JP2007202628A - Sterilization apparatus and sterilization system - Google Patents
Sterilization apparatus and sterilization system Download PDFInfo
- Publication number
- JP2007202628A JP2007202628A JP2006021931A JP2006021931A JP2007202628A JP 2007202628 A JP2007202628 A JP 2007202628A JP 2006021931 A JP2006021931 A JP 2006021931A JP 2006021931 A JP2006021931 A JP 2006021931A JP 2007202628 A JP2007202628 A JP 2007202628A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen peroxide
- air
- sterilization
- temperature
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
Abstract
Description
本発明は、空気が流れる過酸化水素発生流路中に過酸化水素蒸気発生器を備えた滅菌装置と、該滅菌装置により処理室へ過酸化水素蒸気を供給して室内を滅菌する滅菌システムに関するものである。 The present invention relates to a sterilization apparatus provided with a hydrogen peroxide vapor generator in a hydrogen peroxide generation flow path through which air flows, and a sterilization system for supplying hydrogen peroxide vapor to a processing chamber by the sterilization apparatus and sterilizing the room. Is.
従来より、この種の滅菌システムとしては、密閉可能な処理室(例えば医薬品製造室)に、該処理室の気体を吸引する真空ポンプが設けられた気体吸引通路と、過酸化水素蒸気を発生させる過酸化水素蒸気発生器が設けられた過酸化水素供給通路と、処理室内に無菌空気を供給する空気供給通路と、処理室内の気体を循環させながら触媒で過酸化水素を分解する気体循環通路とが接続されたシステムがある(例えば、特許文献1参照)。 Conventionally, as a sterilization system of this type, a gas-suction passage provided with a vacuum pump for sucking a gas in the processing chamber in a sealable processing chamber (for example, a pharmaceutical manufacturing chamber) and hydrogen peroxide vapor are generated. A hydrogen peroxide supply passage provided with a hydrogen peroxide vapor generator, an air supply passage for supplying sterile air into the processing chamber, and a gas circulation passage for decomposing hydrogen peroxide with a catalyst while circulating the gas in the processing chamber; Are connected to each other (for example, see Patent Document 1).
この特許文献1の滅菌システムでは、まず真空ポンプを起動して処理室を真空状態にした後、過酸化水素を処理室内に供給して滅菌処理を行う。次に、空気供給通路から処理室に無菌空気を導入し、過酸化水素を処理室内に分散させる。そして、真空ポンプによる吸引工程、過酸化水素の供給工程、及び無菌空気の導入工程を数回繰り返して処理室の滅菌が終了すると、処理室から過酸化水素を除去する工程を行う。この過酸化水素除去工程では、気体循環通路の触媒により過酸化水素を分解しながら処理室の気体を循環させる。こうすることにより、処理室内の過酸化水素濃度を下げるようにしている。 In the sterilization system disclosed in Patent Document 1, first, a vacuum pump is activated to evacuate a processing chamber, and then hydrogen peroxide is supplied into the processing chamber to perform sterilization. Next, aseptic air is introduced into the processing chamber from the air supply passage, and hydrogen peroxide is dispersed in the processing chamber. Then, when the sterilization of the processing chamber is completed by repeating the suction step by the vacuum pump, the hydrogen peroxide supply step, and the sterile air introduction step several times, the step of removing hydrogen peroxide from the processing chamber is performed. In this hydrogen peroxide removal step, the gas in the processing chamber is circulated while decomposing hydrogen peroxide by the catalyst in the gas circulation passage. By doing so, the hydrogen peroxide concentration in the processing chamber is lowered.
ところで、滅菌運転中には、通常、処理室内は一定の過酸化水素濃度に維持される。このため、処理室内には、過酸化水素濃度を検出するセンサが設けられる。このセンサとしては、例えば、近赤外線分光分析により濃度測定を行うものがある(例えば、特許文献2参照)。また、その他にも、高分子膜で過酸化水素を吸収させて過酸化水素量を測定することで濃度測定を行うものもある。
しかし、処理室内の過酸化水素濃度を検出するために用いられている従来のセンサ類は、測定条件(通過風量など)や設置条件(設置方法や設置位置など)の影響が大きく、同じ濃度であっても異なるセンサを用いると検出値が異なることがあった。つまり、従来のセンサでは、正確な過酸化水素濃度を判定することが困難であった。 However, the conventional sensors used to detect the hydrogen peroxide concentration in the processing chamber are greatly affected by the measurement conditions (passing air volume, etc.) and installation conditions (installation method, installation position, etc.). Even if there are different sensors, the detected values may be different. In other words, it has been difficult for the conventional sensor to accurately determine the hydrogen peroxide concentration.
本発明は、かかる点に鑑みてなされたものであり、その目的は、滅菌装置の過酸化水素蒸気発生器により発生した過酸化水素濃度を正確に測定できるようにして、滅菌システムにおける滅菌性能の安定化を図ることである。 The present invention has been made in view of the above points, and its purpose is to enable accurate measurement of the hydrogen peroxide concentration generated by the hydrogen peroxide vapor generator of the sterilization apparatus, and to improve the sterilization performance in the sterilization system. It is to stabilize.
第1の発明は、空気が流れる過酸化水素発生流路(33)中に過酸化水素蒸気発生器(31)を備えた滅菌装置を前提としている。 1st invention presupposes the sterilization apparatus provided with the hydrogen peroxide vapor | steam generator (31) in the hydrogen peroxide generation flow path (33) through which air flows.
そして、この滅菌装置は、過酸化水素蒸気発生器(31)の上流側の空気の温度と湿度を検出する上流側温湿度検出手段(31a)と、過酸化水素蒸気発生器(31)の下流側の空気の温度と湿度を検出する下流側温湿度検出手段(31b)と、過酸化水素蒸気発生器(31)の上流側と下流側の温度と湿度に基づいて、下流側の空気中の過酸化水素濃度を判定する濃度判定手段(52)とを備えていることを特徴としている。 The sterilization apparatus includes upstream temperature / humidity detection means (31a) for detecting the temperature and humidity of the air upstream of the hydrogen peroxide vapor generator (31), and downstream of the hydrogen peroxide vapor generator (31). Based on the temperature and humidity on the upstream and downstream sides of the hydrogen peroxide vapor generator (31), the downstream temperature and humidity detection means (31b) for detecting the temperature and humidity of the side air And a concentration determination means (52) for determining the hydrogen peroxide concentration.
この第1の発明では、過酸化水素蒸気発生器(31)の上流側の空気の温度と湿度に対する下流側の空気の温度と湿度の変化量に基づいて、濃度判定手段(52)により、過酸化水素蒸気発生器(31)の直後の過酸化水素濃度を判定できる。 In the first aspect of the invention, the concentration determination means (52) uses the concentration determination means (52) based on the amount of change in the downstream air temperature and humidity relative to the upstream air temperature and humidity of the hydrogen peroxide vapor generator (31). The hydrogen peroxide concentration immediately after the hydrogen oxide vapor generator (31) can be determined.
第2の発明は、第1の発明において、濃度判定手段(52)が、過酸化水素発生流路(33)における過酸化水素蒸気発生器(31)の上流側と下流側における単位時間当たりの通過水分量から下流側での水分増加量を算出し、その水分増加量に、過酸化水素蒸気発生器(31)に用いられている過酸化水素水溶液の過酸化水素濃度に基づいて、水に対する質量比を積算して空気中の過酸化水素量を求め、該過酸化水素量と通過風量とから過酸化水素濃度を算出する濃度算出部(52a)を備えていることを特徴としている。 According to a second invention, in the first invention, the concentration determination means (52) is configured so that the hydrogen peroxide generation flow path (33) is per unit time on the upstream side and the downstream side of the hydrogen peroxide vapor generator (31). The amount of water increase downstream is calculated from the amount of water passing through, and the amount of water increase is calculated based on the hydrogen peroxide concentration of the hydrogen peroxide solution used in the hydrogen peroxide vapor generator (31). A concentration calculation unit (52a) is provided that calculates the amount of hydrogen peroxide in the air by integrating the mass ratio, and calculates the concentration of hydrogen peroxide from the amount of hydrogen peroxide and the amount of passing air.
この第2の発明では、過酸化水素蒸気発生器(31)の上流側と下流側のそれぞれの通過水分量から下流側での水分増加量を求め、その水分増加量と、過酸化水素蒸気発生器(31)で用いている過酸化水素水溶液の過酸化水素濃度とに基づいて、過酸化水素発生流路(33)における過酸化水素蒸気発生器(31)の下流側における空気中の過酸化水素濃度を算出できる。 In the second aspect of the invention, the amount of water increase on the downstream side is obtained from the amount of water passing through the upstream side and the downstream side of the hydrogen peroxide vapor generator (31). In the air downstream of the hydrogen peroxide vapor generator (31) in the hydrogen peroxide generation channel (33) based on the hydrogen peroxide concentration of the aqueous hydrogen peroxide solution used in the generator (31) The hydrogen concentration can be calculated.
第3の発明は、第1または第2の発明において、上流側温湿度検出手段(31a)と下流側温湿度検出手段(31b)が、過酸化水素蒸気発生器(31)の上流側と下流側における空気の相対湿度を測定する相対湿度計と、該空気の乾球温度を測定する乾球温度計とにより構成されていることを特徴としている。 According to a third invention, in the first or second invention, the upstream temperature / humidity detection means (31a) and the downstream temperature / humidity detection means (31b) are connected to the upstream side and the downstream side of the hydrogen peroxide vapor generator (31). It is characterized by comprising a relative hygrometer that measures the relative humidity of the air on the side and a dry bulb thermometer that measures the dry bulb temperature of the air.
この第3の発明では、過酸化水素蒸気発生器(31)の上流側と下流側の両方で、相対湿度と乾球温度が測定され、それらの値に基づいて算出される過酸化水素蒸気発生器(31)の下流側での水分の増加量と、過酸化水素水溶液の過酸化水素濃度とに基づいて、過酸化水素蒸気発生器(31)の下流側の空気中の過酸化水素濃度を算出できる。 In the third aspect of the invention, the relative humidity and the dry bulb temperature are measured both on the upstream side and the downstream side of the hydrogen peroxide vapor generator (31), and hydrogen peroxide vapor generation calculated based on these values is performed. The hydrogen peroxide concentration in the air downstream of the hydrogen peroxide vapor generator (31) is determined based on the increase in moisture downstream of the generator (31) and the hydrogen peroxide concentration of the hydrogen peroxide solution. It can be calculated.
第4の発明は、第1または第2の発明において、上流側温湿度検出手段(31a)と下流側温湿度検出手段(31b)が、過酸化水素蒸気発生器(31)の上流側と下流側における空気の乾球温度を測定する乾球温度計と、該空気の湿球温度を測定する湿球温度計とにより構成されていることを特徴としている。 According to a fourth aspect of the present invention, in the first or second aspect, the upstream temperature / humidity detection means (31a) and the downstream temperature / humidity detection means (31b) are arranged upstream and downstream of the hydrogen peroxide vapor generator (31). It is characterized by comprising a dry bulb thermometer for measuring the dry bulb temperature of the air on the side and a wet bulb thermometer for measuring the wet bulb temperature of the air.
この第4の発明では、過酸化水素蒸気発生器(31)の上流側と下流側の両方で、乾球温度と湿球温度が測定され、それらの値に基づいて算出される過酸化水素蒸気発生器(31)の下流側での水分の増加量と、過酸化水素水溶液の過酸化水素濃度とに基づいて、過酸化水素蒸気発生器(31)の下流側の空気中の過酸化水素濃度を算出できる。 In the fourth aspect of the present invention, the dry bulb temperature and the wet bulb temperature are measured both on the upstream side and the downstream side of the hydrogen peroxide vapor generator (31), and the hydrogen peroxide vapor calculated based on these values. Hydrogen peroxide concentration in the air downstream of the hydrogen peroxide vapor generator (31) based on the increased amount of moisture downstream of the generator (31) and the hydrogen peroxide concentration of the aqueous hydrogen peroxide solution Can be calculated.
第5の発明は、処理室(2)に対して給気と排気が可能な給排気機構(60)と、過酸化水素蒸気発生器(31)を備えて該処理室(2)へ過酸化水素蒸気を供給する滅菌装置(30)とを備えた滅菌システムを前提としている。 The fifth invention comprises a supply / exhaust mechanism (60) capable of supplying and exhausting air to and from the processing chamber (2) and a hydrogen peroxide vapor generator (31), and the processing chamber (2) is peroxidized. A sterilization system including a sterilizer (30) for supplying hydrogen vapor is assumed.
そして、この滅菌システムは、滅菌装置(30)が請求項1から4のいずれか1に記載の滅菌装置により構成され、上記過酸化水素蒸気発生器(31)から処理室(2)へ過酸化水素蒸気を供給する滅菌運転中に、上記滅菌装置(30)の濃度判定手段(52)により空気中の過酸化水素濃度を所定値に維持する制御を行う制御手段(50)を備えていることを特徴としている。 In this sterilization system, the sterilizer (30) is constituted by the sterilizer according to any one of claims 1 to 4, and the hydrogen peroxide vapor generator (31) is overoxidized to the treatment chamber (2). Control means (50) for controlling the concentration of hydrogen peroxide in the air to a predetermined value by the concentration determination means (52) of the sterilizer (30) during the sterilization operation for supplying hydrogen vapor is provided. It is characterized by.
この第5の発明では、給排気機構(60)を制御することにより処理室(2)に対して給気と排気を行いながら、滅菌装置(30)の過酸化水素蒸気発生器(31)から処理室(2)へ過酸化水素蒸気を供給する滅菌運転中に、濃度判定手段(52)により空気中の過酸化水素濃度を所定値に維持する制御が行われる。 In the fifth aspect of the present invention, the supply and exhaust mechanism (60) is controlled to supply and exhaust air to the processing chamber (2), while the hydrogen peroxide vapor generator (31) of the sterilizer (30) is used. During the sterilization operation in which hydrogen peroxide vapor is supplied to the processing chamber (2), the concentration determination means (52) controls to maintain the hydrogen peroxide concentration in the air at a predetermined value.
第6の発明は、第5の発明において、給排気機構(60)が、温度と湿度を調整した空気を処理室(2)へ供給する空調装置を備えていることを特徴としている。 The sixth invention is characterized in that, in the fifth invention, the air supply / exhaust mechanism (60) includes an air conditioner for supplying air with adjusted temperature and humidity to the processing chamber (2).
この第6の発明では、処理室(2)の空調を行いながら滅菌処理を行うことができる。ここで、過酸化水素を用いた滅菌処理では、低湿度の空気の方が高湿度の空気よりも滅菌効果が高くなる。そこで、この発明では、処理室(2)内を低湿度に維持しておくことにより、滅菌効果が高いレベルで安定する。 In the sixth aspect of the invention, sterilization can be performed while air-conditioning the processing chamber (2). Here, in the sterilization process using hydrogen peroxide, the sterilization effect is higher in the low-humidity air than in the high-humidity air. Therefore, in the present invention, by maintaining the inside of the processing chamber (2) at a low humidity, the sterilization effect is stabilized at a high level.
本発明によれば、過酸化水素蒸気発生器(31)の上流側の空気の温度と湿度を検出する上流側温湿度検出手段(31a)と、過酸化水素蒸気発生器(31)の下流側の空気の温度と湿度を検出する下流側温湿度検出手段(31b)と、過酸化水素蒸気発生器(31)の上流側と下流側の温度と湿度に基づいて、下流側の空気中の過酸化水素濃度を判定する濃度判定手段(52)とを設けたことにより、過酸化水素蒸気発生器(31)の上流側の空気の温度と湿度に対する下流側の空気の温度と湿度の変化量に基づいて、過酸化水素蒸気発生器(31)の直後で過酸化水素濃度を判定できる。したがって、濃度の判定値に対する測定条件や設置条件の影響は少なく、判定した過酸化水素濃度は従来よりも正確である。そのため、処理室(2)へ供給する過酸化水素蒸気を上記濃度に基づいて制御して滅菌運転を行うことにより、滅菌性能のばらつきも防止できる。 According to the present invention, the upstream temperature / humidity detecting means (31a) for detecting the temperature and humidity of the air upstream of the hydrogen peroxide vapor generator (31), and the downstream side of the hydrogen peroxide vapor generator (31) The downstream temperature / humidity detection means (31b) for detecting the temperature and humidity of the air, and the temperature and humidity on the upstream and downstream sides of the hydrogen peroxide vapor generator (31) By providing a concentration determination means (52) for determining the hydrogen oxide concentration, the amount of change in the temperature and humidity of the downstream air relative to the temperature and humidity of the upstream air of the hydrogen peroxide vapor generator (31) Based on this, the hydrogen peroxide concentration can be determined immediately after the hydrogen peroxide vapor generator (31). Therefore, the measurement conditions and installation conditions have little influence on the concentration determination value, and the determined hydrogen peroxide concentration is more accurate than before. Therefore, variation in sterilization performance can be prevented by performing the sterilization operation by controlling the hydrogen peroxide vapor supplied to the processing chamber (2) based on the above concentration.
上記第2の発明によれば、過酸化水素蒸気発生器(31)の上流側と下流側のそれぞれの通過水分量から下流側での水分増加量を求め、その水分増加量と、過酸化水素蒸気発生器(31)で用いている過酸化水素水溶液の過酸化水素濃度とに基づいて、過酸化水素蒸気発生器(31)の下流側の過酸化水素濃度を算出できる。過酸化水素濃度は、過酸化水素蒸気発生器(31)の下流側の水分増加量のうち、過酸化水素水溶液における水と過酸化水素の比率から求められるため、算出値は正確である。 According to the second aspect of the invention, the amount of water increase on the downstream side is determined from the amount of water passing through the upstream side and the downstream side of the hydrogen peroxide vapor generator (31), and the amount of water increase and hydrogen peroxide Based on the hydrogen peroxide concentration of the hydrogen peroxide solution used in the steam generator (31), the hydrogen peroxide concentration on the downstream side of the hydrogen peroxide steam generator (31) can be calculated. Since the hydrogen peroxide concentration is obtained from the ratio of water and hydrogen peroxide in the aqueous hydrogen peroxide solution in the amount of water increase on the downstream side of the hydrogen peroxide vapor generator (31), the calculated value is accurate.
上記第3の発明によれば、上流側温湿度検出手段(31a)と下流側温湿度検出手段(31b)として、過酸化水素蒸気発生器(31)の上流側と下流側における空気の相対湿度を測定する相対湿度計と、該空気の乾球温度を測定する乾球温度計とを用いているので、簡単な構成で過酸化水素蒸気発生器(31)の下流側の空気中の過酸化水素濃度を確実に測定できる。 According to the third aspect of the invention, as the upstream temperature / humidity detection means (31a) and the downstream temperature / humidity detection means (31b), the relative humidity of the air on the upstream side and the downstream side of the hydrogen peroxide vapor generator (31) Since a relative hygrometer for measuring the dry bulb and a dry bulb thermometer for measuring the dry bulb temperature of the air are used, the peroxidation in the air on the downstream side of the hydrogen peroxide vapor generator (31) with a simple configuration The hydrogen concentration can be measured reliably.
上記第4の発明によれば、上流側温湿度検出手段(31a)と下流側温湿度検出手段(31b)として、過酸化水素蒸気発生器(31)の上流側と下流側における空気の乾球温度を測定する乾球温度計と、該空気の湿球温度を測定する湿球温度計とを用いているので、簡単な構成で過酸化水素蒸気発生器(31)の下流側の空気中の過酸化水素濃度を確実に測定できる。 According to the fourth aspect of the invention, the upstream temperature / humidity detection means (31a) and the downstream temperature / humidity detection means (31b) are dry air bulbs on the upstream and downstream sides of the hydrogen peroxide vapor generator (31). Since a dry bulb thermometer for measuring the temperature and a wet bulb thermometer for measuring the wet bulb temperature of the air are used, the hydrogen peroxide vapor generator (31) in the air downstream of the hydrogen peroxide vapor generator (31) can be configured with a simple configuration. The hydrogen peroxide concentration can be measured reliably.
上記第5の発明によれば、給排気機構(60)を制御することにより処理室(2)に対して給気と排気を行いながら、滅菌装置(30)の過酸化水素蒸気発生器(31)から処理室(2)へ過酸化水素蒸気を供給する滅菌運転中に、濃度判定手段(52)により過酸化水素濃度を所定値に維持する制御が行われる。したがって、滅菌システムにおける滅菌運転中の処理室(2)の過酸化水素濃度を安定させることが可能となる。 According to the fifth aspect of the present invention, the hydrogen peroxide vapor generator (31) of the sterilizer (30) is supplied while supplying and exhausting air to the processing chamber (2) by controlling the air supply / exhaust mechanism (60). During the sterilization operation for supplying hydrogen peroxide vapor from the treatment chamber (2) to the processing chamber (2), the concentration determination means (52) controls to maintain the hydrogen peroxide concentration at a predetermined value. Therefore, the hydrogen peroxide concentration in the processing chamber (2) during the sterilization operation in the sterilization system can be stabilized.
上記第6の発明によれば、給排気機構(60)として、温度と湿度を調整した空気を処理室(2)へ供給する空調装置を設けたことにより、処理室(2)の空調を行いながら滅菌処理を行うことができる。そして、過酸化水素を用いた滅菌処理では、低湿度の空気の方が高湿度の空気よりも滅菌効果が高くなるため、処理室(2)内を低湿度に維持しておくことにより、滅菌効果を高いレベルで安定させることが可能となる。 According to the sixth invention, the air supply / exhaust mechanism (60) is provided with an air conditioner that supplies air with adjusted temperature and humidity to the processing chamber (2), thereby performing air conditioning of the processing chamber (2). The sterilization process can be performed. In sterilization using hydrogen peroxide, low-humidity air has a higher sterilization effect than high-humidity air. By maintaining the inside of the treatment chamber (2) at low humidity, sterilization can be achieved. The effect can be stabilized at a high level.
以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
−全体の構成−
この実施形態は、医薬品等の製造室を処理室として、該処理室内の空調と滅菌処理とを行う滅菌システムに関するものである。この実施形態では、1室の処理室(2)に対して滅菌システム(1)が構成されている。この実施形態の配管系統図である図1に示すように、この滅菌システム(1)は、空調系統側回路(10)と滅菌系統側回路(滅菌装置)(30)とを備えている。
-Overall configuration-
This embodiment relates to a sterilization system that performs air conditioning and sterilization processing in a processing room using a manufacturing room for pharmaceuticals or the like as a processing room. In this embodiment, the sterilization system (1) is configured for one processing chamber (2). As shown in FIG. 1 which is a piping system diagram of this embodiment, the sterilization system (1) includes an air conditioning system side circuit (10) and a sterilization system side circuit (sterilization apparatus) (30).
この滅菌システム(1)の空調系統側回路(10)は、処理室(2)の入口に接続された給気通路(11)と、処理室(2)の出口に接続された還気通路(12)及び排気通路(28)とを備えている。給気通路(11)から処理室(2)への空気の入口と、処理室(2)から還気通路(12)及び排気通路(28)への出口には、フィルタ機構としてHEPAフィルタ(high efficiency particulate air filter)(14)が設けられている。 The air conditioning system side circuit (10) of the sterilization system (1) includes an air supply passage (11) connected to the inlet of the processing chamber (2), and a return air passage connected to the outlet of the processing chamber (2) ( 12) and an exhaust passage (28). An air inlet from the supply passage (11) to the processing chamber (2) and an outlet from the processing chamber (2) to the return air passage (12) and the exhaust passage (28) have a HEPA filter (high efficiency particulate air filter) (14).
給気通路(11)と排気通路(28)(還気通路(12))との間には、処理室(2)内の空気を排気通路(28)(還気通路(12))から給気通路(11)へ戻すための戻し通路(15)が接続されている。そして、給気通路(11)の一部と還気通路(12)(排気通路(28))の一部と戻し通路(15)とにより、処理室(2)の空気が循環する空調側循環通路(16)が構成されている。なお、戻し通路(15)と給気通路(11)の合流箇所には、仮想線で示すようにミキシングチャンバ(19)を設けてもよい。排気通路(28)(還気通路(12))には、戻し通路(15)との接続部の上流側に循環ファン(18)が設けられている。 Between the air supply passage (11) and the exhaust passage (28) (return air passage (12)), the air in the processing chamber (2) is supplied from the exhaust passage (28) (return air passage (12)). A return passage (15) for returning to the air passage (11) is connected. And the air-conditioning side circulation in which the air in the processing chamber (2) circulates by a part of the air supply passage (11), a part of the return air passage (12) (exhaust passage (28)) and the return passage (15) A passage (16) is formed. It should be noted that a mixing chamber (19) may be provided at the junction of the return passage (15) and the air supply passage (11) as indicated by a virtual line. In the exhaust passage (28) (return air passage (12)), a circulation fan (18) is provided on the upstream side of the connection portion with the return passage (15).
−詳細な構成−
<空調系統側回路>
給気通路(11)には、除湿器として構成された外気処理空調機(13)と、空気の温度調節のみを行う顕熱空調機(17)とが設けられている。外気処理空調機(13)及び顕熱空調機(17)は、空調装置を構成している。
-Detailed configuration-
<Air conditioning system side circuit>
The air supply passage (11) is provided with an outside air processing air conditioner (13) configured as a dehumidifier and a sensible heat air conditioner (17) that only adjusts the temperature of air. The outside air processing air conditioner (13) and the sensible heat air conditioner (17) constitute an air conditioner.
上記外気処理空調機(13)は、ケーシング内が隔壁(13a)により第1通路(13b)と第2通路(13c)に分離されており、空気中の水分を吸脱着可能な吸着剤を担持したハニカム状の吸着ロータ(13d)が、上記隔壁(13a)に沿って設けられた回転軸(図示せず)を中心として回転可能に設けられている。第1通路(13b)には、上流側から順に、外気取り入れ口(13e)、第1冷却コイル(13f)、上記吸着ロータ(13d)、ファン(13j)、及び給気口(13k)が設けられている。第2通路(13c)には、外気取り入れ口(13e)、第2加熱コイル(13m)、吸着ロータ(13d)、及び排気口(13n)が設けられている。排気口(13n)は、図示しない排気ファンに接続されている。 The outside air processing air conditioner (13) is separated into a first passage (13b) and a second passage (13c) by a partition wall (13a), and carries an adsorbent capable of adsorbing and desorbing moisture in the air. The honeycomb-shaped adsorption rotor (13d) is provided to be rotatable about a rotation shaft (not shown) provided along the partition wall (13a). In the first passage (13b), an outside air intake port (13e), a first cooling coil (13f), the adsorption rotor (13d), a fan (13j), and an air supply port (13k) are provided in this order from the upstream side. It has been. The second passage (13c) is provided with an outside air inlet (13e), a second heating coil (13m), an adsorption rotor (13d), and an exhaust port (13n). The exhaust port (13n) is connected to an exhaust fan (not shown).
第1通路(13b)では、第1冷却コイル(13f)により冷却された外気(第1空気)中の水分が吸着ロータ(13d)に吸着され、該第1空気が減湿される。第1空気はその後に給気口(13k)より吹き出される。吸着ロータ(13d)は連続的または断続的に回転しており、水分を吸着した部分がやがて第2通路(13c)内へ移動する。第2通路(13c)では、外気(第2空気)が第2加熱コイル(13m)で加熱されてから吸着ロータ(13d)を通過することにより、該吸着ロータ(13d)が再生される。吸着ロータ(13d)の再生された部分は、さらに回転して第1通路(13b)側へ移動することにより、再び第1空気を減湿することができるようになる。 In the first passage (13b), moisture in the outside air (first air) cooled by the first cooling coil (13f) is adsorbed by the adsorption rotor (13d), and the first air is dehumidified. The first air is then blown out from the air supply port (13k). The adsorption rotor (13d) rotates continuously or intermittently, and the portion that has adsorbed moisture eventually moves into the second passage (13c). In the second passage (13c), outside air (second air) is heated by the second heating coil (13m) and then passes through the adsorption rotor (13d), whereby the adsorption rotor (13d) is regenerated. The regenerated portion of the adsorption rotor (13d) further rotates and moves toward the first passage (13b), so that the first air can be dehumidified again.
なお、この外気処理空調機(13)では、外気取り入れ口(13e)と排気口(13n)とにそれぞれダクトが接続されており、外気取り入れ口(13e)側のダクトに中性能フィルタ(20)が設けられている。 In this outside air processing air conditioner (13), ducts are connected to the outside air intake port (13e) and the exhaust port (13n), respectively, and the medium performance filter (20) is connected to the duct on the outside air intake port (13e) side. Is provided.
上記顕熱空調機(17)は、上流側から順に、空気流入口(17a)、冷却コイル(17b)、電気ヒータ(17e)、ファン(17c)、及び空気流出口(17d)を有している。この顕熱空調機(17)と外気処理空調機(13)と間には、中性能フィルタ(20)が設けられている。また、上記戻し通路(15)は、給気通路(11)における外気処理空調機(13)と中性能フィルタ(20)との間に接続されている。 The sensible heat air conditioner (17) has an air inlet (17a), a cooling coil (17b), an electric heater (17e), a fan (17c), and an air outlet (17d) in order from the upstream side. Yes. A medium performance filter (20) is provided between the sensible heat air conditioner (17) and the outside air processing air conditioner (13). The return passage (15) is connected between the outside air processing air conditioner (13) and the medium performance filter (20) in the air supply passage (11).
空調系統側回路(10)には、3つの空調ガス切換バルブ(56)が設けられている。具体的に、給気通路(11)における顕熱空調機(17)と処理室(2)との間には、第1空調ガス切換バルブ(56a)が設けられている。排気通路(28)における処理室(2)と循環ファン(18)との間には、第2空調ガス切換バルブ(56b)が設けられている。排気通路(28)における戻し通路(15)との接続部の下流側には、第3空調ガス切換バルブ(56c)が設けられている。 The air conditioning system side circuit (10) is provided with three air conditioning gas switching valves (56). Specifically, a first air-conditioning gas switching valve (56a) is provided between the sensible heat air conditioner (17) and the processing chamber (2) in the air supply passage (11). A second air conditioning gas switching valve (56b) is provided between the processing chamber (2) and the circulation fan (18) in the exhaust passage (28). A third air-conditioning gas switching valve (56c) is provided on the downstream side of the connection portion between the exhaust passage (28) and the return passage (15).
<滅菌系統側回路>
滅菌系統側回路(30)は、主流路(34)と、過酸化水素発生流路(33)と、過酸化水素分解流路(35)と、循環側通路(37)と、排気側通路(54)とを備えている。主流路(34)は、一端が給気通路(11)において第1空調ガス切換バルブ(56a)の下流に接続され、他端が還気通路(12)(排気通路(28))において第2空調ガス切換バルブ(56b)の上流に接続されている。給気通路(11)の一部と還気通路(12)の一部と主流路(34)とにより、処理室(2)の空気が循環する滅菌側循環通路(32)が構成されている。
<Sterilization system side circuit>
The sterilization system side circuit (30) includes a main channel (34), a hydrogen peroxide generation channel (33), a hydrogen peroxide decomposition channel (35), a circulation side channel (37), and an exhaust side channel ( 54). One end of the main flow path (34) is connected downstream of the first air-conditioning gas switching valve (56a) in the air supply passage (11), and the other end is second in the return air passage (12) (exhaust passage (28)). It is connected upstream of the air-conditioning gas switching valve (56b). A part of the supply air passage (11), a part of the return air passage (12), and the main flow path (34) constitute a sterilization side circulation passage (32) through which the air in the processing chamber (2) circulates. .
主流路(34)には、滅菌側空調機(53)が設けられている。滅菌側空調機(53)は、上記顕熱空調機(17)と同じ構成で、顕熱空調機(17)よりも処理風量が小さい空調機である。滅菌側空調機(53)は、上流側から順に、空気流入口(53a)、冷却コイル(53b)、電気ヒータ(53e)、ファン(53c)、及び空気流出口(53d)を有している。なお、この滅菌側空調機(53)は、その処理風量が顕熱空調機(17)よりも小さいが、顕熱空調機(17)以上であってもよい。 A sterilization side air conditioner (53) is provided in the main channel (34). The sterilization side air conditioner (53) is an air conditioner having the same configuration as the sensible heat air conditioner (17) and having a smaller processing air volume than the sensible heat air conditioner (17). The sterilization side air conditioner (53) has an air inlet (53a), a cooling coil (53b), an electric heater (53e), a fan (53c), and an air outlet (53d) in order from the upstream side. . The sterilization side air conditioner (53) has a processing air volume smaller than that of the sensible heat air conditioner (17), but may be greater than or equal to the sensible heat air conditioner (17).
主流路(34)の滅菌側空調機(53)の上流部分には、上流側から順に過酸化水素分解流路(35)と循環側通路(37)と過酸化水素発生流路(33)とが接続されている。循環側通路(37)は、過酸化水素分解流路(35)から分岐している。すなわち、過酸化水素分解流路(35)及び循環側通路(37)からなる部分は、主流路(34)に対して並列になっている。 In the upstream part of the sterilization side air conditioner (53) of the main flow path (34), a hydrogen peroxide decomposition flow path (35), a circulation side path (37), and a hydrogen peroxide generation flow path (33) are arranged in order from the upstream side. Is connected. The circulation side passage (37) branches off from the hydrogen peroxide decomposition passage (35). That is, the portion composed of the hydrogen peroxide decomposition channel (35) and the circulation side channel (37) is in parallel with the main channel (34).
過酸化水素発生流路(33)は、滅菌ガス発生機(58)が設けられ、主流路(34)とは逆端が大気開放されている。滅菌ガス発生機(58)は、除湿器(57)と過酸化水素蒸気発生器(31)とを備えている。除湿器(57)は、室外から取り込んだ空気を除湿する。過酸化水素蒸気発生器(31)は、過酸化水素の水溶液を霧化等することにより過酸化水素蒸気を発生させる。なお、本実施形態では35%の過酸化水素水溶液が用いられている。除湿器(57)で空気を除湿するのは、低湿度の空気の方が過酸化水素が蒸発しやすいためである。この実施形態では、主流路(34)側の風量と過酸化水素発生流路(33)側の風量の比率が、10:1程度になるように定められている。 The hydrogen peroxide generation channel (33) is provided with a sterilization gas generator (58), and the end opposite to the main channel (34) is open to the atmosphere. The sterilization gas generator (58) includes a dehumidifier (57) and a hydrogen peroxide vapor generator (31). The dehumidifier (57) dehumidifies the air taken from outside. The hydrogen peroxide vapor generator (31) generates hydrogen peroxide vapor by atomizing an aqueous solution of hydrogen peroxide. In this embodiment, a 35% aqueous hydrogen peroxide solution is used. The reason for dehumidifying the air with the dehumidifier (57) is that the hydrogen peroxide is more likely to evaporate in the low-humidity air. In this embodiment, the ratio of the air volume on the main flow path (34) side and the air volume on the hydrogen peroxide generation flow path (33) side is determined to be about 10: 1.
過酸化水素発生流路(33)には、過酸化水素蒸気発生器(31)の上流側の空気の温度と湿度を検出する上流側温湿度センサ(上流側温湿度検出手段)(31a)と、過酸化水素蒸気発生器(31)の下流側の空気の温度と湿度を検出する下流側温湿度センサ(下流側温湿度検出手段)(31b)とが設けられている。上流側温湿度センサ(31a)と下流側温湿度センサ(31b)は、それぞれ、過酸化水素蒸気発生器の上流側と下流側における空気の相対湿度を測定する相対湿度計と、該空気の乾球温度を測定する乾球温度計とにより構成されている。なお、その代わりに、上流側温湿度センサ(31a)と下流側温湿度センサ(31b)には、過酸化水素蒸気発生器の上流側と下流側における空気の乾球温度を測定する乾球温度計と、該空気の湿球温度を測定する湿球温度計とを用いてもよい。 The hydrogen peroxide generation channel (33) includes an upstream temperature / humidity sensor (upstream temperature / humidity detection means) (31a) that detects the temperature and humidity of the air upstream of the hydrogen peroxide vapor generator (31). A downstream temperature / humidity sensor (downstream temperature / humidity detection means) (31b) for detecting the temperature and humidity of the air downstream of the hydrogen peroxide vapor generator (31) is provided. The upstream temperature / humidity sensor (31a) and the downstream temperature / humidity sensor (31b) are respectively a relative hygrometer that measures the relative humidity of the air upstream and downstream of the hydrogen peroxide vapor generator, It is comprised with the dry bulb thermometer which measures bulb | ball temperature. Instead, the upstream temperature / humidity sensor (31a) and the downstream temperature / humidity sensor (31b) have dry bulb temperatures that measure the dry bulb temperature of the air upstream and downstream of the hydrogen peroxide vapor generator. A meter and a wet bulb thermometer that measures the wet bulb temperature of the air may be used.
過酸化水素分解流路(35)は、主流路(34)側から過酸化水素分解器(36)であるPt触媒と排気ファン(55)とが設けられている。この過酸化水素分解流路(35)は、主流路(34)とは逆端が循環側通路(37)と排気側通路(54)とに分岐している。排気側通路(54)は、過酸化水素分解流路(35)とは逆端が大気開放され、途中に排気調節ダンパ(29)が設けられている。 The hydrogen peroxide decomposition channel (35) is provided with a Pt catalyst that is a hydrogen peroxide decomposer (36) and an exhaust fan (55) from the main channel (34) side. The hydrogen peroxide decomposition flow path (35) has an end opposite to the main flow path (34) branched into a circulation side passage (37) and an exhaust side passage (54). The exhaust-side passage (54) is open to the atmosphere at the end opposite to the hydrogen peroxide decomposition passage (35), and an exhaust adjustment damper (29) is provided in the middle.
滅菌系統側回路(30)には、6つの滅菌ガス切換バルブ(45)が設けられている。具体的に、主流路(34)における過酸化水素分解流路(35)の接続部の上流側には、第1滅菌ガス切換バルブ(45a)が設けられている。過酸化水素分解流路(35)における過酸化水素分解器(36)の上流側には、第2滅菌ガス切換バルブ(45b)が設けられている。主流路(34)における過酸化水素分解流路(35)の接続部と循環側通路(37)の接続部との間には、第3滅菌ガス切換バルブ(45c)が設けられている。循環側通路(37)には、第4滅菌ガス切換バルブ(45d)が設けられている。過酸化水素発生流路(33)における滅菌ガス発生機(58)の下流側には、第5滅菌ガス切換バルブ(45e)が設けられている。主流路(34)における滅菌側空調機(53)の下流側には、第6滅菌ガス切換バルブ(45f)が設けられている。 The sterilization system side circuit (30) is provided with six sterilization gas switching valves (45). Specifically, a first sterilization gas switching valve (45a) is provided on the upstream side of the connection portion of the hydrogen peroxide decomposition channel (35) in the main channel (34). A second sterilization gas switching valve (45b) is provided upstream of the hydrogen peroxide decomposer (36) in the hydrogen peroxide decomposition channel (35). A third sterilization gas switching valve (45c) is provided between the connection part of the hydrogen peroxide decomposition flow path (35) and the connection part of the circulation side passage (37) in the main flow path (34). The circulation side passage (37) is provided with a fourth sterilization gas switching valve (45d). A fifth sterilization gas switching valve (45e) is provided on the downstream side of the sterilization gas generator (58) in the hydrogen peroxide generation flow path (33). A sixth sterilization gas switching valve (45f) is provided downstream of the sterilization side air conditioner (53) in the main channel (34).
<給排気機構及び過酸化水素供給機構>
この滅菌システム(1)において、滅菌運転時に処理室(2)に対して給気と排気を行う給排気機構(60)は、処理室(2)に空気を供給する空気供給通路(62)(過酸化水素発生流路(33)及び主流路(34)における処理室(2)への入口側)に設けられた給気装置(61)と、処理室(2)の圧力を検出する圧力センサ(圧力検知手段)(63)と、処理室(2)から空気を排出する空気排出通路(64)に設けられた排気装置(65)とを備えている。
<Air supply / exhaust mechanism and hydrogen peroxide supply mechanism>
In this sterilization system (1), an air supply / exhaust mechanism (60) that supplies and exhausts air to and from the processing chamber (2) during the sterilization operation is provided with an air supply passage (62) ( A supply device (61) provided on the inlet side to the processing chamber (2) in the hydrogen peroxide generation channel (33) and the main channel (34), and a pressure sensor for detecting the pressure in the processing chamber (2) (Pressure detection means) (63) and an exhaust device (65) provided in the air discharge passage (64) for discharging air from the processing chamber (2).
給気装置(61)は、過酸化水素発生流路(33)に設けられた滅菌ガス発生機(58)と、主流路(34)に設けられた滅菌側空調機(53)とを備えている。滅菌ガス発生機(58)は、過酸化水素蒸気発生器(31)を含む過酸化水素供給機構(70)を構成している。滅菌側空調機(53)にはファン(53c)の吐出圧力を調整する給気圧力調整機構(67)が設けられている。上記ファン(53c)はインバータ制御のファンであり、給気圧力調整機構(67)は、上記ファン(53c)と、図示していないがその吐出側に設けられている圧力センサ及びその検出値に基づいてファンモータの回転数を制御する制御器とから構成されている。 The air supply device (61) includes a sterilization gas generator (58) provided in the hydrogen peroxide generation flow path (33) and a sterilization side air conditioner (53) provided in the main flow path (34). Yes. The sterilization gas generator (58) constitutes a hydrogen peroxide supply mechanism (70) including a hydrogen peroxide vapor generator (31). The sterilization side air conditioner (53) is provided with an air supply pressure adjustment mechanism (67) for adjusting the discharge pressure of the fan (53c). The fan (53c) is an inverter-controlled fan, and the supply air pressure adjusting mechanism (67) includes the fan (53c), a pressure sensor (not shown) provided on the discharge side, and a detection value thereof. And a controller for controlling the rotation speed of the fan motor.
排気装置(65)は、主流路(34)に設けられた第1滅菌ガス切換バルブ(45a)と、過酸化水素分解流路(35)に設けられた第2滅菌ガス切換バルブ(45b)及び過酸化水素分解器(36)と、排気側通路(54)に設けられた排気ファン(55)とを備えている。第1滅菌ガス切換バルブ(45a)と第2滅菌ガス切換バルブ(45b)は開閉機構(66)を構成している。 The exhaust device (65) includes a first sterilization gas switching valve (45a) provided in the main flow path (34), a second sterilization gas switching valve (45b) provided in the hydrogen peroxide decomposition flow path (35), and A hydrogen peroxide decomposer (36) and an exhaust fan (55) provided in the exhaust side passage (54) are provided. The first sterilization gas switching valve (45a) and the second sterilization gas switching valve (45b) constitute an opening / closing mechanism (66).
−運転制御−
次に、この滅菌システム(1)の運転制御と具体的な運転動作に関して説明する。
-Operation control-
Next, operation control and specific operation of the sterilization system (1) will be described.
この滅菌システム(1)は、空調系統側回路(10)と滅菌系統側回路(30)の運転制御を行うコントローラ(制御手段)(50)を備えている。このコントローラ(50)は、準備運転と、滅菌運転と、希釈運転(第1希釈運転及び第2希釈運転)と、定常運転とを行うように構成されている。 The sterilization system (1) includes a controller (control means) (50) for controlling the operation of the air conditioning system side circuit (10) and the sterilization system side circuit (30). The controller (50) is configured to perform a preparation operation, a sterilization operation, a dilution operation (a first dilution operation and a second dilution operation), and a steady operation.
また、上記コントローラ(50)は、上記過酸化水素供給機構(70)から処理室(2)へ過酸化水素蒸気を供給する滅菌運転中に、処理室(2)内の圧力センサ(62a,62b,62c)の検出値に基づいて、開閉機構(66)を調節することにより、処理室(2)からの空気の排出量を制御する排気コントローラ(排気制御装置)(51)を含んでいる。そして、この排気コントローラ(51)は、給排気機構(60)による処理室(2)への給気量が処理室(2)からの排気量よりも多くなる制御を行い、処理室(2)内を大気圧(処理室(2)の外の気圧)に対して微陽圧に維持するように(ゲージ圧が約20Pa以下、好ましくは約5〜10Paになるように)構成されている。 In addition, the controller (50) is configured to perform pressure sensors (62a, 62b) in the processing chamber (2) during the sterilization operation for supplying hydrogen peroxide vapor from the hydrogen peroxide supply mechanism (70) to the processing chamber (2). , 62c) includes an exhaust controller (exhaust control device) (51) for controlling the discharge amount of air from the processing chamber (2) by adjusting the opening / closing mechanism (66) based on the detected value. The exhaust controller (51) performs control such that the amount of air supplied to the processing chamber (2) by the air supply / exhaust mechanism (60) is larger than the amount of exhaust from the processing chamber (2), and the processing chamber (2) The inside is maintained at a slight positive pressure with respect to atmospheric pressure (atmospheric pressure outside the processing chamber (2)) (the gauge pressure is about 20 Pa or less, preferably about 5 to 10 Pa).
また、上記コントローラ(50)は、過酸化水素蒸気発生器(31)の上流側と下流側の温度と湿度に基づいて、下流側の空気中の過酸化水素濃度を判定する濃度判定部(濃度判定手段)(52)を備えている。濃度判定部(52)は、過酸化水素発生流路(33)における過酸化水素蒸気発生器(31)の上流側と下流側における単位時間当たりの通過水分量から下流側での水分増加量を算出し、その水分増加量に、過酸化水素蒸気発生器(31)に用いられている過酸化水素水溶液の過酸化水素濃度に基づいて、水に対する質量比を積算して過酸化水素量を求め(例えば35%の過酸化水素水溶液である場合は、65/35を積算することになるが、より具体的にはH2OとH2O2の分子量の比を加味して計算するとよい)、該過酸化水素量と通過風量とから過酸化水素濃度を算出する濃度算出部(52a)を備えている。 The controller (50) also includes a concentration determination unit (concentration) for determining the concentration of hydrogen peroxide in the downstream air based on the temperature and humidity upstream and downstream of the hydrogen peroxide vapor generator (31). Determination means) (52). The concentration determination unit (52) calculates the amount of water increase on the downstream side from the passing water amount per unit time on the upstream side and downstream side of the hydrogen peroxide vapor generator (31) in the hydrogen peroxide generation flow path (33). Calculate the amount of hydrogen peroxide by adding the mass ratio to water based on the hydrogen peroxide concentration of the hydrogen peroxide solution used in the hydrogen peroxide vapor generator (31). (For example, in the case of a 35% aqueous hydrogen peroxide solution, 65/35 is added, but more specifically, it may be calculated by taking into account the ratio of the molecular weight of H 2 O and H 2 O 2 ) And a concentration calculating section (52a) for calculating the hydrogen peroxide concentration from the hydrogen peroxide amount and the passing air amount.
<準備運転>
準備運転は、滅菌ガス発生機(58)を停止した状態で、処理室(2)の湿度が目標湿度になるように外気処理空調機(13)によって処理室(2)の湿度を低下させる工程であり、外気導入量を後述の定常運転時の状態の約1/2とし、処理室(2)内を低湿にする運転である。準備運転では、処理室(2)の目標湿度が相対湿度で20%以上で30%以下の所定値に設定される。なお、目標湿度は20%以上で30%以下の範囲に限定されるものではなく、例えば10%以上で50%以下の範囲であればよい。また、準備運転では、滅菌に備えて医薬品等の製造機器の開放と建具類の簡単な目張りが行われる。この準備運転の空気の流れを図2に示す。
<Preparation operation>
The preparatory operation is a process of reducing the humidity of the processing chamber (2) by the outside air processing air conditioner (13) so that the humidity of the processing chamber (2) becomes the target humidity with the sterilization gas generator (58) stopped. In this operation, the amount of outside air introduced is about ½ of the state in steady operation described later, and the inside of the processing chamber (2) is reduced in humidity. In the preparatory operation, the target humidity of the processing chamber (2) is set to a predetermined value of 20% to 30% relative humidity. The target humidity is not limited to a range of 20% or more and 30% or less, and may be a range of 10% or more and 50% or less, for example. Moreover, in preparation operation, in preparation for sterilization, a manufacturing apparatus, such as a pharmaceutical, is opened and a simple look of fittings is performed. The air flow of this preparation operation is shown in FIG.
このとき、空調系統側回路(10)の各バルブ(56a,56b,56c)は開いた状態となる。一方、滅菌系統側回路(30)の各バルブ(45a,45b,45c,45d,45e,45f)は閉じた状態となる。 At this time, each valve (56a, 56b, 56c) of the air conditioning system side circuit (10) is opened. On the other hand, each valve (45a, 45b, 45c, 45d, 45e, 45f) of the sterilization system side circuit (30) is closed.
この状態で、外気処理空調機(13)、顕熱空調機(17)、及び循環ファン(18)を運転すると、外気処理空調機(13)で除湿された空気が顕熱空調機(17)を通過して温度調節され、その温度調節された低湿の空気が入口側のHEPAフィルタ(14)を介して処理室(2)に供給される。 In this state, when the outside air processing air conditioner (13), the sensible heat air conditioner (17), and the circulation fan (18) are operated, the air dehumidified by the outside air processing air conditioner (13) is sensible heat air conditioner (17). The low-humidity air whose temperature is adjusted is supplied to the processing chamber (2) via the HEPA filter (14) on the inlet side.
処理室(2)の空気は、出口側のHEPAフィルタ(14)を通って流出して、循環ファン(18)により排気通路(28)を流通し、その一部が給気通路(11)へ戻って顕熱空調機(17)へ送られ、残りが排気通路(28)の出口から排気される。準備運転は、処理室(2)内の室温が25℃、相対湿度が所定値(例えば30%)になるまで行われる。なお、処理室(2)内には、温度と湿度を検出するため、温度センサと湿度センサが設けられている。 The air in the processing chamber (2) flows out through the HEPA filter (14) on the outlet side, circulates through the exhaust passage (28) by the circulation fan (18), and part of it flows to the air supply passage (11). It returns to the sensible heat air conditioner (17) and the remainder is exhausted from the outlet of the exhaust passage (28). The preparation operation is performed until the room temperature in the processing chamber (2) reaches 25 ° C. and the relative humidity reaches a predetermined value (for example, 30%). In the processing chamber (2), a temperature sensor and a humidity sensor are provided to detect temperature and humidity.
<滅菌運転>
準備運転が完了すると、空調系統側回路(10)から処理室(2)への空気の供給を停止させるために、空調装置を構成する外気処理空調機(13)及び顕熱空調機(17)と循環ファン(18)とを停止し、バルブの設定を切り換えて滅菌運転に移行する。滅菌運転は、滅菌ガス発生機(58)から処理室(2)へ過酸化水素を供給することによって、処理室(2)内の過酸化水素の濃度を所定濃度(例えば500ppm)にして、その濃度の状態を所定時間に亘って維持する工程であり、同時に滅菌側空調機(53)を用いて処理室(2)を微陽圧に維持する制御も行う。
<Sterilization operation>
When the preparatory operation is completed, in order to stop the air supply from the air conditioning system side circuit (10) to the processing chamber (2), the outside air processing air conditioner (13) and the sensible heat air conditioner (17) that constitute the air conditioner And the circulation fan (18) are stopped, and the setting of the valve is switched to shift to the sterilization operation. The sterilization operation is performed by supplying hydrogen peroxide from the sterilization gas generator (58) to the processing chamber (2), thereby setting the concentration of hydrogen peroxide in the processing chamber (2) to a predetermined concentration (for example, 500 ppm). In this step, the concentration state is maintained for a predetermined time, and at the same time, the sterilization-side air conditioner (53) is used to maintain the processing chamber (2) at a slight positive pressure.
この滅菌運転では、滅菌ガス発生機(58)の運転制御が、処理室(2)内の過酸化水素の濃度が所定濃度に到達するまでの調整モードと、所定濃度を維持するための滅菌モードとに分けられており、各モードにおいて処理室(2)への過酸化水素の供給量が調節される。この滅菌運転時の空気の流れを図3に示す。このとき、空調系統側回路(10)の各バルブ(56a,56b,56c)は閉じた状態にする。一方、滅菌系統側回路(30)の各バルブは、第4滅菌ガス切換バルブ(45d)以外は開いた状態にする。 In this sterilization operation, the operation control of the sterilization gas generator (58) includes an adjustment mode until the hydrogen peroxide concentration in the processing chamber (2) reaches a predetermined concentration, and a sterilization mode for maintaining the predetermined concentration. In each mode, the supply amount of hydrogen peroxide to the processing chamber (2) is adjusted. The air flow during this sterilization operation is shown in FIG. At this time, the valves (56a, 56b, 56c) of the air conditioning system side circuit (10) are closed. On the other hand, the valves of the sterilization system side circuit (30) are opened except for the fourth sterilization gas switching valve (45d).
この状態で、滅菌ガス発生機(58)、滅菌側空調機(53)、及び排気ファン(55)を運転すると、室外から取り込まれた空気が滅菌ガス発生機(58)へ送り込まれる。滅菌ガス発生機(58)へ流入した空気は、除湿器(57)で除湿された後に過酸化水素蒸気発生器(31)で過酸化酸素蒸気を付与される。そして、所定量の過酸化水素蒸気を含む空気(滅菌ガス)は、主流路(34)の空気と合流し、滅菌側空調機(53)で温度調節されるとともに給気圧力調整機構(67)で圧力が調整されて、入口側のHEPAフィルタ(14)を通って処理室(2)に供給される。上述したように、主流路(34)を流れる風量と過酸化水素発生流路(33)を流れる風量の比率は、約10:1に設定されている。こうすることにより、過酸化水素を空気中で十分に拡散させ、ひいては処理室(2)内で均一に拡散させる効果を得ることができる。 In this state, when the sterilization gas generator (58), the sterilization side air conditioner (53), and the exhaust fan (55) are operated, the air taken from outside is sent to the sterilization gas generator (58). The air that has flowed into the sterilization gas generator (58) is dehumidified by the dehumidifier (57) and then given oxygen peroxide vapor by the hydrogen peroxide vapor generator (31). The air (sterilization gas) containing a predetermined amount of hydrogen peroxide vapor merges with the air in the main flow path (34), the temperature is adjusted by the sterilization side air conditioner (53), and the supply pressure adjustment mechanism (67) Then, the pressure is adjusted and supplied to the processing chamber (2) through the HEPA filter (14) on the inlet side. As described above, the ratio of the amount of air flowing through the main channel (34) and the amount of air flowing through the hydrogen peroxide generating channel (33) is set to about 10: 1. By doing so, it is possible to obtain an effect of sufficiently diffusing hydrogen peroxide in the air and thus uniformly in the processing chamber (2).
処理室(2)内の滅菌ガスは出口側のHEPAフィルタ(14)を通って流出し、排気通路(28)から滅菌側循環通路(32)を構成する主流路(34)に流入する。主流路(34)に流入した滅菌ガスは、一部がそのまま主流路(34)を流れて滅菌側空調機(53)を通過した後に処理室(2)へ供給され、残りが過酸化水素分解流路(35)へ流入する。過酸化水素分解流路(35)へ流入した滅菌ガスは、過酸化水素分解器(36)で滅菌ガス中の過酸化水素が分解された後に排気ファン(55)によって排気側通路(54)の出口から室外へ排出される。 The sterilization gas in the processing chamber (2) flows out through the HEPA filter (14) on the outlet side, and flows from the exhaust passage (28) into the main channel (34) constituting the sterilization side circulation passage (32). Part of the sterilized gas that has flowed into the main flow path (34) flows directly through the main flow path (34), passes through the sterilization side air conditioner (53), and is then supplied to the treatment chamber (2), with the remainder being decomposed by hydrogen peroxide. It flows into the channel (35). The sterilization gas that has flowed into the hydrogen peroxide decomposition channel (35) is decomposed by the exhaust fan (55) after the hydrogen peroxide in the sterilization gas is decomposed by the hydrogen peroxide decomposer (36). It is discharged outside from the exit.
排気側通路(54)から滅菌側循環通路(32)の空気を排気するのは、主流路(34)からの滅菌ガスの流入に伴う処理室(2)の室内圧力をコントロールするためである。排気側通路(54)から室外へ排出される空気の量、すなわち過酸化水素分解流路(35)の滅菌ガスの流量は、処理室(2)内に設けられた圧力センサ(63)の計測値に基づいて第1滅菌ガス切換バルブ(45a)と第2滅菌ガス切換バルブ(45b)の開度を制御することにより行われるが、その際、処理室(2)への給気量が処理室(2)からの排気量よりも多くなる制御を行う。このことにより、室内が大気圧に対して陽圧(微陽圧)に維持される。 The reason why the air in the sterilization side circulation passage (32) is exhausted from the exhaust side passage (54) is to control the indoor pressure of the processing chamber (2) accompanying the inflow of sterilization gas from the main flow path (34). The amount of air exhausted from the exhaust side passage (54) to the outside, that is, the flow rate of sterilization gas in the hydrogen peroxide decomposition channel (35), is measured by the pressure sensor (63) provided in the processing chamber (2). This is done by controlling the opening of the first sterilization gas switching valve (45a) and the second sterilization gas switching valve (45b) based on the value, but at this time, the amount of air supplied to the processing chamber (2) is processed. Control to increase the amount of exhaust from the chamber (2). As a result, the interior of the room is maintained at a positive pressure (slight positive pressure) with respect to the atmospheric pressure.
この滅菌運転中の過酸化水素蒸気の供給量は、過酸化水素蒸気発生器(31)の下流側の過酸化水素蒸気の濃度を濃度判定部(52)で判定しながら、コントローラ(50)により機器が制御され、処理室(2)内の過酸化水素濃度が設定値になるように調節される。 The amount of hydrogen peroxide vapor supplied during this sterilization operation is determined by the controller (50) while the concentration determination unit (52) determines the concentration of hydrogen peroxide vapor downstream of the hydrogen peroxide vapor generator (31). The equipment is controlled and the hydrogen peroxide concentration in the processing chamber (2) is adjusted to the set value.
<希釈運転>
滅菌運転の完了後、処理室(2)内の過酸化水素の濃度は所定濃度の約500ppmになっている。この高濃度の状態では、処理室(2)内の滅菌ガスを過酸化水素分解器(36)に通過させて過酸化水素を分解しても、過酸化水素が大量であるために、室外へ排出可能なレベルにまで過酸化水素の濃度を低下させて放出することができない。そこで、処理室(2)内の過酸化水素の濃度が所定値(例えば10ppm)以下になるまでは、処理室(2)と過酸化水素分解器(36)との間で空気を循環させてその空気中の過酸化水素を過酸化水素分解器(36)で分解する第1希釈運転(循環動作)を行う(図4)。その後、外気処理空調機(13)及び顕熱空調機(17)を運転させてHEPAフィルタ(14)で処理をした無菌空気を処理室(2)へ供給しながら、その処理室(2)内の空気を室外へ排出する第2希釈運転(排気動作)を行う(図5)。なお、滅菌ガスの過酸化水素の濃度が10ppm(第1希釈運転の終了時点の濃度)ではそのまま室外へ排出できないが、10ppm以下になっていれば滅菌ガス中の過酸化水素を過酸化水素分解器(36)で分解することで室外へ排出可能なレベルにまで過酸化水素の濃度を低下させることができる。
<Dilution operation>
After completion of the sterilization operation, the concentration of hydrogen peroxide in the processing chamber (2) is a predetermined concentration of about 500 ppm. In this high concentration state, even if the sterilization gas in the treatment chamber (2) is passed through the hydrogen peroxide decomposer (36) to decompose the hydrogen peroxide, the amount of hydrogen peroxide is large. The hydrogen peroxide concentration cannot be reduced to a level at which it can be discharged. Therefore, air is circulated between the processing chamber (2) and the hydrogen peroxide decomposer (36) until the concentration of hydrogen peroxide in the processing chamber (2) becomes a predetermined value (for example, 10 ppm) or less. A first dilution operation (circulation operation) is performed in which the hydrogen peroxide in the air is decomposed by the hydrogen peroxide decomposer (36) (FIG. 4). Then, while operating the outside air processing air conditioner (13) and sensible heat air conditioner (17) and supplying aseptic air treated with the HEPA filter (14) to the processing chamber (2), the inside of the processing chamber (2) A second dilution operation (exhaust operation) for discharging the air to the outside is performed (FIG. 5). If the concentration of hydrogen peroxide in the sterilization gas is 10 ppm (concentration at the end of the first dilution operation), it cannot be discharged to the outside as it is, but if it is 10 ppm or less, the hydrogen peroxide in the sterilization gas is decomposed into hydrogen peroxide. The concentration of hydrogen peroxide can be reduced to a level at which it can be discharged outside by being decomposed by the vessel (36).
(第1希釈運転)
第1希釈運転では、滅菌ガス発生機(58)を停止して、滅菌側空調機(53)を運転させる。この第1希釈運転時の空気の流れを図4に示す。
(First dilution operation)
In the first dilution operation, the sterilization gas generator (58) is stopped and the sterilization side air conditioner (53) is operated. FIG. 4 shows the air flow during the first dilution operation.
このとき、空調系統側回路(10)の設定は基本的に滅菌運転時と同じであり、外気処理空調機(13)、顕熱空調機(17)、及び循環ファン(18)は停止しており、各バルブ(56a,56b,56c)は閉じた状態にする。一方、滅菌系統側回路(30)の各バルブは、第3滅菌ガス切換バルブ(45c)及び第5滅菌ガス切換バルブ(45e)以外は開いた状態にし、排気調節ダンパ(29)は閉じておく。 At this time, the setting of the air conditioning system side circuit (10) is basically the same as in the sterilization operation, and the outside air processing air conditioner (13), the sensible heat air conditioner (17), and the circulation fan (18) are stopped. Each valve (56a, 56b, 56c) is closed. On the other hand, the valves of the sterilization system side circuit (30) are opened except for the third sterilization gas switching valve (45c) and the fifth sterilization gas switching valve (45e), and the exhaust control damper (29) is closed. .
この状態で、滅菌側空調機(53)及び排気ファン(55)を運転すると、処理室(2)と過酸化水素分解器(36)との間で空気が循環する際にその空気中の過酸化水素が過酸化水素分解器(36)で分解される。第1希釈運転は、過酸化水素濃度が所定値(10ppm)以下になるまで行われる。 When the sterilization side air conditioner (53) and the exhaust fan (55) are operated in this state, excess air in the air is circulated when the air circulates between the treatment chamber (2) and the hydrogen peroxide decomposer (36). Hydrogen oxide is decomposed by the hydrogen peroxide decomposer (36). The first dilution operation is performed until the hydrogen peroxide concentration becomes a predetermined value (10 ppm) or less.
なお、第1希釈運転時に処理室(2)の圧力が低下した場合には、滅菌ガス発生機(58)を停止した状態で第5滅菌ガス切換バルブ(45e)を開いて過酸化水素発生流路(33)から外気を導入して、処理室(2)内を所定圧力(例えばゲージ圧で数10Pa)に維持する操作を行う。 If the pressure in the processing chamber (2) decreases during the first dilution operation, the sterilization gas generator (58) is stopped and the fifth sterilization gas switching valve (45e) is opened to generate hydrogen peroxide. Outside air is introduced from the passage (33), and an operation for maintaining the inside of the processing chamber (2) at a predetermined pressure (for example, several tens of Pa in gauge pressure) is performed.
(第2希釈運転)
第2希釈運転は、外気処理空調機(13)から入口側のHEPAフィルタ(14)を介して空気を処理室(2)に供給しながら過酸化水素の濃度が所定値(10ppm)よりもさらに低い値(1ppm)以下になるまで排気を行う換気工程である(図5)。
(Second dilution operation)
In the second dilution operation, the concentration of hydrogen peroxide further exceeds a predetermined value (10 ppm) while supplying air from the outside air treatment air conditioner (13) to the treatment chamber (2) via the HEPA filter (14) on the inlet side. This is a ventilation process in which exhaust is performed until the value becomes lower than 1 ppm (FIG. 5).
このとき、滅菌ガス発生機(58)及び循環ファン(18)は停止させたままにしておく。空調系統側回路(10)の各バルブは、第1空調ガス切換バルブ(56a)のみを開いた状態にする。一方、滅菌系統側回路(30)の各バルブは、第1滅菌ガス切換バルブ(45a)及び第2滅菌ガス切換バルブ(45b)を開いた状態にし、排気調節ダンパ(29)も開いた状態にする。また、排気ファン(55)を運転させる。 At this time, the sterilization gas generator (58) and the circulation fan (18) are stopped. Each valve of the air conditioning system side circuit (10) opens only the first air conditioning gas switching valve (56a). On the other hand, each valve of the sterilization system side circuit (30) is in a state in which the first sterilization gas switching valve (45a) and the second sterilization gas switching valve (45b) are opened, and the exhaust control damper (29) is also opened. To do. Further, the exhaust fan (55) is operated.
この状態で、外気処理空調機(13)、顕熱空調機(17)、及び排気ファン(55)を運転すると、外気処理空調機(13)と顕熱空調機(17)で温度と湿度が調節され、入口側のHEPAフィルタ(14)で浄化された無菌空気が処理室(2)に供給され、処理室(2)内で滅菌ガスと均一に混合する。希釈された滅菌ガスは、出口側のHEPAフィルタ(14)を通って処理室(2)から流出する。この滅菌ガスは、排気通路(28)から滅菌系統側回路(30)の主流路(34)を経て過酸化水素分解流路(35)に流入する。過酸化水素分解流路(35)に流入した滅菌ガスは、その滅菌ガス中の過酸化水素が過酸化水素分解器(36)で分解され、排気側通路(54)の出口から室外へ排出される。 In this state, when the outside air treatment air conditioner (13), sensible heat air conditioner (17), and exhaust fan (55) are operated, the temperature and humidity of the outside air treatment air conditioner (13) and sensible heat air conditioner (17) are reduced. Sterile air that has been adjusted and purified by the HEPA filter (14) on the inlet side is supplied to the processing chamber (2) and uniformly mixed with the sterilizing gas in the processing chamber (2). The diluted sterilization gas flows out of the processing chamber (2) through the HEPA filter (14) on the outlet side. The sterilizing gas flows from the exhaust passage (28) into the hydrogen peroxide decomposition passage (35) through the main passage (34) of the sterilization system side circuit (30). The sterilization gas that has flowed into the hydrogen peroxide decomposition channel (35) is decomposed by the hydrogen peroxide decomposer (36) and discharged from the outlet of the exhaust side passage (54) to the outside. The
この第2希釈運転では、第1希釈運転とは異なり、過酸化水素分解器(36)を通過した空気を処理室(2)へ戻さないので、第1希釈運転に比べて短時間で処理室(2)内の過酸化水素の濃度を下げることが可能である。また、処理室(2)への空気の供給が、空調装置を構成する外気処理空調機(13)及び顕熱空調機(17)を用いて行われている。これらの空調装置(13,17)は、滅菌側空調機(53)よりも大風量の空気を供給可能な装置として構成されているので、単位時間当たりの処理室(2)の空気の入れ換え量が第1希釈運転よりも多くなる。この点においても、第1希釈運転に比べて短時間で処理室(2)内の過酸化水素の濃度を下げることが可能である。 In this second dilution operation, unlike the first dilution operation, the air that has passed through the hydrogen peroxide decomposer (36) is not returned to the processing chamber (2), so that the processing chamber is shorter in time than the first dilution operation. It is possible to reduce the concentration of hydrogen peroxide in (2). Moreover, the supply of air to the processing chamber (2) is performed using an outside air processing air conditioner (13) and a sensible heat air conditioner (17) constituting the air conditioner. These air conditioners (13, 17) are configured as devices that can supply a larger volume of air than the sterilization side air conditioner (53), so the amount of air exchanged in the processing chamber (2) per unit time Is greater than in the first dilution operation. Also in this point, it is possible to reduce the concentration of hydrogen peroxide in the processing chamber (2) in a shorter time than in the first dilution operation.
第2希釈運転では、処理室(2)の過酸化水素濃度が約1ppm以下になるまで行われる。その際、室内圧力を建屋漏気上の対策により、定常値よりも低い圧力(例えばゲージ圧で約15Pa)に保持するために、第1滅菌ガス切換バルブ(45a)及び第2滅菌ガス切換バルブ(45b)のそれぞれの開度を調節する。 The second dilution operation is performed until the hydrogen peroxide concentration in the processing chamber (2) is about 1 ppm or less. At that time, the first sterilization gas switching valve (45a) and the second sterilization gas switching valve are used in order to maintain the indoor pressure at a pressure lower than the steady value (for example, about 15 Pa as a gauge pressure) by measures against building air leakage. Adjust each opening of (45b).
また、第1希釈運転から第2希釈運転への移行時には、室圧の急激な変化を避けるため、外気処理空調機(13)、顕熱空調機(17)及び排気ファン(55)をスロースタートし、安定した移行を行うとよい。 Also, during the transition from the first dilution operation to the second dilution operation, the outside air treatment air conditioner (13), the sensible heat air conditioner (17), and the exhaust fan (55) are started slowly to avoid sudden changes in the room pressure. And make a stable transition.
<定常運転>
定常運転は、外気処理空調機(13)により処理した外気を取り入れながら処理室(2)内の換気及び室圧保持のためにその処理室(2)内の空気を室外へ排出する工程である。この定常運転の空気の流れを図6に示す。第2希釈運転と空気の流れはほぼ同じであるが、処理室(2)内の空気を排気側通路(54)ではなく排気通路(28)から排出する点で異なっている。
<Normal operation>
Steady operation is a process of exhausting the air in the processing chamber (2) to the outside in order to ventilate the inside of the processing chamber (2) and maintain the room pressure while taking in the outside air processed by the outside air processing air conditioner (13). . FIG. 6 shows the air flow in the steady operation. The air flow is substantially the same as that in the second dilution operation, but differs in that the air in the processing chamber (2) is discharged from the exhaust passage (28) instead of the exhaust side passage (54).
このとき、空調系統側回路(10)の各バルブ(56a,56b,56c)は開いた状態にする。一方、滅菌系統側回路(30)の各バルブ(45a,45b,45c,45d,45e,45f)や排気調節ダンパ(29)は閉じた状態にする。また、排気ファン(55)を停止させ、循環ファン(18)を運転させる。 At this time, each valve (56a, 56b, 56c) of the air conditioning system side circuit (10) is opened. On the other hand, the valves (45a, 45b, 45c, 45d, 45e, 45f) and the exhaust control damper (29) of the sterilization system side circuit (30) are closed. Further, the exhaust fan (55) is stopped and the circulation fan (18) is operated.
この状態で、外気処理空調機(13)、顕熱空調機(17)、及び循環ファン(18)を運転すると、外気処理空調機(13)と顕熱空調機(17)で温度と湿度が調節され、入口側のHEPAフィルタ(14)で浄化された無菌空気が処理室(2)に供給される。処理室(2)の無菌空気は、出口側のHEPAフィルタ(14)を通って処理室(2)から流出する。この無菌空気は、大部分が第3空調ガス切換バルブ(56c)を通って排気通路(28)の出口から排出され、一部が戻り通路(15)から給気通路(11)へ戻され、さらに顕熱空調機(17)へと流れていく。定常運転では、処理室(2)の温度と湿度が設定値に維持されるとともに、無菌状態が維持される。 In this state, when the outside air treatment air conditioner (13), sensible heat air conditioner (17), and circulation fan (18) are operated, the temperature and humidity of the outside air treatment air conditioner (13) and sensible heat air conditioner (17) are reduced. Aseptic air that has been adjusted and purified by the HEPA filter (14) on the inlet side is supplied to the processing chamber (2). Aseptic air in the processing chamber (2) flows out of the processing chamber (2) through the HEPA filter (14) on the outlet side. Most of this sterile air is discharged from the outlet of the exhaust passage (28) through the third air-conditioning gas switching valve (56c), and part is returned to the air supply passage (11) from the return passage (15), It further flows to the sensible heat air conditioner (17). In the steady operation, the temperature and humidity of the processing chamber (2) are maintained at the set values and the aseptic state is maintained.
−実施形態の効果−
この実施形態においては、過酸化水素蒸気発生器(31)の上流側の空気の温度と湿度に対する下流側の空気の温度と湿度の変化量に基づいて、過酸化水素蒸気発生器(31)の直後で過酸化水素濃度を判定できる。特に、過酸化水素蒸気発生器(31)の上流側と下流側のそれぞれの通過水分量から下流側での水分増加量を求め、その水分増加量と、過酸化水素蒸気発生器(31)で用いている過酸化水素水溶液の過酸化水素濃度とに基づいて、空気中の過酸化水素濃度を算出でき、算出した空気中の過酸化水素濃度は、過酸化水素蒸気発生器(31)の下流側の水分増加量のうち、過酸化水素水溶液における水と過酸化水素の比率から求められるため、算出値は正確である。したがって、処理室(2)へ供給する過酸化水素蒸気を上記濃度に基づいて制御して滅菌運転を行うことにより、滅菌性能のばらつきを防止できる。
-Effect of the embodiment-
In this embodiment, based on the amount of change in the temperature and humidity of the downstream air with respect to the temperature and humidity of the upstream air of the hydrogen peroxide vapor generator (31), the hydrogen peroxide vapor generator (31) Immediately after that, the hydrogen peroxide concentration can be determined. In particular, the amount of water increase on the downstream side is determined from the amount of water passing through the upstream and downstream sides of the hydrogen peroxide vapor generator (31). The hydrogen peroxide concentration in the air can be calculated based on the hydrogen peroxide concentration of the aqueous hydrogen peroxide solution used, and the calculated hydrogen peroxide concentration in the air is downstream of the hydrogen peroxide vapor generator (31). The calculated value is accurate because it is obtained from the ratio of water to hydrogen peroxide in the aqueous hydrogen peroxide solution in the amount of water increase on the side. Therefore, variation in sterilization performance can be prevented by performing the sterilization operation by controlling the hydrogen peroxide vapor supplied to the treatment chamber (2) based on the above concentration.
また、給排気機構(60)として空調装置を制御することにより処理室(2)に対して給気と排気を行いながら、滅菌装置(30)の過酸化水素蒸気発生器(31)から処理室(2)へ過酸化水素蒸気を供給する滅菌運転中に、濃度判定手段(52)により過酸化水素濃度を所定値に維持する制御が行われる。したがって、滅菌運転中の処理室(2)の温度や湿度を安定させることが可能となる。特に、過酸化水素を用いた滅菌処理では、低湿度の方が滅菌効果が高くなるのに対して、本実施形態では処理室(2)内を低湿度に維持しておくことが可能であるため、滅菌効果を高いレベルで安定させることが可能となる。 In addition, the air conditioner is controlled as the air supply / exhaust mechanism (60) to supply and exhaust air to the process chamber (2), while the hydrogen peroxide vapor generator (31) of the sterilizer (30) is used as the process chamber During the sterilization operation for supplying hydrogen peroxide vapor to (2), control is performed to maintain the hydrogen peroxide concentration at a predetermined value by the concentration determination means (52). Therefore, it becomes possible to stabilize the temperature and humidity of the processing chamber (2) during the sterilization operation. In particular, in the sterilization treatment using hydrogen peroxide, the sterilization effect is higher in the low humidity, whereas in the present embodiment, the inside of the treatment chamber (2) can be maintained at the low humidity. Therefore, the sterilization effect can be stabilized at a high level.
−実施形態の変形例1−
実施形態の変形例1について説明する。図7に示すように、この変形例1の滅菌システム(1)は、外気処理空調機(13)を経由して滅菌ガス発生機(58)に外気が取り込まれるように構成されている。
-Modification 1 of embodiment-
A first modification of the embodiment will be described. As shown in FIG. 7, the sterilization system (1) of the first modification is configured such that outside air is taken into the sterilizing gas generator (58) via the outside air processing air conditioner (13).
具体的に、給気通路(11)と滅菌ガス発生機(58)とを接続する外気導入通路(59)が設けられている。外気導入通路(59)は、給気通路(11)の戻し通路(15)との接続部と外気処理空調機(13)との間において給気通路(11)から分岐している。滅菌運転において、第5滅菌ガス切換バルブ(45e)を開いて第1空調ガス切換バルブ(56a)を閉じた状態にすると、外気処理空調機(13)で除湿された空気が滅菌ガス発生機(58)に流入する。 Specifically, an outside air introduction passage (59) for connecting the air supply passage (11) and the sterilization gas generator (58) is provided. The outside air introduction passage (59) branches from the air supply passage (11) between the connection portion between the air supply passage (11) and the return passage (15) and the outside air processing air conditioner (13). In the sterilization operation, when the fifth sterilization gas switching valve (45e) is opened and the first air conditioning gas switching valve (56a) is closed, the air dehumidified by the outside air treatment air conditioner (13) is supplied to the sterilization gas generator ( 58).
この変形例においても、滅菌運転中に、処理室(2)への過酸化水素蒸気の供給量を、過酸化水素蒸気発生器(31)の下流側の過酸化水素蒸気の濃度を濃度判定部(52)で判定しながら、コントローラ(50)により機器を制御して、処理室(2)内の過酸化水素濃度が所定値になるように調節する点は上記実施形態と同じである。 Also in this modified example, during the sterilization operation, the supply amount of hydrogen peroxide vapor to the processing chamber (2) and the concentration of hydrogen peroxide vapor downstream of the hydrogen peroxide vapor generator (31) While determining in (52), the apparatus is controlled by the controller (50) to adjust the hydrogen peroxide concentration in the processing chamber (2) to a predetermined value, which is the same as in the above embodiment.
−実施形態の変形例2−
実施形態の変形例2について説明する。図8に示すように、この変形例2の滅菌システム(1)では、滅菌系統側回路(30)の主流路(34)が、空調系統側回路(10)の給気通路(11)及び排気通路(28)ではなく直接処理室(2)に接続されている。
-
A second modification of the embodiment will be described. As shown in FIG. 8, in the sterilization system (1) of the second modification, the main flow path (34) of the sterilization system side circuit (30) is connected to the air supply path (11) and the exhaust of the air conditioning system side circuit (10). It is connected directly to the processing chamber (2), not the passage (28).
この変形例においても、滅菌運転中に、処理室(2)への過酸化水素蒸気の供給量を、過酸化水素蒸気発生器(31)の下流側の過酸化水素蒸気の濃度を濃度判定部(52)で判定しながら、コントローラ(50)により機器を制御して、処理室(2)内の過酸化水素濃度が所定値になるように調節する点は上記実施形態と同じである。 Also in this modified example, during the sterilization operation, the supply amount of hydrogen peroxide vapor to the processing chamber (2) and the concentration of hydrogen peroxide vapor downstream of the hydrogen peroxide vapor generator (31) While determining in (52), the apparatus is controlled by the controller (50) to adjust the hydrogen peroxide concentration in the processing chamber (2) to a predetermined value, which is the same as in the above embodiment.
−実施形態の変形例3−
実施形態の変形例3について説明する。この変形例3では、図示していないが、滅菌システム(1)が複数の処理室(2)に対して構成されている。この場合、給気通路(11)や排気通路(28)から分岐して各処理室(2)に接続される経路には、それぞれダンパ(23,24,25)、定風量装置(22)を設ける。これにより、各処理室(2)の滅菌処理を個別に実行することが可能になる。滅菌処理が行われていない処理室(2)へは、定常運転によって外気処理空調機(13)及び顕熱空調機(17)で空調された空気が流入するようにダンパ(23,24,25)、定風量装置(22)を調節する。
—Modification 3 of Embodiment—
A modification 3 of the embodiment will be described. In Modification 3, although not shown, the sterilization system (1) is configured for a plurality of processing chambers (2). In this case, a damper (23, 24, 25) and a constant air volume device (22) are connected to the path branched from the air supply passage (11) and the exhaust passage (28) and connected to each processing chamber (2). Provide. Thereby, it becomes possible to perform the sterilization process of each process chamber (2) separately. Dampers (23, 24, 25) so that the air conditioned by the outside air treatment air conditioner (13) and the sensible heat air conditioner (17) through the steady operation flows into the processing chamber (2) that has not been sterilized. ) Adjust the constant air volume device (22).
この変形例においても、滅菌運転中に、処理室(2)への過酸化水素蒸気の供給量を、過酸化水素蒸気発生器(31)の下流側の過酸化水素蒸気の濃度を濃度判定部(52)で判定しながら、コントローラ(50)により機器を制御して、処理室(2)内の過酸化水素濃度が所定値になるように調節する点は上記実施形態と同じである。 Also in this modified example, during the sterilization operation, the supply amount of hydrogen peroxide vapor to the processing chamber (2) and the concentration of hydrogen peroxide vapor downstream of the hydrogen peroxide vapor generator (31) While determining in (52), the apparatus is controlled by the controller (50) to adjust the hydrogen peroxide concentration in the processing chamber (2) to a predetermined value, which is the same as in the above embodiment.
−実施形態の変形例4−
実施形態の変形例4について説明する。図9に示すように、この変形例4では、空調系統側回路(10)が設けられておらず、処理室(2)の空調処理と滅菌処理を滅菌系統側回路(30)のみで実行するように構成されている。
-
この滅菌システム(1)では、準備運転において、滅菌ガス発生機(58)が過酸化水素蒸気発生器(31)を停止させて除湿器(57)のみを運転させるように制御される。これにより、室外から取り込まれて滅菌ガス発生機(58)で除湿された空気が、滅菌側空調機(53)で温度調節されて処理室(2)へ流入し、処理室(2)が目標湿度に調節される。 In this sterilization system (1), in the preparatory operation, the sterilization gas generator (58) is controlled to stop the hydrogen peroxide vapor generator (31) and operate only the dehumidifier (57). As a result, the air taken from outside and dehumidified by the sterilization gas generator (58) is adjusted in temperature by the sterilization side air conditioner (53) and flows into the processing chamber (2), and the processing chamber (2) is targeted. Adjusted to humidity.
この変形例においても、滅菌運転中に、処理室(2)への過酸化水素蒸気の供給量を、過酸化水素蒸気発生器(31)の下流側の過酸化水素蒸気の濃度を濃度判定部(52)で判定しながら、コントローラ(50)により機器を制御して、処理室(2)内の過酸化水素濃度が所定値になるように調節する点は上記実施形態と同じである。 Also in this modified example, during the sterilization operation, the supply amount of hydrogen peroxide vapor to the processing chamber (2) and the concentration of hydrogen peroxide vapor downstream of the hydrogen peroxide vapor generator (31) While determining in (52), the apparatus is controlled by the controller (50) to adjust the hydrogen peroxide concentration in the processing chamber (2) to a predetermined value, which is the same as in the above embodiment.
《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.
例えば、上記実施形態では、滅菌運転を滅菌ガス中の過酸化水素濃度が約500ppmになる高濃度の運転にしているが、滅菌をする度に必ずしも高濃度の滅菌運転をしなくてもよく、製造室を使用しない夜間などに短時間で処理するときには、準備運転、5〜10ppm程度の低濃度の滅菌運転、及び処理室(2)の換気を行う第2希釈運転を行うようにして、第1希釈運転を省略するようにしてもよい。 For example, in the above embodiment, the sterilization operation is a high concentration operation in which the concentration of hydrogen peroxide in the sterilization gas is about 500 ppm, but it is not always necessary to perform the high concentration sterilization operation every time sterilization is performed. When processing in a short time, such as at night, when the manufacturing room is not used, a preparatory operation, a sterilization operation with a low concentration of about 5 to 10 ppm, and a second dilution operation that ventilates the processing chamber (2) are performed. One dilution operation may be omitted.
また、上記実施形態では、上流側温湿度センサ(31a)と下流側温湿度センサ(31b)として、相対湿度計と乾球温度計とを用いる例と、乾球温度計と湿球温度計とを用いる例について説明したが、過酸化水素発生器(31)の上流側と下流側で温度と湿度が検出できる限り、測定手段は適宜変更してもよいし、上流側と下流側で同じ測定手段を用いる必要もない。例えば、測定パターンは、過酸化水素発生器(31)の上流側と下流側において、乾球温度と絶対湿度を測定するパターン、乾球温度と露点温度を測定するパターン、絶対湿度と相対湿度を測定するパターン、湿球温度と相対湿度を測定するパターンなどから適宜選択してもよい。 Moreover, in the said embodiment, as an upstream temperature / humidity sensor (31a) and a downstream temperature / humidity sensor (31b), an example using a relative hygrometer and a dry bulb thermometer, a dry bulb thermometer and a wet bulb thermometer, However, as long as the temperature and humidity can be detected on the upstream and downstream sides of the hydrogen peroxide generator (31), the measurement means may be changed as appropriate, and the same measurement may be performed on the upstream and downstream sides. There is no need to use means. For example, the measurement pattern includes a pattern for measuring dry bulb temperature and absolute humidity, a pattern for measuring dry bulb temperature and dew point temperature, and absolute humidity and relative humidity on the upstream side and downstream side of the hydrogen peroxide generator (31). You may select suitably from the pattern to measure, the pattern which measures wet-bulb temperature, and relative humidity.
なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.
以上説明したように、本発明は、処理室を過酸化水素で滅菌処理する滅菌システムについて有用である。 As described above, the present invention is useful for a sterilization system that sterilizes a processing chamber with hydrogen peroxide.
1 滅菌システム
2 処理室
10 空調系統側回路
30 滅菌系統側回路(滅菌装置)
31 過酸化水素蒸気発生器
31a 上流側温湿度センサ(上流側温湿度検出手段)
31b 下流側温湿度センサ(下流側温湿度検出手段)
33 過酸化水素発生流路
50 コントローラ(制御手段)
52 濃度判定部(濃度判定手段)
52a 濃度算出部(濃度算出部)
60 給排気機構
1 Sterilization system
2 Processing chamber
10 Air conditioning system side circuit
30 Sterilization system side circuit (sterilization equipment)
31 Hydrogen peroxide vapor generator
31a Upstream temperature and humidity sensor (upstream temperature and humidity detection means)
31b Downstream temperature / humidity sensor (downstream temperature / humidity detection means)
33 Hydrogen peroxide generation flow path
50 controller (control means)
52 Concentration judgment unit (concentration judgment means)
52a Concentration calculator (concentration calculator)
60 Air supply / exhaust mechanism
Claims (6)
過酸化水素蒸気発生器(31)の上流側の空気の温度と湿度を検出する上流側温湿度検出手段(31a)と、過酸化水素蒸気発生器(31)の下流側の空気の温度と湿度を検出する下流側温湿度検出手段(31b)と、過酸化水素蒸気発生器(31)の上流側と下流側の温度と湿度に基づいて、下流側の空気中の過酸化水素濃度を判定する濃度判定手段(52)とを備えていることを特徴とする滅菌装置。 A sterilization apparatus provided with a hydrogen peroxide vapor generator (31) in a hydrogen peroxide generation flow path (33) through which air flows,
The upstream temperature / humidity detection means (31a) for detecting the temperature and humidity of the air upstream of the hydrogen peroxide vapor generator (31), and the temperature and humidity of the air downstream of the hydrogen peroxide vapor generator (31) Based on the temperature and humidity on the upstream and downstream sides of the hydrogen peroxide vapor generator (31), the hydrogen peroxide concentration in the downstream air is determined based on the downstream temperature and humidity detection means (31b) for detecting A sterilizer comprising a concentration determination means (52).
濃度判定手段(52)は、過酸化水素発生流路(33)における過酸化水素蒸気発生器(31)の上流側と下流側における単位時間当たりの通過水分量から下流側での水分増加量を算出し、その水分増加量に、過酸化水素蒸気発生器(31)に用いられている過酸化水素水溶液の過酸化水素濃度に基づいて、水に対する質量比を積算して空気中の過酸化水素量を求め、該過酸化水素量と通過風量とから過酸化水素濃度を算出する濃度算出部(52a)を備えていることを特徴とする滅菌装置。 In claim 1,
The concentration determination means (52) calculates the amount of water increase on the downstream side from the amount of water passing per unit time on the upstream and downstream sides of the hydrogen peroxide vapor generator (31) in the hydrogen peroxide generation flow path (33). Calculate and integrate the mass ratio to water based on the hydrogen peroxide concentration of the hydrogen peroxide solution used in the hydrogen peroxide vapor generator (31) to the amount of water increase. A sterilization apparatus comprising a concentration calculation unit (52a) for obtaining an amount and calculating a hydrogen peroxide concentration from the amount of hydrogen peroxide and the amount of passing air.
上流側温湿度検出手段(31a)と下流側温湿度検出手段(31b)は、過酸化水素蒸気発生器(31)の上流側と下流側における空気の相対湿度を測定する相対湿度計と、該空気の乾球温度を測定する乾球温度計とにより構成されていることを特徴とする滅菌装置。 In claim 1 or 2,
The upstream temperature / humidity detection means (31a) and the downstream temperature / humidity detection means (31b) include a relative hygrometer that measures the relative humidity of the air upstream and downstream of the hydrogen peroxide vapor generator (31), A sterilizer comprising a dry bulb thermometer for measuring a dry bulb temperature of air.
上流側温湿度検出手段(31a)と下流側温湿度検出手段(31b)は、過酸化水素蒸気発生器(31)の上流側と下流側における空気の乾球温度を測定する乾球温度計と、該空気の湿球温度を測定する湿球温度計とにより構成されていることを特徴とする滅菌装置。 In claim 1 or 2,
The upstream temperature / humidity detection means (31a) and the downstream temperature / humidity detection means (31b) are a dry bulb thermometer that measures the dry bulb temperature of the air upstream and downstream of the hydrogen peroxide vapor generator (31). And a wet bulb thermometer for measuring the wet bulb temperature of the air.
滅菌装置(30)が請求項1から4のいずれか1に記載の滅菌装置により構成され、
上記過酸化水素蒸気発生器(31)から処理室(2)へ過酸化水素蒸気を供給する滅菌運転中に、上記滅菌装置(30)の濃度判定手段(52)により空気中の過酸化水素濃度を所定値に維持する制御を行う制御手段(50)を備えていることを特徴とする滅菌システム。 Sterilization of supplying hydrogen peroxide vapor to the processing chamber (2) with a supply / exhaust mechanism (60) capable of supplying and exhausting air to the processing chamber (2) and a hydrogen peroxide vapor generator (31) A sterilization system comprising a device (30),
A sterilizer (30) is constituted by the sterilizer according to any one of claims 1 to 4,
During the sterilization operation in which hydrogen peroxide vapor is supplied from the hydrogen peroxide vapor generator (31) to the treatment chamber (2), the concentration determination means (52) of the sterilizer (30) allows the concentration of hydrogen peroxide in the air. A sterilization system comprising control means (50) for performing control to maintain the value at a predetermined value.
給排気機構(60)は、温度と湿度を調整した空気を処理室(2)へ供給する空調装置を備えていることを特徴とする滅菌システム。 In claim 5,
The sterilization system characterized in that the air supply / exhaust mechanism (60) is provided with an air conditioner that supplies air with adjusted temperature and humidity to the processing chamber (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006021931A JP2007202628A (en) | 2006-01-31 | 2006-01-31 | Sterilization apparatus and sterilization system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006021931A JP2007202628A (en) | 2006-01-31 | 2006-01-31 | Sterilization apparatus and sterilization system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007202628A true JP2007202628A (en) | 2007-08-16 |
Family
ID=38482641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006021931A Pending JP2007202628A (en) | 2006-01-31 | 2006-01-31 | Sterilization apparatus and sterilization system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007202628A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010021139A1 (en) | 2008-08-20 | 2010-02-25 | 三洋電機株式会社 | Isolator |
JP2014501147A (en) * | 2011-01-18 | 2014-01-20 | バイオケル ユーケイ リミテッド | Improvements in the control of biological decontamination cycles |
KR20150143170A (en) * | 2014-06-13 | 2015-12-23 | 한국과학기술연구원 | Method for analyzing Ubiquitin-proteasome activity and screening method of Ubiquitin-proteasome inhibitor using the same |
JP2017012400A (en) * | 2015-06-30 | 2017-01-19 | 株式会社大林組 | Decontamination method and decontamination system |
KR20180052988A (en) * | 2016-11-11 | 2018-05-21 | 한국과학기술연구원 | A simplicity sterilization equipment using hydrogen peroxide vapor and method for sterilization using the same |
KR20180077837A (en) * | 2016-12-29 | 2018-07-09 | (주) 씨엠테크 | A sterilizing apparatus and a method for measuring concentration of hydrogen peroxide of the sterilizing apparatus |
KR101887112B1 (en) * | 2017-04-13 | 2018-09-10 | 한국과학기술연구원 | Hydrogen peroxide vapor removal equipment |
KR20190065699A (en) * | 2017-12-04 | 2019-06-12 | 한국과학기술연구원 | Hydrogen peroxide vapor detoxifying system |
-
2006
- 2006-01-31 JP JP2006021931A patent/JP2007202628A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010021139A1 (en) | 2008-08-20 | 2010-02-25 | 三洋電機株式会社 | Isolator |
EP2609938A1 (en) | 2008-08-20 | 2013-07-03 | Panasonic Healthcare Co., Ltd. | Isolator with sterilant reduction unit |
US8658107B2 (en) | 2008-08-20 | 2014-02-25 | Panasonic Healthcare Co., Ltd. | Isolator |
US9011792B2 (en) | 2008-08-20 | 2015-04-21 | Panasonic Healthcare Holdings Co., Ltd. | Isolator |
US9511363B2 (en) | 2008-08-20 | 2016-12-06 | Panasonic Healthcare Holdings Co., Ltd. | Isolator |
JP2014501147A (en) * | 2011-01-18 | 2014-01-20 | バイオケル ユーケイ リミテッド | Improvements in the control of biological decontamination cycles |
KR20150143170A (en) * | 2014-06-13 | 2015-12-23 | 한국과학기술연구원 | Method for analyzing Ubiquitin-proteasome activity and screening method of Ubiquitin-proteasome inhibitor using the same |
KR101658638B1 (en) * | 2014-06-13 | 2016-09-22 | 한국과학기술연구원 | Method for analyzing Ubiquitin-proteasome activity and screening method of Ubiquitin-proteasome inhibitor using the same |
JP2017012400A (en) * | 2015-06-30 | 2017-01-19 | 株式会社大林組 | Decontamination method and decontamination system |
KR20180052988A (en) * | 2016-11-11 | 2018-05-21 | 한국과학기술연구원 | A simplicity sterilization equipment using hydrogen peroxide vapor and method for sterilization using the same |
KR101967811B1 (en) | 2016-11-11 | 2019-04-11 | 한국과학기술연구원 | A simplicity sterilization equipment using hydrogen peroxide vapor and method for sterilization using the same |
KR20180077837A (en) * | 2016-12-29 | 2018-07-09 | (주) 씨엠테크 | A sterilizing apparatus and a method for measuring concentration of hydrogen peroxide of the sterilizing apparatus |
KR101931102B1 (en) * | 2016-12-29 | 2018-12-21 | (주) 씨엠테크 | A sterilizing apparatus and a method for measuring concentration of hydrogen peroxide of the sterilizing apparatus |
KR101887112B1 (en) * | 2017-04-13 | 2018-09-10 | 한국과학기술연구원 | Hydrogen peroxide vapor removal equipment |
KR20190065699A (en) * | 2017-12-04 | 2019-06-12 | 한국과학기술연구원 | Hydrogen peroxide vapor detoxifying system |
KR101988863B1 (en) | 2017-12-04 | 2019-06-13 | 한국과학기술연구원 | Hydrogen peroxide vapor detoxifying system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007202628A (en) | Sterilization apparatus and sterilization system | |
US9353966B2 (en) | System for increasing operating efficiency of an HVAC system including air ionization | |
KR101615168B1 (en) | Dehumidification system | |
JP5107379B2 (en) | Control method and dehumidification system of dew point temperature in low dew point chamber | |
JP2006288647A (en) | Sterilizing system | |
JP2008111623A5 (en) | ||
WO2019082395A1 (en) | Air-conditioning system | |
JP2008011928A (en) | Sterilization system | |
JP2007195772A (en) | Sterilization system | |
JP2014087761A (en) | Dry room system | |
JP4923791B2 (en) | Air conditioning system | |
JP2007202677A (en) | Sterilization apparatus | |
JP2006116095A (en) | System for introducing and discharging gas for decontamination | |
JP4508094B2 (en) | Sterilization system | |
JP2007105230A (en) | Sterilizing apparatus | |
JP2008307508A (en) | Dehumidifying apparatus | |
JP5686311B2 (en) | Gas removal system | |
JP2010099495A (en) | Sterilization system | |
JP2001212431A (en) | Formaldehyde cracking device, air conditioner having catalyst for cracking of formaldehyde, fumigation system having formaldehyde generating device and cracking device, and formaldehyde generating and cracking device | |
JP4722013B2 (en) | Air conditioner and air conditioner method | |
JP4596370B2 (en) | Low dew point air conditioning system | |
JP4291008B2 (en) | Experimental equipment for measuring chemical emissions | |
JP2008011926A (en) | Sterilization system | |
JP2007105231A (en) | Sterilizing apparatus | |
JPH10238843A (en) | Humidifier |