JP2007126884A - Excavator - Google Patents

Excavator Download PDF

Info

Publication number
JP2007126884A
JP2007126884A JP2005320756A JP2005320756A JP2007126884A JP 2007126884 A JP2007126884 A JP 2007126884A JP 2005320756 A JP2005320756 A JP 2005320756A JP 2005320756 A JP2005320756 A JP 2005320756A JP 2007126884 A JP2007126884 A JP 2007126884A
Authority
JP
Japan
Prior art keywords
shaft
peripheral portion
center line
annular
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005320756A
Other languages
Japanese (ja)
Inventor
Koichi Mae
孝一 前
Mamoru Kawabe
衛 河辺
Akira Ogawa
晃 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2005320756A priority Critical patent/JP2007126884A/en
Publication of JP2007126884A publication Critical patent/JP2007126884A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excavator which can reduce rotational shake and vibration of a driving system thereof, achieves cost reduction of the driving system, and can form an elliptic track. <P>SOLUTION: The excavator is formed of: a fixed center shaft 31 which has an external peripheral portion 311 with a fixed center line P as the center; an annular shaft 32 which has an internal peripheral portion 321 and an external peripheral portion 322 with a movable center line G in parallel with the fixed center line, as the center, and allows the internal peripheral portion to abut on and engage with the external peripheral portion of the center shaft; main excavation cutters 2 which are arranged on the annular shaft along an extension connecting between the center and a vertex T in a Rouleau's triangular range whose center is located on the movable center line; a main rotating shaft 33 which has an internal peripheral portion 331 with the fixed center line as the center, and allows the internal peripheral portion to abut on and engage with the external peripheral portion of the annular shaft, to thereby rotate around the fixed center line; a holding member 34 for holding the engagement between the external peripheral portion of the annular shaft and the internal peripheral portion of the rotating shaft, and the engagement between the external peripheral portion of the center shaft and the internal peripheral portion of the annular shaft; a sub-rotating shaft 35 which is arranged so a to be rotatable around the fixed center line; sub-excavating cutters 2' which are arranged on the sub-rotating shaft; and a driving section for driving the main rotating shaft 33 and the sub-rotating shaft 35 for rotation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地盤などを掘削する掘削機に関するものである。   The present invention relates to an excavator for excavating the ground or the like.

一般的な掘削機は、回転機構によってカッタヘッドを回転させて当該カッタヘッドで地盤を掘削するものが知られている。このような掘削機は、カッタヘッドが所定の中心を以て回転することから必然的に断面形状が円形になる。しかし、鉄道や道路などのトンネル利用空間においては、断面形状が非円形状であることが多く、上記円形の掘削断面内に非円形状とした鉄道や道路などの空間を構築する。このため、利用空間以上の掘削を行うことになるので、用地面積が多く必要となることに加えて建設費が嵩むという問題がある。   A general excavator is known in which a cutter head is rotated by a rotating mechanism and the ground is excavated by the cutter head. Such an excavator inevitably has a circular cross-section because the cutter head rotates about a predetermined center. However, in tunnel use spaces such as railways and roads, the cross-sectional shape is often non-circular, and a non-circular space such as railways and roads is constructed within the circular excavation cross-section. For this reason, since excavation more than utilization space is performed, in addition to requiring a lot of land area, there exists a problem that construction cost increases.

従来、例えばルーロー三角形なるルーロー三角形回転体に切削用バイトを設け、当該ルーロー三角形回転体を回転することで、被加工物に正方形状の穴明けを行う正方形穴明け加工装置がある(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, for example, there is a square drilling device for forming a square hole in a workpiece by providing a cutting tool on a Rouleau triangle rotating body such as a Rouleau triangle and rotating the Rouleau triangle rotating body (for example, patents) Reference 1).

他に、加工部材をその中心周りに回転自在に加工部材自転支持装置に取り付け、当該加工部材自転支持装置を加工部材公転支持装置に取り付けた掘削機がある。加工部材には、中心と同芯状のほぼ正三角形の各頂点とその内方に掘削刃を設けて掘削作用面が形成してある。加工部材自転支持装置は、加工部材を前記正三角形の一辺の((1/2)/cos30°−(1/2))倍の半径で中心が回転するように加工部材公転支持装置に取り付けてある。そして、加工部材を自転させながらその自転方向とは逆の方向に3倍公転させる駆動手段を設けてある(例えば、特許文献2参照)。   In addition, there is an excavator in which a machining member is attached to a machining member rotation support device so as to be rotatable about its center, and the machining member rotation support device is attached to the machining member revolution support device. The processed member is provided with an excavation working surface by providing excavation blades at the apexes of substantially equilateral triangles concentric with the center and inward thereof. The processed member rotation support device is attached to the processed member revolving support device so that the center rotates at a radius ((1/2) / cos30 ° − (1/2)) times one side of the equilateral triangle. is there. And the drive means which revolves 3 times in the direction opposite to the rotation direction while rotating a process member is provided (for example, refer patent document 2).

また他に、正三角形の各頂点を中心とし、その一辺の長さを半径とする円弧を各対辺の外側に描き、これらの3つの円弧により囲まれたルーロー三角形を外形とするカッタを、矩形状スキンプレートの中心軸の回りに公転させながら自転させて掘削する矩形シールド工法がある。スキンプレートの中心軸に対するカッタの回転軸の偏心距離は、(L/2)/cos30°−(L/2)を満足するように設定してある(L:ルーロー三角形の頂点間の距離)。また、カッタの公転数は自転数の3倍で、公転方向と自転方向が逆方向である(例えば、特許文献3参照)。   In addition, a circular arc centered on each vertex of the regular triangle and having the length of one side as a radius is drawn on the outside of each opposite side, and a cutter having an outline of a Rouleau triangle surrounded by these three circular arcs is defined as a rectangle. There is a rectangular shield method in which excavation is performed by rotating while revolving around the central axis of the shape skin plate. The eccentric distance of the rotation axis of the cutter with respect to the center axis of the skin plate is set so as to satisfy (L / 2) / cos 30 ° − (L / 2) (L: distance between vertices of the Rouleau triangle). Further, the revolution number of the cutter is three times the revolution number, and the revolution direction and the revolution direction are opposite directions (see, for example, Patent Document 3).

さらに、掘削断面の円形中心部を主カッタが掘削し、その外周部を複数の遊星カッタが掘削する自由断面シールド工法がある。遊星カッタは、主カッタの回転につれて主カッタの外周部を自転しながら公転する。この公転軌道は、遊星カッタを設置したスイングアームの角度調整によって任意に変えることができる。この結果、矩形、楕円形、馬蹄形、卵形など様々な掘削断面形状を選択できる(例えば、非特許文献1参照)。   Furthermore, there is a free section shield method in which a main cutter excavates a circular center part of an excavation section and a plurality of planetary cutters excavate an outer peripheral part thereof. The planetary cutter revolves while rotating around the outer periphery of the main cutter as the main cutter rotates. This revolution trajectory can be arbitrarily changed by adjusting the angle of the swing arm provided with the planetary cutter. As a result, various excavation cross-sectional shapes, such as a rectangle, an ellipse, a horseshoe shape, and an egg shape, can be selected (for example, refer nonpatent literature 1).

特開平11−267950号公報JP-A-11-267950 特開平1−158196号公報JP-A-1-158196 特許第2926125号公報Japanese Patent No. 2926125 シールド工法技術協会、“自由断面シールド工法”、[online]、平成17年9月16日検索、インターネット<URL: HYPERLINK "http://www.shield-method.gr.jp/pdf_data/jiyu.pdf" http://www.shield-method.gr.jp/pdf_data/jiyu.pdf>Shield Construction Method Association, “Free Section Shield Construction Method”, [online], searched on September 16, 2005, Internet <URL: HYPERLINK "http://www.shield-method.gr.jp/pdf_data/jiyu.pdf "http://www.shield-method.gr.jp/pdf_data/jiyu.pdf>

ところで、ルーロー三角形を利用して非円形状である略矩形状に掘削を行う場合には、ルーロー三角形をその重心を中心として回転させ、かつルーロー三角形の重心を正方形の中心の周りに公転させる必要がある。   By the way, when digging into a non-circular, substantially rectangular shape using the rouleau triangle, it is necessary to rotate the rouleau triangle around its center of gravity and revolve the lureau triangle center of gravity around the center of the square. There is.

特許文献1の発明は、モータのトルクを伝達する軸と、ルーロー三角形回転体の重心の軸とを自在継手で連結してある。しかし、この構成では駆動伝達系に回転ぶれや振動が生じることになり、さらに大きなトルクが必要となる掘削機では自在継手は高価であり製造コストが嵩む。   In the invention of Patent Document 1, a shaft for transmitting the torque of the motor and a shaft at the center of gravity of the Rouleau triangle rotating body are connected by a universal joint. However, in this configuration, rotational vibration and vibration are generated in the drive transmission system, and in an excavator that requires a larger torque, the universal joint is expensive and the manufacturing cost increases.

特許文献2の発明では、モータからのトルクをクランク軸によって加工部材に伝達して公転装置を構成してある。しかし、クランクさせた回転軸部材にせん断力や曲げモーメントが生じて回転ぶれや振動の原因となる。   In the invention of Patent Document 2, a revolution device is configured by transmitting torque from a motor to a machining member by a crankshaft. However, a shearing force and a bending moment are generated in the cranked rotating shaft member, which causes rotational shaking and vibration.

特許文献3の発明は、矩形状スキンプレートの中心に公転駆動盤を設けてこの公転駆動盤にカッタ回転軸を設けてある。そして、公転駆動盤を回転させるモータと、カッタ回転軸を回転させるモータを設けてある。しかし、カッタ回転軸を回転させるモータは、公転駆動盤に設けてあるため、配線や配管の処理を十分検討して設計する必要がある。さらに、各モータの回転数や回転方向を調整してそれぞれ同期させる必要がある。この結果、設計コストが嵩むことになる。   In the invention of Patent Document 3, a revolution drive board is provided at the center of a rectangular skin plate, and a cutter rotation shaft is provided on the revolution drive board. A motor for rotating the revolution drive board and a motor for rotating the cutter rotating shaft are provided. However, since the motor for rotating the cutter rotating shaft is provided on the revolution drive board, it is necessary to design the wiring and pipes after careful examination. Furthermore, it is necessary to synchronize by adjusting the rotation speed and rotation direction of each motor. As a result, the design cost increases.

このように、ほぼ矩形状の軌跡をなすためにルーロー三角形の原理を利用した回転機構についての出願はあるものの、いずれも円滑な駆動を実現するものはない。また、大きなトルクが必要である掘削機においては、正方形枠は掘削孔内で大きなスペースを要することから正方形枠のない機構が望まれている。さらに、矩形状の掘削に限らず矩形状を含む多角形状の軌跡をなす回転機構、および当該回転機構を用いた掘削機を実現するものはない。   As described above, although there is an application for a rotation mechanism that uses the principle of the Rouleau triangle to form a substantially rectangular locus, none of them realizes smooth driving. Further, in excavators that require a large torque, a square frame requires a large space in the excavation hole, so a mechanism without a square frame is desired. Furthermore, there is no realization of a rotating mechanism that forms a polygonal locus including a rectangular shape and an excavator using the rotating mechanism, not limited to rectangular excavation.

また、非特許文献1の工法は、主カッタの回転につれて主カッタの外周部を自転しながら公転する複数の遊星カッタを得るために、スイングアームを用いた複雑な構成にしてある。この結果、製造コストが嵩むという問題がある。   In addition, the construction method of Non-Patent Document 1 has a complicated configuration using a swing arm in order to obtain a plurality of planetary cutters that revolve while rotating the outer peripheral portion of the main cutter as the main cutter rotates. As a result, there is a problem that the manufacturing cost increases.

本発明は、上記実情に鑑みて、枠体を要することなく駆動系の回転ぶれや振動を低減するとともに駆動系や製造コストを低減した上で非円形状の断面の掘削を実現することができる掘削機を提供することを目的とする。   In view of the above circumstances, the present invention can realize excavation of a non-circular cross section while reducing rotational shake and vibration of the drive system and reducing the drive system and manufacturing cost without requiring a frame. The purpose is to provide an excavator.

上記の目的を達成するために、本発明の請求項1に係る掘削機は、所定の固定中心線を中心とした外周部を有する固定の中心軸と、前記固定中心線に平行な所定の移動中心線を中心とした内周部および外周部を有して環状に形成してあって当該内周部を前記中心軸の外周部に当接係合した環状軸と、前記移動中心線上に中心を置いたルーロー三角形状の範囲内の少なくとも中心と頂点とを結ぶ延長線に沿って前記環状軸に設けた主掘削カッタと、前記固定中心線を中心とする内周部を有して環状に形成してあり当該内周部を前記環状軸の外周部に当接係合して固定中心線を中心に回転可能に設けた主回転軸と、前記移動中心線を中心に前記環状軸を回転可能に支持して当該環状軸の外周部と前記主回転軸の内周部との係合および前記中心軸の外周部と前記環状軸の内周部との係合を保持する保持部材と、前記固定中心線を中心として回転可能に設けた副回転軸と、前記副回転軸に設けた副掘削カッタと、前記主回転軸および前記副回転軸を回転駆動する駆動部と、前記中心軸および主回転軸を支持するとともに前記駆動部を内部に配置した筒状の胴部とを備えたことを特徴とする。   In order to achieve the above object, an excavator according to claim 1 of the present invention includes a fixed central axis having an outer peripheral portion centered on a predetermined fixed center line, and a predetermined movement parallel to the fixed center line. An annular shaft having an inner peripheral portion and an outer peripheral portion with a center line as a center and formed in an annular shape, the inner peripheral portion being in contact with and engaged with the outer peripheral portion of the central shaft, and a center on the moving center line A main excavation cutter provided on the annular shaft along an extension line connecting at least the center and the apex within the range of the triangular shape of the roulau, and an annular shape having an inner periphery centered on the fixed center line A main rotary shaft that is formed and abuts and engages the inner peripheral portion with the outer peripheral portion of the annular shaft so as to be rotatable about a fixed center line, and the annular shaft rotates about the moving center line The outer peripheral portion of the annular shaft and the inner peripheral portion of the main rotating shaft, and the central shaft A holding member that holds the engagement between the peripheral portion and the inner peripheral portion of the annular shaft, a sub-rotating shaft that is rotatably provided around the fixed center line, and a sub-excavation cutter that is provided on the sub-rotating shaft; A driving unit that rotationally drives the main rotating shaft and the sub rotating shaft, and a cylindrical body that supports the central shaft and the main rotating shaft and has the driving unit disposed therein. .

本発明の請求項2に係る掘削機は、上記請求項1において、前記駆動部は、前記主回転軸および前記副回転軸への駆動力の伝達を連係してあることを特徴とする。   The excavator according to a second aspect of the present invention is the excavator according to the first aspect, characterized in that the driving unit is linked with transmission of driving force to the main rotary shaft and the sub rotary shaft.

本発明の請求項3に係る掘削機は、上記請求項1または2において、前記保持部材に代えて前記移動中心線を中心に前記環状軸を回転可能に支持し、前記中心軸の外周部と前記環状軸の内周部との係合を離隔しつつ前記固定中心線に移動中心線を一致させた形態で前記環状軸を保持する他の保持部材と、前記駆動部の駆動力を前記環状軸に伝達する駆動伝達手段とを備えたことを特徴とする。   An excavator according to a third aspect of the present invention is the excavator according to the first or second aspect, wherein the annular shaft is rotatably supported around the moving center line instead of the holding member, and the outer peripheral portion of the central shaft is Another holding member for holding the annular shaft in a form in which the moving center line is aligned with the fixed center line while separating the engagement with the inner peripheral portion of the annular shaft, and the driving force of the driving portion is the annular And a drive transmission means for transmitting to the shaft.

本発明によれば、駆動部の駆動力を主回転軸に伝達することによって、主回転軸が固定中心線を中心として回転する。すると、主回転軸の内周部に係合する環状軸が移動中心線を中心として主回転軸と同方向に回転する。さらに、移動中心線を中心として回転する環状軸は、その内周部が中心軸の外周部に係合しているため、当該中心軸の外周部に沿って固定中心線の周りに主回転軸と同方向に輪転運動(公転)することになる。このため、環状軸に設けた主掘削カッタは、環状軸の輪転運動に伴って自転および公転移動する。移動する主掘削カッタの先端は、非円形状である長円形状の軌跡をなし、非円形状断面である長円形状断面の掘削孔が得られる。この掘削孔は、一般的な断面円形の掘削孔と比較して、不要な空間を掘削せずに利用空間のみの掘削で得られるため、必要以上の用地面積を要さないことに加えて建設費を低減することが可能になる。   According to the present invention, by transmitting the driving force of the drive unit to the main rotation shaft, the main rotation shaft rotates about the fixed center line. Then, the annular shaft engaged with the inner peripheral portion of the main rotation shaft rotates in the same direction as the main rotation shaft about the movement center line. Further, since the inner peripheral portion of the annular shaft that rotates about the moving center line is engaged with the outer peripheral portion of the central axis, the main rotary shaft is arranged around the fixed center line along the outer peripheral portion of the central axis. Rotation motion (revolution) in the same direction as. For this reason, the main excavation cutter provided on the annular shaft rotates and revolves as the annular shaft rotates. The leading end of the moving main excavation cutter has a non-circular elliptical trajectory, and an excavation hole having a non-circular cross-section is obtained. This drilling hole can be obtained by drilling only the usage space without drilling unnecessary space, compared to a general drilling hole with a circular cross section, so it is constructed in addition to not requiring more land area than necessary. Costs can be reduced.

一方、駆動部の駆動力を副回転軸に伝達することによって、副回転軸が固定中心線を中心として回転する。このため、副回転軸に設けた副掘削カッタは、副回転軸の回転に伴って回転移動する。移動する副掘削カッタの先端は、円形状の軌跡をなし、円形状断面の掘削孔が得られる。この結果、長円形状断面の掘削孔を掘削する前に円形状の補助掘削孔を掘削することができる。すなわち、掘削孔Hを掘削する前に削岩が可能になり、掘削の負荷を低減できる。   On the other hand, by transmitting the driving force of the drive unit to the auxiliary rotating shaft, the auxiliary rotating shaft rotates about the fixed center line. For this reason, the auxiliary excavation cutter provided on the auxiliary rotary shaft rotates and moves with the rotation of the auxiliary rotary shaft. The tip of the moving secondary excavation cutter forms a circular trajectory, and an excavation hole having a circular cross section is obtained. As a result, the circular auxiliary excavation hole can be excavated before the excavation hole having the oval cross section is excavated. That is, rock drilling becomes possible before excavating the excavation hole H, and the excavation load can be reduced.

また、上記掘削機は、主回転軸が固定中心線を中心として回転駆動され、かつ、環状軸が主回転軸の回転に伴って保持部材に保持された形態で移動中心線を中心として回転しつつ固定中心線を中心として公転する。この結果、主回転軸が固定中心線上でその軸心がずれることなく回転するため、回転ぶれや振動を低減することができる。また、環状軸が主回転軸の回転に伴って保持部材に保持された形態で移動中心線を中心として回転しつつ固定中心線を中心として公転するため、環状軸の自転および公転移動に際して従前の自在継手を要することがないので、自在継手に係るコストを低減することができる。   In the excavator, the main rotating shaft is driven to rotate about the fixed center line, and the annular shaft is rotated about the moving center line in a form held by the holding member as the main rotating shaft rotates. While revolving around the fixed centerline. As a result, the main rotating shaft rotates on the fixed center line without shifting its axis, so that rotational shake and vibration can be reduced. In addition, since the annular shaft revolves around the fixed center line while rotating around the moving center line in the form of being held by the holding member as the main rotating shaft rotates, Since a universal joint is not required, the cost relating to the universal joint can be reduced.

また、上記掘削機は、主掘削カッタを設けた環状軸を、保持部材によって保持した形態で公転および自転させる構成である。このため、従前のほぼ正方形状の軌跡をなすようにルーロー三角形の外幅を一辺とする正方形枠にルーロー三角形状の軸を支持して回転させる必要がない。すなわち、枠体が必要ない。このため、掘進した掘削孔の断面形状に対して、掘削機の胴部の前面視の輪郭を小さく形成することが可能になる。この結果、主掘削カッタが先行して掘進した掘削孔に胴部が通過できるので、掘削断面が長円形状の掘削孔の掘進を行う掘削機を得ることが可能になる。   The excavator is configured to revolve and rotate in a form in which an annular shaft provided with a main excavation cutter is held by a holding member. For this reason, it is not necessary to support and rotate the axis of the Rouleau triangle in a square frame having one side of the outer width of the Rouleau triangle so as to form a conventional approximately square locus. That is, a frame is not necessary. For this reason, it becomes possible to form the outline of the trunk | drum of an excavator small in front view with respect to the cross-sectional shape of the excavated excavation hole. As a result, the trunk portion can pass through the excavation hole that the main excavation cutter has excavated in advance, so that it is possible to obtain an excavator that excavates an excavation hole having an oval cross section.

また、上記掘削機は、主掘削カッタを設けた環状軸を、保持部材によって保持した形態で公転および自転させる構成で非円形状である長円形状の掘削孔を得る。このため、従前のごとくスイングアームを用いた複雑な構成にすることがなく、製造コストを低減することができる。すなわち、上記掘削機は、簡素な機構で非円形状断面である長円形状断面の掘削孔を掘進できるため、故障が起こり難く信頼性が向上するので、掘進長さに応じたコストを低減することができる。   Further, the excavator obtains an elliptical excavation hole having a non-circular shape in a configuration in which an annular shaft provided with a main excavation cutter is revolved and rotated in a form held by a holding member. Therefore, the manufacturing cost can be reduced without using a complicated configuration using a swing arm as before. That is, the excavator can dig a hole with an elliptical cross section which is a non-circular cross section with a simple mechanism, so that failure is unlikely to occur and reliability is improved, so the cost corresponding to the digging length is reduced. be able to.

また、駆動源からの主回転軸および副回転軸への駆動力の伝達を連係した駆動部とすることで、単一の駆動源の駆動力によって主回転軸および副回転軸を回転駆動することができ、駆動源に係るコストを低減することができる。   In addition, by driving the driving force from the driving source to the main rotating shaft and the sub rotating shaft in a linked manner, the main rotating shaft and the sub rotating shaft can be rotationally driven by the driving force of a single driving source. And the cost associated with the drive source can be reduced.

また、前記保持部材に代えて移動中心線を中心に環状軸を回転可能に支持し、中心軸の外周部と環状軸の内周部との係合を離隔しつつ固定中心線に移動中心線を一致させた形態で環状軸を保持する他の保持部材と、駆動部の駆動力を環状軸に伝達する駆動伝達手段とを備えた場合には、1台の掘削機で長円形状断面の掘削孔の掘削と、円形状断面の掘削孔の掘削を行うことができる。このようにすることで、例えば地下鉄で一般部分を円形状断面とし、駅ホームのある部分だけを長円形状断面にすることが可能になる。また、例えばトンネルで一般部分を円形状断面とし、分岐部だけを長円形状断面にすることができる。   Further, instead of the holding member, the annular shaft is rotatably supported around the moving center line, and the moving center line is fixed to the fixed center line while separating the engagement between the outer peripheral portion of the central shaft and the inner peripheral portion of the annular shaft. When the other holding member that holds the annular shaft in a form in which the two are aligned with each other and the drive transmission means that transmits the driving force of the drive unit to the annular shaft, one excavator has an oval cross section. Excavation holes can be excavated, and excavation holes having a circular cross section can be excavated. By doing in this way, it becomes possible to make a general part into a circular cross section, for example in a subway, and to make only a part with a station platform into an oval cross section. In addition, for example, a general portion of a tunnel can have a circular cross section, and only a branch portion can have an oval cross section.

以下に添付図面を参照して、本発明に係る掘削機の好適な実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Exemplary embodiments of an excavator according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

図1は本発明に係る掘削機の実施の形態を示す概略側断面図、図2は図1に示す掘削機を軸方向(前方向)から視た概念図、図3は図1に示す回転機構の分解斜視図である。   1 is a schematic cross-sectional side view showing an embodiment of an excavator according to the present invention, FIG. 2 is a conceptual diagram of the excavator shown in FIG. 1 viewed from the axial direction (forward direction), and FIG. 3 is a rotation shown in FIG. It is a disassembled perspective view of a mechanism.

図1〜図3に示すように掘削機は、胴部1と主掘削カッタ2と副掘削カッタ2’を備えている。胴部1は、主掘削カッタ2および副掘削カッタ2’を支持しつつ主掘削カッタ2および副掘削カッタ2’を駆動するものであって、掘削機の外郭をなし、筒状とした内部に回転機構3を有している。   As shown in FIGS. 1 to 3, the excavator includes a body portion 1, a main excavation cutter 2, and a sub excavation cutter 2 ′. The trunk portion 1 drives the main excavation cutter 2 and the sub excavation cutter 2 'while supporting the main excavation cutter 2 and the sub excavation cutter 2'. A rotation mechanism 3 is provided.

回転機構3は、中心軸31、環状軸32、主回転軸33、保持部材34、副回転軸35および駆動部36を有している。   The rotation mechanism 3 includes a center shaft 31, an annular shaft 32, a main rotation shaft 33, a holding member 34, a sub rotation shaft 35, and a drive unit 36.

中心軸31は、胴部1に固定してあり、胴部1の前後方向に沿って配置した所定の固定中心線Pを中心とした外周部311を有して円柱形状に形成してある。   The central shaft 31 is fixed to the trunk portion 1 and has a cylindrical shape having an outer peripheral portion 311 centered on a predetermined fixed center line P arranged along the front-rear direction of the trunk portion 1.

環状軸32は、固定中心線Pと平行にして胴部1の前後方向に沿って配置した所定の移動中心線Gを中心とした内周部321および外周部322を有してほぼ円環状に形成してある。この環状軸32は、中心軸31を内装し、内周部321を中心軸31の外周部311に対して当接係合してある。なお、環状軸32は、内周部321および外周部322を一体に有した環状体、あるいは内周部321を有した管体と外周部322を有した管体とを組み合わせた構成とすることができる。   The annular shaft 32 has an inner peripheral portion 321 and an outer peripheral portion 322 centered on a predetermined movement center line G arranged along the front-rear direction of the body portion 1 in parallel with the fixed center line P, and is substantially annular. It is formed. The annular shaft 32 includes a central shaft 31, and an inner peripheral portion 321 is in contact with and engaged with an outer peripheral portion 311 of the central shaft 31. The annular shaft 32 has a configuration in which an annular body integrally including an inner peripheral portion 321 and an outer peripheral portion 322, or a tubular body having the inner peripheral portion 321 and a tubular body having the outer peripheral portion 322 are combined. Can do.

主回転軸33は、中心軸31の固定中心線Pを回転中心として回転可能に胴部1に支持してある。主回転軸33は、固定中心線Pを中心とする内周部331を有して環状に形成してあり、その内周部331を環状軸32の外周部322に当接係合してある。   The main rotation shaft 33 is supported on the body 1 so as to be rotatable about the fixed center line P of the center shaft 31 as a rotation center. The main rotating shaft 33 has an inner peripheral portion 331 centered on the fixed center line P and is formed in an annular shape, and the inner peripheral portion 331 is in contact with and engaged with the outer peripheral portion 322 of the annular shaft 32. .

保持部材34は、環状軸32の内周とほぼ同じ外周を有して所定厚さの円板状に形成してあり、環状軸32の内周に摺接して移動中心線Gを中心に回転する態様で環状軸32に内装してある。また、保持部材34には、固定中心線Pを中心として中心軸31の外周とほぼ同じ内周を有した挿通孔341が偏心して設けてある。この挿通孔341は、中心軸31に対して回転可能に挿通してある。このため、保持部材34は、移動中心線Gを中心に環状軸32を回転可能に支持することになり、当該環状軸32の外周部322と主回転軸33の内周部331との係合、および中心軸31の外周部311と環状軸32の内周部321との係合を常に保持する。   The holding member 34 is formed in a disk shape having a predetermined thickness having substantially the same outer periphery as the inner periphery of the annular shaft 32, and is slidably contacted with the inner periphery of the annular shaft 32 to rotate around the movement center line G. In this manner, the annular shaft 32 is internally provided. Further, the holding member 34 is provided with an eccentric insertion hole 341 having an inner periphery substantially the same as the outer periphery of the central shaft 31 with the fixed center line P as the center. The insertion hole 341 is rotatably inserted with respect to the central shaft 31. For this reason, the holding member 34 supports the annular shaft 32 rotatably around the movement center line G, and the engagement between the outer peripheral portion 322 of the annular shaft 32 and the inner peripheral portion 331 of the main rotary shaft 33. The engagement between the outer peripheral portion 311 of the central shaft 31 and the inner peripheral portion 321 of the annular shaft 32 is always maintained.

なお、図には明示しないが、環状軸32の外周と主回転軸33の内周との間に保持部材が内装されることによっても、環状軸32の外周部322と主回転軸33の内周部331との係合を常に保持しつつ、中心軸31の外周部311と環状軸32の内周部321との係合を常に保持することになるので、このような形態であってもよい。この場合の保持部材(図示なし)は、主回転軸33の内周とほぼ同じ外周を有して所定厚さの円板状に形成してあり、環状軸32の外周に摺接して固定中心線Pを中心に回転する態様で主回転軸33に内装してある。そして、この保持部材(図示なし)には、移動中心線Gを中心として環状軸32の外周とほぼ同じ内周を有する貫通孔が偏心して設けられている。もちろん、この図示しない保持部材と図1に示す保持部材34とをそれぞれ組み合わせて双方用いてもよい。   Although not clearly shown in the figure, the inner periphery of the outer peripheral portion 322 of the annular shaft 32 and the inner portion of the main rotating shaft 33 can also be provided by arranging a holding member between the outer periphery of the annular shaft 32 and the inner periphery of the main rotating shaft 33. Since the engagement between the outer peripheral portion 311 of the center shaft 31 and the inner peripheral portion 321 of the annular shaft 32 is always maintained while the engagement with the peripheral portion 331 is always maintained, Good. In this case, the holding member (not shown) has a disk shape with a predetermined thickness having substantially the same outer periphery as the inner periphery of the main rotating shaft 33, and is slidably contacted with the outer periphery of the annular shaft 32 to be a fixed center The main rotating shaft 33 is internally provided in a manner that rotates around the line P. The holding member (not shown) is eccentrically provided with a through hole having an inner periphery substantially the same as the outer periphery of the annular shaft 32 around the movement center line G. Of course, the holding member (not shown) and the holding member 34 shown in FIG. 1 may be used in combination.

副回転軸35は、固定中心線Pに沿って中心軸31に設けた軸孔312に対して回転可能に挿通支持してある。すなわち、副回転軸35は、固定中心線Pを中心として回転可能に設けてある。   The auxiliary rotating shaft 35 is inserted and supported so as to be rotatable with respect to a shaft hole 312 provided in the central shaft 31 along the fixed center line P. That is, the sub rotation shaft 35 is provided so as to be rotatable about the fixed center line P.

駆動部36は、主回転軸33および副回転軸35を回転させるものであり、胴部1の内部に設けたモータなどの駆動源361の駆動力を主回転軸33および副回転軸35に伝達する。この駆動部36は、固定中心線Pおよび移動中心線Gに平行する中心線Oを中心に回転可能に設けた駆動軸362を有し、当該駆動軸362に設けた駆動歯363を主回転軸33の内周部331に当接係合してある。また、駆動軸362には、伝達歯364が設けてあり、副回転軸35に設けた伝達歯365に対して互いに係合してある。そして、駆動源361は、副回転軸35に連結してある。すなわち、駆動源361の駆動力は、副回転軸35に伝達されて当該副回転軸35が回転駆動される。一方、副回転軸35の回転は、伝達歯365および伝達歯364によって連係されて駆動軸362に伝達される。そして、駆動歯363と主回転軸33の内周部331との当接係合によって主回転軸33が回転駆動される。   The drive unit 36 rotates the main rotary shaft 33 and the sub rotary shaft 35, and transmits the driving force of a drive source 361 such as a motor provided in the body 1 to the main rotary shaft 33 and the sub rotary shaft 35. To do. The drive unit 36 has a drive shaft 362 that is rotatably provided around a center line O that is parallel to the fixed center line P and the movement center line G, and the drive teeth 363 provided on the drive shaft 362 are connected to the main rotation shaft. The inner peripheral part 331 of 33 is contacted and engaged. Further, the drive shaft 362 is provided with transmission teeth 364 and is engaged with the transmission teeth 365 provided on the auxiliary rotation shaft 35. The drive source 361 is connected to the sub rotation shaft 35. That is, the driving force of the drive source 361 is transmitted to the sub rotation shaft 35, and the sub rotation shaft 35 is rotated. On the other hand, the rotation of the auxiliary rotary shaft 35 is transmitted to the drive shaft 362 by being linked by the transmission teeth 365 and the transmission teeth 364. The main rotation shaft 33 is rotationally driven by contact engagement between the drive teeth 363 and the inner peripheral portion 331 of the main rotation shaft 33.

なお、上記駆動部36において、副回転軸35に駆動源361を連結して構成してあるが、駆動源361を駆動軸362に連結して構成してあってもよい。すなわち、駆動源361の駆動力は、駆動軸362に伝達されて、駆動歯363と主回転軸33の内周部331との当接係合によって主回転軸33が回転駆動される。一方、駆動軸362の回転は、伝達歯365および伝達歯364によって連係されて副回転軸35に伝達される。   In the drive unit 36, the drive source 361 is connected to the auxiliary rotary shaft 35, but the drive source 361 may be connected to the drive shaft 362. That is, the driving force of the drive source 361 is transmitted to the drive shaft 362, and the main rotary shaft 33 is rotationally driven by contact engagement between the drive teeth 363 and the inner peripheral portion 331 of the main rotary shaft 33. On the other hand, the rotation of the drive shaft 362 is transmitted to the auxiliary rotation shaft 35 by being linked by the transmission teeth 365 and the transmission teeth 364.

また、上記駆動部36において、伝達歯365および伝達歯364で連係して単一の駆動源361の駆動力によって主回転軸33および副回転軸35を回転駆動しているが、伝達歯365および伝達歯364を設けずに副回転軸35および駆動軸362にそれぞれ駆動源361を連結してもよい。すなわち、一方の駆動源361を駆動軸362に連結して主回転軸33を回転駆動する主駆動部を構成し、他方の駆動源361を副回転軸35に連結して当該副回転軸35を回転駆動する副駆動部を構成することも可能である。   In the drive unit 36, the main rotating shaft 33 and the sub rotating shaft 35 are rotationally driven by the driving force of a single driving source 361 in cooperation with the transmission teeth 365 and the transmission teeth 364. The drive source 361 may be connected to the auxiliary rotary shaft 35 and the drive shaft 362 without providing the transmission teeth 364, respectively. That is, one drive source 361 is connected to the drive shaft 362 to constitute a main drive unit that rotationally drives the main rotary shaft 33, and the other drive source 361 is connected to the sub rotary shaft 35 to connect the sub rotary shaft 35. It is also possible to configure a sub-driving unit that rotates.

また、上記駆動部36において、図には明示しないが駆動源361と、これに連結する軸との間に適宜減速機構を有していてもよい。   Further, the drive unit 36 may have a speed reduction mechanism as appropriate between the drive source 361 and a shaft connected to the drive source 361, although not explicitly shown in the drawing.

ところで、上記回転機構3において、中心軸31と環状軸32との係合、環状軸32と主回転軸33との係合、主回転軸33と駆動部36との係合には、例えば歯車の噛合による係合がある。あるいは、高摩擦材などを介して接触滑りが防止された係合であってもよい。   In the rotation mechanism 3, for example, a gear is used for the engagement between the center shaft 31 and the annular shaft 32, the engagement between the annular shaft 32 and the main rotation shaft 33, and the engagement between the main rotation shaft 33 and the drive unit 36. There is engagement by meshing. Or the engagement by which contact slip was prevented via the high friction material etc. may be sufficient.

主掘削カッタ2は、胴部1の前側に延出した環状軸32の前端に設けてある。この主掘削カッタ2は、移動中心線G上に中心(重心)を置いた仮想ルーロー三角形状の範囲内であって、少なくとも中心(移動中心線G)と頂点(T)とを結ぶ延長線に沿って羽根部材を配置し、当該羽根部材の前面に掘削ビット(図示せず)を設けてある。ルーロー三角形は、図2に一点鎖線で示すように正三角形の各頂点Tを中心として他の頂点Tを結ぶ円弧を描いてなる形状をなし、その外幅(差し渡し幅)がいずれも定幅なものである。そして、本実施の形態における主掘削カッタ2は、上記延長線に沿って環状軸32の縁部から頂点Tに至り延在してある。   The main excavation cutter 2 is provided at the front end of an annular shaft 32 that extends to the front side of the trunk portion 1. This main excavation cutter 2 is within a virtual roulau triangle having a center (center of gravity) on the movement center line G, and at least an extension line connecting the center (movement center line G) and the vertex (T). A blade member is disposed along the blade member, and an excavation bit (not shown) is provided on the front surface of the blade member. As shown by the alternate long and short dash line in FIG. 2, the rouleau triangle has a shape in which an arc connecting the other vertices T with each vertex T of the regular triangle as the center, and the outer width (passing width) is constant. Is. The main excavation cutter 2 in the present embodiment extends from the edge of the annular shaft 32 to the vertex T along the extension line.

ここで、上記中心軸31、環状軸32および主掘削カッタ2の寸法設定は、図2に示すように中心軸31および主回転軸33の中心(固定中心線P)から環状軸32の中心(移動中心線G)に至る距離(偏心量)を[r]とし、中心軸31の外周部311の直径を[4r]、環状軸32の外周部322の直径を[6r]、および主掘削カッタ2を配置するルーロー三角形の中心(移動中心線G)と頂点Tとを結ぶ延長線Lを[L≧7.5r]と設定してある。   Here, the dimensions of the central shaft 31, the annular shaft 32 and the main excavation cutter 2 are set from the center of the central shaft 31 and the main rotary shaft 33 (fixed center line P) to the center of the annular shaft 32 ( The distance (eccentric amount) to the movement center line G) is [r], the diameter of the outer peripheral portion 311 of the central shaft 31 is [4r], the diameter of the outer peripheral portion 322 of the annular shaft 32 is [6r], and the main excavation cutter An extension line L connecting the center (movement center line G) of the Rouleau triangle 2 and the vertex T is set as [L ≧ 7.5r].

副掘削カッタ2’は、胴部1の前側であって上記主掘削カッタ2のさらに前側に延出した副回転軸35の前端に設けてある。この副掘削カッタ2’は、固定中心線Pを中心として放射方向に延在して羽根部材を配置し、当該羽根部材の前面に掘削ビット(図示せず)を設けてある。なお、本実施の形態において、副掘削カッタ2’は、固定中心線Pを中心として放射方向に等間隔で3方向に延在して配置してあり、固定中心線Pからの延在長さを、主掘削カッタ2がなす軌跡の範囲内としてある。   The sub-excavation cutter 2 ′ is provided at the front end of the sub-rotation shaft 35 that extends to the front side of the body portion 1 and further to the front side of the main excavation cutter 2. The sub-excavation cutter 2 ′ extends in a radial direction around the fixed center line P and has a blade member disposed therein, and a drill bit (not shown) is provided on the front surface of the blade member. In the present embodiment, the sub-excavation cutter 2 ′ is arranged to extend in three directions at equal intervals in the radial direction around the fixed center line P, and the extension length from the fixed center line P. Is within the range of the trajectory formed by the main excavation cutter 2.

上記構成の掘削機は、回転機構3において駆動部36の駆動力を主回転軸33に伝達することによって、主回転軸33が固定中心線Pを中心として回転(例えば図2における時計回り方向)する。すると、主回転軸33の内周部331に係合する環状軸32が移動中心線Gを中心として主回転軸33と同方向(例えば図2における時計回り方向)に回転する。さらに、移動中心線Gを中心として回転する環状軸32は、その内周部321が中心軸31の外周部311に係合しているため、当該中心軸31の外周部311に沿って固定中心線Pの周りに主回転軸33と同方向(例えば図2における時計回り方向)に輪転運動(公転)する。このとき、保持部材34は、その外周が環状軸32の内周に摺接し、挿通孔341が中心軸31の外周に摺接して、環状軸32の公転に伴って固定中心線Pを中心として回転することで主回転軸33の内周部331と環状軸32の外周部322との係合、および中心軸31の外周部311と環状軸32の内周部321との係合を常に保持する。このため、環状軸32に設けた主掘削カッタ2は、環状軸32の輪転運動に伴って自転および公転移動する。   The excavator having the above-described configuration transmits the driving force of the driving unit 36 to the main rotating shaft 33 in the rotating mechanism 3 so that the main rotating shaft 33 rotates about the fixed center line P (for example, clockwise direction in FIG. 2). To do. Then, the annular shaft 32 that engages with the inner peripheral portion 331 of the main rotation shaft 33 rotates in the same direction as the main rotation shaft 33 (for example, the clockwise direction in FIG. 2) about the movement center line G. Further, the annular shaft 32 that rotates about the movement center line G has an inner peripheral portion 321 engaged with an outer peripheral portion 311 of the central shaft 31, and therefore, a fixed center along the outer peripheral portion 311 of the central shaft 31. Around the line P, it rotates (revolves) in the same direction as the main rotating shaft 33 (for example, clockwise direction in FIG. 2). At this time, the outer periphery of the holding member 34 is in sliding contact with the inner periphery of the annular shaft 32, the insertion hole 341 is in sliding contact with the outer periphery of the central shaft 31, and the fixed center line P is centered with the revolution of the annular shaft 32. By rotating, the engagement between the inner peripheral portion 331 of the main rotating shaft 33 and the outer peripheral portion 322 of the annular shaft 32 and the engagement between the outer peripheral portion 311 of the central shaft 31 and the inner peripheral portion 321 of the annular shaft 32 are always maintained. To do. For this reason, the main excavation cutter 2 provided on the annular shaft 32 rotates and revolves as the annular shaft 32 rotates.

具体的には、図2および図4〜図7に示すように、環状軸32の内周部の直径と中心軸31の外周部311の直径との比率が3:2であるため、環状軸32が固定中心線Pを中心に1回転公転すると、当該環状軸32は移動中心線Gの周りに1/3自転する。したがって、図2および図4〜図7における主掘削カッタ2の先端T(A,B,C)の移動位置で示すように主掘削カッタ2も同様に公転および自転し、図7に示すように長円形状の軌跡をなす。この結果、本掘削機を前方向(図2参照)に推進することで長円形状断面の掘削孔Hを掘進することが可能になる。   Specifically, as shown in FIGS. 2 and 4 to 7, since the ratio of the diameter of the inner peripheral portion of the annular shaft 32 and the diameter of the outer peripheral portion 311 of the central shaft 31 is 3: 2, the annular shaft When 32 rotates and revolves around the fixed center line P, the annular shaft 32 rotates about the moving center line G by 1/3. Accordingly, the main excavation cutter 2 similarly revolves and rotates as shown by the movement position of the tip T (A, B, C) of the main excavation cutter 2 in FIGS. 2 and 4 to 7, as shown in FIG. 7. Makes an elliptical trajectory. As a result, the excavating hole H having an oval cross section can be excavated by propelling the excavator forward (see FIG. 2).

長円形状の軌跡を得る原理構成としては、固定中心線Pと移動中心線Gとの間の距離である偏心量[r]を規定し、得るべき長円形状の中心座標[0,0](図8参照)を固定中心線Pとする。すると、固定中心線Pから偏心量[r]を半径とした軌跡上に移動中心線Gの座標が決定する。そして、移動中心線Gから所定長さ[L≧7.5r]で主掘削カッタ2を延在する。主掘削カッタ2の先端Tの座標は、例えば横軸をX座標、縦軸をY座標とする座標系で、図2に示すように移動中心線G、固定中心線Pおよび主掘削カッタ2の先端Tが直線上に並んだときからの回転中心線Pに対する移動中心線Gの回転角をφとすると、下記数1および数2から固定中心線Pを中心とした長円形状の軌跡が得られる。   As a principle configuration for obtaining an elliptical trajectory, an eccentricity [r] that is a distance between the fixed center line P and the moving center line G is defined, and the elliptical center coordinates [0, 0] to be obtained are defined. Let (refer FIG. 8) be the fixed centerline P. FIG. Then, the coordinates of the moving center line G are determined on the locus having the radius of the eccentricity [r] from the fixed center line P. Then, the main excavation cutter 2 is extended from the movement center line G by a predetermined length [L ≧ 7.5r]. The coordinates of the tip T of the main excavation cutter 2 are, for example, a coordinate system in which the horizontal axis is the X coordinate and the vertical axis is the Y coordinate, and the movement center line G, fixed center line P, and main excavation cutter 2 are shown in FIG. If the rotation angle of the movement center line G with respect to the rotation center line P from when the tips T are arranged on a straight line is φ, an elliptical locus centering on the fixed center line P is obtained from the following equations 1 and 2. It is done.

Figure 2007126884
Figure 2007126884

Figure 2007126884
Figure 2007126884

そして、図2に示すように移動中心線G→固定中心線P→主掘削カッタ2の先端Tの順で直線上に並ぶ方向が長円形状の短軸[2(L―r)]方向になり、図4に示すように固定中心線P→移動中心線G→主掘削カッタ2の先端Tの順で直線上に並ぶ方向が長円形状の長軸[2(L+r)]方向になる。   Then, as shown in FIG. 2, the direction aligned on the straight line in the order of the moving center line G → the fixed center line P → the tip T of the main excavation cutter 2 is the direction of the minor axis [2 (Lr)] of the oval shape. Thus, as shown in FIG. 4, the direction aligned on the straight line in the order of the fixed center line P → the movement center line G → the tip T of the main excavation cutter 2 is the direction of the long axis [2 (L + r)] having an oval shape.

図8は横長の長円形状の軌跡を示す図であり、単位をm(メートル)とする。ここでは、移動中心線G→固定中心線P→主掘削カッタ2の先端Tの順で直線上に並ぶ方向を縦軸に合わせ、固定中心線P→移動中心線G→主掘削カッタ2の先端Tの順で直線上に並ぶ方向を横軸に合わせる。そして、偏心量r=1m,主掘削カッタ2の長さL=8mとする。これにより、図8に示す横長の長円形状の軌跡(掘削断面)が得られる。すなわち、本掘削機によって図8で示す断面形状のトンネルを施工すれば、例えば地下鉄駅部分を拡幅できる。   FIG. 8 is a diagram showing a horizontally long oval locus, and the unit is m (meter). Here, the direction aligned on the straight line in the order of moving center line G → fixed center line P → tip T of main excavation cutter 2 is aligned with the vertical axis, and fixed center line P → moving center line G → tip of main excavation cutter 2 The direction aligned on the straight line in the order of T is aligned with the horizontal axis. The amount of eccentricity r is 1 m, and the length L of the main excavation cutter 2 is 8 m. As a result, a horizontally long oval locus (excavated cross section) shown in FIG. 8 is obtained. That is, if a tunnel having the cross-sectional shape shown in FIG. 8 is constructed by this excavator, for example, a subway station portion can be widened.

また、図9は縦長の長円形状の軌跡を示す図であり、単位をm(メートル)とする。ここでは、移動中心線G→固定中心線P→主掘削カッタ2の先端Tの順で直線上に並ぶ方向を横軸に合わせ、固定中心線P→移動中心線G→主掘削カッタ2の先端Tの順で直線上に並ぶ方向を縦軸に合わせる。そして、偏心量r=1m,主掘削カッタ2の長さL=8mとする。これにより、図9に示す縦長の長円形状の軌跡(掘削断面)が得られる。すなわち、本掘削機によって図9で示す断面形状のトンネルを施工すれば、例えば道路幅内に設置する下水道の有効空間を円形断面よりも大きく取ることができる。   FIG. 9 is a diagram showing a vertically long oval locus, and the unit is m (meters). Here, the direction aligned on the straight line in the order of moving center line G → fixed center line P → tip T of main excavation cutter 2 is aligned with the horizontal axis, and fixed center line P → moving center line G → tip of main excavation cutter 2 The direction aligned on the straight line in the order of T is aligned with the vertical axis. The amount of eccentricity r is 1 m, and the length L of the main excavation cutter 2 is 8 m. As a result, a vertically long oval locus (excavated cross section) shown in FIG. 9 is obtained. That is, if a tunnel having the cross-sectional shape shown in FIG. 9 is constructed by this excavator, for example, the effective space of the sewer installed within the road width can be made larger than the circular cross-section.

一方、上記構成の掘削機は、回転機構3において駆動部36の駆動力を副回転軸35に伝達することによって、副回転軸35が固定中心線Pを中心として回転(例えば図2における反時計回り方向)する。このため、副回転軸35に設けた副掘削カッタ2’は、副回転軸35の回転に伴って回転移動する。   On the other hand, the excavator having the above-described configuration transmits the driving force of the drive unit 36 to the sub-rotating shaft 35 in the rotating mechanism 3 so that the sub-rotating shaft 35 rotates around the fixed center line P (for example, counterclockwise in FIG. 2). Direction). For this reason, the sub excavation cutter 2 ′ provided on the sub rotation shaft 35 rotates and moves as the sub rotation shaft 35 rotates.

具体的には、図2および図4〜図7における副掘削カッタ2’の先端S(A,B,C)の移動位置で示すように副掘削カッタ2’が回転し、図5〜図7に示すように円形状の軌跡をなす。すなわち、本掘削機を前方向(図2参照)に推進することで円形状断面の掘削孔hを掘進することが可能になる。このため、主掘削カッタ2に先行して副掘削カッタ2’による円形状の掘削孔hを掘削することが可能になる。この結果、長円形状断面の掘削孔Hを掘削する前に円形状の補助掘削孔を掘削することができる。   Specifically, the secondary excavation cutter 2 ′ rotates as shown by the movement position of the tip S (A, B, C) of the secondary excavation cutter 2 ′ in FIGS. 2 and 4 to 7, and FIGS. A circular trajectory is formed as shown in FIG. That is, the excavator h having a circular cross section can be excavated by propelling the excavator forward (see FIG. 2). For this reason, it becomes possible to excavate the circular excavation hole h by the sub excavation cutter 2 ′ prior to the main excavation cutter 2. As a result, it is possible to excavate the circular auxiliary excavation hole before excavating the excavation hole H having an elliptical cross section.

このように、上述した実施の形態における掘削機は、所定の固定中心線Pを中心とした外周部311を有する固定の中心軸31と、固定中心線Pに平行な所定の移動中心線Gを中心とした内周部321および外周部322を有して環状に形成してあって当該内周部321を中心軸31の外周部311に当接係合した環状軸32と、移動中心線G上に中心を置いたルーロー三角形状の範囲内の少なくとも中心と頂点とを結ぶ延長線に沿って環状軸32に設けた主掘削カッタ2と、固定中心線Pを中心とする内周部331を有して環状に形成してあり当該内周部331を環状軸32の外周部322に当接係合して固定中心線Pを中心に回転可能に設けた主回転軸33と、移動中心線Gを中心に環状軸32を回転可能に支持して当該環状軸32の外周部322と主回転軸33の内周部331との係合および中心軸31の外周部311と環状軸32の内周部321との係合を保持する保持部材34と、固定中心線Pを中心として回転可能に設けた副回転軸35と、副回転軸35に設けた副掘削カッタ2’と、主回転軸33および副回転軸35を回転駆動する駆動部36とを備えている。   As described above, the excavator in the above-described embodiment includes the fixed center axis 31 having the outer peripheral portion 311 centered on the predetermined fixed center line P and the predetermined movement center line G parallel to the fixed center line P. An annular shaft 32 having an inner peripheral portion 321 and an outer peripheral portion 322 as a center, formed in an annular shape and abuttingly engaging the inner peripheral portion 321 with the outer peripheral portion 311 of the central shaft 31, and a movement center line G A main excavation cutter 2 provided on the annular shaft 32 along an extension line connecting at least the center and the apex within the range of the Louro triangle centered on the upper side, and an inner peripheral part 331 centered on the fixed center line P A main rotation shaft 33 that is formed in an annular shape and abuts and engages the inner peripheral portion 331 with the outer peripheral portion 322 of the annular shaft 32 so as to be rotatable about the fixed center line P; The annular shaft 32 is rotatably supported around G, and the outside of the annular shaft 32 A holding member 34 that holds the engagement between the portion 322 and the inner peripheral portion 331 of the main rotating shaft 33 and the engagement between the outer peripheral portion 311 of the central shaft 31 and the inner peripheral portion 321 of the annular shaft 32, and a fixed center line P A sub-rotation shaft 35 provided rotatably at the center, a sub-excavation cutter 2 ′ provided on the sub-rotation shaft 35, and a drive unit 36 that rotationally drives the main rotation shaft 33 and the sub-rotation shaft 35 are provided.

そして、駆動部36の駆動力を主回転軸33に伝達することによって、主回転軸33が固定中心線Pを中心として回転する。すると、主回転軸33の内周部331に係合する環状軸32が移動中心線Gを中心として主回転軸33と同方向に回転する。さらに、移動中心線Gを中心として回転する環状軸32は、その内周部321が中心軸31の外周部311に係合しているため、当該中心軸31の外周部311に沿って固定中心線Pの周りに主回転軸33と同方向に輪転運動(公転)する。このとき、保持部材34は、その外周が環状軸32の内周に摺接し、挿通孔341が中心軸31の外周に摺接して、環状軸32の公転に伴って固定中心線Pを中心として回転するので主回転軸33の内周部331と環状軸32の外周部322との係合、および中心軸31の外周部311と環状軸32の内周部321との係合を常に保持する。このため、環状軸32に設けた主掘削カッタ2は、環状軸32の輪転運動に伴って自転および公転移動する。移動する主掘削カッタ2の先端Tは、非円形状である長円形状の軌跡をなし、非円形状断面である長円形状断面の掘削孔Hが得られる。この掘削孔Hは、一般的な断面円形の掘削孔と比較して、不要な空間を掘削せずに利用空間のみの掘削で得られるため、必要以上の用地面積を要さないことに加えて建設費を低減することが可能になる。   Then, the main rotating shaft 33 rotates around the fixed center line P by transmitting the driving force of the driving unit 36 to the main rotating shaft 33. Then, the annular shaft 32 engaged with the inner peripheral portion 331 of the main rotating shaft 33 rotates in the same direction as the main rotating shaft 33 around the movement center line G. Further, the annular shaft 32 that rotates about the movement center line G has an inner peripheral portion 321 engaged with an outer peripheral portion 311 of the central shaft 31, and therefore, a fixed center along the outer peripheral portion 311 of the central shaft 31. A rotary motion (revolution) occurs around the line P in the same direction as the main rotary shaft 33. At this time, the outer periphery of the holding member 34 is in sliding contact with the inner periphery of the annular shaft 32, the insertion hole 341 is in sliding contact with the outer periphery of the central shaft 31, and the fixed center line P is centered with the revolution of the annular shaft 32. Since it rotates, the engagement between the inner peripheral portion 331 of the main rotating shaft 33 and the outer peripheral portion 322 of the annular shaft 32 and the engagement between the outer peripheral portion 311 of the central shaft 31 and the inner peripheral portion 321 of the annular shaft 32 are always maintained. . For this reason, the main excavation cutter 2 provided on the annular shaft 32 rotates and revolves as the annular shaft 32 rotates. The tip T of the moving main excavation cutter 2 has a non-circular elliptical trajectory, and an excavation hole H having an elliptical cross-section that is a non-circular cross-section is obtained. Since this excavation hole H can be obtained by excavating only the use space without excavating unnecessary space, compared with a general excavation hole having a circular cross section, it does not require an unnecessarily large land area. Construction costs can be reduced.

一方、駆動部36の駆動力を副回転軸35に伝達することによって、副回転軸35が固定中心線Pを中心として回転する。このため、副回転軸35に設けた副掘削カッタ2’は、副回転軸35の回転に伴って回転移動する。移動する副掘削カッタ2’の先端Sは、円形状の軌跡をなし、円形状断面の掘削孔Hが得られる。この結果、長円形状断面の掘削孔Hを掘削する前に円形状の補助掘削孔hを掘削することができる。すなわち、掘削孔Hを掘削する前に削岩が可能になり、掘削の負荷を低減できる。   On the other hand, by transmitting the driving force of the drive unit 36 to the sub rotation shaft 35, the sub rotation shaft 35 rotates about the fixed center line P. For this reason, the sub excavation cutter 2 ′ provided on the sub rotation shaft 35 rotates and moves as the sub rotation shaft 35 rotates. The tip S of the moving secondary excavation cutter 2 ′ has a circular trajectory, and a circular excavation hole H is obtained. As a result, the circular auxiliary excavation hole h can be excavated before the excavation hole H having an elliptical cross section is excavated. That is, rock drilling becomes possible before excavating the excavation hole H, and the excavation load can be reduced.

したがって、上記掘削機は、主回転軸33が固定中心線Pを中心として回転駆動され、かつ、環状軸32が主回転軸33の回転に伴って保持部材34に保持された形態で移動中心線Gを中心として回転しつつ固定中心線Pを中心として公転する。この結果、主回転軸33が固定中心線P上でその軸心がずれることなく回転するため、回転ぶれや振動を低減することが可能になる。また、環状軸32が主回転軸33の回転に伴って保持部材34に保持された形態で移動中心線Gを中心として回転しつつ固定中心線Pを中心として公転するため、環状軸32の自転および公転移動に際して従前の自在継手を要することがないので、自在継手に係るコストを低減することが可能になる。   Therefore, in the excavator, the main rotation shaft 33 is driven to rotate about the fixed center line P, and the moving center line is configured such that the annular shaft 32 is held by the holding member 34 as the main rotation shaft 33 rotates. Revolving around a fixed center line P while rotating around G. As a result, the main rotating shaft 33 rotates on the fixed center line P without shifting its axis, so that it is possible to reduce rotational shake and vibration. Further, since the annular shaft 32 revolves around the fixed center line P while rotating around the movement center line G in a form held by the holding member 34 as the main rotation shaft 33 rotates, the rotation of the annular shaft 32 In addition, since the conventional universal joint is not required for the revolving movement, the cost for the universal joint can be reduced.

さらに、上記掘削機は、主掘削カッタ2を設けた環状軸32を、保持部材34によって保持した形態で公転および自転させる構成である。このため、従前のほぼ正方形状の軌跡をなす場合と同様にルーロー三角形の外幅を一辺とする正方形枠にルーロー三角形状の軸を支持して回転させる必要がない。すなわち、枠体が必要ない。このため、掘進した掘削孔Hの断面形状に対して、掘削機の胴部1の前面視の輪郭を小さく形成することが可能になる。この結果、主掘削カッタ2が先行して掘進した掘削孔Hに胴部1が通過できるので、掘削断面が長円形状の掘削孔Hの掘進を行うことが可能になる。また、上記掘削機は、主掘削カッタ2を設けた環状軸32を、保持部材34によって保持した形態で公転および自転させる構成で非円形状である長円形状の掘削を行う。このため、従前のごとくスイングアームを用いた複雑な構成にすることがなく、製造コストを低減することが可能である。すなわち、上記掘削機は、簡素な機構で非円形状である長円形状の軌跡を得て、非円形状断面である長円形状断面の掘削孔Hを掘進するため、故障が起こり難く信頼性が高く、コストを低減することが可能である。   Further, the excavator is configured to revolve and rotate in a form in which the annular shaft 32 provided with the main excavation cutter 2 is held by the holding member 34. For this reason, it is not necessary to support and rotate the axis of the Rouleau triangle in the square frame having the outer width of the Rouleau triangle as one side, as in the case of forming a substantially square locus. That is, a frame is not necessary. For this reason, it becomes possible to form the outline of the body part 1 of an excavator small in front view with respect to the cross-sectional shape of the excavated drill hole H. As a result, since the trunk portion 1 can pass through the excavation hole H that the main excavation cutter 2 has excavated in advance, it becomes possible to excavate the excavation hole H having an oval cross section. Further, the excavator performs excavation of an oval shape that is a non-circular shape with a configuration in which the annular shaft 32 provided with the main excavation cutter 2 is revolved and rotated in a form held by the holding member 34. For this reason, it is possible to reduce the manufacturing cost without using a complicated configuration using a swing arm as before. That is, the excavator obtains a non-circular elliptical trajectory with a simple mechanism and digs through the elliptical cross-sectional drilling hole H, which is a non-circular cross section. And the cost can be reduced.

ところで、上述した各実施の形態において、上記回転機構3の環状軸32を回転のみの構成に変えることによって円形状の軌跡をなし、円形状断面の掘削孔が得られる。図10は本発明に係る掘削機の他の実施の形態を示す概略側断面図、図11は図10に示す掘削機を軸方向(前方向)から視た概念図である。なお、以下に説明する他の実施の形態において、上述した実施の形態と同等部分には同一の符号を付して説明を省略する。   By the way, in each embodiment mentioned above, a circular locus | trajectory is made | formed by changing the cyclic | annular axis | shaft 32 of the said rotation mechanism 3 to a structure of rotation only, and the excavation hole of circular cross section is obtained. FIG. 10 is a schematic sectional side view showing another embodiment of the excavator according to the present invention, and FIG. 11 is a conceptual view of the excavator shown in FIG. 10 viewed from the axial direction (forward direction). In other embodiments described below, the same parts as those in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.

図10および図11に示す他の実施の形態における掘削機では、回転機構3について上記保持部材34に代えて他の保持部材37を備え、さらに駆動部36の駆動力を環状軸32に伝達する駆動伝達手段38を備えたものである。他の保持部材37は、保持部材34に代えて移動中心線Gを中心に環状軸32を回転可能に支持し、中心軸31の外周部311と環状軸32の内周部321との係合を離隔しつつ、固定中心線Pに移動中心線Gを一致させた形態で環状軸32を保持するものである。具体的に、他の保持部材37は、環状軸32の内周とほぼ同じ外周を有して所定厚さの円板状に形成してあり、中心軸31の外周に摺接して固定中心線Pを中心に回転する態様で環状軸32に内装してある。そして、他の保持部材37には、固定中心線Pと一致した移動中心線Gを中心として中心軸31の外周とほぼ同じ内周を有する貫通孔371が設けてある。また、駆動伝達手段38は、環状軸32と主回転軸33とを連結するものであり、例えば環状軸32の外周部322および主回転軸33の内周部331に当接係合する1つもしくは複数のアイドルギヤとして構成してある。なお、駆動伝達手段38は、アイドルギヤに限らず、環状軸32と主回転軸33とを連結する構成であればよい。   In the excavator in another embodiment shown in FIGS. 10 and 11, the rotation mechanism 3 includes another holding member 37 instead of the holding member 34, and further transmits the driving force of the driving unit 36 to the annular shaft 32. Drive transmission means 38 is provided. The other holding member 37 supports the annular shaft 32 rotatably around the movement center line G instead of the holding member 34, and engages the outer peripheral portion 311 of the central shaft 31 and the inner peripheral portion 321 of the annular shaft 32. The annular shaft 32 is held in a form in which the movement center line G is made to coincide with the fixed center line P. Specifically, the other holding member 37 is formed in a disk shape having a predetermined thickness having an outer periphery substantially the same as the inner periphery of the annular shaft 32, and is in sliding contact with the outer periphery of the center shaft 31. The annular shaft 32 is internally mounted in a manner that rotates around P. The other holding member 37 is provided with a through-hole 371 having an inner periphery that is substantially the same as the outer periphery of the center shaft 31 with the movement center line G coinciding with the fixed center line P as the center. The drive transmission means 38 connects the annular shaft 32 and the main rotating shaft 33. For example, the drive transmitting means 38 is in contact with and engaged with the outer peripheral portion 322 of the annular shaft 32 and the inner peripheral portion 331 of the main rotating shaft 33. Alternatively, it is configured as a plurality of idle gears. The drive transmission means 38 is not limited to the idle gear, and may be any structure that connects the annular shaft 32 and the main rotating shaft 33.

このように、上述した他の実施の形態における掘削機は、駆動部36の駆動力を主回転軸33に伝達することによって、主回転軸33が固定中心線Pを中心として回転する。すると、主回転軸33に対して駆動伝達手段38によって連結する環状軸32が固定中心線Pに一致した移動中心線Gを中心として主回転軸33と逆方向に回転する。このため、環状軸32に設けた主掘削カッタ2は、環状軸32の回転に伴って回転移動する。移動する主掘削カッタ2の先端Tは、円形状の軌跡をなし、円形状断面の掘削孔H’が得られる。   As described above, in the excavator according to the other embodiment described above, the driving force of the driving unit 36 is transmitted to the main rotating shaft 33, so that the main rotating shaft 33 rotates around the fixed center line P. Then, the annular shaft 32 connected to the main rotation shaft 33 by the drive transmission means 38 rotates in the direction opposite to the main rotation shaft 33 around the movement center line G coinciding with the fixed center line P. For this reason, the main excavation cutter 2 provided on the annular shaft 32 rotates as the annular shaft 32 rotates. The leading end T of the moving main excavation cutter 2 has a circular locus, and a circular excavation hole H 'is obtained.

一方、駆動部36の駆動力を副回転軸35に伝達することによって、副回転軸35が固定中心線Pを中心として回転する。このため、副回転軸35に設けた副掘削カッタ2’は、副回転軸35の回転に伴って回転移動する。移動する副掘削カッタ2’の先端Sは、円形状の軌跡をなし、円形状断面の掘削孔Hに先行して円形状の補助掘削孔hを掘削することができる。   On the other hand, by transmitting the driving force of the drive unit 36 to the sub rotation shaft 35, the sub rotation shaft 35 rotates about the fixed center line P. For this reason, the sub excavation cutter 2 ′ provided on the sub rotation shaft 35 rotates and moves as the sub rotation shaft 35 rotates. The tip S of the moving secondary excavation cutter 2 ′ has a circular trajectory, and the circular auxiliary excavation hole h can be excavated prior to the circular excavation hole H.

ここで、上述した長円形状断面の掘削孔Hを掘削する掘削機の胴部1は、前方から視て掘削孔Hと同じ、もしくは掘削孔Hよりもやや小さい長円形状の輪郭としてある。そして、本実施の形態のように円形状断面の掘削孔H’を掘削する掘削機とした場合には、前方から視て掘削孔H’と同じ、もしくは掘削孔H’よりもやや小さい円形状の輪郭とする。   Here, the trunk portion 1 of the excavator that excavates the excavation hole H having the elliptical cross section described above has an elliptical outline that is the same as or slightly smaller than the excavation hole H when viewed from the front. And when it is set as the excavator which excavates the excavation hole H 'of circular cross section like this Embodiment, it is the same as the excavation hole H', or slightly smaller than the excavation hole H 'when seen from the front. The outline of

したがって、他の実施の形態における掘削機は、保持部材34に代えて移動中心線Gを中心に環状軸32を回転可能に支持し、中心軸31の外周部311と環状軸32の内周部321との係合を離隔しつつ、固定中心線Pに移動中心線Gを一致させた形態で環状軸32を保持する他の保持部材37と、駆動部36の駆動力を環状軸32に伝達する駆動伝達手段とを備えている。このため、環状軸32が固定中心線Pに一致した移動中心線Gを中心として回転するので、環状軸32に設けた主掘削カッタ2は、環状軸32の回転に伴って回転移動する。すなわち、移動する主掘削カッタ2の先端Tが円形状の軌跡をなし、円形状断面の掘削孔H’を得ることができる。この結果、1台の掘削機で長円形状断面の掘削孔Hの掘削と、円形状断面の掘削孔H’の掘削を行うことが可能になる。このようにすることで、例えば地下鉄で一般部分を円形状断面とし、駅ホームのある部分だけを長円形状断面にすることが可能になる。また、例えばトンネルで一般部分を円形状断面とし、分岐部だけを長円形状断面にすることが可能になる。   Therefore, the excavator in other embodiments supports the annular shaft 32 rotatably around the movement center line G instead of the holding member 34, and the outer peripheral portion 311 of the central shaft 31 and the inner peripheral portion of the annular shaft 32. The other holding member 37 that holds the annular shaft 32 in a form in which the moving center line G coincides with the fixed center line P and the driving force of the drive unit 36 is transmitted to the annular shaft 32 while separating the engagement with the fixed center line P. Drive transmission means. For this reason, since the annular shaft 32 rotates around the movement center line G coinciding with the fixed center line P, the main excavation cutter 2 provided on the annular shaft 32 rotates and moves as the annular shaft 32 rotates. That is, the tip T of the moving main excavation cutter 2 forms a circular trajectory, and a circular excavation hole H 'can be obtained. As a result, it becomes possible to excavate the excavation hole H having an elliptical cross section and excavating the excavation hole H 'having a circular cross section with one excavator. By doing in this way, it becomes possible to make a general part into a circular cross section, for example in a subway, and to make only a part with a station platform into an oval cross section. In addition, for example, it is possible to make a general part a circular cross section in a tunnel and make only a branch part an oval cross section.

なお、上述した他の保持部材37は、環状軸32の内周とほぼ同じ外周を有して所定厚さの円板状に形成してあり、中心軸31の外周に摺接して固定中心線Pを中心に回転する態様で環状軸32に内装してあるが、これに限らない。例えば、図12および図13に示すように、環状軸32と主回転軸33との間に内装してあり、かつ、環状軸32の外周部322および主回転軸33の内周部331に当接係合する構成であってもよい。このように構成した他の保持部材37であっても、中心軸31の外周部311と環状軸32の内周部321との係合を離隔しつつ、固定中心線Pに移動中心線Gを一致させた形態で環状軸32を保持する。特に、この他の保持部材37は、環状軸32の外周部322および主回転軸33の内周部331に当接係合して駆動伝達手段を兼ねる。この結果、駆動伝達手段の構成数を減らすことが可能になる。   The other holding member 37 described above has an outer periphery substantially the same as the inner periphery of the annular shaft 32 and is formed in a disc shape having a predetermined thickness, and is in sliding contact with the outer periphery of the center shaft 31 and is fixed to the center line. Although it is equipped in the annular shaft 32 in such a manner that it rotates around P, it is not limited to this. For example, as shown in FIG. 12 and FIG. 13, it is housed between the annular shaft 32 and the main rotating shaft 33 and contacts the outer peripheral portion 322 of the annular shaft 32 and the inner peripheral portion 331 of the main rotating shaft 33. The structure which contacts and may be sufficient. Even in the other holding member 37 configured as described above, the movement center line G is set to the fixed center line P while the engagement between the outer peripheral portion 311 of the central shaft 31 and the inner peripheral portion 321 of the annular shaft 32 is separated. The annular shaft 32 is held in a matched form. In particular, the other holding member 37 abuts on and engages with the outer peripheral portion 322 of the annular shaft 32 and the inner peripheral portion 331 of the main rotating shaft 33 and also serves as a drive transmission means. As a result, it is possible to reduce the number of components of the drive transmission means.

本発明に係る掘削機の実施の形態を示す概略側断面図である。It is a schematic sectional side view which shows embodiment of the excavator which concerns on this invention. 図1に示す掘削機を軸方向(前方向)から視た概念図である。It is the conceptual diagram which looked at the excavator shown in FIG. 1 from the axial direction (front direction). 図1に示す回転機構の分解斜視図である。It is a disassembled perspective view of the rotation mechanism shown in FIG. 図2に示す掘削機の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the excavator shown in FIG. 図2に示す掘削機の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the excavator shown in FIG. 図2に示す掘削機の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the excavator shown in FIG. 図2に示す掘削機の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the excavator shown in FIG. 横長の長円形状の軌跡を示す図である。It is a figure which shows a horizontally long ellipse-shaped locus. 縦長の長円形状の軌跡を示す図である。It is a figure which shows the locus | trajectory of a vertically long ellipse shape. 本発明に係る掘削機の他の実施の形態を示す概略側断面図である。It is a schematic sectional side view which shows other embodiment of the excavator which concerns on this invention. 図10に示す掘削機を軸方向(前方向)から視た概念図である。It is the conceptual diagram which looked at the excavator shown in FIG. 10 from the axial direction (front direction). 本発明に係る掘削機の他の実施の形態を示す概略側断面図である。It is a schematic sectional side view which shows other embodiment of the excavator which concerns on this invention. 図12に示す掘削機を軸方向(前方向)から視た概念図である。It is the conceptual diagram which looked at the excavator shown in FIG. 12 from the axial direction (front direction).

符号の説明Explanation of symbols

1 胴部
2 主掘削カッタ
2’ 副掘削カッタ
3 回転機構
31 中心軸
311 外周部
312 軸孔
32 環状軸
321 内周部
322 外周部
33 主回転軸
331 内周部
34 保持部材
341 挿通孔
35 副回転軸
36 駆動部
361 駆動源
362 駆動軸
363 駆動歯
364 伝達歯
365 伝達歯
37 他の保持部材
371 貫通孔
38 駆動伝達手段
P 固定中心線
G 移動中心線
H,h,H’ 掘削孔
DESCRIPTION OF SYMBOLS 1 trunk | drum 2 main excavation cutter 2 'sub excavation cutter 3 rotation mechanism 31 central axis 311 outer peripheral part 312 shaft hole 32 annular shaft 321 inner peripheral part 322 outer peripheral part 33 main rotating shaft 331 inner peripheral part 34 holding member 341 insertion hole 35 sub Rotating shaft 36 Drive unit 361 Drive source 362 Drive shaft 363 Drive tooth 364 Transmission tooth 365 Transmission tooth 37 Other holding member 371 Through hole 38 Drive transmission means P Fixed center line G Moving center line H, h, H 'Drilling hole

Claims (3)

所定の固定中心線を中心とした外周部を有する固定の中心軸と、
前記固定中心線に平行な所定の移動中心線を中心とした内周部および外周部を有して環状に形成してあって当該内周部を前記中心軸の外周部に当接係合した環状軸と、
前記移動中心線上に中心を置いたルーロー三角形状の範囲内の少なくとも中心と頂点とを結ぶ延長線に沿って前記環状軸に設けた主掘削カッタと、
前記固定中心線を中心とする内周部を有して環状に形成してあり当該内周部を前記環状軸の外周部に当接係合して固定中心線を中心に回転可能に設けた主回転軸と、
前記移動中心線を中心に前記環状軸を回転に支持して当該環状軸の外周部と前記主回転軸の内周部との係合および前記中心軸の外周部と前記環状軸の内周部との係合を保持する保持部材と、
前記固定中心線を中心として回転可能に設けた副回転軸と、
前記副回転軸に設けた副掘削カッタと、
前記主回転軸および前記副回転軸を回転駆動する駆動部と、
前記中心軸および主回転軸を支持するとともに前記駆動部を内部に配置した筒状の胴部と
を備えたことを特徴とする掘削機。
A fixed central axis having an outer periphery centered on a predetermined fixed center line;
An inner peripheral part and an outer peripheral part centered on a predetermined movement center line parallel to the fixed center line are formed in an annular shape, and the inner peripheral part is in contact with and engaged with the outer peripheral part of the central axis An annular shaft;
A main excavation cutter provided on the annular shaft along an extension line connecting at least the center and the apex within a range of a Rouleau triangle centered on the moving centerline;
An inner peripheral portion centered on the fixed center line is formed in an annular shape, and the inner peripheral portion is in contact with and engaged with the outer peripheral portion of the annular shaft so as to be rotatable about the fixed center line. A main rotating shaft;
The annular shaft is rotatably supported around the moving center line, and the outer peripheral portion of the annular shaft and the inner peripheral portion of the main rotary shaft are engaged, and the outer peripheral portion of the central shaft and the inner peripheral portion of the annular shaft A holding member that holds the engagement with
A sub-rotation shaft provided rotatably about the fixed center line;
A sub-excavation cutter provided on the sub-rotation shaft;
A drive unit that rotationally drives the main rotation shaft and the sub rotation shaft;
An excavator comprising: a cylindrical body portion that supports the central shaft and the main rotating shaft and has the driving unit disposed therein.
前記駆動部は、駆動源からの前記主回転軸および前記副回転軸への駆動力の伝達を連係してあることを特徴とする請求項1に記載の掘削機。   2. The excavator according to claim 1, wherein the driving unit links transmission of driving force from a driving source to the main rotating shaft and the sub rotating shaft. 前記保持部材に代えて前記移動中心線を中心に前記環状軸を回転可能に支持し、前記中心軸の外周部と前記環状軸の内周部との係合を離隔しつつ前記固定中心線に移動中心線を一致させた形態で前記環状軸を保持する他の保持部材と、
前記駆動部の駆動力を前記環状軸に伝達する駆動伝達手段と
を備えたことを特徴とする請求項1または2に記載の掘削機。
Instead of the holding member, the annular shaft is rotatably supported around the moving center line, and the engagement between the outer peripheral portion of the central shaft and the inner peripheral portion of the annular shaft is separated from the fixed center line. Another holding member that holds the annular shaft in a form in which the movement center line is matched;
The excavator according to claim 1, further comprising: a drive transmission unit configured to transmit a driving force of the driving unit to the annular shaft.
JP2005320756A 2005-11-04 2005-11-04 Excavator Pending JP2007126884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005320756A JP2007126884A (en) 2005-11-04 2005-11-04 Excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320756A JP2007126884A (en) 2005-11-04 2005-11-04 Excavator

Publications (1)

Publication Number Publication Date
JP2007126884A true JP2007126884A (en) 2007-05-24

Family

ID=38149745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320756A Pending JP2007126884A (en) 2005-11-04 2005-11-04 Excavator

Country Status (1)

Country Link
JP (1) JP2007126884A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111894608A (en) * 2020-08-06 2020-11-06 中国矿业大学 Rectangular shield machine with Leluo triangular auxiliary cutter head
CN114396230A (en) * 2022-03-28 2022-04-26 北京欧钻科技有限公司 Square hole rotary drilling drill

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111894608A (en) * 2020-08-06 2020-11-06 中国矿业大学 Rectangular shield machine with Leluo triangular auxiliary cutter head
CN111894608B (en) * 2020-08-06 2021-08-13 中国矿业大学 Rectangular shield machine with Leluo triangular auxiliary cutter head
CN114396230A (en) * 2022-03-28 2022-04-26 北京欧钻科技有限公司 Square hole rotary drilling drill

Similar Documents

Publication Publication Date Title
JP2007016563A (en) Excavator
US4074778A (en) Square hole drill
JP2007100421A (en) Rotating mechanism and excavator
JP2018135682A (en) Underground excavation head
JP2006336426A (en) Tunnel boring machine
JP2007126884A (en) Excavator
JP2006336427A (en) Ground agitator and diaphragm wall construction method
KR101559757B1 (en) Ground excavator
JP4496484B2 (en) Rotating mechanism and excavator
JP2007284909A (en) Turning mechanism and excavator
JP5768963B2 (en) Drilling rig
JP6349295B2 (en) Excavator
JP2939409B2 (en) 4-blade steel pipe cutting machine
JP2007205104A (en) Rotating mechanism and excavator
JP2007205103A (en) Rotating mechanism and excavator
JP2007205105A (en) Rotating mechanism and excavator
JPH06235219A (en) Method and device for multi-spindle excavation
JP4383221B2 (en) Shield machine and tunnel excavation method
JP2007262819A (en) Excavator
JP2024044827A (en) cutting equipment
JP2007205106A (en) Rotating mechanism and excavator
JP2002129861A (en) Excavating device and method
JP3534490B2 (en) Tunnel excavator and tunnel excavation method
JPH11217989A (en) Various type section shield drilling machine
JP2955825B2 (en) Deformed tunnel excavator