するものではない。また、大きなトルクが必要である掘削機においては、正方形枠は掘削孔内で大きなスペースを要することから正方形枠のない機構が望まれている。さらに、矩形状の掘削に限らず矩形状を含む多角形状の軌跡をなす回転機構、および当該回転機構を用いた掘削機を実現するものはない。   As described above, although there is an application for a rotation mechanism that uses the principle of the Rouleau triangle to form a substantially rectangular locus, none of them realizes rational driving. Further, in excavators that require a large torque, a square frame requires a large space in the excavation hole, so a mechanism without a square frame is desired. Furthermore, there is no realization of a rotating mechanism that forms a polygonal locus including a rectangular shape and an excavator using the rotating mechanism, not limited to rectangular excavation.

また、非特許文献1の工法は、矩形状や楕円形状の掘削に対応しているが、主カッタの回転につれて主カッタの外周部を自転しながら公転する複数の遊星カッタを得るために、スイングアームを用いた複雑な構成にしてある。この結果、製造コストが嵩むという問題がある。   In addition, the method of Non-Patent Document 1 corresponds to rectangular or elliptical excavation, but in order to obtain a plurality of planetary cutters that revolve while rotating around the outer periphery of the main cutter as the main cutter rotates, It has a complicated structure using an arm. As a result, there is a problem that the manufacturing cost increases.

本発明は、上記実情に鑑みて、駆動系の回転ぶれや振動を低減するとともに低コストで、同一中心で円形状および非円形状の軌跡をなす回転機構、および当該回転機構を用いて同一中心で円形状および非円形状の断面の掘削を連続して実現することができる掘削機を提供することを目的とする。   In view of the above circumstances, the present invention reduces the rotational shake and vibration of the drive system, and at a low cost, forms a circular and non-circular locus at the same center, and uses the rotation mechanism to achieve the same center. An object of the present invention is to provide an excavator capable of continuously excavating circular and non-circular cross sections.

上記の目的を達成するために、本発明の請求項1に係る回転機構は、所定の固定中心線を中心として回転可能に設けた中心軸と、前記中心軸の径外方向に延在して設けた主羽根部材と、前記固定中心線に平行な移動中心線を中心として前記主羽根部材に対して回転可能に設けた回転軸と、前記回転軸の径外方向に延在して当該回転軸の回転に伴い前記主羽根部材の先端からの突出寸法が変化する態様で設けた副羽根部材と、前記中心軸を回転駆動する駆動部と、前記中心軸の1回転を前記回転軸の所定回転として伝達する回転伝達機構とを備えたことを特徴とする。   In order to achieve the above object, a rotating mechanism according to claim 1 of the present invention includes a central axis that is rotatable about a predetermined fixed center line, and extends radially outward from the central axis. A main blade member provided, a rotation shaft provided rotatably with respect to the main blade member about a moving center line parallel to the fixed center line, and the rotation extending in a radially outward direction of the rotation shaft A sub-blade member provided in such a manner that the projecting dimension from the tip of the main blade member changes with the rotation of the shaft, a drive unit that rotationally drives the central shaft, and one rotation of the central shaft is a predetermined of the rotational shaft. And a rotation transmission mechanism that transmits the rotation.

本発明の請求項2に係る回転機構は、上記請求項1において、前記回転伝達機構は、前記移動中心線を中心とした円状の外周部を有して前記回転軸に設けた第一係合部と、前記固定中心線を中心とした円状の外周部を有して前記中心軸を回転可能に内挿して固定された第二係合部と、前記第一係合部の外周部および第二係合部の外周部に係合して前記中心軸の回転を回転軸の回転として伝達しつつ前記主羽根部材の1回転に対して前記副羽根部材を同方向に2回転させる駆動伝達部とで構成してあることを特徴とする。   The rotating mechanism according to a second aspect of the present invention is the rotating mechanism according to the first aspect, wherein the rotation transmitting mechanism has a circular outer periphery centered on the moving center line and is provided on the rotating shaft. And a second engaging portion having a circular outer periphery centered on the fixed center line and fixedly inserted by rotating the central axis, and an outer peripheral portion of the first engaging portion. And driving to rotate the sub blade member twice in the same direction with respect to one rotation of the main blade member while engaging the outer periphery of the second engaging portion and transmitting the rotation of the central shaft as the rotation of the rotation shaft. It is characterized by comprising a transmission part.

本発明の請求項3に係る回転機構は、上記請求項1または2において、前記副羽根部材は、円形状の輪郭を有し、その中心から所定の偏心量ずらした位置を前記移動中心線上に置いた回転中心としてあることを特徴とする。   A rotating mechanism according to a third aspect of the present invention is the rotating mechanism according to the first or second aspect, wherein the sub blade member has a circular outline, and a position shifted from the center by a predetermined amount of eccentricity is on the moving center line. It is characterized by being placed as a center of rotation.

本発明の請求項4に係る掘削機は、請求項1〜3のいずれかに一つに記載の回転機構を用いて、前記第二係合部を支持するとともに前記駆動部を内部に配置した筒状の胴部と、前記主羽根部材にカッタを配設した主掘削カッタと、前記副羽根部材にカッタを配設した副掘削カッタとを備えたことを特徴とする。   An excavator according to a fourth aspect of the present invention uses the rotation mechanism according to any one of the first to third aspects to support the second engaging portion and arrange the driving portion therein. It has a cylindrical body, a main excavation cutter in which a cutter is disposed on the main blade member, and a sub excavation cutter in which a cutter is disposed on the sub blade member.

本発明によれば、駆動部の駆動力を中心軸に伝達することによって、中心軸が固定中心線を中心として回転する。このため、中心軸に設けた主羽根部材が固定中心線を中心として回転する。また、中心軸の回転が駆動伝達部によって回転軸に伝達されることによって、回転軸が移動中心線を中心として回転する。このため、回転軸に設けた副羽根部材が移動中心線を中心として回転(自転)する。すなわち、固定中心線を中心として主羽根部材を回転駆動して円形状の軌跡をなし、かつ、固定中心線を中心として公転する副羽根部材が自転することで主羽根部材の外側で円形状の掘削断面を拡張する軌跡をなす。この結果、副羽根部材の負担が小さい単純なメカニズムによって円形状を拡張した非円形状の軌跡を得ることができる。また、主羽根部材の駆動系は従前からある回転機構であり、この回転機構に副羽根部材の駆動系を補助的に付加しているため、低コストで信頼性の高い回転機構を得ることができる。そして、各羽根部材にカッタを配設した掘削カッタを備えた掘削機とすれば、円形状を拡張した非円形状の掘削断面の掘削孔を掘削することができる。この掘削孔は、一般的な円形状の掘削断面の掘削孔と比較して、不要な空間を掘削せずに利用空間のみの掘削で得られるため、必要以上の用地面積を要さないことに加えて建設費を低減することができる。   According to the present invention, by transmitting the driving force of the driving unit to the central axis, the central axis rotates about the fixed center line. For this reason, the main blade member provided on the central axis rotates around the fixed center line. Further, the rotation of the center axis is transmitted to the rotation axis by the drive transmission unit, whereby the rotation axis rotates about the movement center line. For this reason, the sub blade member provided on the rotation shaft rotates (rotates) around the movement center line. That is, the main blade member is driven to rotate around the fixed center line to form a circular locus, and the secondary blade member revolving around the fixed center line rotates to form a circular shape outside the main blade member. Make a trajectory to expand the excavation section. As a result, it is possible to obtain a non-circular locus in which the circular shape is expanded by a simple mechanism with a small burden on the sub blade member. Further, the drive system for the main blade member is a conventional rotation mechanism, and the auxiliary blade member drive system is supplementarily added to this rotation mechanism, so that a low-cost and highly reliable rotation mechanism can be obtained. it can. And if it is set as the excavator provided with the excavation cutter which provided the cutter in each blade member, the excavation hole of the non-circular excavation cross section which expanded the circular shape can be excavated. Compared with a general circular excavation hole, this excavation hole can be obtained by excavating only the use space without excavating unnecessary space, so it does not require more land area than necessary. In addition, construction costs can be reduced.

また、回転伝達機構によって、主羽根部材の1回転に対して副羽根部材を同方向に2回転(自転)することで、副羽根部材が固定中心線を中心とした長円形状の軌跡をなす。この結果、長円形状の掘削断面の掘削孔を掘進できる。   Further, the rotation transmission mechanism causes the sub blade member to rotate twice in the same direction (rotation) with respect to one rotation of the main blade member, so that the sub blade member forms an oval locus centering on the fixed center line. . As a result, it is possible to excavate an excavation hole having an elliptical excavation cross section.

すなわち、本発明は、固定中心線を中心として主羽根部材を回転駆動して円形状の軌跡をなし、かつ、固定中心線を中心として公転する副羽根部材が自転することで主羽根部材の外側で円形状の掘削断面を拡張する軌跡をなす回転機構によって成り立っている。この結果、副羽根部材の負担が小さい単純なメカニズムによって長円形状などの非円形状の掘削断面の掘進を行うことができる。また、主羽根部材の駆動系は従前からある回転機構であり、この回転機構に副羽根部材の駆動系を補助的に付加しているため、低コストで信頼性の高い回転機構および掘削機を得ることができる。   That is, according to the present invention, the main blade member is driven to rotate around the fixed center line to form a circular locus, and the sub blade member revolving around the fixed center line rotates to rotate outside the main blade member. It consists of a rotating mechanism that forms a trajectory that extends the circular excavation cross section. As a result, it is possible to dig a non-circular excavation section such as an ellipse by a simple mechanism with a small burden on the sub blade member. In addition, the drive system of the main blade member is a conventional rotation mechanism, and the auxiliary blade member drive system is supplementarily added to this rotation mechanism, so that a low-cost and highly reliable rotation mechanism and excavator can be provided. Obtainable.

さらに、固定中心線を中心として主羽根部材を回転駆動し、かつ、固定中心線を中心として副羽根部材を公転駆動する回転機構であるため、副羽根部材の駆動系である回転伝達機構による回転の伝達を行うことで副羽根部材を駆動して長円形状などの非円形状の掘削断面の掘削を行う一方、回転伝達機構による回転の伝達を断つことで円形状の掘削断面の掘削を行うように切り替えることができる。この結果、例えば1台の掘削機によって線路用トンネルの円形状の掘削断面の掘削をし、続けて駅ホーム用トンネルの長円形状などの非円形状の掘削断面の掘削をし、さらに続けて線路用トンネルの円形状の掘削断面の掘削をするなど、続けて異なる断面形状のトンネルを掘削でき、その断面中心を全て固定中心線に合わせることができる。   Furthermore, since the main blade member is driven to rotate around the fixed center line, and the sub blade member is driven to revolve around the fixed center line, rotation by the rotation transmission mechanism that is the drive system of the sub blade member. The sub-blade member is driven by performing transmission to excavate a non-circular excavation section such as an ellipse, while the circular excavation section is excavated by cutting off the rotation transmission by the rotation transmission mechanism. Can be switched as follows. As a result, for example, one excavator excavates a circular excavation section of a railway tunnel, followed by an excavation of a non-circular excavation section such as an ellipse of a station platform tunnel, and further It is possible to continuously excavate tunnels with different cross-sectional shapes, such as excavation of circular excavation cross sections of railway tunnels, and to align all of the cross-sectional centers with the fixed center line.

また、主羽根部材は中心軸の径外方向に延出する構成であって掘削面にあたるカッタヘッドの面積が過大にならないため、掘削土を胴部の内部に取り込むための開口面積を十分に確保することができる。   In addition, the main blade member is configured to extend radially outward from the central axis, so that the area of the cutter head that corresponds to the excavation surface does not become excessive, so a sufficient opening area for taking the excavated soil into the trunk is secured. can do.

また、中心軸が固定中心線上でその軸心がずれることなく回転するため、中心軸をさらに前方向に延長した先端にロックオーガーなどの円形ドリルを設けた掘削を併用することができる。この結果、掘削に先駆けて削岩を行うことが可能になり、主掘削カッタや副掘削カッタの負荷を軽減できる。   In addition, since the central axis rotates on the fixed center line without shifting its axis, excavation in which a circular drill such as a lock auger is provided at the tip of the central axis extending further forward can be used in combination. As a result, rock drilling can be performed prior to excavation, and the load on the main excavation cutter and the sub excavation cutter can be reduced.

また、中心軸が固定中心線上でその軸心がずれることなく回転するため、回転ぶれや振動を低減することが可能になる。さらに、中心軸と回転軸との回転の伝達に従前の自在継手を要することがないので、自在継手に係るコストを低減することができる。回転機構は、固定中心線を中心として主羽根部材を回転駆動し、かつ、固定中心線を中心として副羽根部材を公転駆動する回転機構である。このため、従前のごとくスイングアームを用いた複雑な構成にすることがなく、製造コストを低減することができる。すなわち、上記回転機構(掘削機)は、簡素な機構で長円形状などの非円形状の掘削断面の掘削孔を掘進するため、故障が起こり難く信頼性が高く、コストを低減することができる。   Further, since the central axis rotates on the fixed center line without shifting its axis, it is possible to reduce rotational shake and vibration. Furthermore, since a conventional universal joint is not required for transmission of rotation between the central axis and the rotation axis, the cost associated with the universal joint can be reduced. The rotation mechanism is a rotation mechanism that rotationally drives the main blade member around the fixed center line and revolves the sub blade member around the fixed center line. Therefore, the manufacturing cost can be reduced without using a complicated configuration using a swing arm as before. In other words, the rotating mechanism (excavator) is a simple mechanism that digs an excavation hole having a non-circular excavation cross section such as an ellipse, so that failure is unlikely to occur and reliability is high, and costs can be reduced. .

以下に添付図面を参照して、本発明に係る回転機構および掘削機の好適な実施の形態を詳細に説明する。   Exemplary embodiments of a rotating mechanism and an excavator according to the present invention will be described below in detail with reference to the accompanying drawings.

[実施の形態1]
図1は本発明に係る回転機構を用いた掘削機の実施の形態1を示す概略側断面図、図2は図1に示す掘削機を軸方向(前方向)から視た概念図、図3は図2の一部拡大図である。
[Embodiment 1]
FIG. 1 is a schematic side sectional view showing Embodiment 1 of an excavator using a rotating mechanism according to the present invention, FIG. 2 is a conceptual diagram of the excavator shown in FIG. 1 viewed from the axial direction (forward direction), and FIG. FIG. 3 is a partially enlarged view of FIG. 2.

図1および図2に示すように掘削機は、胴部1と掘削カッタ21,22とを備えている。胴部1は、掘削カッタを支持するものであって、掘削機の外郭をなし、筒状とした内部に掘削カッタ21,22を回転駆動する回転機構3を有している。   As shown in FIGS. 1 and 2, the excavator includes a trunk portion 1 and excavation cutters 21 and 22. The body portion 1 supports the excavation cutter, and has a rotating mechanism 3 that rotates the excavation cutters 21 and 22 inside a cylindrical shape that forms an outer shell of the excavator.

回転機構3は、中心軸31、駆動部32、回転軸33、回転伝達機構34、主羽根部材211および副羽根部材221を有している。   The rotation mechanism 3 includes a center shaft 31, a drive unit 32, a rotation shaft 33, a rotation transmission mechanism 34, a main blade member 211, and a sub blade member 221.

中心軸31は、胴部1の前後方向に沿って配置した所定の固定中心線Oを中心として回転可能に支持してある。中心軸31は、胴部1の前方に前端が延出して設けてあり、当該前端に主羽根部材211が設けてある。   The central shaft 31 is supported so as to be rotatable about a predetermined fixed center line O arranged along the front-rear direction of the body portion 1. The center shaft 31 is provided with a front end extending in front of the body portion 1, and a main blade member 211 is provided at the front end.

主羽根部材211は、固定中心線Oと直交して中心軸31の径外方向に延在して、胴部1の前方外側に設けてある。主羽根部材211は、図2に示すように固定中心線Oから相反する方向に同じ長さで延在した一文字形状を2つ合わせて十字形状に形成してある。この主羽根部材211は、主掘削カッタ21を構成する。   The main blade member 211 is provided on the front outer side of the trunk portion 1 so as to extend perpendicularly to the fixed center line O in the radially outward direction of the central shaft 31. As shown in FIG. 2, the main blade member 211 is formed in a cross shape by combining two one-letter shapes extending in the opposite direction from the fixed center line O with the same length. The main blade member 211 constitutes the main excavation cutter 21.

駆動部32は、中心軸31を回転させるものであり、例えばモータなど胴部1に設けた駆動源からなる。駆動部32は、固定中心線O上に出力軸を配置し、当該出力軸を中心軸31に接続してある。なお、駆動部32は、図には明示しないが駆動源と中心軸31との間に適宜減速機構を有していてもよい。   The drive unit 32 rotates the central shaft 31 and includes a drive source provided in the body 1 such as a motor. The drive unit 32 has an output shaft disposed on the fixed center line O, and the output shaft is connected to the center shaft 31. The drive unit 32 may have a speed reduction mechanism as appropriate between the drive source and the central shaft 31 although not shown in the figure.

回転軸33は、固定中心線Oに平行な移動中心線Pを中心として主羽根部材211に対して回転可能に設けてある。回転軸33は、主羽根部材211に貫通して配設してあり、胴部1の前方に延出した前端に副羽根部材221が設けてある。なお、回転軸33は、図2に示すように固定中心線Oから相反する方向に延在した一文字形状の主羽根部材211の各端部で2つ設けてある。   The rotation shaft 33 is provided so as to be rotatable with respect to the main blade member 211 around a movement center line P parallel to the fixed center line O. The rotating shaft 33 is disposed so as to penetrate the main blade member 211, and a sub blade member 221 is provided at the front end that extends forward of the body portion 1. As shown in FIG. 2, two rotation shafts 33 are provided at each end portion of the single-letter-shaped main blade member 211 extending in the opposite direction from the fixed center line O.

副羽根部材221は、移動中心線Pと直交して回転軸33の径外方向に延在して設けてある。副羽根部材221は、図2に示すように中心Gを中心とした円盤状(円形状)の輪郭に形成してあり、その中心Gから所定の偏心量rずらした位置を移動中心線P上に置いて回転軸33に設けてある。このため、副羽根部材221は、回転軸33の回転に伴って主羽根部材211の先端からの突出寸法が変化しながら回転移動する。この副羽根部材221は、副掘削カッタ22を構成する。   The sub blade member 221 is provided so as to be orthogonal to the movement center line P and extend in the radially outward direction of the rotation shaft 33. As shown in FIG. 2, the sub blade member 221 is formed in a disc-like (circular) outline centered on the center G, and a position shifted from the center G by a predetermined eccentricity r on the movement center line P. Is provided on the rotary shaft 33. For this reason, the sub blade member 221 rotates and moves as the protrusion dimension from the tip of the main blade member 211 changes with the rotation of the rotating shaft 33. The sub blade member 221 constitutes the sub excavation cutter 22.

回転伝達機構34は、第一係合部341、第二係合部342および駆動伝達部344を有している。第一係合部341は、移動中心線Pを中心とした外周部341aを有して円盤状に形成してあり、当該移動中心線Pを中心に回転するように各回転軸33の後端にそれぞれ固定してある。第二係合部342は、固定中心線Oを中心とした外周部342aを有し、かつ、中心軸31を回転可能に内挿して胴部1に固定してある。   The rotation transmission mechanism 34 includes a first engagement portion 341, a second engagement portion 342, and a drive transmission portion 344. The first engagement portion 341 has a disc-like shape having an outer peripheral portion 341a centered on the movement center line P, and the rear end of each rotation shaft 33 so as to rotate around the movement center line P. Are fixed to each. The second engaging portion 342 has an outer peripheral portion 342 a centered on the fixed center line O, and is fixed to the trunk portion 1 by rotatably inserting the central shaft 31.

駆動伝達部344は、第一係合部341の外周部341aおよび第二係合部342の外周部342aに係合して中心軸31の回転を回転軸33の回転として伝達する。この駆動伝達部344は、回転軸344Aと、第三係合部344Bと、第四係合部344Cと、伝達部材344Dとで構成してある。回転軸344Aは、固定中心線Oおよび移動中心線Pと平行な中心線Sを中心として主羽根部材211に回転可能に設けてある。回転軸344Aは、主羽根部材211に貫通した後端が主羽根部材211の後方に延出して設けてある。なお、回転軸344Aは、図2に示すように固定中心線Oから相反する方向に延在した一文字形状の主羽根部材211に2つ設けてある。第三係合部344Bは、中心線Sを中心とした外周部344Baを有して円盤状に形成してあり、当該中心線Sを中心に回転するように各回転軸344Aの後端にそれぞれ固定してある。この第三係合部344Bは、外周部344Baを第二係合部342の外周部342aに係合してある(例えば、歯車の噛合による係合)。第四係合部344Cは、中心線Sを中心とした外周部344Caを有して円盤状に形成してあり、当該中心線Sを中心に回転するように第三係合部344Bと共に各回転軸344Aの後端にそれぞれ固定してある。伝達部材344Dは、第一係合部341の外周部341aおよび第四係合部344Cの外周部344Caに掛け回して係合する無端状部材からなる。実施の形態1における回転伝達機構34は、第一係合部341の外周部341aおよび第四係合部344Cの外周部344Caをスプロケットとして構成し、このスプロケットにチェーンとして構成した無端状部材からなる伝達部材344Dを係合する構成としてある。また、第二係合部342の外周部342aと第三係合部344Bの外周部344Baとの係合は、歯車の噛合による係合であってもよい。なお、第一係合部341の外周部341a、第二係合部342の外周部342a、第三係合部344Bの外周部344Ba、第四係合部344Cの外周部344Ca、伝達部材344Dの係合は、高摩擦材などを介して接触滑りが防止された係合であってもよい。   The drive transmission portion 344 engages with the outer peripheral portion 341 a of the first engagement portion 341 and the outer peripheral portion 342 a of the second engagement portion 342 and transmits the rotation of the central shaft 31 as the rotation of the rotation shaft 33. The drive transmission unit 344 includes a rotation shaft 344A, a third engagement unit 344B, a fourth engagement unit 344C, and a transmission member 344D. The rotation shaft 344A is rotatably provided on the main blade member 211 about a center line S parallel to the fixed center line O and the movement center line P. The rotating shaft 344 </ b> A is provided with a rear end penetrating the main blade member 211 extending behind the main blade member 211. As shown in FIG. 2, two rotation shafts 344 </ b> A are provided on a single letter-shaped main blade member 211 extending in a direction opposite to the fixed center line O. The third engaging portion 344B has an outer peripheral portion 344Ba with the center line S as the center and is formed in a disk shape, and is arranged at the rear end of each rotation shaft 344A so as to rotate around the center line S. It is fixed. The third engaging portion 344B engages the outer peripheral portion 344Ba with the outer peripheral portion 342a of the second engaging portion 342 (for example, engagement by gear meshing). The fourth engagement portion 344C has an outer peripheral portion 344Ca centered on the center line S and is formed in a disk shape, and rotates together with the third engagement portion 344B so as to rotate about the center line S. The shafts 344A are respectively fixed to the rear ends. The transmission member 344D is an endless member that hangs around and engages with the outer peripheral portion 341a of the first engaging portion 341 and the outer peripheral portion 344Ca of the fourth engaging portion 344C. The rotation transmission mechanism 34 according to the first embodiment includes an outer peripheral portion 341a of the first engaging portion 341 and an outer peripheral portion 344Ca of the fourth engaging portion 344C as sprockets, and includes an endless member configured as a chain on the sprocket. The transmission member 344D is engaged. Further, the engagement between the outer peripheral portion 342a of the second engaging portion 342 and the outer peripheral portion 344Ba of the third engaging portion 344B may be an engagement by meshing of gears. The outer peripheral portion 341a of the first engaging portion 341, the outer peripheral portion 342a of the second engaging portion 342, the outer peripheral portion 344Ba of the third engaging portion 344B, the outer peripheral portion 344Ca of the fourth engaging portion 344C, and the transmission member 344D. The engagement may be an engagement in which contact slippage is prevented via a high friction material or the like.

掘削カッタは、中心軸31の前端に設けた主羽根部材211の前面に掘削ビット(図示せず)を設けることによって主掘削カッタ21が構成される。また、掘削カッタは、回転軸33の前端に設けた副羽根部材221の前面に掘削ビット(図示せず)を設けることによって副掘削カッタ22が構成される。   The main excavation cutter 21 is configured by providing an excavation bit (not shown) in front of the main blade member 211 provided at the front end of the central shaft 31. Further, the excavation cutter is configured by providing an excavation bit (not shown) on the front surface of the sub blade member 221 provided at the front end of the rotating shaft 33.

ここで、回転機構3に係る寸法設定について説明する。図2および図3に示すように副羽根部材221の半径をbとし、当該副羽根部材221の中心Gから回転軸33の中心(移動中心線P)に至る距離rをr≦bと設定する。そして、第一係合部341の外周部341aの直径DをD≦2(b−r)と設定し、第二係合部342の外周部342aの直径を4Dと設定する。さらに、第三係合部344Bの外周部344Baの直径を2Dと設定し、第四係合部344Cの外周部344Caの直径を第一係合部341と同じくDと設定する。すなわち、第一係合部341の外周部341aおよび第二係合部342の外周部342aに係合する駆動伝達部344を設けることによって、第一係合部341の外周部341aが副羽根部材221の輪郭の外側にはみ出すことなく、主羽根部材211の1回転に対して副羽根部材221を同方向に2回転(自転)させる駆動条件が満足される。   Here, the dimension setting which concerns on the rotation mechanism 3 is demonstrated. As shown in FIGS. 2 and 3, the radius of the sub blade member 221 is b, and the distance r from the center G of the sub blade member 221 to the center of the rotation shaft 33 (moving center line P) is set to r ≦ b. . And the diameter D of the outer peripheral part 341a of the 1st engaging part 341 is set to D <= 2 (br), and the diameter of the outer peripheral part 342a of the 2nd engaging part 342 is set to 4D. Furthermore, the diameter of the outer peripheral portion 344Ba of the third engaging portion 344B is set to 2D, and the diameter of the outer peripheral portion 344Ca of the fourth engaging portion 344C is set to D as in the first engaging portion 341. That is, by providing the drive transmission portion 344 that engages with the outer peripheral portion 341a of the first engaging portion 341 and the outer peripheral portion 342a of the second engaging portion 342, the outer peripheral portion 341a of the first engaging portion 341 becomes the sub-blade member. The driving condition for rotating the sub blade member 221 twice in the same direction (spinning) with respect to one rotation of the main blade member 211 without projecting outside the outline of 221 is satisfied.

上記構成の掘削機は、回転機構3において駆動部32の駆動力を中心軸31に伝達することによって、中心軸31が固定中心線Oを中心として回転(例えば図2における時計回り方向)する。このとき、中心軸31に設けた主羽根部材211(主掘削カッタ21)が固定中心線Oを中心として回転(例えば図2における時計回り方向)する。また、中心軸31の回転が駆動伝達部344によって回転軸33に伝達されることによって、回転軸33が移動中心線Pを中心として回転(例えば図2における時計回り方向)する。このため、回転軸33に設けた副羽根部材221(副掘削カッタ22)が移動中心線Pを中心として回転(例えば図2における時計回り方向)する。このとき、上述した回転伝達機構34によって、主羽根部材211の1回転に対して副羽根部材221を同方向に2回転(自転)させることになる。なお、これは掘削機に固定された絶対座標系において、主羽根部材211の1回転に対して副羽根部材221が同方向に3回転することに相当している。   The excavator having the above configuration transmits the driving force of the driving unit 32 to the central axis 31 in the rotation mechanism 3, so that the central axis 31 rotates around the fixed center line O (for example, clockwise in FIG. 2). At this time, the main blade member 211 (main excavation cutter 21) provided on the central shaft 31 rotates (for example, clockwise in FIG. 2) about the fixed center line O. Further, the rotation of the center shaft 31 is transmitted to the rotation shaft 33 by the drive transmission unit 344, whereby the rotation shaft 33 rotates around the movement center line P (for example, clockwise in FIG. 2). For this reason, the sub blade member 221 (sub excavation cutter 22) provided on the rotating shaft 33 rotates around the movement center line P (for example, clockwise in FIG. 2). At this time, the rotation transmission mechanism 34 described above causes the sub-blade member 221 to rotate (rotate) twice in the same direction with respect to one rotation of the main blade member 211. This corresponds to the sub blade member 221 rotating three times in the same direction with respect to one rotation of the main blade member 211 in the absolute coordinate system fixed to the excavator.

具体的には、図2に示すように副羽根部材221が、主羽根部材211の先端から最も後退した位置であって、固定中心線Oから副羽根部材221の中心G、移動中心線Pの順で所望とする長円形状の軌跡の長辺に直交する直線上に並ぶように位置している。この状態から、固定中心線Oを中心に主羽根部材211を時計回りに1回転させる。このとき、主羽根部材211は、二点鎖線で示すように固定中心線Oを中心とした円形状の軌跡をなす。   Specifically, as shown in FIG. 2, the sub blade member 221 is the position most retracted from the tip of the main blade member 211, and the center G of the sub blade member 221 and the movement center line P from the fixed center line O They are positioned so as to be aligned on a straight line orthogonal to the long side of the desired oval locus in order. From this state, the main blade member 211 is rotated clockwise about the fixed center line O. At this time, the main blade member 211 forms a circular trajectory centered on the fixed center line O as indicated by a two-dot chain line.

一方、固定中心線Oを中心に主羽根部材211を反時計回りに1回転させると、副羽根部材221は、主羽根部材211の固定中心Oからの延在方向に対して、移動中心線Pを中心に同方向に2回転する。すなわち、主羽根部材211が図2および図4に至り時計回りに45°回転する過程で、副羽根部材221は時計回りに90°回転し、主羽根部材211の先端から進出し始める。次いで、主羽根部材211が、図4から図5に至り時計回りにさらに45°回転する過程で、副羽根部材221は時計回りにさらに90°回転し、主羽根部材211の先端から最も進出した位置であって、副羽根部材221の中心Gが固定中心線Oと移動中心線Pとを結ぶ直線上に位置する。次いで、主羽根部材211が、図5から図6に至り時計回りにさらに45°回転する過程で、副羽根部材221は時計回りにさらに90°回転し、主羽根部材211の先端から退避し始める。次いで、主羽根部材211が、図6から図7に至り時計回りにさらに45°回転する過程で、副羽根部材221は時計回りにさらに90°回転し、主羽根部材211の先端から最も後退した位置であって、副羽根部材221の中心Gが固定中心線Oと移動中心線Pとを結ぶ直線上に位置する。ここで、主羽根部材211が時計回りに180°回転した時点で、副羽根部材221が時計回りに360°回転する。そして、主羽根部材211が上記と同様に図4から図7に至り時計回りにさらに180°回転する過程で、副羽根部材221は時計回りに360°回転する。このようにして、副羽根部材221は、主羽根部材211の1回転に対して同方向に2回転することで、図7に示すように固定中心線Oを中心として左右方向に膨出した長円形状の軌跡をなす。この結果、本掘削機を前方向(図1参照)に推進することで図7に示すように長円形状の掘削断面の掘削孔Hを掘進することが可能になる。   On the other hand, when the main blade member 211 is rotated once counterclockwise around the fixed center line O, the sub blade member 221 moves the movement center line P with respect to the extending direction of the main blade member 211 from the fixed center O. 2 turns in the same direction around the center. That is, in the process in which the main blade member 211 is rotated 45 ° clockwise as shown in FIGS. 2 and 4, the sub blade member 221 is rotated 90 ° clockwise and starts to advance from the tip of the main blade member 211. Next, in the process in which the main blade member 211 is further rotated 45 ° clockwise from FIG. 4 to FIG. 5, the sub blade member 221 is further rotated 90 ° clockwise, and has advanced most from the tip of the main blade member 211. The center G of the sub blade member 221 is positioned on a straight line connecting the fixed center line O and the movement center line P. Next, in the process in which the main blade member 211 further rotates 45 ° clockwise from FIG. 5 to FIG. 6, the sub blade member 221 further rotates 90 ° clockwise and starts to retract from the tip of the main blade member 211. . Next, in the process in which the main blade member 211 further rotates 45 ° clockwise from FIG. 6 to FIG. 7, the sub blade member 221 further rotates 90 ° clockwise and retracts most from the tip of the main blade member 211. The center G of the sub blade member 221 is positioned on a straight line connecting the fixed center line O and the movement center line P. Here, when the main blade member 211 rotates 180 ° clockwise, the sub blade member 221 rotates 360 ° clockwise. Then, in the process in which the main blade member 211 is further rotated 180 ° clockwise from FIG. 4 to FIG. 7 as described above, the sub blade member 221 is rotated 360 ° clockwise. Thus, the sub-blade member 221 bulges in the left-right direction around the fixed center line O as shown in FIG. 7 by rotating twice in the same direction with respect to one rotation of the main blade member 211. Make a circular trajectory. As a result, by propelling the excavator forward (see FIG. 1), it becomes possible to excavate an excavation hole H having an elliptical excavation cross section as shown in FIG.

長円形状の軌跡を得る原理構成としては、ルーロー三角形の原理が用いられる。すなわち、図8に示すように、掘削機からみて主羽根部材211が固定中心線O(座標0,0)を中心にφ/3だけ回転する間に、副羽根部材221が移動中心線Pを中心にφだけ主羽根部材211と同方向に1回転するようにする。このとき、移動中心線Pから距離(偏心量)r離れた副羽根部材221の中心Gの座標は、横軸をX座標、縦軸をY座標とする絶対座標系で、O,G,Pの順で直線上に並んだ位置からの主羽根部材211の回転角をφ/3として下記数1および数2で得られる。なお、ルーロー三角形の幾何学条件から、副羽根部材221の中心Gがなす長円形状の軌跡の短辺長をa’(なお長辺長はa’+4r)として、下記数3のごとく偏心量r=0.0774a’と求まる。この偏心量rは、長円形状の軌跡で短辺長をaとして0.05a〜0.065aの範囲が好ましく、この範囲よりも大きくすると長円形状の短辺中央部が内側に凹形状となり、小さくすると円形状の軌跡に近づくように調整することが可能である。   The principle of the Reuleaux triangle is used as the principle configuration for obtaining an elliptical locus. That is, as shown in FIG. 8, while the main blade member 211 rotates by φ / 3 around the fixed center line O (coordinates 0, 0) as viewed from the excavator, the sub blade member 221 moves the movement center line P. The center is rotated once in the same direction as the main blade member 211 by φ. At this time, the coordinates of the center G of the sub blade member 221 that is a distance (eccentricity) r away from the moving center line P are an absolute coordinate system in which the horizontal axis is the X coordinate and the vertical axis is the Y coordinate. The rotation angle of the main blade member 211 from the position aligned on the straight line in this order is obtained by the following equations 1 and 2 with φ / 3 as the rotation angle. From the geometrical conditions of the Rouleau triangle, the short side length of the oval locus formed by the center G of the sub blade member 221 is defined as a ′ (note that the long side length is a ′ + 4r), and the amount of eccentricity is as shown in the following equation 3. r = 0.0774a ′ is obtained. This eccentric amount r is preferably an oval locus with a short side length of a and a range of 0.05a to 0.065a, and if it is larger than this range, the central part of the short side of the oval becomes a concave shape inside. If it is made smaller, it can be adjusted to approach a circular locus.

Figure 2007205104
Figure 2007205104

Figure 2007205104
Figure 2007205104

Figure 2007205104
Figure 2007205104

ここで、中心Gを中心として半径bの副羽根部材221を設定する。半径bは偏心量r以上(r≦b)で、かつ、副羽根部材221が主羽根部材211の先端からあまり突出しないようにする。主羽根部材211の先端に移動中心線Pがある場合はb=rであるが回転軸33を設ける寸法が必要となるため、実施する寸法はb>rとなる。なお、回転軸33を主羽根部材211に設ける寸法を考慮すると、主羽根部材211の長さ(固定中心線Oからの延在長さ)Lは、L=0.5a+bとなる。   Here, the sub blade member 221 having a radius b with the center G as the center is set. The radius b is not less than the eccentric amount r (r ≦ b), and the sub blade member 221 is prevented from protruding so much from the tip of the main blade member 211. When there is a movement center line P at the tip of the main blade member 211, b = r, but the dimension for providing the rotating shaft 33 is required, so the dimension to be implemented is b> r. In consideration of the dimensions for providing the rotating shaft 33 on the main blade member 211, the length (extending length from the fixed center line O) L of the main blade member 211 is L = 0.5a + b.

例えば、図8において単位をm(メートル)とする。ここでは、副羽根部材221の中心Gの軌跡(図8に破線で示す)となる長円形状の短辺長a’=4mとし、偏心量r=0.075×a’=0.3m、副羽根部材221の半径b=0.5m、主羽根部材211の長さL=0.5a’+b=2.5m(副羽根部材221の接合軸芯である移動中心線Pまでは2.3m)とした場合では、掘削される長円形状の掘削断面の短辺長aはa’+2b=5m、長辺長はa’+4r+2b=6.2mとなる。すなわち、図8に示す絶対座標系において、固定中心線Oを中心とした主羽根部材211の円形状の軌跡の左右両側を、当該主羽根部材211と同じ向きで3倍の速度で回転する副羽根部材221で掘削することがわかる。これは、主羽根部材211に副羽根部材221を取り付けた座標系(移動座標系)においては、主羽根部材211が1回転する間に副羽根部材221が同方向に2回転(自転)することに相当する。   For example, in FIG. 8, the unit is m (meter). Here, an oblong short side length a ′ = 4 m serving as a locus of the center G of the sub blade member 221 (shown by a broken line in FIG. 8), an eccentricity r = 0.075 × a ′ = 0.3 m, The radius b of the sub blade member 221 is 0.5 m and the length L of the main blade member 211 is 0.5 a ′ + b = 2.5 m (2.3 m to the moving center line P that is the joining axis of the sub blade member 221) ), The short side length “a” + 2b = 5 m and the long side length of the long circular excavation section to be excavated are a ′ + 4r + 2b = 6.2 m. In other words, in the absolute coordinate system shown in FIG. 8, the left and right sides of the circular trajectory of the main blade member 211 centered on the fixed center line O are rotated in the same direction as the main blade member 211 at a triple speed. It can be seen that the blade member 221 excavates. In the coordinate system (moving coordinate system) in which the sub blade member 221 is attached to the main blade member 211, the sub blade member 221 rotates twice (rotates) in the same direction while the main blade member 211 rotates once. It corresponds to.

このように、上述した実施の形態1における回転機構3(掘削機)は、所定の固定中心線Oを中心として回転可能に設けた中心軸31と、中心軸31の径外方向に延在して設けた主羽根部材211(主掘削カッタ21)と、固定中心線Oに平行な移動中心線Pを中心として主羽根部材211に対して回転可能に設けた回転軸33と、回転軸33の径外方向に延在して回転軸33の回転に伴い主羽根部材211の先端からの突出寸法が変化する態様で設けた副羽根部材221(副掘削カッタ22)と、中心軸31を回転駆動する駆動部32と、中心軸31の1回転を回転軸33の同方向の2回転として伝達する回転伝達機構34とを備えている。   As described above, the rotation mechanism 3 (excavator) in the first embodiment described above extends in the radially outward direction of the center shaft 31 provided to be rotatable about a predetermined fixed center line O and the center shaft 31. The main blade member 211 (the main excavation cutter 21) provided, the rotating shaft 33 provided to be rotatable with respect to the main blade member 211 around the moving center line P parallel to the fixed center line O, The auxiliary blade member 221 (sub-excavation cutter 22) provided in such a manner that the protrusion dimension from the tip of the main blade member 211 changes along with the rotation of the rotary shaft 33 extending in the radial direction, and the central shaft 31 is driven to rotate. And a rotation transmission mechanism 34 that transmits one rotation of the central shaft 31 as two rotations of the rotation shaft 33 in the same direction.

そして、駆動部32の駆動力を中心軸31に伝達することによって、中心軸31が固定中心線Oを中心として回転する。このため、中心軸31に設けた主羽根部材211が固定中心線Oを中心として回転する。また、中心軸31の回転が駆動伝達部344によって回転軸33に伝達されることによって、回転軸33が移動中心線Pを中心として中心軸31と同方向に回転する。このため、回転軸33に設けた副羽根部材221が移動中心線Pを中心として主羽根部材211と同方向に回転する。このとき、回転伝達機構34によって、主羽根部材211の1回転に対して副羽根部材221を同方向に2回転する。このため、主羽根部材211が固定中心線Oを中心とした円形状の軌跡をなし、副羽根部材221が固定中心線Oを中心とした長円形状の軌跡をなす。この結果、長円形状の掘削断面の掘削孔Hを掘進できる。なお、上述した実施の形態1では、横長の長円形状の軌跡を得ているが、上記回転機構3の構成で90°位相をずらすことで縦長の長円形状の軌跡となる。   Then, by transmitting the driving force of the driving unit 32 to the central axis 31, the central axis 31 rotates around the fixed center line O. For this reason, the main blade member 211 provided on the central shaft 31 rotates around the fixed center line O. Further, the rotation of the central shaft 31 is transmitted to the rotational shaft 33 by the drive transmission unit 344, so that the rotational shaft 33 rotates in the same direction as the central shaft 31 around the movement center line P. For this reason, the sub blade member 221 provided on the rotation shaft 33 rotates in the same direction as the main blade member 211 around the movement center line P. At this time, the rotation transmission mechanism 34 rotates the sub blade member 221 twice in the same direction for one rotation of the main blade member 211. For this reason, the main blade member 211 forms a circular locus centering on the fixed center line O, and the sub blade member 221 forms an oval locus centering on the fixed center line O. As a result, the excavation hole H having an elliptical excavation cross section can be excavated. In the first embodiment described above, a horizontally long oval locus is obtained. However, by shifting the phase by 90 ° in the configuration of the rotation mechanism 3, a vertically long oval locus is obtained.

すなわち、固定中心線Oを中心として主羽根部材211を回転駆動して円形状の掘削断面の掘削をし、かつ、固定中心線Oを中心として公転する副羽根部材221が自転することで主羽根部材211の外側で円形状の掘削断面を拡張するように長円形状の掘削断面の掘削をする回転機構によって成り立っている。この結果、副羽根部材221の負担が小さい単純なメカニズムによって長円形状の掘進を行うことが可能になる。また、主羽根部材211の駆動系は従前からある回転機構であり、この回転機構に副羽根部材221の駆動系を補助的に付加しているため、低コストで信頼性の高い回転機構および掘削機を得ることが可能である。   That is, the main blade member 211 is driven to rotate around the fixed center line O to excavate a circular excavation section, and the sub blade member 221 revolving around the fixed center line O rotates to rotate the main blade. The rotating mechanism is configured to excavate an elliptical excavation cross section so as to expand the circular excavation cross section outside the member 211. As a result, it becomes possible to perform the oval excavation by a simple mechanism with a small burden on the sub blade member 221. The drive system for the main blade member 211 is a conventional rotation mechanism, and the drive system for the auxiliary blade member 221 is supplementarily added to the rotation mechanism. It is possible to get a chance.

さらに、固定中心線Oを中心として主羽根部材211を回転駆動し、かつ、固定中心線Oを中心として公転する副羽根部材221が自転する回転機構であるため、副羽根部材221の駆動系である回転伝達機構34による回転の伝達を行うことで副羽根部材221を駆動して長円形状の掘削断面の掘削を行う一方、回転伝達機構34による回転の伝達を断つことで円形状の掘削断面の掘削を行うように切り替えることが可能である。この結果、例えば1台の掘削機によって線路用トンネルの円形状の掘削断面の掘削をし、続けて駅ホーム用トンネルの拡幅した長円形状の掘削断面の掘削をし、さらに続けて線路用トンネルの円形状の掘削断面の掘削をするなど、続けて異なる断面形状のトンネルを掘削でき、その断面中心を全て固定中心線Oに合わせることができる。   Further, since the auxiliary blade member 221 rotates around the fixed center line O and the secondary blade member 221 revolving around the fixed center line O rotates, the drive system of the auxiliary blade member 221 The sub-blade member 221 is driven by exchanging rotation by a certain rotation transmission mechanism 34 to excavate an elliptical excavation section, while the circular excavation section is cut by interrupting transmission of rotation by the rotation transmission mechanism 34. It is possible to switch to drilling. As a result, for example, one excavator excavates the circular excavation section of the railway tunnel, then excavates the widened elliptical excavation section of the station platform tunnel, and then continues to the railway tunnel. Thus, a tunnel having a different cross-sectional shape can be continuously excavated, such as excavation of a circular excavation section, and the center of the cross-section can be aligned with the fixed center line O.

また、副羽根部材221の主羽根部材211に対する位相角を調整することで、長円形状の長辺(長軸方向)を自由に設定でき、例えば横長の長円形状や縦長の長円形状の掘削断面の掘削を行うことができる。ここで、位相角とは、主羽根部材211と副羽根部材221とを接合する回転軸33(移動中心線P)から固定中心線Oまでのベクトルに対する、主羽根部材211と副羽根部材221とを接合する回転軸33(移動中心線P)から副羽根部材221の中心Gまでのベクトルの回転角を指し、当該回転角が0となる方向が長円形状の短辺方向である。   Further, by adjusting the phase angle of the sub blade member 221 with respect to the main blade member 211, the long side of the oval shape (major axis direction) can be freely set, for example, a horizontally long oval shape or a vertically long oval shape. The excavation section can be excavated. Here, the phase angle refers to the main blade member 211 and the sub blade member 221 with respect to the vector from the rotation axis 33 (movement center line P) that joins the main blade member 211 and the sub blade member 221 to the fixed center line O. Is a rotation angle of a vector from the rotation shaft 33 (movement center line P) to the center G of the sub blade member 221, and a direction in which the rotation angle is 0 is a short side direction of an oval shape.

また、主羽根部材211は十文字形状に配置されているため、掘削面にあたるカッタヘッドの面積が過大にならないため、掘削土を胴部1の内部に取り込むための開口面積を十分に確保することができる。   Further, since the main blade member 211 is arranged in a cross shape, the area of the cutter head corresponding to the excavation surface does not become excessive, so that a sufficient opening area for taking the excavated soil into the trunk portion 1 can be secured. it can.

また、中心軸31が固定中心線O上でその軸心がずれることなく回転するため、中心軸31をさらに前方向に延長した先端にロックオーガーなどの円形ドリルを設けた掘削を併用することができる。この結果、掘削に先駆けて削岩を行うことが可能になり、主掘削カッタ21や副掘削カッタ22の負荷を軽減できる。   Further, since the center axis 31 rotates on the fixed center line O without shifting its axis, excavation provided with a circular drill such as a lock auger at the front end of the center axis 31 extended further forward can be used together. it can. As a result, rock drilling can be performed prior to excavation, and the load on the main excavation cutter 21 and the sub excavation cutter 22 can be reduced.

また、上記回転機構3は、固定中心線Oを中心として主羽根部材211を回転駆動し、かつ、主羽根部材211に対して移動中心線Pを中心として副羽根部材221を回転駆動する構成である。このため、ロータリーエンジンにおけるケーシングのようにルーロー三角形の移動軌跡を内面とする枠体にルーロー三角形状の軸を支持して回転させる必要がない。すなわち、枠体が必要ない。このため、掘進した掘削孔Hの断面形状に対して、掘削機の胴部1の前面視の輪郭を小さく形成することが可能になる。この結果、掘削カッタが先行して掘進した掘削孔Hに胴部1が通過できるので、長円形状の掘削断面の掘削孔Hの掘進を行う掘削機を得ることが可能になる。さらに、中心軸31が固定中心線O上でその軸心がずれることなく回転するため、回転ぶれや振動を低減することが可能になる。また、中心軸31と回転軸33との回転の伝達に従前の自在継手を要することがないので、自在継手に係るコストを低減することが可能になる。また、上記回転機構3は、固定中心線Oを中心として主羽根部材211を回転駆動し、かつ、固定中心線Oを中心として副羽根部材221を公転駆動する回転機構である。このため、従前のごとくスイングアームを用いた複雑な構成にすることがなく、製造コストを低減することが可能である。すなわち、上記回転機構3(掘削機)は、簡素な機構で長円形状の掘削断面の掘削孔Hを掘進するため、故障が起こり難く信頼性が高く、コストを低減することが可能である。   The rotating mechanism 3 is configured to rotate the main blade member 211 around the fixed center line O and to rotate the sub blade member 221 around the moving center line P with respect to the main blade member 211. is there. For this reason, it is not necessary to support and rotate the axis | shaft of a Rouleau triangle on the frame which makes the movement locus | trajectory of a Rouleau triangle an inner surface like the casing in a rotary engine. That is, a frame is not necessary. For this reason, it becomes possible to form the outline of the body part 1 of an excavator small in front view with respect to the cross-sectional shape of the excavated drill hole H. As a result, since the trunk portion 1 can pass through the excavation hole H that the excavation cutter has excavated in advance, it is possible to obtain an excavator that excavates the excavation hole H having an elliptical excavation cross section. Furthermore, since the center axis 31 rotates on the fixed center line O without shifting its axis, it is possible to reduce rotational shake and vibration. In addition, since it is not necessary to use a universal joint prior to transmission of rotation between the central shaft 31 and the rotary shaft 33, it is possible to reduce the cost of the universal joint. The rotation mechanism 3 is a rotation mechanism that rotationally drives the main blade member 211 about the fixed center line O and revolves the sub blade member 221 about the fixed center line O. For this reason, it is possible to reduce the manufacturing cost without using a complicated configuration using a swing arm as before. That is, the rotating mechanism 3 (excavator) excavates the excavation hole H having an elliptical excavation cross section with a simple mechanism, so that failure is unlikely to occur and the reliability is high, and the cost can be reduced.

また、主羽根部材211と副羽根部材221とが同方向に回転するため、各羽根部材に設けるカッタビットの形状を切削方向に特定したものを用いることができる。この結果、カッタビットの切削方向の変化が小さく、特に副羽根部材221(副掘削カッタ22)での掘削が大きい長円形状の長辺方向拡幅部分においてカッタビットを安定して移動できる。   Further, since the main blade member 211 and the sub blade member 221 rotate in the same direction, it is possible to use a cutter bit having a shape specified in the cutting direction. As a result, the change in the cutting direction of the cutter bit is small, and the cutter bit can be stably moved in the long side direction widened portion of the oval shape where the excavation with the sub blade member 221 (sub excavation cutter 22) is particularly large.

[実施の形態2]
図9は本発明に係る回転機構を用いた掘削機の実施の形態2を示す概略側断面図、図10は図9に示す掘削機を軸方向(前方向)から視た概念図、図11は図10の一部拡大図である。なお、以下に説明する実施の形態2において、上述した実施の形態1と同等部分には同一の符号を付して説明を省略する。
[Embodiment 2]
9 is a schematic sectional side view showing a second embodiment of an excavator using a rotating mechanism according to the present invention, FIG. 10 is a conceptual diagram of the excavator shown in FIG. 9 viewed from the axial direction (forward direction), and FIG. FIG. 11 is a partially enlarged view of FIG. 10. Note that, in the second embodiment described below, the same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

実施の形態2における掘削機では、回転機構3について回転伝達機構34の構成が異なる。この回転伝達機構34は、第一係合部341、第二係合部342および駆動伝達部343を有している。第一係合部341は、移動中心線Pを中心とした外周部341aを有して円盤状に形成してあり、当該移動中心線Pを中心に回転するように各回転軸33の後端にそれぞれ固定してある。第二係合部342は、固定中心線Oを中心とした外周部342aを有し、かつ、中心軸31を回転可能に内挿して胴部1に固定してある。駆動伝達部343は、第一係合部341の外周部341aおよび第二係合部342の外周部342aに係合して中心軸31の回転を回転軸33の回転として伝達する。この駆動伝達部343は、主羽根部材211の1回転に対して副羽根部材221を逆方向に4回転させるように、第一係合部341の外周部341aおよび第二係合部342の外周部342aに掛け回して係合する無端状部材からなる。実施の形態2における回転伝達機構34は、第一係合部341の外周部341aおよび第二係合部342の外周部342aをスプロケットとして構成し、このスプロケットにチェーンとして構成した無端状部材からなる駆動伝達部343を係合する構成としてある。他に、第一係合部341の外周部341a、第二係合部342の外周部342aおよび無端状部材からなる駆動伝達部343の係合は、高摩擦材などを介して接触滑りが防止された係合であってもよい。   In the excavator in the second embodiment, the configuration of the rotation transmission mechanism 34 is different with respect to the rotation mechanism 3. The rotation transmission mechanism 34 includes a first engagement portion 341, a second engagement portion 342, and a drive transmission portion 343. The first engagement portion 341 has a disc-like shape having an outer peripheral portion 341a centered on the movement center line P, and the rear end of each rotation shaft 33 so as to rotate around the movement center line P. Are fixed to each. The second engaging portion 342 has an outer peripheral portion 342 a centered on the fixed center line O, and is fixed to the trunk portion 1 by rotatably inserting the central shaft 31. The drive transmission portion 343 engages with the outer peripheral portion 341 a of the first engagement portion 341 and the outer peripheral portion 342 a of the second engagement portion 342 and transmits the rotation of the central shaft 31 as the rotation of the rotation shaft 33. The drive transmission portion 343 has outer peripheries 341 a of the first engaging portion 341 and outer peripheries of the second engaging portion 342 so that the sub blade member 221 rotates four times in the reverse direction with respect to one rotation of the main blade member 211. It consists of an endless member which hangs around and engages with the part 342a. The rotation transmission mechanism 34 according to the second embodiment includes an endless member in which the outer peripheral portion 341a of the first engaging portion 341 and the outer peripheral portion 342a of the second engaging portion 342 are configured as sprockets and the sprocket is configured as a chain. The drive transmission unit 343 is engaged. In addition, the engagement of the outer peripheral portion 341a of the first engaging portion 341, the outer peripheral portion 342a of the second engaging portion 342, and the drive transmission portion 343 formed of an endless member prevents contact slip through a high friction material or the like. May be engaged.

ここで、回転機構3に係る寸法設定について説明する。図10および図11に示すように副羽根部材221の半径をbとし、当該副羽根部材221の中心Gから回転軸33の中心(移動中心線P)に至る距離rをr≦bと設定する。そして、第一係合部341の外周部341aの直径DをD≦2(b−r)と設定し、第二係合部342の外周部342aの直径を4Dと設定する。すなわち、第一係合部341の外周部341aおよび第二係合部342の外周部342aに掛け回して係合する無端状部材の駆動伝達部343を設けることによって、第一係合部341の外周部341aが副羽根部材221の輪郭の外側にはみ出すことなく、主羽根部材211の1回転に対して副羽根部材221を逆方向に4回転(自転)させる駆動条件が満足される。   Here, the dimension setting which concerns on the rotation mechanism 3 is demonstrated. As shown in FIGS. 10 and 11, the radius of the sub blade member 221 is b, and the distance r from the center G of the sub blade member 221 to the center of the rotating shaft 33 (moving center line P) is set to r ≦ b. . And the diameter D of the outer peripheral part 341a of the 1st engaging part 341 is set to D <= 2 (br), and the diameter of the outer peripheral part 342a of the 2nd engaging part 342 is set to 4D. That is, by providing a drive transmission portion 343 of an endless member that is wound around and engaged with the outer peripheral portion 341a of the first engaging portion 341 and the outer peripheral portion 342a of the second engaging portion 342, the first engaging portion 341 The driving condition for rotating the sub blade member 221 four times in the reverse direction (spinning) with respect to one rotation of the main blade member 211 is satisfied without the outer peripheral portion 341a protruding outside the outline of the sub blade member 221.

上記構成の掘削機は、回転機構3において駆動部32の駆動力を中心軸31に伝達することによって、中心軸31が固定中心線Oを中心として回転(例えば図10における反時計回り方向)する。このため、中心軸31に設けた主羽根部材211(主掘削カッタ21)が固定中心線Oを中心として回転(例えば図10における反時計回り方向)する。また、中心軸31の回転が駆動伝達部343によって回転軸33に伝達されることによって、回転軸33が移動中心線Pを中心として回転(例えば図10における時計回り方向)する。このため、回転軸33に設けた副羽根部材221(副掘削カッタ22)が移動中心線Pを中心として回転(例えば図10における時計回り方向)する。このとき、上述した回転伝達機構34によって、主羽根部材211の1回転に対して副羽根部材221を逆方向に4回転(自転)させることになる。なお、これは掘削機に固定された絶対座標系において、主羽根部材211の1回転に対して副羽根部材221が逆向きに3回転することに相当している。   The excavator having the above-described configuration transmits the driving force of the driving unit 32 to the central axis 31 in the rotation mechanism 3 so that the central axis 31 rotates around the fixed center line O (for example, counterclockwise in FIG. 10). . For this reason, the main blade member 211 (main excavation cutter 21) provided on the center shaft 31 rotates around the fixed center line O (for example, counterclockwise in FIG. 10). Further, the rotation of the central shaft 31 is transmitted to the rotational shaft 33 by the drive transmission unit 343, so that the rotational shaft 33 rotates about the movement center line P (for example, clockwise in FIG. 10). For this reason, the sub blade member 221 (sub excavation cutter 22) provided on the rotating shaft 33 rotates around the movement center line P (for example, in the clockwise direction in FIG. 10). At this time, the rotation transmission mechanism 34 described above causes the sub blade member 221 to rotate four times in the reverse direction (rotation) with respect to one rotation of the main blade member 211. This corresponds to the sub blade member 221 rotating three times in the opposite direction with respect to one rotation of the main blade member 211 in the absolute coordinate system fixed to the excavator.

具体的には、図10に示すように副羽根部材221が、主羽根部材211の先端から最も後退した位置であって、固定中心線Oから副羽根部材221の中心G、移動中心線Pの順で所望とする略正方形状の軌跡の1辺に直交する直線上に並ぶように位置している。この状態から、固定中心線Oを中心に主羽根部材211を反時計回りに1回転させる。このとき、主羽根部材211は、二点鎖線で示すように固定中心線Oを中心とした円形状の軌跡をなす。   Specifically, as shown in FIG. 10, the sub blade member 221 is the position most retracted from the tip of the main blade member 211, and the center G of the sub blade member 221 and the movement center line P from the fixed center line O. They are positioned so as to be arranged on a straight line orthogonal to one side of a desired substantially square locus in order. From this state, the main blade member 211 is rotated counterclockwise once around the fixed center line O. At this time, the main blade member 211 forms a circular trajectory centered on the fixed center line O as indicated by a two-dot chain line.

一方、固定中心線Oを中心に主羽根部材211を反時計回りに1回転させると、副羽根部材221は、主羽根部材211の固定中心線Oからの延在方向に対して、移動中心線Pを中心に逆方向に4回転する。すなわち、主羽根部材211が図10、図12および図13に至り反時計回りに45°回転する過程で、副羽根部材221は時計回りに180°回転し、主羽根部材211の先端から最も進出した位置であって、副羽根部材221の中心Gが固定中心線Oと移動中心線Pとを結ぶ直線上に位置する。次いで、主羽根部材211が、図13から図15に至り反時計回りにさらに45°回転する過程で、副羽根部材221は時計回りにさらに180°回転し、主羽根部材211の先端から最も後退した位置であって、副羽根部材221の中心Gが固定中心線Oと移動中心線Pとを結ぶ直線上に位置する。次いで、主羽根部材211が、図15から図17に至り反時計回りにさらに45°回転する過程で、副羽根部材221は時計回りにさらに180°回転し、主羽根部材211の先端から最も進出した位置であって、副羽根部材221の中心Gが固定中心線Oと移動中心線Pとを結ぶ直線上に位置する。最後に、主羽根部材211が、図17から図19に至り反時計回りにさらに45°回転する過程で、副羽根部材221は時計回りにさらに180°回転し、主羽根部材211の先端から最も後退した位置であって、副羽根部材221の中心Gが固定中心線Oと移動中心線Pとを結ぶ直線上に位置する。このようにして、副羽根部材221は、主羽根部材211の1回転に対して逆方向に4回転することで、図19に示すように固定中心線Oを中心として角部を円弧状とした略正方形状の軌跡をなす。この結果、本掘削機を前方向(図9参照)に推進することで図19に示すように角部が円弧状の略正方形状の掘削断面の掘削孔Hを掘進することが可能になる。   On the other hand, when the main blade member 211 is rotated once counterclockwise about the fixed center line O, the sub blade member 221 moves in the moving center line with respect to the extending direction of the main blade member 211 from the fixed center line O. 4 turns in the opposite direction around P. That is, in the process in which the main blade member 211 is rotated 45 ° counterclockwise until reaching the FIGS. 10, 12 and 13, the sub blade member 221 rotates 180 ° clockwise and advances most from the tip of the main blade member 211. The center G of the sub blade member 221 is located on a straight line connecting the fixed center line O and the movement center line P. Next, in the process in which the main blade member 211 is further rotated 45 ° counterclockwise from FIG. 13 to FIG. 15, the sub blade member 221 is further rotated 180 ° clockwise and retreats most from the tip of the main blade member 211. The center G of the sub blade member 221 is located on a straight line connecting the fixed center line O and the movement center line P. Next, in the process in which the main blade member 211 further rotates 45 ° counterclockwise from FIG. 15 to FIG. 17, the sub blade member 221 further rotates 180 ° clockwise and advances most from the tip of the main blade member 211. The center G of the sub blade member 221 is located on a straight line connecting the fixed center line O and the movement center line P. Finally, in the process in which the main blade member 211 is further rotated 45 ° counterclockwise from FIG. 17 to FIG. 19, the sub blade member 221 is further rotated 180 ° clockwise and the most from the tip of the main blade member 211 The center G of the sub blade member 221 is located on a straight line connecting the fixed center line O and the movement center line P. In this way, the sub blade member 221 is rotated four times in the opposite direction to one rotation of the main blade member 211, so that the corner portion has an arc shape around the fixed center line O as shown in FIG. It has a substantially square trajectory. As a result, by propelling the excavator forward (see FIG. 9), it becomes possible to excavate the excavation hole H having a substantially square excavation cross-section with an arcuate corner as shown in FIG.

略正方形状の軌跡を得る原理構成としては、ルーロー三角形の原理が用いられる。すなわち、図20に示すように、掘削機から見て主羽根部材211が固定中心線O(座標0,0)を中心にφ/3だけ回転する間に、副羽根部材221が移動中心線Pを中心にφだけ主羽根部材211と逆方向に1回転するようにする。このとき、移動中心線Pから距離(偏心量)r離れた副羽根部材221の中心Gの座標は、横軸をX座標、縦軸をY座標とする絶対座標系で、O,G,Pの順で直線上に並んだ位置からの主羽根部材211の回転角をφ/3として下記数4および数5で得られる。なお、ルーロー三角形の幾何学条件から、図10にあるように副羽根部材221の中心Gがなす略正方形状の軌跡の辺長をa’として、上記数3のごとく偏心量r=0.0774a’と求まる。この偏心量rは、略正方形状の軌跡の長辺をaとして0.05a〜0.065aの範囲が好ましく、この範囲よりも大きくすると略正方形状の辺中央部が内側に凹形状となり、小さくすると円形状の軌跡に近づくように調整することが可能である。   The principle of the Reuleau triangle is used as the principle configuration for obtaining a substantially square locus. That is, as shown in FIG. 20, while the main blade member 211 is rotated by φ / 3 around the fixed center line O (coordinates 0, 0) as viewed from the excavator, the sub blade member 221 is moved along the moving center line P. Is rotated once in the opposite direction to the main blade member 211 by φ. At this time, the coordinates of the center G of the sub blade member 221 that is a distance (eccentricity) r away from the moving center line P are an absolute coordinate system in which the horizontal axis is the X coordinate and the vertical axis is the Y coordinate. The rotation angle of the main blade member 211 from the position aligned on the straight line in this order is obtained by the following formulas 4 and 5 with φ / 3. From the geometrical conditions of the Rouleau triangle, as shown in FIG. 10, the side length of the substantially square locus formed by the center G of the sub blade member 221 is a ′, and the eccentricity r = 0.0774a as shown in the above equation 3. ' The amount of eccentricity r is preferably in the range of 0.05a to 0.065a, where a is the long side of the substantially square-shaped trajectory. Then, it is possible to adjust so that it may approach a circular locus.

Figure 2007205104
Figure 2007205104

Figure 2007205104
Figure 2007205104

ここで、中心Gを中心として半径bの副羽根部材221を設定する。半径bは偏心量r以上(r≦b)で、かつ、副羽根部材221が主羽根部材211の先端からあまり突出しないようにする。主羽根部材211の先端に移動中心線Pがある場合はb=rであるが回転軸33を設ける寸法が必要となるため、実施する寸法はb>rとなる。なお、回転軸33を主羽根部材211に設ける寸法を考慮すると、主羽根部材211の長さ(固定中心線Oからの延在長さ)Lは、L=0.5a’+bとなる。   Here, the sub blade member 221 having a radius b with the center G as the center is set. The radius b is not less than the eccentric amount r (r ≦ b), and the sub blade member 221 is prevented from protruding so much from the tip of the main blade member 211. When there is a movement center line P at the tip of the main blade member 211, b = r, but the dimension for providing the rotating shaft 33 is required, so the dimension to be implemented is b> r. In consideration of the dimensions for providing the rotation shaft 33 on the main blade member 211, the length (extending length from the fixed center line O) L of the main blade member 211 is L = 0.5a '+ b.

例えば、図20において単位をm(メートル)とする。ここでは、副羽根部材221の中心Gの軌跡(図20に破線で示す)となる略正方形状の辺長a’=4mとし、偏心量r=0.075×a’=0.3m、副羽根部材221の半径b=0.5m、主羽根部材211の長さL=0.5a’+b=2.5m(副羽根部材221の接合軸芯である移動中心線Pまでは2.3m)とした場合では、掘削される略正方形状の掘削断面の辺長aは、a’+2b=5mとなる。すなわち、図20に示す絶対座標系において、固定中心線Oを中心とした主羽根部材211の円形状の軌跡の四隅を、当該主羽根部材211とは逆向きで3倍の速度で回転する副羽根部材221で掘削することがわかる。これは、主羽根部材211に副羽根部材221を取り付けた座標系(移動座標系)においては、主羽根部材211が1回転する間に副羽根部材221が逆方向に4回転(自転)することに相当する。   For example, in FIG. 20, the unit is m (meter). Here, the side length a ′ = 4 m of a substantially square shape serving as a locus of the center G of the sub blade member 221 (indicated by a broken line in FIG. 20), the amount of eccentricity r = 0.075 × a ′ = 0.3 m, The radius b of the blade member 221 is 0.5 m and the length L of the main blade member 211 is 0.5 a ′ + b = 2.5 m (2.3 m to the moving center line P that is the joining axis of the sub blade member 221). In this case, the side length a of the substantially square excavation section to be excavated is a ′ + 2b = 5 m. That is, in the absolute coordinate system shown in FIG. 20, the four corners of the circular trajectory of the main blade member 211 centered on the fixed center line O are sub-rotations rotating at a speed three times opposite to the main blade member 211. It can be seen that the blade member 221 excavates. This is because in the coordinate system (moving coordinate system) in which the sub blade member 221 is attached to the main blade member 211, the sub blade member 221 rotates four times in the reverse direction (rotation) while the main blade member 211 rotates once. It corresponds to.

このように、上述した実施の形態2における回転機構3(掘削機)は、所定の固定中心線Oを中心として回転可能に設けた中心軸31と、中心軸31の径外方向に延在して設けた主羽根部材211(主掘削カッタ21)と、固定中心線Oに平行な移動中心線Pを中心として主羽根部材211に対して回転可能に設けた回転軸33と、回転軸33の径外方向に延在して回転軸33の回転に伴い主羽根部材211の先端からの突出寸法が変化する態様で設けた副羽根部材221(副掘削カッタ22)と、中心軸31を回転駆動する駆動部32と、中心軸31の1回転を回転軸33の逆方向の4回転として伝達する回転伝達機構34とを備えている。   As described above, the rotation mechanism 3 (excavator) according to the second embodiment described above extends in the radially outward direction of the center shaft 31 provided rotatably around the predetermined fixed center line O. The main blade member 211 (the main excavation cutter 21) provided, the rotating shaft 33 provided to be rotatable with respect to the main blade member 211 around the moving center line P parallel to the fixed center line O, The auxiliary blade member 221 (sub-excavation cutter 22) provided in such a manner that the protrusion dimension from the tip of the main blade member 211 changes along with the rotation of the rotary shaft 33 extending in the radial direction, and the central shaft 31 is driven to rotate. And a rotation transmission mechanism 34 that transmits one rotation of the central shaft 31 as four rotations in the reverse direction of the rotation shaft 33.

そして、駆動部32の駆動力を中心軸31に伝達することによって、中心軸31が固定中心線Oを中心として回転する。このため、中心軸31に設けた主羽根部材211が固定中心線Oを中心として回転する。また、中心軸31の回転が駆動伝達部343によって回転軸33に伝達されることによって、回転軸33が移動中心線Pを中心として中心軸31と逆方向に回転する。このため、回転軸33に設けた副羽根部材221が移動中心線Pを中心として主羽根部材211と逆方向に回転する。このとき、回転伝達機構34によって、主羽根部材211の1回転に対して副羽根部材221を逆方向に4回転する。このため、主羽根部材211が固定中心線Oを中心とした円形状の軌跡をなし、副羽根部材221が固定中心線Oを中心とした略正方形状の軌跡をなす。この結果、略正方形状の掘削断面の掘削孔Hを掘進できる。   Then, by transmitting the driving force of the driving unit 32 to the central axis 31, the central axis 31 rotates around the fixed center line O. For this reason, the main blade member 211 provided on the central shaft 31 rotates around the fixed center line O. Further, the rotation of the central shaft 31 is transmitted to the rotational shaft 33 by the drive transmission unit 343, so that the rotational shaft 33 rotates in the direction opposite to the central shaft 31 around the movement center line P. For this reason, the sub blade member 221 provided on the rotating shaft 33 rotates in the direction opposite to the main blade member 211 around the movement center line P. At this time, the rotation transmission mechanism 34 rotates the sub blade member 221 four times in the reverse direction with respect to one rotation of the main blade member 211. For this reason, the main blade member 211 forms a circular locus centered on the fixed center line O, and the sub blade member 221 forms a substantially square locus centering on the fixed center line O. As a result, the excavation hole H having an approximately square excavation cross section can be excavated.

すなわち、固定中心線Oを中心として主羽根部材211を回転駆動して円形状の掘削断面の掘削をし、かつ、固定中心線Oを中心として公転する副羽根部材221が自転することで主羽根部材211の外側で円形状の掘削断面を拡張するように略正方形状の掘削断面の掘削をする回転機構によって成り立っている。この結果、副羽根部材221の負担が小さい単純なメカニズムによって略正方形状の掘進を行うことが可能になる。また、主羽根部材211の駆動系は従前からある回転機構であり、この回転機構に副羽根部材221の駆動系を補助的に付加しているため、低コストで信頼性の高い回転機構および掘削機を得ることが可能である。   That is, the main blade member 211 is driven to rotate around the fixed center line O to excavate a circular excavation section, and the sub blade member 221 revolving around the fixed center line O rotates to rotate the main blade. The rotation mechanism is configured to excavate a substantially square excavation cross section so as to expand the circular excavation cross section outside the member 211. As a result, it is possible to dig a substantially square shape by a simple mechanism that places a small burden on the sub blade member 221. The drive system for the main blade member 211 is a conventional rotation mechanism, and the drive system for the auxiliary blade member 221 is supplementarily added to the rotation mechanism. It is possible to get a chance.

さらに、固定中心線Oを中心として主羽根部材211を回転駆動し、かつ、固定中心線Oを中心として公転する副羽根部材221が自転する回転機構であるため、副羽根部材221の駆動系である回転伝達機構34による回転の伝達を行うことで副羽根部材221を駆動して略正方形状の掘削断面の掘削を行う一方、回転伝達機構34による回転の伝達を断つことで円形状の掘削断面の掘削を行うように切り替えることが可能である。この結果、例えば1台の掘削機によって線路用トンネルの円形状の掘削断面の掘削をし、続けて駅ホーム用トンネルの略正方形状の掘削断面の掘削をし、さらに続けて線路用トンネルの円形状の掘削断面の掘削をするなど、続けて異なる断面形状のトンネルを掘削でき、その断面中心を全て固定中心線Oに合わせることができる。   Further, since the auxiliary blade member 221 rotates around the fixed center line O and the secondary blade member 221 revolving around the fixed center line O rotates, the drive system of the auxiliary blade member 221 The sub blade member 221 is driven by transmitting rotation by a certain rotation transmission mechanism 34 to excavate a substantially square excavation section, while the circular transmission section by cutting off the rotation transmission by the rotation transmission mechanism 34. It is possible to switch to drilling. As a result, for example, a circular excavation section of the railway tunnel is excavated by one excavator, and then an approximately square excavation section of the tunnel for the station platform is excavated, and then the circular section of the railway tunnel is continued. It is possible to continuously excavate tunnels having different cross-sectional shapes, such as excavation of the excavation cross section having a shape, and the center of the cross-section can be aligned with the fixed center line O.

また、主羽根部材211は十文字形状に配置されているため、掘削面にあたるカッタヘッドの面積が過大にならないため、掘削土を胴部1の内部に取り込むための開口面積を十分に確保することができる。   Further, since the main blade member 211 is arranged in a cross shape, the area of the cutter head corresponding to the excavation surface does not become excessive, so that a sufficient opening area for taking the excavated soil into the trunk portion 1 can be secured. it can.

また、中心軸31が固定中心線O上でその軸心がずれることなく回転するため、中心軸31をさらに前方向に延長した先端にロックオーガーなどの円形ドリルを設けた掘削を併用することができる。この結果、掘削に先駆けて削岩を行うことが可能になり、主掘削カッタ21や副掘削カッタ22の負荷を軽減できる。   Further, since the center axis 31 rotates on the fixed center line O without shifting its axis, excavation provided with a circular drill such as a lock auger at the front end of the center axis 31 extended further forward can be used together. it can. As a result, rock drilling can be performed prior to excavation, and the load on the main excavation cutter 21 and the sub excavation cutter 22 can be reduced.

また、上記回転機構3は、固定中心線Oを中心として主羽根部材211を回転駆動し、かつ、主羽根部材211に対して移動中心線Pを中心として副羽根部材221を回転駆動する構成である。このため、従前の略正方形状の軌跡をなすようにルーロー三角形の外幅を一辺とする正方形枠にルーロー三角形状の軸を支持して回転させる必要がない。すなわち、枠体が必要ない。このため、掘進した掘削孔Hの断面形状に対して、掘削機の胴部1の前面視の輪郭を小さく形成することが可能になる。この結果、掘削カッタが先行して掘進した掘削孔Hに胴部1が通過できるので、略正方形状の掘削断面の掘削孔Hの掘進を行う掘削機を得ることが可能になる。さらに、中心軸31が固定中心線O上でその軸心がずれることなく回転するため、回転ぶれや振動を低減することが可能になる。また、中心軸31と回転軸33との回転の伝達に従前の自在継手を要することがないので、自在継手に係るコストを低減することが可能になる。また、上記回転機構3は、固定中心線Oを中心として主羽根部材211を回転駆動し、かつ、固定中心線Oを中心として副羽根部材221を公転駆動する回転機構である。このため、従前のごとくスイングアームを用いた複雑な構成にすることがなく、製造コストを低減することが可能である。すなわち、上記回転機構3(掘削機)は、簡素な機構で略正方形状の掘削断面の掘削孔Hを掘進するため、故障が起こり難く信頼性が高く、コストを低減することが可能である。   The rotating mechanism 3 is configured to rotate the main blade member 211 around the fixed center line O and to rotate the sub blade member 221 around the moving center line P with respect to the main blade member 211. is there. For this reason, it is not necessary to support and rotate the axis of the Rouleau triangle in a square frame having one side of the outer width of the Rouleau triangle so as to form a conventional approximately square locus. That is, a frame is not necessary. For this reason, it becomes possible to form the outline of the body part 1 of an excavator small in front view with respect to the cross-sectional shape of the excavated drill hole H. As a result, since the trunk portion 1 can pass through the excavation hole H that the excavation cutter has excavated in advance, an excavator that excavates the excavation hole H having an approximately square excavation cross section can be obtained. Furthermore, since the center axis 31 rotates on the fixed center line O without shifting its axis, it is possible to reduce rotational shake and vibration. In addition, since it is not necessary to use a universal joint prior to transmission of rotation between the central shaft 31 and the rotary shaft 33, it is possible to reduce the cost of the universal joint. The rotation mechanism 3 is a rotation mechanism that rotationally drives the main blade member 211 about the fixed center line O and revolves the sub blade member 221 about the fixed center line O. For this reason, it is possible to reduce the manufacturing cost without using a complicated configuration using a swing arm as before. That is, since the rotation mechanism 3 (excavator) digs the excavation hole H having a substantially square excavation cross section with a simple mechanism, failure is unlikely to occur, the reliability is high, and the cost can be reduced.

ところで、図21および図22は実施の形態2における回転伝達機構34の他の例を示している。ここでの回転伝達機構34は、第一係合部341、第二係合部342および駆動伝達部345を有している。第一係合部341は、移動中心線Pを中心とした外周部341aを有して円盤状に形成してあり、当該移動中心線Pを中心に回転するように各回転軸33の後端にそれぞれ固定してある。第二係合部342は、固定中心線Oを中心とした外周部342aを有し、かつ、中心軸31を回転可能に内挿して胴部1に固定してある。駆動伝達部345は、第一係合部341の外周部341aおよび第二係合部342の外周部342aに係合して中心軸31の回転を回転軸33の回転として伝達する。この駆動伝達部345は、回転軸345Aと、第五係合部345Bとで構成してある。回転軸345Aは、固定中心線Oおよび移動中心線Pと平行な中心線Sを中心として主羽根部材211に回転可能に設けてある。回転軸345Aは、主羽根部材211に貫通した後端が主羽根部材211の後方に延出して設けてある。なお、回転軸345Aは、図22に示すように固定中心線Oから相反する方向に延在した一文字形状の主羽根部材211に2つ設けてある。第五係合部345Bは、中心線Sを中心とした外周部345Baを有して円盤状に形成してあり、当該中心線Sを中心に回転するように各回転軸345Aの後端にそれぞれ固定してある。この第五係合部345Bは、外周部345Baを第一係合部341の外周部341aおよび第二係合部342の外周部342aに係合してある(例えば、歯車の噛合による係合)。なお、第一係合部341の外周部341a、第二係合部342の外周部342a、第五係合部345Bの外周部345Baの係合は、高摩擦材などを介して接触滑りが防止された係合であってもよい。   21 and 22 show another example of the rotation transmission mechanism 34 in the second embodiment. The rotation transmission mechanism 34 here includes a first engagement portion 341, a second engagement portion 342, and a drive transmission portion 345. The first engagement portion 341 has a disc-like shape having an outer peripheral portion 341a centered on the movement center line P, and the rear end of each rotation shaft 33 so as to rotate around the movement center line P. Are fixed to each. The second engaging portion 342 has an outer peripheral portion 342 a centered on the fixed center line O, and is fixed to the trunk portion 1 by rotatably inserting the central shaft 31. The drive transmission portion 345 engages with the outer peripheral portion 341 a of the first engagement portion 341 and the outer peripheral portion 342 a of the second engagement portion 342 and transmits the rotation of the central shaft 31 as the rotation of the rotation shaft 33. The drive transmission unit 345 includes a rotation shaft 345A and a fifth engagement unit 345B. The rotation shaft 345A is rotatably provided on the main blade member 211 around a center line S parallel to the fixed center line O and the movement center line P. The rotating shaft 345 </ b> A is provided with a rear end penetrating the main blade member 211 extending behind the main blade member 211. Note that two rotation shafts 345A are provided on a single-letter main blade member 211 extending in a direction opposite to the fixed center line O as shown in FIG. The fifth engaging portion 345B is formed in a disc shape having an outer peripheral portion 345Ba with the center line S as the center, and is arranged at the rear end of each rotating shaft 345A so as to rotate around the center line S. It is fixed. In the fifth engaging portion 345B, the outer peripheral portion 345Ba is engaged with the outer peripheral portion 341a of the first engaging portion 341 and the outer peripheral portion 342a of the second engaging portion 342 (for example, engagement by gear meshing). . In addition, the engagement of the outer peripheral portion 341a of the first engaging portion 341, the outer peripheral portion 342a of the second engaging portion 342, and the outer peripheral portion 345Ba of the fifth engaging portion 345B prevents contact slip through a high friction material or the like. May be engaged.

このような他の回転伝達機構34であっても、上述した回転伝達機構34と同様に、回転軸33に設けた副羽根部材221を、移動中心線Pを中心として主羽根部材211と逆方向に回転させ、主羽根部材211の1回転に対して副羽根部材221を逆方向に4回転させる。すなわち、主羽根部材211が固定中心線Oを中心とした円形状の軌跡をなし、副羽根部材221が固定中心線Oを中心とした略正方形状の軌跡をなし、略正方形状の掘削断面の掘削孔Hを掘進できる。   Even in such other rotation transmission mechanism 34, as in the above-described rotation transmission mechanism 34, the sub blade member 221 provided on the rotation shaft 33 is opposite to the main blade member 211 around the movement center line P. The sub blade member 221 is rotated four times in the reverse direction with respect to one rotation of the main blade member 211. That is, the main blade member 211 has a circular trajectory centered on the fixed center line O, the sub-blade member 221 has a substantially square trajectory centered on the fixed center line O, and has a substantially square excavation cross section. The excavation hole H can be dug.

ところで、上記構成の掘削機において、中心軸31を複数並設し、隣接する相互の掘削カッタの回転軌跡が前面視で重複する態様で隣接する相互の掘削カッタの位置を固定中心線Oの軸方向でずらして配置する。このように構成すれば、略正方形状の掘削断面を一連に連続した略長方形状の掘削断面の掘削孔を得ることが可能になる。また、中心軸31を複数並設し、隣接する相互の掘削カッタの回転軌跡を前面視で重複する態様で配置する場合、隣接する各掘削カッタを固定中心線Oの軸方向で並べて同一面上に配置しつつ、隣接する各中心軸31を逆方向に回転駆動し、掘削カッタが干渉しないように回転機構に例えば45°の位相差を設ける。さらに、同様にして従前の円形状の掘削断面と略正方形状の掘削断面を一連に連続した掘削断面の掘削孔も得ることが可能である。   By the way, in the excavator having the above-described configuration, a plurality of center shafts 31 are arranged side by side, and the positions of the adjacent excavation cutters are set to the axis of the fixed center line O in such a manner that the rotation trajectories of the adjacent excavation cutters overlap in front view. Arrange by shifting in the direction. If comprised in this way, it becomes possible to obtain the excavation hole of the substantially rectangular excavation cross section which continued the substantially square excavation cross section in series. Further, when a plurality of the central shafts 31 are arranged side by side and arranged so that the rotation trajectories of the adjacent excavation cutters overlap in front view, the adjacent excavation cutters are arranged in the axial direction of the fixed center line O on the same plane. The adjacent central shafts 31 are rotationally driven in the opposite direction while being arranged in the same direction, and a phase difference of, for example, 45 ° is provided in the rotation mechanism so that the excavation cutter does not interfere. Further, similarly, it is possible to obtain a drilling hole having a drilling section in which a conventional circular drilling section and a substantially square drilling section are continuously connected.

また、上述した実施の形態2では、略正方形状の軌跡をなす回転機構3および略正方形状の掘削断面の掘削孔を得る掘削機について説明したが、当該回転機構3の原理を応用して略正多角形状の軌跡をなす回転機構および略正多角形状の掘削断面の掘削孔を得る掘削機とすることもできる。具体的には、略正n角形状(n≧3)の軌跡および掘削孔とする場合、絶対座標系において主羽根部材と逆方向に(n−1)倍の速度で副羽根部材を回転させる。偏心量については、所望とする正n角形の寸法から適宜求める。   In the second embodiment described above, the rotating mechanism 3 having a substantially square trajectory and the excavator for obtaining a drilling hole having a substantially square excavation cross section have been described. However, the principle of the rotating mechanism 3 is generally applied. It is also possible to provide an excavator that obtains a rotation mechanism that forms a regular polygonal trajectory and an excavation hole having a substantially regular polygonal excavation cross section. Specifically, when the locus and the excavation hole have a substantially regular n-square shape (n ≧ 3), the sub blade member is rotated at a speed (n−1) times in the opposite direction to the main blade member in the absolute coordinate system. . About the amount of eccentricity, it calculates | requires suitably from the dimension of the desired regular n square.

なお、上述した各実施の形態では、回転機構において、輪郭が円形状の副羽根部材221に対し、その中心G周りに回転駆動するモータなどの駆動部(図示せず)を設けてもよい。このように構成することによって、掘削能力を向上することが可能になる。   In each of the above-described embodiments, the rotating mechanism may be provided with a drive unit (not shown) such as a motor that rotates around the center G of the sub blade member 221 having a circular outline. By comprising in this way, excavation capability can be improved.

なお、上述した各実施の形態では、回転機構3を掘削機に適用した例で説明しているが、上記回転機構3は掘削機に限るものではない。例えば略矩形状や長円形状の軌跡をなす上記回転機構3の他の用途として、地中連続壁などで略矩形状や長円形状の掘削断面の掘削に用いたり、セメントなどの硬化材を地盤中に注入する地盤改良で地盤を硬化材とともに混練り攪拌するときに用いたり、あるいは工作物の略矩形状や長円形状の切削に用いたり、地盤以外の混練り物製造の攪拌に用いたりするなど、様々な用途が考えられる。すなわち、地盤改良や混練り攪拌に上記回転機構3を用いる場合には、各羽根部材が攪拌羽根となる。また、切削に上記回転機構3を用いる場合には、各羽根部材に切削刃を設けて切削カッタとなる。したがって、本発明の各実施の形態での掘削は、攪拌や切削を含む意味で用いている。   In each of the above-described embodiments, an example in which the rotation mechanism 3 is applied to an excavator has been described. However, the rotation mechanism 3 is not limited to an excavator. For example, as another use of the rotating mechanism 3 having a substantially rectangular or oval locus, it is used for excavation of a substantially rectangular or oval cross section with an underground continuous wall or the like, or a hardening material such as cement is used. Used to mix and stir the ground together with a hardener to improve the ground injected into the ground, use it for cutting a substantially rectangular or oval shape of a workpiece, or to stir kneaded materials other than the ground For example, various applications are possible. That is, when the rotation mechanism 3 is used for ground improvement or kneading and stirring, each blade member becomes a stirring blade. Further, when the rotating mechanism 3 is used for cutting, a cutting blade is provided on each blade member to form a cutting cutter. Therefore, excavation in each embodiment of the present invention is used in the meaning including stirring and cutting.

本発明に係る回転機構を用いた掘削機の実施の形態1を示す概略側断面図である。It is a schematic sectional side view which shows Embodiment 1 of the excavator using the rotation mechanism which concerns on this invention. 図1に示す掘削機を軸方向(前方向)から視た概念図である。It is the conceptual diagram which looked at the excavator shown in FIG. 1 from the axial direction (front direction). 図2の一部拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 図2に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図2に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図2に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図2に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図2に示す回転機構の絶対座標系での掘削軌跡を示す図である。It is a figure which shows the excavation locus | trajectory in the absolute coordinate system of the rotation mechanism shown in FIG. 本発明に係る回転機構を用いた掘削機の実施の形態2を示す概略側断面図である。It is a schematic sectional side view which shows Embodiment 2 of the excavator using the rotation mechanism which concerns on this invention. 図9に示す回転機構を軸方向(前方向)から視た概念図である。It is the conceptual diagram which looked at the rotation mechanism shown in FIG. 9 from the axial direction (front direction). 図10の一部拡大図である。FIG. 11 is a partially enlarged view of FIG. 10. 図10に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図10に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図10に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図10に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図10に示す回転機構を説明する概念図である。It is a conceptual diagram explaining the rotation mechanism shown in FIG. 図10に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図10に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図10に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図10に示す回転機構の絶対座標系での掘削軌跡を示す図である。It is a figure which shows the excavation locus | trajectory in the absolute coordinate system of the rotation mechanism shown in FIG. 実施の形態2における他の回転伝達機構を用いた掘削機を示す概略側断面図である。6 is a schematic cross-sectional side view showing an excavator using another rotation transmission mechanism in Embodiment 2. FIG. 図21に示す回転機構を軸方向(前方向)から視た概念図である。It is the conceptual diagram which looked at the rotation mechanism shown in FIG. 21 from the axial direction (front direction).

符号の説明Explanation of symbols

1 胴部
21 主掘削カッタ
211 主羽根部材
22 副掘削カッタ
221 副羽根部材
3 回転機構
31 中心軸
32 駆動部
33 回転軸
34 回転伝達機構
341 第一係合部
341a 外周部
342 第二係合部
342a 外周部
344 駆動伝達部
344A 回転軸
344B 第三係合部
344Ba 外周部
344C 第四係合部
344Ca 外周部
344D 伝達部材
345 駆動伝達部
345A 回転軸
345B 第五係合部
345Ba 外周部
a 長円形状の短辺長(略正方形状の辺長)
b 副羽根部材の半径
D 第一係合部(第四係合部)の外周部直径
G 副羽根部材の中心
H 掘削孔
O 固定中心線
P 移動中心線
r 偏心量
S 中心線
DESCRIPTION OF SYMBOLS 1 Trunk part 21 Main excavation cutter 211 Main blade member 22 Sub excavation cutter 221 Sub blade member 3 Rotation mechanism 31 Central axis 32 Drive part 33 Rotation shaft 34 Rotation transmission mechanism 341 First engagement part 341a Outer peripheral part 342 Second engagement part 342a Outer part 344 Drive transmission part 344A Rotating shaft 344B Third engagement part 344Ba Outer part 344C Fourth engagement part 344Ca Outer part 344D Transmission member 345 Drive transmission part 345A Rotating shaft 345B Fifth engagement part 345Ba Outer part a Oval Short side length of shape (substantially square side length)
b Sub-blade member radius D Peripheral diameter of first engaging portion (fourth engaging portion) G Center of sub-blade member H Drilling hole O Fixed center line P Moving center line r Eccentricity S Center line

Claims (4)

所定の固定中心線を中心として回転可能に設けた中心軸と、
前記中心軸の径外方向に延在して設けた主羽根部材と、
前記固定中心線に平行な移動中心線を中心として前記主羽根部材に対して回転可能に設けた回転軸と、
前記回転軸の径外方向に延在して当該回転軸の回転に伴い前記主羽根部材の先端からの突出寸法が変化する態様で設けた副羽根部材と、
前記中心軸を回転駆動する駆動部と、
前記中心軸の1回転を前記回転軸の所定回転として伝達する回転伝達機構と
を備えたことを特徴とする回転機構。
A central axis provided rotatably about a predetermined fixed center line;
A main blade member provided extending in a radially outward direction of the central axis;
A rotation shaft provided to be rotatable with respect to the main blade member around a movement center line parallel to the fixed center line;
A sub-blade member that extends in a radially outward direction of the rotary shaft and that is provided in such a manner that the protruding dimension from the tip of the main blade member changes as the rotary shaft rotates,
A drive unit that rotationally drives the central axis;
A rotation transmission mechanism for transmitting one rotation of the central shaft as a predetermined rotation of the rotation shaft;
前記回転伝達機構は、前記移動中心線を中心とした円状の外周部を有して前記回転軸に設けた第一係合部と、前記固定中心線を中心とした円状の外周部を有して前記中心軸を回転可能に内挿して固定された第二係合部と、前記第一係合部の外周部および第二係合部の外周部に係合して前記中心軸の回転を回転軸の回転として伝達しつつ前記主羽根部材の1回転に対して前記副羽根部材を同方向に2回転させる駆動伝達部とで構成してあることを特徴とする請求項1に記載の回転機構。   The rotation transmission mechanism includes a first engagement portion provided on the rotation shaft having a circular outer periphery centered on the moving center line, and a circular outer periphery centered on the fixed center line. A second engaging portion that is rotatably inserted and fixed to the central shaft, and an outer peripheral portion of the first engaging portion and an outer peripheral portion of the second engaging portion to engage with the outer peripheral portion of the central shaft. 2. A drive transmission unit configured to transmit the rotation as rotation of a rotation shaft and rotate the sub blade member twice in the same direction with respect to one rotation of the main blade member. Rotation mechanism. 前記副羽根部材は、円形状の輪郭を有し、その中心から所定の偏心量ずらした位置を前記移動中心線上に置いた回転中心としてあることを特徴とする請求項1または2に記載の回転機構。   3. The rotation according to claim 1, wherein the sub blade member has a circular outline, and has a position shifted from the center by a predetermined eccentric amount as a rotation center placed on the movement center line. 4. mechanism. 請求項1〜3のいずれか一つに記載の回転機構を用いて、
前記第二係合部を支持するとともに前記駆動部を内部に配置した筒状の胴部と、
前記主羽根部材にカッタを配設した主掘削カッタと、
前記副羽根部材にカッタを配設した副掘削カッタと
を備えたことを特徴とする掘削機。
Using the rotation mechanism according to any one of claims 1 to 3,
A cylindrical body portion that supports the second engaging portion and has the driving portion disposed therein,
A main excavation cutter in which a cutter is disposed on the main blade member;
An excavator comprising: a sub-excavation cutter in which a cutter is disposed on the sub-blade member.
JP2006027573A 2006-02-03 2006-02-03 Rotating mechanism and excavator Pending JP2007205104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027573A JP2007205104A (en) 2006-02-03 2006-02-03 Rotating mechanism and excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006027573A JP2007205104A (en) 2006-02-03 2006-02-03 Rotating mechanism and excavator

Publications (1)

Publication Number Publication Date
JP2007205104A true JP2007205104A (en) 2007-08-16

Family

ID=38484798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027573A Pending JP2007205104A (en) 2006-02-03 2006-02-03 Rotating mechanism and excavator

Country Status (1)

Country Link
JP (1) JP2007205104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095951A (en) * 2015-11-24 2017-06-01 ラサ工業株式会社 Excavator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095951A (en) * 2015-11-24 2017-06-01 ラサ工業株式会社 Excavator

Similar Documents

Publication Publication Date Title
JP2007016563A (en) Excavator
JP2007211403A (en) Eccentric rotary cutter type rectangular continuous hole excavating working machine
JP2018135682A (en) Underground excavation head
JP2006336427A (en) Ground agitator and diaphragm wall construction method
JP2007100421A (en) Rotating mechanism and excavator
JP2006336426A (en) Tunnel boring machine
JP2013249682A (en) Ground agitation device and manufacturing method of ground improvement square column body
JP4496484B2 (en) Rotating mechanism and excavator
JP2007205104A (en) Rotating mechanism and excavator
JP2007205103A (en) Rotating mechanism and excavator
JP3161509B2 (en) Polygon hole drilling rig
JP2007205105A (en) Rotating mechanism and excavator
JP3579366B2 (en) Shield excavator for free section tunnel
JP2551721B2 (en) Multi-axis drilling method and device
JP2007126884A (en) Excavator
JP2007169892A (en) Rotary rod type rectangular vertical hole excavating working machine by reuleaux mechanism
JP2000257385A (en) Underground excavator
JP2007205106A (en) Rotating mechanism and excavator
JP5420788B1 (en) Shield machine and shield method
JP2007247208A (en) Work machine for excavating wide rectangular continuous hole
JP2007284909A (en) Turning mechanism and excavator
KR20080006147U (en) Earth auger machine
JPS5919205B2 (en) Ground excavation method
JPH08232257A (en) Device for improving foundation
JPS6210332A (en) Pit excavating machine