JP2007284909A - Turning mechanism and excavator - Google Patents

Turning mechanism and excavator Download PDF

Info

Publication number
JP2007284909A
JP2007284909A JP2006110845A JP2006110845A JP2007284909A JP 2007284909 A JP2007284909 A JP 2007284909A JP 2006110845 A JP2006110845 A JP 2006110845A JP 2006110845 A JP2006110845 A JP 2006110845A JP 2007284909 A JP2007284909 A JP 2007284909A
Authority
JP
Japan
Prior art keywords
center line
shaft
annular shaft
peripheral portion
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006110845A
Other languages
Japanese (ja)
Inventor
Kazuo Miyazawa
和夫 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2006110845A priority Critical patent/JP2007284909A/en
Publication of JP2007284909A publication Critical patent/JP2007284909A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excavator capable of continuously obtaining the excavation of circular and noncircular cross sections at a low cost while reducing the rotational swing and vibrations of a driving system. <P>SOLUTION: When a rotating shaft 33 is rotated in the counterclockwise direction centering around a fixed center line P by a driving section, an annular shaft 32 engaged with the first outer peripheral section 331 of the rotating shaft is turned in the same direction as the rotating shaft centering around a moving center line G under the state in which the annular shaft 32 is held to a holding member 34. The outer peripheral section 322 of the annular shaft is engaged with the inner peripheral section 311 of a bearing 31, and the annular shaft is revolved in the opposite direction to the rotating shaft in the periphery of the fixed center line P along the inner peripheral section of the bearing. Consequently, an excavating cutter 2 fitted to the annular shaft forms an approximately rectangular locus as a noncircular shape by a rotation and a revolution. Then, the moving center line is conformed to the fixed center line and the annular shaft is moved so that the outer peripheral section is separated from the inner peripheral section of the bearing, and the driving force of the driving section is transmitted to the annular shaft, thus forming a circular locus by the rotation centering around the fixed center line by the excavating cutter fitted to the annular shaft. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、同一中心で円形状および非円形状の軌跡をなす回転機構、および当該回転機構を用いて地盤などを掘削する掘削機に関するものである。   The present invention relates to a rotation mechanism that forms circular and non-circular trajectories at the same center, and an excavator that excavates the ground using the rotation mechanism.

一般的な掘削機は、回転機構によってカッタヘッドを回転させて当該カッタヘッドで地盤を掘削するものが知られている。このような掘削機は、カッタヘッドが所定の中心を以て回転することから必然的に断面形状が円形になる。しかし、鉄道や道路などのトンネル利用空間においては、必要とされる断面形状が非円形状であることが多く、上記円形の掘削断面内に非円形状とした鉄道や道路などの空間を構築する。このため、利用空間以上の掘削を行うことになるので、用地面積が多く必要となることに加えて建設費が嵩むという問題がある。   A general excavator is known in which a cutter head is rotated by a rotating mechanism and the ground is excavated by the cutter head. Such an excavator inevitably has a circular cross-section because the cutter head rotates about a predetermined center. However, in tunnel use spaces such as railways and roads, the required cross-sectional shape is often non-circular, and a non-circular railway or road space is constructed within the circular excavation cross-section. . For this reason, since excavation more than utilization space is performed, in addition to requiring a lot of land area, there exists a problem that construction cost increases.

従来、例えばルーロー三角形なるルーロー三角形回転体に切削用バイトを設け、当該ルーロー三角形回転体を回転することで、被加工物に正方形状の穴明けを行う正方形穴明け加工装置がある(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, for example, there is a square drilling device for forming a square hole in a workpiece by providing a cutting tool on a Rouleau triangle rotating body such as a Rouleau triangle and rotating the Rouleau triangle rotating body (for example, patents) Reference 1).

他に、加工部材をその中心周りに回転自在に加工部材自転支持装置に取り付け、当該加工部材自転支持装置を加工部材公転支持装置に取り付けた掘削機がある。加工部材には、中心と同芯状のほぼ正三角形の各頂点とその内方に掘削刃を設けて掘削作用面が形成してある。加工部材自転支持装置は、加工部材を前記正三角形の一辺の((1/2)/cos30°−(1/2))倍の半径で中心が回転するように加工部材公転支持装置に取り付けてある。そして、加工部材を自転させながらその自転方向とは逆の方向に3倍公転させる駆動手段を設けてある(例えば、特許文献2参照)。   In addition, there is an excavator in which a machining member is attached to a machining member rotation support device so as to be rotatable about its center, and the machining member rotation support device is attached to the machining member revolution support device. The processed member is provided with an excavation working surface by providing excavation blades at the apexes of substantially equilateral triangles concentric with the center and inward thereof. The processed member rotation support device is attached to the processed member revolving support device so that the center rotates at a radius ((1/2) / cos30 ° − (1/2)) times one side of the equilateral triangle. is there. And the drive means which revolves 3 times in the direction opposite to the rotation direction while rotating a process member is provided (for example, refer patent document 2).

また他に、正三角形の各頂点を中心とし、その一辺の長さを半径とする円弧を各対辺の外側に描き、これらの3つの円弧により囲まれたルーロー三角形を外形とするカッタを、矩形状スキンプレートの中心軸の回りに公転させながら自転させて掘削する矩形シールド工法がある。スキンプレートの中心軸に対するカッタの回転軸の偏心距離は、(L/2)/cos30°−(L/2)を満足するように設定してある(L:ルーロー三角形の頂点間の距離)。なお、カッタの公転数は自転数の3倍で、公転方向と自転方向が逆方向である(例えば、特許文献3参照)。   In addition, a circular arc centered on each vertex of the regular triangle and having the length of one side as a radius is drawn on the outside of each opposite side, and a cutter having an outline of a Rouleau triangle surrounded by these three circular arcs is defined as a rectangle. There is a rectangular shield method in which excavation is performed by rotating while revolving around the central axis of the shape skin plate. The eccentric distance of the rotation axis of the cutter with respect to the center axis of the skin plate is set so as to satisfy (L / 2) / cos 30 ° − (L / 2) (L: distance between vertices of the Rouleau triangle). The revolution number of the cutter is three times the revolution number, and the revolution direction and the revolution direction are opposite directions (see, for example, Patent Document 3).

さらに、掘削断面の円形中心部を主カッタが掘削し、その外周部を複数の遊星カッタが掘削する自由断面シールド工法がある。遊星カッタは、主カッタの回転につれて主カッタの外周部を自転しながら公転する。この公転軌道は、遊星カッタを設置したスイングアームの角度調整によって任意に変えることができる。この結果、同一中心で矩形、楕円形、馬蹄形、卵形など様々な掘削断面形状を選択できる(例えば、非特許文献1参照)。   Furthermore, there is a free section shield method in which a main cutter excavates a circular center part of an excavation section and a plurality of planetary cutters excavate an outer peripheral part thereof. The planetary cutter revolves while rotating around the outer periphery of the main cutter as the main cutter rotates. This revolution trajectory can be arbitrarily changed by adjusting the angle of the swing arm provided with the planetary cutter. As a result, various excavation cross-sectional shapes, such as a rectangle, an ellipse, a horseshoe shape, and an egg shape, can be selected at the same center (for example, refer nonpatent literature 1).

特開平11−267950号公報JP-A-11-267950 特開平1−158196号公報JP-A-1-158196 特許第2926125号公報Japanese Patent No. 2926125 シールド工法技術協会、“自由断面シールド工法”、[online]、平成17年9月16日検索、インターネット<URL:http://www.shield-method.gr.jp/pdf_data/jiyu.pdf>Shield Construction Method Association, “Free Section Shield Construction Method”, [online], searched on September 16, 2005, Internet <URL: http://www.shield-method.gr.jp/pdf_data/jiyu.pdf>

ところで、ルーロー三角形を利用して非円形状である略矩形状に掘削を行う場合には、ルーロー三角形をその重心を中心として回転させ、かつルーロー三角形の重心を正方形の中心の周りに公転させる必要がある。   By the way, when digging into a non-circular, substantially rectangular shape using the rouleau triangle, it is necessary to rotate the rouleau triangle around its center of gravity and revolve the lureau triangle center of gravity around the center of the square. There is.

特許文献1の発明は、モータのトルクを伝達する軸と、ルーロー三角形回転体の重心の軸とを自在継手で連結してある。しかし、この構成では駆動伝達系に回転ぶれや振動が生じることになり、さらに大きなトルクが必要となる掘削機では自在継手は高価であり製造コストが嵩む。   In the invention of Patent Document 1, a shaft for transmitting the torque of the motor and a shaft at the center of gravity of the Rouleau triangle rotating body are connected by a universal joint. However, in this configuration, rotational vibration and vibration are generated in the drive transmission system, and in an excavator that requires a larger torque, the universal joint is expensive and the manufacturing cost increases.

特許文献2の発明では、モータからのトルクをクランク軸によって加工部材に伝達して公転装置を構成してある。しかし、クランクさせることによって回転軸部材にせん断力や曲げモーメントが生じて回転ぶれや振動の原因となる。   In the invention of Patent Document 2, a revolution device is configured by transmitting torque from a motor to a machining member by a crankshaft. However, cranking causes shearing force and bending moment to the rotating shaft member, which causes rotational vibration and vibration.

特許文献3の発明は、矩形状スキンプレートの中心に公転駆動盤を設けてこの公転駆動盤にカッタ回転軸を設けてある。そして、公転駆動盤を回転させるモータと、カッタ回転軸を回転させるモータを設けてある。しかし、カッタ回転軸を回転させるモータは、公転駆動盤に設けてあるため、配線や配管の処理を十分検討して設計する必要がある。さらに、各モータの回転数や回転方向を調整してそれぞれ同期させる必要がある。この結果、設計コストが嵩むことになる。   In the invention of Patent Document 3, a revolution drive board is provided at the center of a rectangular skin plate, and a cutter rotation shaft is provided on the revolution drive board. A motor for rotating the revolution drive board and a motor for rotating the cutter rotating shaft are provided. However, since the motor for rotating the cutter rotating shaft is provided on the revolution drive board, it is necessary to design the wiring and pipes after careful examination. Furthermore, it is necessary to synchronize by adjusting the rotation speed and rotation direction of each motor. As a result, the design cost increases.

このように、ほぼ矩形状の軌跡をなすためにルーロー三角形の原理を利用した回転機構についての出願はあるものの、いずれも合理的な駆動を実現するものではない。また、大きなトルクが必要である掘削機においては、正方形枠は掘削孔内で大きなスペースを要することから正方形枠のない機構が望まれている。さらに、矩形状の掘削に限らず矩形状を含む多角形状の軌跡をなす回転機構、および当該回転機構を用いた掘削機を実現するものはない。   As described above, although there is an application for a rotation mechanism that uses the principle of the Rouleau triangle to form a substantially rectangular locus, none of them realizes rational driving. Further, in excavators that require a large torque, a square frame requires a large space in the excavation hole, so a mechanism without a square frame is desired. Furthermore, there is no realization of a rotating mechanism that forms a polygonal locus including a rectangular shape and an excavator using the rotating mechanism, not limited to rectangular excavation.

また、非特許文献1の工法は、矩形状や楕円形状の掘削に対応しているが、主カッタの回転につれて主カッタの外周部を自転しながら公転する複数の遊星カッタを得るために、スイングアームを用いた複雑な構成にしてある。この結果、製造コストが嵩むという問題がある。   In addition, the method of Non-Patent Document 1 corresponds to rectangular or elliptical excavation, but in order to obtain a plurality of planetary cutters that revolve while rotating around the outer periphery of the main cutter as the main cutter rotates, It has a complicated structure using an arm. As a result, there is a problem that the manufacturing cost increases.

本発明は、上記実情に鑑みて、駆動系の回転ぶれや振動を低減しつつ低コストで、円形状および非円形状の軌跡をなす回転機構、および当該回転機構を用いて円形状および非円形状の断面の掘削を連続して得ることができる掘削機を提供することを目的とする。   In view of the above circumstances, the present invention provides a rotary mechanism that forms circular and non-circular trajectories at low cost while reducing rotational shake and vibration of a drive system, and circular and non-circular using the rotary mechanism. An object of the present invention is to provide an excavator capable of continuously obtaining excavation of a cross section having a shape.

上記の目的を達成するために、本発明の請求項1に係る回転機構は、所定の固定中心線を中心とした環状の内周部を有する固定の軸受と、前記固定中心線に平行な所定の移動中心線を中心とした内周部および外周部を有する環状をなして前記軸受に内装して配置してありその外周部を前記軸受の内周部に係合した第一回転位置と固定中心線に移動中心線を一致して外周部を軸受の内周部から離間した第二回転位置とに移動可能に設けた環状軸と、前記固定中心線を回転中心として回転可能に設けてあり第一回転位置にある環状軸の内周部の一部に対して当接係合する第一外周部と第二回転位置にある環状軸の内周部の全周に沿って当接係合する第二外周部とを固定中心線に沿って配置した回転軸と、前記回転軸を回転駆動する駆動部と、前記環状軸が第一回転位置にあるときに環状軸の内周部と前記回転軸の第一外周部との係合を保持しつつ当該環状軸の外周部と前記軸受の内周部との係合を保持する保持部材と、前記保持部材の保持形態を維持または解除して前記環状軸を第一回転位置または第二回転位置に移動してさらに前記環状軸の各回転位置に合わせて前記回転軸を固定中心線に沿って移動する回転形態変更手段と、前記環状軸に設けてあって前記移動中心線上に中心を置いたルーロー三角形状の少なくとも中心と頂点とを結ぶ延長線に沿って配置した羽根部材とを備えたことを特徴とする。   In order to achieve the above object, a rotating mechanism according to claim 1 of the present invention includes a fixed bearing having an annular inner periphery centered on a predetermined fixed center line, and a predetermined parallel to the fixed center line. The first rotation position where the outer peripheral portion is engaged with the inner peripheral portion of the bearing is fixed with the inner peripheral portion and the outer peripheral portion around the moving center line. An annular shaft provided so that the movement center line coincides with the center line and the outer peripheral part can be moved to a second rotational position separated from the inner peripheral part of the bearing, and provided so as to be rotatable about the fixed center line. Abutment engagement along the entire circumference of the first outer peripheral portion that abuts and engages with a part of the inner peripheral portion of the annular shaft at the first rotational position and the inner peripheral portion of the annular shaft at the second rotational position. A rotating shaft that is disposed along a fixed center line, a driving unit that rotationally drives the rotating shaft, The engagement between the outer peripheral portion of the annular shaft and the inner peripheral portion of the bearing is maintained while maintaining the engagement between the inner peripheral portion of the annular shaft and the first outer peripheral portion of the rotary shaft when the shaft is in the first rotation position. A holding member for holding the joint, and maintaining or releasing the holding form of the holding member, moving the annular shaft to the first rotational position or the second rotational position, and further rotating the annular shaft according to each rotational position of the annular shaft Rotation mode changing means for moving the shaft along a fixed center line, and an extension line provided at the annular shaft and connecting at least the center and the apex of a Rouleau triangle centered on the moving center line And a blade member.

本発明の請求項2に係る回転機構は、上記請求項1において、前記羽根部材はルーロー三角形状がなす軌跡の範囲内で伸縮可能に形成してあることを特徴とする。   The rotating mechanism according to a second aspect of the present invention is characterized in that, in the first aspect, the blade member is formed so as to be extendable and contractable within a range of a locus formed by a rouleau triangle.

本発明の請求項3に係る掘削機は、請求項1または2に記載の回転機構を用い、筒状に形成した外部に前記羽根部材を配置してその他の構成を内部に配置しつつ前記環状軸の各回転位置における羽根部材の軌跡に合わせて外形を変更可能に設けた胴部と、前記羽根部材にカッタを配設してなる掘削カッタとを備えたことを特徴とする。   The excavator according to a third aspect of the present invention uses the rotating mechanism according to the first or second aspect, and arranges the annular member while disposing the blade member outside the tube and forming the other components inside. It is characterized by comprising a trunk portion provided so that its outer shape can be changed in accordance with the trajectory of the blade member at each rotational position of the shaft, and an excavation cutter in which a cutter is disposed on the blade member.

本発明によれば、環状軸を第一回転位置にした形態で、駆動部の駆動力を回転軸に伝達することによって、回転軸が固定中心線を中心として回転する。すると、回転軸の第一外周部に係合する環状軸が、保持部材に保持された形態で移動中心線を中心として回転軸と同方向に回転する。さらに、移動中心線を中心として回転する環状軸は、その外周部が軸受の内周部に係合しているため、当該軸受の内周部に沿って固定中心線の周りに回転軸と逆方向に輪転運動(公転)することになる。このため、環状軸に設けた羽根部材は、環状軸の輪転運動に伴って自転および公転移動する。移動する羽根部材の先端は、非円形状である略矩形状の軌跡をなす。そして、羽根部材にカッタを配設した掘削カッタを備えた掘削機とすれば、略矩形状の掘削孔を掘削することができる。   According to the present invention, the rotation shaft rotates about the fixed center line by transmitting the driving force of the drive unit to the rotation shaft in the form in which the annular shaft is at the first rotation position. Then, the annular shaft that engages with the first outer peripheral portion of the rotating shaft rotates in the same direction as the rotating shaft around the movement center line in a form held by the holding member. Further, since the outer peripheral portion of the annular shaft that rotates about the moving center line is engaged with the inner peripheral portion of the bearing, it is opposite to the rotating shaft around the fixed center line along the inner peripheral portion of the bearing. It will rotate in the direction (revolution). For this reason, the blade member provided on the annular shaft rotates and revolves as the annular shaft rotates. The tip of the moving blade member has a substantially rectangular locus that is non-circular. And if it is set as the excavator provided with the excavation cutter which provided the cutter to the blade member, a substantially rectangular excavation hole can be excavated.

一方、環状軸を第二回転位置にした形態で、駆動部の駆動力を回転軸に伝達することによって、回転軸が固定中心線を中心として回転する。すると、回転軸の第二外周部に係合する環状軸が、固定中心線を中心として回転軸と同方向に回転する。ここで、固定中心線を中心として回転する環状軸は、その外周部が軸受の内周部から離間しているために輪転運動(公転)しない。このため、環状軸に設けた羽根部材は、固定中心線を中心として自転のみする。移動する羽根部材の先端は、円形状の軌跡をなす。そして、羽根部材にカッタを配設した掘削カッタを備えた掘削機とすれば、円形状の掘削孔を掘削することができる。   On the other hand, by transmitting the driving force of the drive unit to the rotating shaft in the form in which the annular shaft is at the second rotating position, the rotating shaft rotates around the fixed center line. Then, the annular shaft engaged with the second outer peripheral portion of the rotating shaft rotates in the same direction as the rotating shaft about the fixed center line. Here, the annular shaft rotating around the fixed center line does not rotate (revolve) because its outer peripheral portion is separated from the inner peripheral portion of the bearing. For this reason, the blade member provided on the annular shaft rotates only around the fixed center line. The tip of the moving blade member has a circular trajectory. And if it is set as the excavator provided with the excavation cutter which provided the cutter on the blade member, a circular excavation hole can be excavated.

また、円形状の軌跡や掘削孔を得る場合に、羽根部材の長さを縮ませることで略矩形状の軌跡(掘削孔)の範囲内に円形状の軌跡(掘削孔)を得ることができる。また、掘削機では、略矩形状の掘削孔を掘削する場合に当該掘削孔の形状に沿った胴部を設け、円形状の掘削孔を掘削する場合に当該掘削孔の形状に沿った胴部を設ける。   In addition, when obtaining a circular trajectory or excavation hole, a circular trajectory (excavation hole) can be obtained within the range of a substantially rectangular trajectory (excavation hole) by reducing the length of the blade member. . Further, in the excavator, when excavating a substantially rectangular excavation hole, a trunk portion is provided along the shape of the excavation hole, and when excavating a circular excavation hole, the excavator along the shape of the excavation hole is provided. Is provided.

このように、本発明によれば、環状軸を第一回転位置にした形態では、非円形状である略矩形状の軌跡(掘削孔)を得ることができる一方で、環状軸を第二回転位置にした形態では、略矩形状と同一中心で円形状の軌跡(掘削孔)を得ることができる。この結果、掘削機においては、略矩形状と円形状の掘削断面を組み合わせて一連に連続した掘削孔を得ることができる。   Thus, according to the present invention, in the form in which the annular shaft is in the first rotation position, a non-circular substantially rectangular locus (excavation hole) can be obtained, while the annular shaft is rotated second. In the form of the position, a circular locus (excavation hole) can be obtained at the same center as the substantially rectangular shape. As a result, in the excavator, a series of continuous excavation holes can be obtained by combining substantially rectangular and circular excavation sections.

以下に添付図面を参照して、本発明に係る回転機構および掘削機の好適な実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Exemplary embodiments of a rotating mechanism and an excavator according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

図1は本発明に係る回転機構を用いた掘削機の実施の形態であって第一回転位置を示す概略側断面図、図2は図1に示す回転機構を軸方向(前方向)から視た概念図、図3は本発明に係る回転機構を用いた掘削機の実施の形態であって第二回転位置を示す概略側断面図、図4は図3に示す回転機構を軸方向(前方向)から視た概念図である。   FIG. 1 is a schematic sectional side view showing a first rotation position of an excavator using a rotation mechanism according to the present invention, and FIG. 2 is a view of the rotation mechanism shown in FIG. 1 from the axial direction (forward direction). FIG. 3 is a schematic side sectional view showing a second rotational position of the excavator using the rotating mechanism according to the present invention, and FIG. 4 is a schematic view of the rotating mechanism shown in FIG. It is the conceptual diagram seen from (direction).

図1および図2に示すように掘削機は、胴部1と掘削カッタ2とを備えている。胴部1は、掘削カッタ2を支持しつつ掘削カッタ2を駆動するものであって、掘削機の外郭をなし、筒状とした内部に回転機構3を有している。なお、本実施の形態における回転機構3は、図2に二点鎖線で示す略矩形状(非円形状)の軌跡、および図4に示すように円形状の軌跡をなすものである。そして、この回転機構3を用いた掘削機は、略矩形状および円形状の掘削孔を掘削するものである。   As shown in FIGS. 1 and 2, the excavator includes a trunk portion 1 and an excavation cutter 2. The trunk portion 1 drives the excavation cutter 2 while supporting the excavation cutter 2. The trunk portion 1 forms an outline of the excavator and includes a rotating mechanism 3 in a cylindrical shape. The rotation mechanism 3 in the present embodiment forms a substantially rectangular (non-circular) locus shown by a two-dot chain line in FIG. 2 and a circular locus as shown in FIG. The excavator using the rotating mechanism 3 excavates substantially rectangular and circular excavation holes.

回転機構3は、軸受31、環状軸32、回転軸33、保持部材34および駆動部35および回転形態変更手段36を有している。   The rotation mechanism 3 includes a bearing 31, an annular shaft 32, a rotation shaft 33, a holding member 34, a drive unit 35, and a rotation form changing unit 36.

軸受31は、胴部1に固定してあり、胴部1の前後方向に沿って配置した所定の固定中心線Pを中心としてほぼ円形状に形成した穴を有している。軸受31の穴の内周面には、円周りに沿って内歯車をなす内周部311が設けてある。   The bearing 31 is fixed to the body 1 and has a hole formed in a substantially circular shape around a predetermined fixed center line P arranged along the front-rear direction of the body 1. On the inner peripheral surface of the hole of the bearing 31, an inner peripheral portion 311 that forms an internal gear is provided along the circumference of the circle.

環状軸32は、固定中心線Pと平行にして胴部1の前後方向に沿って配置した所定の移動中心線Gを中心としてほぼ円環状に形成してある。環状軸32の内周面には、円周りに沿って内歯車をなす内周部321が設けてある。また、環状軸32の外周面には、円周りに沿って外歯車をなす外周部322が設けてある。この環状軸32は、軸受31に内装して、その外周部322の一部を軸受31の内周部311の一部に対して当接係合するように構成してある。   The annular shaft 32 is formed in a substantially annular shape around a predetermined movement center line G arranged along the front-rear direction of the body portion 1 in parallel with the fixed center line P. On the inner peripheral surface of the annular shaft 32, an inner peripheral portion 321 that forms an internal gear is provided along the circumference of the circle. Further, the outer peripheral surface of the annular shaft 32 is provided with an outer peripheral portion 322 that forms an external gear along the circumference of the circle. The annular shaft 32 is arranged in the bearing 31 so that a part of the outer peripheral part 322 abuts and engages with a part of the inner peripheral part 311 of the bearing 31.

また、環状軸32は、図1および図2に示すように外周部322の一部を軸受31の内周部311の一部に対して係合した第一回転位置と、図3および図4に示すように固定中心線Pに移動中心線Gを一致して外周部322を軸受31の内周部311から離間した第二回転位置とに移動可能に設けてある。   Further, as shown in FIGS. 1 and 2, the annular shaft 32 has a first rotational position where a part of the outer peripheral part 322 is engaged with a part of the inner peripheral part 311 of the bearing 31, and FIGS. 3 and 4. As shown in FIG. 4, the outer peripheral portion 322 is provided so as to be movable to the second rotational position separated from the inner peripheral portion 311 of the bearing 31 with the moving center line G coinciding with the fixed center line P.

回転軸33は、固定中心線Pを回転中心として回転可能に設けてある。回転軸33は、固定中心線Pを中心とした円周りに沿って外歯車をなす第一外周部331と第二外周部332とを有している。第一外周部331は、環状軸32の環状内に内装して環状軸32の内周部321の一部に対して当接係合するように構成してある。第二外周部332は、環状軸32の環状内に内装して環状軸32の内周部321の全周に沿って当接係合するように構成してある。これら、第一外周部331と第二外周部332とは、固定中心線Pに沿って配置してある。   The rotation shaft 33 is provided so as to be rotatable about a fixed center line P as a rotation center. The rotating shaft 33 has a first outer peripheral portion 331 and a second outer peripheral portion 332 that form an external gear along a circle around the fixed center line P. The first outer peripheral portion 331 is configured so as to be abutted and engaged with a part of the inner peripheral portion 321 of the annular shaft 32 by being housed inside the annular shaft 32. The second outer peripheral portion 332 is configured to be fitted in the annular shape of the annular shaft 32 so as to abut and engage along the entire circumference of the inner peripheral portion 321 of the annular shaft 32. The first outer peripheral portion 331 and the second outer peripheral portion 332 are arranged along the fixed center line P.

また、回転軸33は、図1および図2に示すように第一回転位置にある環状軸32の内周部321に対して第一外周部331を係合する位置と、図3および図4に示すように第二回転位置にある環状軸32の内周部321に第二外周部332を係合する位置と固定中心線Pに沿って移動可能に設けてある。   Further, as shown in FIGS. 1 and 2, the rotation shaft 33 is engaged with the inner periphery 321 of the annular shaft 32 at the first rotation position, and the position where the first outer periphery 331 is engaged, as shown in FIGS. As shown in FIG. 5, the second outer peripheral portion 332 is engaged with the inner peripheral portion 321 of the annular shaft 32 at the second rotational position and is movable along the fixed center line P.

保持部材34は、固定中心線Pを中心とした円盤状に形成してあり、固定中心線Pを中心として軸受31の内周面とほぼ同径の外周面を有して当該内周面に摺接する凸部341と、移動中心線Gを中心として環状軸32の外周面とほぼ同径の内周面を有して当該外周面に摺接する孔部342とが設けてある。また、保持部材34は、円盤状の外周縁343に対して円環状の支持部344が取り付けてある。支持部344と保持部材34の外周縁343とは、相対的に回転可能に設けてある。この保持部材34は、固定中心線Pを中心として支持部344を軸受31に取り付けてあって、図1および図2に示すように環状軸32の外周部322の一部が軸受31の内周部311の一部に対して当接係合している状態で(第一回転位置)、軸受31の内周面に凸部341の外周面を摺接させつつ、環状軸32の外周面に孔部342の内周面を摺接させる。すなわち、保持部材34は、固定中心線Pを中心に自身が回転可能であり、移動中心線Gを中心として環状軸32を回動可能に挿通して、環状軸32の内周部321と回転軸33の第一外周部331との係合を保持しつつ、環状軸32の外周部322と軸受31の内周部311との係合を保持する。   The holding member 34 is formed in a disk shape centered on the fixed center line P, and has an outer peripheral surface having the same diameter as the inner peripheral surface of the bearing 31 around the fixed center line P. A convex portion 341 that is in sliding contact and a hole portion 342 that has an inner peripheral surface that is substantially the same diameter as the outer peripheral surface of the annular shaft 32 around the movement center line G and that is in sliding contact with the outer peripheral surface are provided. The holding member 34 has an annular support portion 344 attached to a disc-shaped outer peripheral edge 343. The support portion 344 and the outer peripheral edge 343 of the holding member 34 are provided to be relatively rotatable. The holding member 34 has a support portion 344 attached to the bearing 31 around the fixed center line P, and a part of the outer peripheral portion 322 of the annular shaft 32 is formed on the inner periphery of the bearing 31 as shown in FIGS. The outer peripheral surface of the annular shaft 32 is brought into sliding contact with the inner peripheral surface of the bearing 31 while being in contact with and engaged with a part of the portion 311 (first rotation position). The inner peripheral surface of the hole 342 is brought into sliding contact. That is, the holding member 34 is rotatable about the fixed center line P, and is rotatably inserted through the annular shaft 32 around the movement center line G so as to rotate with the inner peripheral portion 321 of the annular shaft 32. While maintaining engagement with the first outer peripheral portion 331 of the shaft 33, engagement between the outer peripheral portion 322 of the annular shaft 32 and the inner peripheral portion 311 of the bearing 31 is maintained.

また、保持部材34は、図3および図4に示すように環状軸32が第二回転位置にあるときには、凸部341の外周面と軸受31の内周面との摺接が離間するように固定中心線Pに沿って移動可能に設けてある。なお、環状軸32には、保持部材34が上記のごとく移動し、自身が第二回転位置に移動した場合に、保持部材34の孔部342との当接干渉を防ぐ凹部323が設けてある。   Further, as shown in FIGS. 3 and 4, the holding member 34 is configured so that the sliding contact between the outer peripheral surface of the convex portion 341 and the inner peripheral surface of the bearing 31 is separated when the annular shaft 32 is in the second rotation position. It is provided so as to be movable along the fixed center line P. The annular shaft 32 is provided with a recess 323 that prevents contact interference with the hole 342 of the holding member 34 when the holding member 34 moves as described above and moves to the second rotational position. .

駆動部35は、固定中心線Pを中心として回転軸33を回転させるものであり、例えばモータなど胴部1に設けた駆動源からなる。また、駆動部35は、回転軸33に対して回転力を伝達しつつ、回転軸33を固定中心線Pに沿って移動可能に支持してある。なお、駆動部35は、図には明示しないが駆動源と回転軸33との間に適宜減速機構を有していてもよい。   The drive unit 35 rotates the rotation shaft 33 around the fixed center line P, and includes a drive source provided in the body 1 such as a motor. The drive unit 35 supports the rotary shaft 33 so as to be movable along the fixed center line P while transmitting rotational force to the rotary shaft 33. Note that the drive unit 35 may have a speed reduction mechanism as appropriate between the drive source and the rotary shaft 33 although not shown in the figure.

回転形態変更手段36は、環状軸32、回転軸33および保持部材34を移動させて回転機構3の回転形態を変更するためのものであり、環状軸移動部361、回転軸移動部362および保持部材移動部363を有している。環状軸移動部361は、固定側である軸受31(または胴部1)に設けたジャッキからなり、環状軸32を第一回転位置(図1参照)と第二回転位置(図3参照)とに移動させる。回転軸移動部362は、回転軸33に内装したジャッキからなり、回転軸33(第一外周部331および第二外周部332)を固定中心線Pに沿って前後方向に移動させて、第一回転位置にある環状軸32の内周部321に回転軸33の第一外周部331を係合させる一方で(図1参照)、第二回転位置にある環状軸32の内周部321に回転軸33の第二外周部332を係合させる(図3参照)。保持部材移動部363は、固定側である軸受31(または胴部1)に設けたジャッキからなり、保持部材34を固定中心線Pに沿って前後方向に移動させて、環状軸32が第一回転位置にある場合に、当該環状軸32、軸受31および回転軸33の係合を保持する一方で(図1参照)、環状軸32が第二回転位置にある場合に保持状態を解除する(図3参照)。   The rotation form changing means 36 is for changing the rotation form of the rotation mechanism 3 by moving the annular shaft 32, the rotation shaft 33, and the holding member 34, and includes the annular shaft moving unit 361, the rotating shaft moving unit 362, and the holding unit. A member moving part 363 is provided. The annular shaft moving part 361 is composed of a jack provided on the bearing 31 (or the body part 1) on the fixed side, and the annular shaft 32 is moved to a first rotational position (see FIG. 1) and a second rotational position (see FIG. 3). Move to. The rotary shaft moving part 362 is composed of a jack built in the rotary shaft 33, and moves the rotary shaft 33 (the first outer peripheral part 331 and the second outer peripheral part 332) in the front-rear direction along the fixed center line P. The first outer peripheral portion 331 of the rotary shaft 33 is engaged with the inner peripheral portion 321 of the annular shaft 32 in the rotational position (see FIG. 1), while rotating to the inner peripheral portion 321 of the annular shaft 32 in the second rotational position. The second outer peripheral portion 332 of the shaft 33 is engaged (see FIG. 3). The holding member moving part 363 is composed of a jack provided on the bearing 31 (or the trunk part 1) on the fixed side, and the holding member 34 is moved in the front-rear direction along the fixed center line P so that the annular shaft 32 is the first. When in the rotational position, the engagement of the annular shaft 32, the bearing 31 and the rotational shaft 33 is maintained (see FIG. 1), while the retained state is released when the annular shaft 32 is in the second rotational position (see FIG. 1). (See FIG. 3).

掘削カッタ2は、胴部1の前側に延出した環状軸32の前端に設けた羽根部材21からなる。羽根部材21は、移動中心線G上に中心(重心)を置いた仮想ルーロー三角形状(図2に一点鎖線で示す)の範囲内であって、少なくとも中心(移動中心線G)と頂点(T)とを結ぶ延長線(必ずしも直線でなくてもよい)に沿って配置してある。そして、羽根部材21の前面に掘削ビット(図示せず)を設けることによって掘削カッタ2が構成される。ルーロー三角形は、図2に一点鎖線で示すように正三角形の各頂点Tを中心として他の頂点Tを結ぶ円弧を描いてなる形状をなし、その外幅(差し渡し幅)がいずれも定幅なものである。なお、羽根部材21は、ルーロー三角形状がなす軌跡の範囲内で伸縮可能に形成してある。   The excavation cutter 2 includes a blade member 21 provided at the front end of an annular shaft 32 extending to the front side of the body portion 1. The blade member 21 is within a virtual roulau triangular shape (indicated by a one-dot chain line in FIG. 2) with the center (center of gravity) placed on the movement center line G, and at least the center (movement center line G) and apex (T ) Are arranged along an extension line (not necessarily a straight line). The excavation cutter 2 is configured by providing an excavation bit (not shown) in front of the blade member 21. As shown by the alternate long and short dash line in FIG. 2, the rouleau triangle has a shape in which an arc connecting the other vertices T with each vertex T of the regular triangle as the center, and the outer width (passing width) is constant. Is. In addition, the blade member 21 is formed so that it can be expanded and contracted within the range of the locus formed by the Rouleau triangle.

また、羽根部材21は、環状軸32の前端に支軸22を介して固定してある。この支軸22は、固定側である軸受31(または胴部1)に設けたスライド部材37によって支持してある。スライド部材37は、環状軸32の第一回転位置や第二回転位置への移動に際して移動中心線Gや固定中心線Pに対して支軸22が一致するように支持しつつ、環状軸32が第一回転位置にあるときの移動中心線Gを中心とした支軸22の回転や環状軸32が第二回転位置にあるときの固定中心線Pを中心とした支軸22の回転を支持する。   The blade member 21 is fixed to the front end of the annular shaft 32 via the support shaft 22. The support shaft 22 is supported by a slide member 37 provided on the bearing 31 (or the body portion 1) on the fixed side. The slide member 37 supports the annular shaft 32 so that the support shaft 22 coincides with the movement center line G and the fixed center line P when the annular shaft 32 moves to the first rotation position and the second rotation position. Supports rotation of the support shaft 22 about the movement center line G when in the first rotation position and rotation of the support shaft 22 about the fixed center line P when the annular shaft 32 is in the second rotation position. .

ここで、上記軸受31、環状軸32および羽根部材21の寸法設定は、図2に示すように軸受31の内周部311および回転軸33の第一外周部331の中心(固定中心線P)から環状軸32の中心(移動中心線G)に至る距離(偏心量)を[r]として、環状軸32の外周部322の直径を[6r]、軸受31の内周部311の直径を[8r]と設定してある。そして、羽根部材21を配置する仮想ルーロー三角形の中心(移動中心線G)と頂点Tとを結ぶ延長線Lを[L=0.5a+r]と設定してある。ここで、[a]はルーロー三角形の外幅(正方形状の辺長)である。   Here, the dimensions of the bearing 31, the annular shaft 32 and the blade member 21 are set at the center (fixed center line P) of the inner peripheral portion 311 of the bearing 31 and the first outer peripheral portion 331 of the rotating shaft 33 as shown in FIG. [R] is the distance (eccentric amount) from the center of the annular shaft 32 to the center of the annular shaft 32 (movement center line G), the diameter of the outer peripheral portion 322 of the annular shaft 32 is [6r], and the diameter of the inner peripheral portion 311 of the bearing 31 is [ 8r]. And the extension line L which connects the center (movement center line G) of the virtual roulau triangle which arrange | positions the blade | wing member 21 and the vertex T is set to [L = 0.5a + r]. Here, [a] is the outer width (square side length) of the rouleau triangle.

上記構成の掘削機は、環状軸32を第一回転位置にした図1および図2に示す形態で略矩形状の掘削孔H1を掘削する。この場合、回転機構3において駆動部35の駆動力を回転軸33に伝達することによって、回転軸33が固定中心線Pを中心として回転(例えば図2における反時計回り方向)する。すると、回転軸33の第一外周部331に係合する環状軸32が、保持部材34に保持された形態で移動中心線Gを中心として回転軸33と同方向(例えば図2における反時計回り方向)に回転する。さらに、移動中心線Gを中心として回転する環状軸32は、その外周部322が軸受31の内周部311に係合しているため、当該軸受31の内周部311に沿って軸受31の固定中心線Pの周りに回転軸33と逆方向(例えば図2における時計回り方向)に輪転運動(公転)することになる。このため、環状軸32に設けた掘削カッタ2(羽根部材21)は、環状軸32の輪転運動に伴って自転および公転移動する。移動する掘削カッタ2の先端Tは、略矩形状(略正方形状)の軌跡をなす。   The excavator having the above configuration excavates a substantially rectangular excavation hole H1 in the form shown in FIGS. 1 and 2 with the annular shaft 32 in the first rotation position. In this case, by transmitting the driving force of the driving unit 35 to the rotating shaft 33 in the rotating mechanism 3, the rotating shaft 33 rotates around the fixed center line P (for example, counterclockwise in FIG. 2). Then, the annular shaft 32 that engages with the first outer peripheral portion 331 of the rotating shaft 33 is held by the holding member 34 in the same direction as the rotating shaft 33 (for example, counterclockwise in FIG. 2) about the movement center line G. Direction). Further, the annular shaft 32 that rotates about the movement center line G has an outer peripheral portion 322 engaged with an inner peripheral portion 311 of the bearing 31, and therefore, the bearing 31 extends along the inner peripheral portion 311 of the bearing 31. A rotary motion (revolution) is performed around the fixed center line P in the direction opposite to the rotation shaft 33 (for example, the clockwise direction in FIG. 2). For this reason, the excavation cutter 2 (blade member 21) provided on the annular shaft 32 rotates and revolves as the annular shaft 32 rotates. The tip T of the excavating cutter 2 that moves moves in a substantially rectangular (substantially square) locus.

具体的には、環状軸32の外周部322の直径[6r]と、軸受31の内周部311の直径[8r]との比率が3:4に設定してあるため、図2および図5〜図8に示すように環状軸32が移動中心線Gを中心に1回転すると、当該環状軸32は固定中心線Pの周りに1/3回転分公転する。したがって、図2および図5〜図8における掘削カッタ2の先端T(A,B,C)の移動位置で示すように掘削カッタ2も同様に公転および自転し、図8に示すように角が円弧の矩形状(正方形状)の軌跡をなす。この結果、本掘削機を前方向(図1参照)に推進することで略矩形状(略正方形状)の掘削断面の掘削孔H1(図8参照)を掘進することが可能になる。   Specifically, since the ratio of the diameter [6r] of the outer peripheral portion 322 of the annular shaft 32 and the diameter [8r] of the inner peripheral portion 311 of the bearing 31 is set to 3: 4, FIG. 2 and FIG. As shown in FIG. 8, when the annular shaft 32 makes one rotation around the movement center line G, the annular shaft 32 revolves around the fixed center line P by 1/3 rotation. Accordingly, as shown in the movement position of the tip T (A, B, C) of the excavation cutter 2 in FIG. 2 and FIG. 5 to FIG. 8, the excavation cutter 2 similarly revolves and rotates, and has an angle as shown in FIG. It forms a rectangular (square) trajectory of an arc. As a result, the excavator H1 (see FIG. 8) having a substantially rectangular (substantially square) excavation section can be excavated by propelling the excavator forward (see FIG. 1).

一方、上記構成の掘削機は、環状軸32を第二回転位置にした図3および図4に示す形態で円形状の掘削孔H2を掘削する。この場合、回転機構3において駆動部35の駆動力を回転軸33に伝達することによって、回転軸33が固定中心線Pを中心として回転(例えば図4における反時計回り方向)する。すると、回転軸33の第二外周部332に係合する環状軸32が、固定中心線Pを中心として回転軸33と同方向(例えば図4における反時計回り方向)に回転する。ここで、固定中心線Pを中心として回転する環状軸32は、その外周部322が軸受31の内周部311に係合していないため、輪転運動(公転)はしない。このため、環状軸32に設けた掘削カッタ2(羽根部材21)は、固定中心線Pを中心として自転する。移動する掘削カッタ2の先端Tは、円形状の軌跡をなす。この結果、本掘削機を前方向(図3参照)に推進することで円形状の掘削断面の掘削孔H2(図4参照)を掘進することが可能になる。なお、円形状の軌跡や掘削孔H2を得る場合に、羽根部材21(掘削カッタ2)の長さを縮ませることで略矩形状の軌跡(掘削孔H1)の範囲内に円形状の軌跡(掘削孔H2)をなすことが可能である。また、掘削機では、略矩形状の掘削孔H1を掘削する場合に当該掘削孔H1の形状に沿った胴部1を設け、円形状の掘削孔H2を掘削する場合に当該掘削孔H2の形状に沿った胴部1を設ける。   On the other hand, the excavator having the above configuration excavates the circular excavation hole H2 in the form shown in FIGS. 3 and 4 in which the annular shaft 32 is set at the second rotational position. In this case, by transmitting the driving force of the driving unit 35 to the rotating shaft 33 in the rotating mechanism 3, the rotating shaft 33 rotates around the fixed center line P (for example, counterclockwise in FIG. 4). Then, the annular shaft 32 engaged with the second outer peripheral portion 332 of the rotating shaft 33 rotates in the same direction as the rotating shaft 33 (for example, counterclockwise in FIG. 4) about the fixed center line P. Here, the annular shaft 32 rotating around the fixed center line P does not rotate (revolve) because the outer peripheral portion 322 is not engaged with the inner peripheral portion 311 of the bearing 31. For this reason, the excavation cutter 2 (blade member 21) provided on the annular shaft 32 rotates around the fixed center line P. The tip T of the excavating cutter 2 that moves is a circular locus. As a result, it becomes possible to dig a circular excavation hole H2 (see FIG. 4) by propelling the excavator forward (see FIG. 3). In addition, when obtaining the circular locus | trajectory and the excavation hole H2, the circular locus | trajectory (in the range of the substantially rectangular locus | trajectory (excavation hole H1) is shortened by shortening the length of the blade member 21 (excavation cutter 2). It is possible to form a drilling hole H2). Further, in the excavator, the body portion 1 is provided along the shape of the excavation hole H1 when excavating the substantially rectangular excavation hole H1, and the shape of the excavation hole H2 is provided when excavating the circular excavation hole H2. The trunk | drum 1 along is provided.

このように、上述した実施の形態における回転機構3は、環状軸32を第一回転位置にした形態では、非円形状である略矩形状の軌跡をなすことが可能になる。一方、環状軸32を第二回転位置にした形態では、略矩形状と同一中心で円形状の軌跡をなすことが可能になる。そして、この回転機構3を用いた掘削機では、1台の掘削機で非円形状である略矩形状(略正方形状)の掘削孔H1と、円形状の掘削孔H2とを同一中心で掘削することが可能になる。この結果、略矩形状と円形状の掘削断面を組み合わせて一連に連続した掘削孔を得ることが可能である。この場合、例えば円形状の掘削孔H2により地下鉄線路を施工し、略矩形状の掘削孔H1により地下鉄駅部分や車両分岐部が施工できる。さらに、上記回転機構3と従前の円形掘削の回転機構とを組み合わせれば、略矩形状と円形状とを組み合わせて長円形状の掘削断面の掘削孔を得ることが可能である。   Thus, the rotation mechanism 3 in the above-described embodiment can form a substantially rectangular locus that is non-circular when the annular shaft 32 is in the first rotation position. On the other hand, in the form in which the annular shaft 32 is set to the second rotational position, a circular locus can be formed at the same center as the substantially rectangular shape. In the excavator using this rotating mechanism 3, the excavator H1 having a substantially rectangular shape (substantially square shape) that is non-circular and the circular excavation hole H2 is excavated at the same center by one excavator. It becomes possible to do. As a result, a series of continuous excavation holes can be obtained by combining substantially rectangular and circular excavation sections. In this case, for example, a subway line can be constructed by the circular excavation hole H2, and a subway station part and a vehicle branching part can be constructed by the substantially rectangular excavation hole H1. Further, by combining the rotation mechanism 3 and the conventional rotation mechanism for circular excavation, it is possible to obtain an excavation hole having an oblong excavation cross section by combining a substantially rectangular shape and a circular shape.

また、上述した実施の形態における回転機構3は、固定中心線Pと移動中心線Gとの距離である偏心量[r]を変えることで非円形状の形状を変更することが可能である。ここで偏心量[r]について説明する。   Further, the rotation mechanism 3 in the above-described embodiment can change the noncircular shape by changing the amount of eccentricity [r] which is the distance between the fixed center line P and the movement center line G. Here, the eccentricity [r] will be described.

上述したように回転軸33が回転した場合、回転軸33の第一外周部331に係合する環状軸32が公転して、その中心である移動中心線Gを所定軌道で移動させる。そして、略矩形状の軌跡を得るには、羽根部材21をなす仮想ルーロー三角形上において、当該ルーロー三角形の中心(重心)である移動中心線Gに対する回転軸33の中心(固定中心線P)の移動軌跡がほぼ円形で、その半径である[r]は、仮想ルーロー三角形の外幅[a]の7.7%〜8.2%程度となることが幾何学的に分かっている。   As described above, when the rotating shaft 33 rotates, the annular shaft 32 that engages with the first outer peripheral portion 331 of the rotating shaft 33 revolves, and the moving center line G that is the center moves on a predetermined track. In order to obtain a substantially rectangular locus, the center (fixed center line P) of the rotation shaft 33 with respect to the movement center line G, which is the center (center of gravity) of the rouleau triangle, on the virtual rouleau triangle forming the blade member 21. It is geometrically known that the movement locus is almost circular and its radius [r] is about 7.7% to 8.2% of the outer width [a] of the virtual roulau triangle.

すなわち、図9に示すようにルーロー三角形の外幅[a]を一辺とした正方形の横辺をX座標、縦辺をY座標とする座標系で、当該正方形に内接する形態でルーロー三角形を回転させたときのルーロー三角形上での正方形の中心位置(回転軸33の中心(固定中心線P))の軌跡を見る。図9において破線で示す軌跡は、回転軸33の中心(固定中心線P)と移動中心線Gとの距離(偏心量)[r]を下記数1で示す0.0774aで一定としたものである。   In other words, as shown in FIG. 9, in the coordinate system in which the horizontal side of the square with the outer width [a] of the Ruroe triangle is the X coordinate and the vertical side is the Y coordinate, the Ruroux triangle is rotated in a form inscribed in the square. The locus of the center position of the square (the center of the rotation axis 33 (fixed center line P)) on the Rouleau triangle is observed. In FIG. 9, the locus indicated by a broken line is obtained by making the distance (the amount of eccentricity) [r] between the center (fixed center line P) of the rotation shaft 33 and the movement center line G constant at 0.0774a expressed by the following equation (1). is there.

Figure 2007284909
Figure 2007284909

しかし、図9に破線で示す軌跡は、実際のルーロー三角形上での正方形の中心位置(回転軸33の中心(固定中心線P))の軌跡(図9に実線で示す)に対して3箇所のみ一致する。そして、破線で示す軌跡の場合は、ほぼ矩形状の軌跡の各辺が内側に向けてやや凹状に形成されることになる。この軌跡で掘削された掘削孔は、力学的に強度が低下するため好ましくない。   However, there are three trajectories indicated by broken lines in FIG. 9 with respect to the locus (indicated by a solid line in FIG. 9) of the center position of the square (the center of the rotation axis 33 (fixed center line P)) on the actual Rouleau triangle. Only matches. And in the case of the locus | trajectory shown with a broken line, each side of a substantially rectangular locus | trajectory will be formed in a slightly concave shape toward the inner side. The excavation hole excavated along this locus is not preferable because the strength is mechanically reduced.

上記実線で示す軌跡は、下記数2で示す0.0816aを含んで、回転軸33の中心(固定中心線P)と環状軸32の中心(移動中心線G)との距離(偏心量)[r]が0.0774a〜0.0816aの場合である。したがって、偏心量[r]が、仮想ルーロー三角形の外幅[a]の6%〜8%であれば掘削される掘削孔H1の断面形状が十分な強度を有する理想的なほぼ矩形状となる。   The locus shown by the solid line includes 0.0816a expressed by the following formula 2, and the distance (eccentric amount) between the center of the rotating shaft 33 (fixed center line P) and the center of the annular shaft 32 (moving center line G) [ r] is 0.0774a to 0.0816a. Therefore, if the eccentric amount [r] is 6% to 8% of the outer width [a] of the virtual ruler triangle, the cross-sectional shape of the excavated hole H1 is an ideal substantially rectangular shape having sufficient strength. .

Figure 2007284909
Figure 2007284909

なお、上記掘削機の回転機構3は、回転軸33が固定中心線Pを中心として回転駆動され、かつ、環状軸32が回転軸33の回転に伴って保持部材34に保持された形態で移動中心線Gを中心として回転しつつ固定中心線Pを中心として公転する。この結果、回転軸33が固定中心線P上でその軸心がずれることなく回転するため、回転ぶれや振動を低減することが可能になる。また、環状軸32が回転軸33の回転に伴って保持部材34に保持された形態で移動中心線Gを中心として回転しつつ固定中心線Pを中心として公転するため、環状軸32の自転および公転移動に際して従前の自在継手を要することがないので、自在継手に係るコストを低減することが可能になる。   The rotary mechanism 3 of the excavator moves in a form in which the rotary shaft 33 is driven to rotate about the fixed center line P and the annular shaft 32 is held by the holding member 34 as the rotary shaft 33 rotates. Revolving around the fixed center line P while rotating around the center line G. As a result, the rotating shaft 33 rotates on the fixed center line P without shifting its axis, so that it is possible to reduce rotational shake and vibration. Further, since the annular shaft 32 revolves around the fixed center line P while rotating around the moving center line G in the form of being held by the holding member 34 as the rotating shaft 33 rotates, the rotation of the annular shaft 32 and Since the conventional universal joint is not required for the revolving movement, the cost related to the universal joint can be reduced.

さらに、上記掘削機の回転機構3は、掘削カッタ2(羽根部材21)を設けた環状軸32を、保持部材34によって保持した形態で公転および自転させる構成である。このため、従前のほぼ正方形状の軌跡をなすようにルーロー三角形の外幅を一辺とする正方形枠にルーロー三角形状の軸を支持して回転させる必要がない。すなわち、枠体が必要ない。このため、掘進した掘削孔H1の断面形状に対して、掘削機の胴部1の前面視の輪郭を小さく形成することが可能になる。この結果、掘削カッタ2が先行して掘進した掘削孔H1に胴部1が通過できるので、掘削断面が長円形状の掘削孔H1の掘進を行う掘削機を得ることが可能になる。また、上記掘削機の回転機構3は、掘削カッタ2(羽根部材21)を設けた環状軸32を、保持部材34によって保持した形態で公転および自転させる構成で非円形状の軌跡を得る。このため、従前のごとくスイングアームを用いた複雑な構成にすることがなく、製造コストを低減することが可能である。すなわち、上記掘削機の回転機構3は、簡素な機構で非円形状である矩形状の軌跡と円形状の軌跡とを得て、非円形状断面である略矩形状断面の掘削孔H1と円形状断面の掘削孔H2とを掘進するため、故障が起こり難く信頼性が高く、コストを低減することが可能である。   Further, the rotation mechanism 3 of the excavator is configured to revolve and rotate in a form in which the annular shaft 32 provided with the excavation cutter 2 (blade member 21) is held by the holding member 34. For this reason, it is not necessary to support and rotate the axis of the Rouleau triangle in a square frame having one side of the outer width of the Rouleau triangle so as to form a conventional approximately square locus. That is, a frame is not necessary. For this reason, it becomes possible to form the outline of the body part 1 of an excavator small in front view with respect to the cross-sectional shape of the excavated drill hole H1. As a result, since the trunk portion 1 can pass through the excavation hole H1 that the excavation cutter 2 has excavated in advance, it is possible to obtain an excavator that excavates the excavation hole H1 having an oval cross section. Further, the rotating mechanism 3 of the excavator obtains a non-circular locus with a configuration in which the annular shaft 32 provided with the excavating cutter 2 (blade member 21) is revolved and rotated in the form of being held by the holding member 34. For this reason, it is possible to reduce the manufacturing cost without using a complicated configuration using a swing arm as before. That is, the rotation mechanism 3 of the excavator obtains a non-circular rectangular trajectory and a circular trajectory by a simple mechanism, and forms a substantially rectangular cross-section excavation hole H1 and a circle with a non-circular cross-section. Since the excavation hole H2 having the shape cross section is dug, failure is unlikely to occur, the reliability is high, and the cost can be reduced.

本発明に係る回転機構を用いた掘削機の実施の形態であって第一回転位置を示す概略側断面図である。It is an embodiment of an excavator using the rotating mechanism according to the present invention, and is a schematic side sectional view showing a first rotation position. 図1に示す回転機構を軸方向(前方向)から視た概念図である。It is the conceptual diagram which looked at the rotation mechanism shown in FIG. 1 from the axial direction (front direction). 本発明に係る回転機構を用いた掘削機の実施の形態であって第二回転位置を示す概略側断面図である。It is embodiment of the excavator using the rotation mechanism which concerns on this invention, Comprising: It is a schematic sectional side view which shows a 2nd rotation position. 図3に示す回転機構を軸方向(前方向)から視た概念図である。It is the conceptual diagram which looked at the rotation mechanism shown in FIG. 3 from the axial direction (front direction). 図2に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図2に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図2に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図2に示す回転機構を説明する概念図である。It is a conceptual diagram explaining the rotation mechanism shown in FIG. 仮想ルーロー三角形上での正方形の中心位置の軌跡を示す図である。It is a figure which shows the locus | trajectory of the center position of the square on a virtual roulau triangle.

符号の説明Explanation of symbols

1 胴部
2 掘削カッタ
21 羽根部材
22 支軸
3 回転機構
31 軸受
311 内周部
32 環状軸
321 内周部
322 外周部
323 凹部
33 回転軸
331 第一外周部
332 第二外周部
34 保持部材
341 凸部
342 孔部
343 外周縁
344 支持部
35 駆動部
36 回転形態変更手段
361 環状軸移動部
362 回転軸移動部
363 保持部材移動部
37 スライド部材
a ルーロー三角形の外幅
r 偏心量
G 移動中心線
H1,H2 掘削孔
L ルーロー三角形の中心と頂点とを結ぶ延長線
P 固定中心線
T 羽根部材の先端(ルーロー三角形の頂点)
DESCRIPTION OF SYMBOLS 1 Body part 2 Excavation cutter 21 Blade member 22 Support shaft 3 Rotating mechanism 31 Bearing 311 Inner peripheral part 32 Annular shaft 321 Inner peripheral part 322 Outer peripheral part 323 Recessed part 33 Rotating shaft 331 First outer peripheral part 332 Second outer peripheral part 34 Holding member 341 Convex part 342 Hole part 343 Outer peripheral edge 344 Support part 35 Drive part 36 Rotation form changing means 361 Annular shaft moving part 362 Rotating shaft moving part 363 Holding member moving part 37 Slide member a Outer width of rouleau triangle r Eccentric amount G Moving center line H1, H2 Drilling holes L Extension line connecting the center and vertex of the rouleau triangle P Fixed centerline T Tip of the blade member (the apex of the rouleau triangle)

Claims (3)

所定の固定中心線を中心とした環状の内周部を有する固定の軸受と、
前記固定中心線に平行な所定の移動中心線を中心とした内周部および外周部を有する環状をなして前記軸受に内装して配置してありその外周部を前記軸受の内周部に係合した第一回転位置と固定中心線に移動中心線を一致して外周部を軸受の内周部から離間した第二回転位置とに移動可能に設けた環状軸と、
前記固定中心線を回転中心として回転可能に設けてあり第一回転位置にある環状軸の内周部の一部に対して当接係合する第一外周部と第二回転位置にある環状軸の内周部の全周に沿って当接係合する第二外周部とを固定中心線に沿って配置した回転軸と、
前記回転軸を回転駆動する駆動部と、
前記環状軸が第一回転位置にあるときに環状軸の内周部と前記回転軸の第一外周部との係合を保持しつつ当該環状軸の外周部と前記軸受の内周部との係合を保持する保持部材と、
前記保持部材の保持形態を維持または解除して前記環状軸を第一回転位置または第二回転位置に移動してさらに前記環状軸の各回転位置に合わせて前記回転軸を固定中心線に沿って移動する回転形態変更手段と、
前記環状軸に設けてあって前記移動中心線上に中心を置いたルーロー三角形状の少なくとも中心と頂点とを結ぶ延長線に沿って配置した羽根部材と
を備えたことを特徴とする回転機構。
A fixed bearing having an annular inner periphery centered on a predetermined fixed center line;
An inner periphery and an outer periphery centering on a predetermined movement center line parallel to the fixed center line are arranged inside the bearing, and the outer periphery is associated with the inner periphery of the bearing. An annular shaft provided so as to be movable to a second rotation position where the outer peripheral portion is separated from the inner peripheral portion of the bearing with the first rotation position and the fixed center line aligned with the movement center line
A first outer peripheral portion that is rotatably provided with the fixed center line as a center of rotation, and abuts and engages with a part of the inner peripheral portion of the annular shaft at the first rotational position, and the annular shaft at the second rotational position. A second outer peripheral portion that abuts and engages along the entire circumference of the inner peripheral portion of the rotating shaft disposed along the fixed centerline;
A drive unit that rotationally drives the rotary shaft;
When the annular shaft is in the first rotational position, the engagement between the inner peripheral portion of the annular shaft and the first outer peripheral portion of the rotary shaft is maintained between the outer peripheral portion of the annular shaft and the inner peripheral portion of the bearing. A holding member that holds the engagement;
The holding form of the holding member is maintained or released, the annular shaft is moved to the first rotational position or the second rotational position, and the rotational shaft is moved along the fixed center line in accordance with each rotational position of the annular shaft. A rotating form changing means for moving;
A rotating mechanism comprising: a vane member provided on the annular shaft and disposed along an extension line connecting at least the center and the apex of a Rouleau triangle centered on the moving center line.
前記羽根部材はルーロー三角形状がなす軌跡の範囲内で伸縮可能に形成してあることを特徴とする請求項1に記載の回転機構。   The rotating mechanism according to claim 1, wherein the blade member is formed to be extendable and contractable within a range of a locus formed by a Rouleau triangle. 請求項1または2に記載の回転機構を用い、
筒状に形成した外部に前記羽根部材を配置してその他の構成を内部に配置しつつ前記環状軸の各回転位置における羽根部材の軌跡に合わせて外形を変更可能に設けた胴部と、
前記羽根部材にカッタを配設してなる掘削カッタと
を備えたことを特徴とする掘削機。
Using the rotation mechanism according to claim 1 or 2,
A barrel portion that is arranged so that the outer shape can be changed in accordance with the trajectory of the blade member at each rotational position of the annular shaft while the blade member is arranged outside the tube and the other components are arranged inside.
An excavator comprising: an excavation cutter in which a cutter is disposed on the blade member.
JP2006110845A 2006-04-13 2006-04-13 Turning mechanism and excavator Pending JP2007284909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006110845A JP2007284909A (en) 2006-04-13 2006-04-13 Turning mechanism and excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006110845A JP2007284909A (en) 2006-04-13 2006-04-13 Turning mechanism and excavator

Publications (1)

Publication Number Publication Date
JP2007284909A true JP2007284909A (en) 2007-11-01

Family

ID=38756949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006110845A Pending JP2007284909A (en) 2006-04-13 2006-04-13 Turning mechanism and excavator

Country Status (1)

Country Link
JP (1) JP2007284909A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114396230A (en) * 2022-03-28 2022-04-26 北京欧钻科技有限公司 Square hole rotary drilling drill
CN117072186A (en) * 2023-10-18 2023-11-17 东北大学 Arch tunnel excavation device for three-dimensional geological model test

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114396230A (en) * 2022-03-28 2022-04-26 北京欧钻科技有限公司 Square hole rotary drilling drill
CN117072186A (en) * 2023-10-18 2023-11-17 东北大学 Arch tunnel excavation device for three-dimensional geological model test
CN117072186B (en) * 2023-10-18 2024-01-02 东北大学 Arch tunnel excavation device for three-dimensional geological model test

Similar Documents

Publication Publication Date Title
JP2007016563A (en) Excavator
JP2007100421A (en) Rotating mechanism and excavator
JP2020168690A (en) Interior type pipe cutting device
JP2018135682A (en) Underground excavation head
US9140124B2 (en) Excavation machine
JP2006336426A (en) Tunnel boring machine
JP2007284909A (en) Turning mechanism and excavator
KR101618968B1 (en) Drilling Machine
JP3500082B2 (en) Tunnel excavator
JP2007126884A (en) Excavator
JP4212499B2 (en) Shield machine
JP4496484B2 (en) Rotating mechanism and excavator
JP2898968B1 (en) Shield excavator for free section tunnel
JP5768963B2 (en) Drilling rig
JP6349295B2 (en) Excavator
JP4383221B2 (en) Shield machine and tunnel excavation method
JPH1037675A (en) Cutter head of shield machine
JP4362822B2 (en) Swivel device for construction machinery
JP3821632B2 (en) Excavator for shield machine and parent-child shield machine
JP3534490B2 (en) Tunnel excavator and tunnel excavation method
JP2007205103A (en) Rotating mechanism and excavator
JP2839433B2 (en) Copy cutter for shield machine
JP4390584B2 (en) Shield excavator
JP2007205105A (en) Rotating mechanism and excavator
JP7159029B2 (en) Rotary body for cutting and excavator