JP2007198706A - Internal heating type heat exchange structure having intersecting passage directions - Google Patents

Internal heating type heat exchange structure having intersecting passage directions Download PDF

Info

Publication number
JP2007198706A
JP2007198706A JP2006020305A JP2006020305A JP2007198706A JP 2007198706 A JP2007198706 A JP 2007198706A JP 2006020305 A JP2006020305 A JP 2006020305A JP 2006020305 A JP2006020305 A JP 2006020305A JP 2007198706 A JP2007198706 A JP 2007198706A
Authority
JP
Japan
Prior art keywords
flow path
heat exchange
exchange structure
longitudinal
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006020305A
Other languages
Japanese (ja)
Inventor
Tamotsu Kobuchi
存 小渕
Jiyunko Uchisawa
潤子 内澤
Akihiko Oi
明彦 大井
Tetsuya Nanba
哲哉 難波
Norio Nakayama
紀夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006020305A priority Critical patent/JP2007198706A/en
Publication of JP2007198706A publication Critical patent/JP2007198706A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact heat exchange structure with high heat efficiency, which is suitable for temporary heating of various fluids. <P>SOLUTION: In the heat exchange structure comprising a honeycomb structure integrally formed including a number of vertical passages 12 divided by partition walls 11 and extended in parallel in one direction and a heating means for heating a fluid, part of the vertical passages is closed at one vertical passage-directional end surface 13 of the honeycomb structure, and a turning-round part 15 connecting each closed vertical passage with each non-closed vertical passage 12 to reverse the flowing direction of the fluid is formed at the other end surface thereof, and a cross passage is formed in each closed vertical passage, the cross passage intersecting the vertical passages across the partition walls to connect the vertical passages to a hole formed in at least one side of the outer wall of the heat exchange structure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内部発熱を回収する方式の熱交換構造体に関し、より詳しくは、熱交換体の内部で熱を発生させ、その発熱を利用して流体を効率的に一時的に加熱することができる熱交換構造体に関する。   The present invention relates to a heat exchange structure that recovers internal heat generation, and more specifically, heat can be generated inside the heat exchange body, and fluid can be efficiently and temporarily heated using the heat generation. The present invention relates to a heat exchange structure that can be made.

流体を一時的に加熱することは種々の産業分野において様々な要請に応じて行われている。例えば、化学工業分野では、目的とする化学反応に適する温度まで原料を加熱することが、数多くの化学装置において行われている。また、食品工業分野では、殺菌等を目的とした原料又は製品の加熱が、様々な種類の食品に対して行われている。こうした加熱は、高い熱効率の下でコンパクトな装置によって行われることが望ましい。   Temporarily heating a fluid is performed according to various demands in various industrial fields. For example, in the chemical industry field, heating a raw material to a temperature suitable for a target chemical reaction is performed in many chemical apparatuses. In the food industry field, heating of raw materials or products for the purpose of sterilization or the like is performed on various types of foods. Such heating is preferably performed by a compact device under high thermal efficiency.

また、いわゆる悪臭ガス又は揮発性有機溶剤(VOC)は、一般に、燃焼によって無臭の無害ガスに転化させることができるが、この燃焼は、有機物質を低濃度で含む大量の比較的温度の低いガスに対して行う必要がある。
また、自動車エンジン等の内燃機関の排ガスに関し、一般に、ガソリンエンジンの排ガスには、有害物質の一酸化炭素、炭化水素類、及び窒素酸化物が含まれ、ディーゼルエンジンの排ガスには、さらにパティキュレートが含まれる。これらの有害物質は、酸化触媒、三元触媒、選択還元触媒等の触媒作用により浄化され得るが、地球温暖化防止等の観点から、二酸化炭素(CO)の排出量の低減、即ち、燃費の向上もまた要請されている。この燃費が向上されるにつれてエンジン排ガスの温度は必然的に低下するため、かかる触媒作用による浄化は、より低温でも行われることが要請されつつある。
Also, so-called malodorous gases or volatile organic solvents (VOCs) can generally be converted to odorless and harmless gases by combustion, but this combustion involves a large amount of relatively cool gas containing low concentrations of organic substances. Needs to be done.
Further, regarding exhaust gas from an internal combustion engine such as an automobile engine, in general, exhaust gas from a gasoline engine contains harmful substances such as carbon monoxide, hydrocarbons, and nitrogen oxides, and exhaust gas from a diesel engine further includes particulates. Is included. These harmful substances can be purified by the catalytic action of an oxidation catalyst, a three-way catalyst, a selective reduction catalyst, etc., but from the viewpoint of prevention of global warming, etc., reduction of carbon dioxide (CO 2 ) emissions, that is, fuel consumption Improvement is also demanded. As the fuel efficiency is improved, the temperature of the engine exhaust gas inevitably decreases. Therefore, it is demanded that the purification by the catalytic action is performed even at a lower temperature.

一方、エンジンの空燃比制御や燃料後噴射の技術の向上により、燃費をそれ程低下させることなく、Oの存在下で排ガス中に、例えば数1000ppm程度のCOを含ませることが、可能となっている。
先行技術において、こうした発熱成分を利用して熱交換作用により有利に排ガス浄化を行う装置又はデバイスが提案されている(特許文献1、特許文献2、特許文献3)。これらの装置では、コンパクトながら高い熱交換性能を発揮する構造として、一体型波形伝熱面を基本とする熱交換構造体が用いられている。この場合、高い熱交換性能を発揮させるためには、処理する流体が通過する波形構造体のすき間間隔を全領域で一定に保つ必要があり、そのため波形伝熱面にさらに細かいピッチの凹凸をつけたり、あるいは流体が通過できる空隙を有する板状の金網などの構造体をスペーサーとしてすき間にはさむ必要がある。波形伝熱面にさらに細かいピッチの凹凸をつけることは技術的にたいへんむずかしく、従って経済的でない。また、スペーサーをすき間にはさむと流通抵抗を増したり、装置としての熱容量が大きくなって、熱交換構造体としての性能を大幅に損ねることになる。
また、ハニカム構造体に熱交換機能を与えて有利に反応を進めることが提案されている(特許文献4)。しかし、この提案で、熱交換されるのは、伝熱面をはさんで互いに独立した2つの流路を流れる流体間であり、1系統の流体を一時的に効率的に加熱させるという目的に使用することはできない。
特開2000−189757号公報 特表2003−524728号公報 WO2004/099577A1 特開平8−283002号公報
On the other hand, by improving the air-fuel ratio control of the engine and the post-fuel injection technology, it becomes possible to include, for example, about several thousand ppm of CO in the exhaust gas in the presence of O 2 without significantly reducing the fuel consumption. ing.
In the prior art, an apparatus or a device that advantageously performs exhaust gas purification by heat exchange using such heat generation components has been proposed (Patent Document 1, Patent Document 2, and Patent Document 3). In these apparatuses, a heat exchange structure based on an integral corrugated heat transfer surface is used as a compact structure that exhibits high heat exchange performance. In this case, in order to exhibit high heat exchange performance, it is necessary to keep the gap interval of the corrugated structure through which the fluid to be treated passes constant throughout the entire area. Alternatively, it is necessary to sandwich a gap between the gaps using a structure such as a plate-like wire mesh having a gap through which fluid can pass. It is technically difficult to make the corrugated heat transfer surface uneven with fine pitch, and is therefore not economical. Further, if the spacer is sandwiched between the gaps, the flow resistance is increased and the heat capacity of the device is increased, so that the performance as the heat exchange structure is greatly impaired.
In addition, it has been proposed that the honeycomb structure is provided with a heat exchange function to favorably react (Patent Document 4). However, in this proposal, the heat is exchanged between the fluids flowing through the two flow paths that are independent of each other across the heat transfer surface. Cannot be used.
JP 2000-189757 A JP-T-2003-524728 WO2004 / 099577A1 JP-A-8-283002

本発明が解決しようとする課題は、熱交換構造体のより一層の改良であり、種々の流体を一時的に加熱するのに適する高熱効率でコンパクトな熱交換構造体を提供することである。   The problem to be solved by the present invention is to further improve the heat exchange structure, and to provide a high heat efficiency and compact heat exchange structure suitable for temporarily heating various fluids.

本発明は、隔壁によって仕切られた並行に一方向に伸長する多数の縦流路を備えて一体に形成されたハニカム構造と、流体を加熱するための発熱手段とを備えた熱交換構造体であって、
前記ハニカム構造の縦流路方向の一方の端面において一部の縦流路が目封じされ、他方の端面において、該目封じされた縦流路と目封じされていない縦流路とを連絡して流体の流れ方向を反転させる回り込み部が形成され、
該目封じされた各縦流路に、熱交換構造体の外壁の少なくとも1面に形成された穴まで、該縦流路に交差し前記隔壁を貫いて該縦流路を連結する横断流路が形成されており、
前記回り込み部の上流側の縦流路を流れる流体と前記回り込み部の下流側の縦流路を流れる流体とが向流を形成し、かつ前記発熱手段によって生じた熱が、該下流側の縦流路を流れる流体から該上流側の縦流路を流れる流体に隔壁を介して伝達されることを特徴とする熱交換構造体である。
The present invention is a heat exchange structure including a honeycomb structure integrally formed with a large number of longitudinal flow paths partitioned in parallel by walls and extending in one direction, and heat generating means for heating a fluid. There,
A part of the longitudinal flow path is plugged at one end face in the longitudinal flow path direction of the honeycomb structure, and the sealed vertical flow path is connected to the unsealed vertical flow path at the other end face. A wraparound that reverses the fluid flow direction is formed,
A transverse flow path that crosses the vertical flow path and connects the vertical flow path through the partition wall to each sealed vertical flow path up to a hole formed in at least one surface of the outer wall of the heat exchange structure. Is formed,
The fluid flowing in the longitudinal flow path upstream of the wraparound portion and the fluid flowing in the longitudinal flow path downstream of the wraparound portion form a countercurrent, and the heat generated by the heat generating means is The heat exchange structure is characterized in that it is transmitted from a fluid flowing in a flow path to a fluid flowing in the upstream vertical flow path via a partition wall.

本発明の熱交換構造体は、ハニカム構造を利用して、交差した流路方向を有する流体流路を形成しており、これにより、コンパクトで高耐久性の熱交換機能を有する構造体とすることができる。即ち、ハニカム構造に、発熱手段、回り込み部、複数の横断流路等を適切に設けることにより、流体が構造体の中を流れる際に熱交換が生じる熱交換構造体を構成する。この構造体は、ハニカム構造に基づくため、コンパクトかつ高強度に構成することができ、また、使用実績のある高耐久性の材料からハニカム構造を構成できるため、高耐久性の熱交換構造体とすることができる。   The heat exchange structure of the present invention uses a honeycomb structure to form a fluid flow path having intersecting flow path directions, thereby providing a structure having a compact and highly durable heat exchange function. be able to. That is, a heat exchange structure in which heat exchange occurs when a fluid flows through the structure is configured by appropriately providing the honeycomb structure with heat generating means, a wraparound portion, a plurality of transverse channels, and the like. Since this structure is based on a honeycomb structure, it can be configured compactly and with high strength, and since the honeycomb structure can be configured from a highly durable material that has been used, it has a highly durable heat exchange structure. can do.

本発明の熱交換構造体においては、発熱手段によって生じた熱が、下流側の縦流路を流れる流体から上流側の縦流路を流れる流体に隔壁を介して伝達される。即ち、発熱手段によって生じた熱が、下流側から上流側に戻され、この伝熱により発熱手段の上流側の温度がさらに高められ、それにより発熱手段の直下の温度がさらに高められる。   In the heat exchange structure of the present invention, the heat generated by the heat generating means is transmitted from the fluid flowing in the downstream longitudinal channel to the fluid flowing in the upstream longitudinal channel via the partition wall. That is, the heat generated by the heat generating means is returned from the downstream side to the upstream side, and this heat transfer further increases the temperature on the upstream side of the heat generating means, thereby further increasing the temperature immediately below the heat generating means.

このようにして発熱手段によって生じた熱を、上流側の流体に戻すことにより、本発明の熱交換構造体は、いわゆる自己熱交換加熱器として機能することができ、効率的に流体の温度を、流れの中で一時的に著しく高めることができる。例えば、発熱手段により、流体にその20℃の温度上昇に相当する熱量を与え、上記の隔壁を介する熱交換率が80%とすると、流体の最高温度を100℃上昇させることができる。ここで、この熱交換率80%は、本発明のハニカム構造の熱交換構造体においては、十分に達成可能なレベルである。   By returning the heat generated by the heat generating means to the upstream fluid in this way, the heat exchange structure of the present invention can function as a so-called self-heat exchange heater, and the temperature of the fluid can be efficiently increased. In the flow, can be significantly increased temporarily. For example, when the heat generation means gives the fluid an amount of heat corresponding to a temperature increase of 20 ° C. and the heat exchange rate through the partition wall is 80%, the maximum temperature of the fluid can be increased by 100 ° C. Here, this heat exchange rate of 80% is a level that can be sufficiently achieved in the heat exchange structure of the honeycomb structure of the present invention.

本発明により、流体を一時的に加熱するのに適する高熱効率でコンパクトな熱交換構造体が提供される。本発明の熱交換構造体は、様々な数多くの用途に適用することができ、具体的な例としては、種々の化学装置に含まれる加熱装置、食品工業分野における殺菌等を目的とした加熱装置、悪臭ガス又は揮発性有機溶剤(VOC)の燃焼浄化装置、自動車エンジン等の内燃機関の排ガス浄化装置等が挙げられる。   The present invention provides a highly heat efficient and compact heat exchange structure suitable for temporarily heating a fluid. The heat exchange structure of the present invention can be applied to various uses. Specific examples include heating devices included in various chemical devices, and heating devices intended for sterilization in the food industry. , An odorous gas or volatile organic solvent (VOC) combustion purification device, an exhaust gas purification device of an internal combustion engine such as an automobile engine, and the like.

本発明の熱交換構造体は、いくつかの態様が実施可能である。
図1,2は、本発明の熱交換構造体の好ましい態様の1つ模式的に示すものであり、該熱交換構造体は、ハニカム構造の縦流路方向の一方の端面において一部の縦流路が目封じされ、他方の端面において目封じされた縦流路と目封じされていない縦流路とを連絡し、それにより流体の流れ方向を反転させる回り込み部が形成される。図1は該熱交換構造体の斜視図であり、図2はその平面図である。
Several aspects can be implemented for the heat exchange structure of the present invention.
FIGS. 1 and 2 schematically show one preferred embodiment of the heat exchange structure of the present invention. The heat exchange structure is partially vertical on one end face in the longitudinal flow direction of the honeycomb structure. The flow path is sealed, and a wraparound portion that connects the vertical flow path sealed at the other end surface with the vertical flow path that is not sealed, thereby reversing the flow direction of the fluid is formed. FIG. 1 is a perspective view of the heat exchange structure, and FIG. 2 is a plan view thereof.

この態様の熱交換構造体10は、隔壁11によって形成された縦流路12の配列として、ハニカム構造の一方の端面において、交互の列で目封じ材料13が配置され、その目封じ材料13により目封じされた縦流路12が位置する箇所の、対向する2つの外壁に穴14,14´が形成されており、前記目封じされた1連の縦流路12間の隔壁11を貫いてそれぞれ穴14,14´に達する横断流路16が形成されている。   In the heat exchange structure 10 of this embodiment, the plugging materials 13 are arranged in alternating rows on one end face of the honeycomb structure as an arrangement of the longitudinal flow paths 12 formed by the partition walls 11. Holes 14, 14 'are formed in two opposing outer walls where the sealed vertical flow path 12 is located, and penetrates the partition wall 11 between the series of sealed vertical flow paths 12. A transverse channel 16 reaching the holes 14, 14 'is formed.

流体は、熱交換構造体10の目封じされていない縦流路12から流入し、上流側の縦流路12を通り、回り込み部15に到達する。そして流体は、その回り込み部15で流れの方向を変え、上流側の縦流路12と反対向きに下流側の縦流路12を流通して横断流路16に到達し、各横断流路で二方向に分かれて、横断流路16を流下して外壁に形成された穴14,14´から、熱交換構造体10の系外に二手に分かれて流出する。   The fluid flows in from the longitudinal channel 12 that is not sealed in the heat exchange structure 10, passes through the upstream longitudinal channel 12, and reaches the wraparound part 15. The fluid changes the direction of flow at the wraparound portion 15, flows through the downstream longitudinal channel 12 in the opposite direction to the upstream longitudinal channel 12, and reaches the transverse channel 16. Dividing into two directions, it flows down through the transverse flow path 16 and out of the heat exchange structure 10 from the holes 14 and 14 ′ formed in the outer wall.

あるいは、流体は、かかる流路を逆に流れて、外壁に形成された穴14より二方向から熱交換構造体10に流入し、各横断流路16でまとまって封じされた縦流路12に流入し、該上流側の縦流路12、回り込み部15、目封じされていない下流側の縦流路12を順に流通して、目封じされていない縦流路12から、熱交換構造体10の系外に流出することもできる。   Alternatively, the fluid flows in the opposite direction in the flow path, flows into the heat exchange structure 10 from two directions through the hole 14 formed in the outer wall, and enters the vertical flow path 12 collectively sealed by the cross flow paths 16. The heat exchange structure 10 flows in and flows through the upstream longitudinal channel 12, the wraparound portion 15, and the downstream longitudinal channel 12 that is not sealed from the longitudinal channel 12 that is not sealed. It can also flow out of the system.

図3は、本発明の熱交換構造体の別の態様を模式的に示す斜視図であり、該図に示すように、横断流路16を、一方の外壁だけに貫通させ、他方の外壁には貫通させずにその手前の隔壁まで貫通するにとどめてある。
この態様においても、流体は、先の態様と同様に、熱交換構造体10の目封じされていない縦流路12から流入する。そして、流体は、上流側の縦流路12を通り、回り込み部で流れの方向を変え、上流側の縦流路12と反対向きに下流側の縦流路12を流通して横断流路16に到達するが、1つの外壁に形成された穴14から熱交換構造体10の系外に流出する。
FIG. 3 is a perspective view schematically showing another aspect of the heat exchanging structure of the present invention. As shown in the figure, the transverse channel 16 is passed through only one outer wall, and the other outer wall is passed through. Does not penetrate, but only penetrates to the bulkhead in front of it.
Also in this aspect, the fluid flows from the non-sealed longitudinal flow path 12 of the heat exchange structure 10 as in the previous aspect. Then, the fluid passes through the upstream longitudinal flow path 12, changes the flow direction at the wraparound portion, and flows through the downstream longitudinal flow path 12 in the opposite direction to the upstream longitudinal flow path 12, thereby crossing the flow path 16. However, it flows out of the system of the heat exchange structure 10 from the hole 14 formed in one outer wall.

あるいは、流体は、かかる流路を逆に流れて、外壁に形成された穴14より一方向から熱交換構造体10に流入し、各横断流路16でまとまって目封じされた縦流路12に流入し、該上流側の縦流路12、回り込み部15、目封じされていない下流側の縦流路12を順に流通して、目封じされていない縦流路12から、熱交換構造体10の系外に一方向に流出することもできる。   Alternatively, the fluid flows in the reverse direction through the flow path, flows into the heat exchange structure 10 from one direction through the hole 14 formed in the outer wall, and is longitudinally sealed by the cross flow paths 16 and sealed. The heat exchange structure passes through the upstream longitudinal channel 12, the wraparound part 15, and the downstream longitudinal channel 12 that is not sealed, in order, from the longitudinal channel 12 that is not sealed. It can also flow out of the 10 systems in one direction.

こうした流れの中で、上流側の縦流路を流れる流体と下流側の縦流路を流れる流体は向流を形成し、かつ発熱手段によって昇温された下流側の縦流路の流体から、上流側の縦流路の流体に、熱交換構造体10の隔壁11を介して伝熱が生じる。   Among these flows, the fluid flowing in the upstream longitudinal channel and the fluid flowing in the downstream longitudinal channel form a countercurrent, and from the fluid in the downstream longitudinal channel heated by the heating means, Heat transfer occurs in the fluid in the upstream vertical flow path through the partition wall 11 of the heat exchange structure 10.

これらの態様において、好ましくは、縦流路端部の目封じ材料13の近傍に横断流路が形成される。これにより、縦流路が全体的に有効な流路として使用され、伝熱が生じる隔壁の面積を最大限にすることができる。
横断流路16は、縦流路12の目封じ材料13と隔壁11の端部との間隙によって形成することができる。即ち、目封じされる箇所の隔壁を外壁よりも短く終端させ、その隔壁端部と目封じ材料との間に空隙を連通させることにより、その空隙を横断流路として利用することができる。あるいは、横断流路は、ハニカム構造の隔壁に穴を連通させることにより形成することもできる。
In these embodiments, preferably, a transverse channel is formed in the vicinity of the plugging material 13 at the end of the longitudinal channel. Thereby, the longitudinal channel is used as an effective channel as a whole, and the area of the partition wall where heat transfer occurs can be maximized.
The transverse channel 16 can be formed by a gap between the sealing material 13 of the longitudinal channel 12 and the end of the partition wall 11. That is, by terminating the partition wall of the portion to be sealed shorter than the outer wall and communicating the space between the end of the partition wall and the sealing material, the space can be used as a transverse flow path. Alternatively, the transverse flow path can be formed by communicating holes with the partition walls of the honeycomb structure.

目封じされた縦流路は、種々の態様が実施可能である。
図4は、目封じされた縦流路の1つの態様を例示する平面図である。この態様においては、目封じされた縦流路が、ハニカム構造の縦流路の一方の端面において、縞状のパターンを形成している。
Various modes can be implemented for the sealed vertical flow path.
FIG. 4 is a plan view illustrating one embodiment of the sealed vertical flow path. In this aspect, the sealed longitudinal flow path forms a striped pattern on one end face of the longitudinal flow path of the honeycomb structure.

図5は、もう1つの態様を示す平面図であって、この態様においては、目封じされた縦流路が、ハニカム構造の縦流路の一方の端面において、格子状のパターンを形成している。   FIG. 5 is a plan view showing another embodiment. In this embodiment, the sealed longitudinal flow path forms a lattice-like pattern on one end face of the longitudinal flow path of the honeycomb structure. Yes.

図6は、またもう1つの態様を示す平面図であって、この態様においては、目封じされた縦流路が、ハニカム構造の縦流路の一方の端面において、分枝した線状のパターンを形成している。   FIG. 6 is a plan view showing still another embodiment. In this embodiment, the sealed longitudinal channel has a branched linear pattern on one end face of the longitudinal channel of the honeycomb structure. Is forming.

図7は、さらにもう1つの態様を示す平面図であって、この態様においては、目封じされた縦流路が、ハニカム構造の縦流路の一方の端面において、屈曲した線状のパターンを形成している。
これらの縦流路のパターンは、所望とする流れの均一性、圧力損失、伝熱面積等を考慮して適宜選択することができる。
FIG. 7 is a plan view showing still another embodiment. In this embodiment, the sealed longitudinal channel forms a bent linear pattern on one end face of the longitudinal channel of the honeycomb structure. Forming.
These vertical channel patterns can be appropriately selected in consideration of desired flow uniformity, pressure loss, heat transfer area, and the like.

目封じされた縦流路は、横断流路によって連結され、さらに外壁に形成された穴に連結する。この穴が形成される外壁面は1つの外壁面でよく、即ち、熱交換構造体への入口又は出口を1つの外壁面にまとめることができ、あるいは、この穴が形成される外壁面は2つ以上の外壁面でもよく、即ち、熱交換構造体への入口又は出口を複数の外壁面に分配することもできる。かかる穴の配置は、同様に、所望とする流れの均一性、圧力損失、伝熱面積等を考慮して適宜選択することができる。   The sealed vertical flow path is connected by a cross flow path and further connected to a hole formed in the outer wall. The outer wall surface on which the hole is formed may be one outer wall surface, that is, the inlet or the outlet to the heat exchange structure can be integrated into one outer wall surface, or the outer wall surface on which the hole is formed is 2 There may be more than one outer wall, i.e. the inlet or outlet to the heat exchange structure may be distributed to a plurality of outer walls. Similarly, the arrangement of the holes can be appropriately selected in consideration of desired flow uniformity, pressure loss, heat transfer area, and the like.

また、一連の縦流路を連結する横断流路及び外壁面に形成される穴の数は、1つに限らず、複数を形成することもでき、所望とする流れの均一性、圧力損失等を考慮して適宜選択することができる。   In addition, the number of holes formed in the transverse flow channel and the outer wall surface connecting the series of vertical flow channels is not limited to one, and a plurality of holes can be formed, desired flow uniformity, pressure loss, etc. Can be selected as appropriate.

本発明の熱交換構造体においては、縦流路の形状は、ハニカム構造体においてあり得る形状を適用することができ、具体的には、縦流路は、三角形、四角形、六角形、及びこれらの組み合わせから選択された断面形状を有することができる。
また、本発明の熱交換構造体においては、縦流路の数やサイズ、隔壁の厚さを特に限定する必要はなく、ハニカム構造体においてあり得る範囲の中で、流体の種類や流量、熱交換構造体のサイズ、必要とされる熱交換率、許容される圧力損失等を考慮して適切に決めることができる。同様に、横断流路の数やサイズも、流体の種類や流量、熱交換構造体のサイズ、必要とされる熱交換率、許容される圧力損失等を考慮して適切に決めることができる。
In the heat exchange structure of the present invention, the shape of the longitudinal flow path can be a shape that can be in the honeycomb structure, and specifically, the longitudinal flow path is triangular, quadrangular, hexagonal, and these A cross-sectional shape selected from a combination of:
Further, in the heat exchange structure of the present invention, it is not necessary to particularly limit the number and size of the longitudinal flow paths and the thickness of the partition walls, and within the possible range of the honeycomb structure, the type of fluid, flow rate, heat It can be appropriately determined in consideration of the size of the exchange structure, the required heat exchange rate, the allowable pressure loss, and the like. Similarly, the number and size of the transverse channels can be appropriately determined in consideration of the type and flow rate of the fluid, the size of the heat exchange structure, the required heat exchange rate, the allowable pressure loss, and the like.

また、本発明の熱交換構造体においては、隔壁や外壁等の材料を特に限定する必要はなく、ハニカム構造体においてあり得る範囲の中で、暴露される雰囲気や温度、流体の種類等を考慮して適切に決めることができる。一般的な材料としてのコージェライトや炭化ケイ素等のセラミック材料、SUS304やSUS310等の金属材料は、本発明の熱交換構造体においても適切な材料の例である。   Further, in the heat exchange structure of the present invention, there is no need to specifically limit the material such as the partition walls and the outer wall, and the exposed atmosphere, temperature, type of fluid, etc. are considered within the possible range of the honeycomb structure. Can be determined appropriately. Ceramic materials such as cordierite and silicon carbide as general materials, and metal materials such as SUS304 and SUS310 are examples of suitable materials in the heat exchange structure of the present invention.

本発明の熱交換構造体を上記のセラミック材料から構成する場合、工業的に通常行われているような、セラミック原料粉末、バインダー、分散剤、焼結助剤等を含んで、易成形性で焼成により硬化するセラミック材料配合物を調製し、押出成形等によりハニカム構造を作成した後、焼成して目的とする形状の構造体を製造する方法が好適に採用できる。   When the heat exchange structure of the present invention is composed of the above ceramic material, it contains ceramic raw material powder, a binder, a dispersant, a sintering aid, etc., which are usually performed industrially, and is easy to mold. A method in which a ceramic material composition that is cured by firing is prepared, a honeycomb structure is formed by extrusion molding or the like, and then fired to produce a structure having a desired shape can be suitably employed.

こうした方法において、セラミック材料配合物を用いて、ハニカム構造を一体に形成した後、縦流路の隔壁を穿孔して、縦流路を連結する複数の横断流路を設け、あるいは隔壁の端部と間隙を設けて目封じ材料の配合物を充填することにより横断流路を設け、次いでセラミック材料配合物を焼成すれば、横断流路を形成するにおいて、損傷の発生や強度低下が抑えられた熱交換構造体を製造することができる。   In such a method, after a honeycomb structure is integrally formed using a ceramic material composition, a plurality of transverse channels that connect the longitudinal channels are provided by perforating the partition walls of the longitudinal channels, or ends of the partition walls If a cross-flow channel is provided by filling the plug material composition with a gap between them and then the ceramic material compound is fired, the occurrence of damage and a decrease in strength are suppressed in forming the cross-flow channel. A heat exchange structure can be manufactured.

好ましい態様として、回り込み部の側壁を、縦流路を超えて伸長する熱交換構造体の外壁が形成する。即ち、熱交換構造体の外壁を延長し、その外壁の端部を封止して縦流路の端部の先に空洞を形成し、その空洞を回り込み部として使用する。これにより、回り込み部がコンパクトに一体になった熱交換構造体を構成することができる。   As a preferable aspect, the outer wall of the heat exchange structure that extends beyond the longitudinal flow path is formed on the side wall of the wraparound portion. That is, the outer wall of the heat exchange structure is extended, the end of the outer wall is sealed to form a cavity at the end of the end of the longitudinal flow path, and the cavity is used as a wraparound part. Thereby, the heat exchange structure in which the wraparound portion is integrated in a compact manner can be configured.

図8、9は、本発明のまた別の好ましい態様である熱交換構造体を示すものであって、ハニカム構造の縦流路方向の一方の端面において一部の縦流路が目封じされ、他方の端面において全ての縦流路が目封じされている。回り込み部は、該他方の目封じされた縦流路の端部の隔壁を、該横断流路の伸長方向と交差して貫く横断穴によって形成される。図8は、かかる態様の横断穴17を備えた熱交換構造体の模式的な斜視図であり、図9はその平面図である。この態様も、縦流路の端部を回り込み部とするため、同様に、回り込み部がコンパクトに一体になった熱交換構造体を構成することができる。   8 and 9 show a heat exchange structure which is still another preferred embodiment of the present invention, in which a part of the longitudinal flow path is plugged on one end face in the longitudinal flow path direction of the honeycomb structure, All the longitudinal channels are sealed at the other end face. The wraparound portion is formed by a transverse hole penetrating the partition wall at the end of the other sealed vertical flow channel so as to cross the extending direction of the transverse flow channel. FIG. 8 is a schematic perspective view of a heat exchange structure provided with such a transverse hole 17, and FIG. 9 is a plan view thereof. Also in this aspect, since the end portion of the longitudinal flow path is a wraparound portion, similarly, a heat exchange structure in which the wraparound portion is integrated in a compact manner can be configured.

本発明の熱交換構造体は、流体を加熱するための発熱手段を備える。この発熱手段は、流体をその流れの中で加熱することができる任意のものから選択可能である。   The heat exchange structure according to the present invention includes heat generating means for heating the fluid. The heating means can be selected from any that can heat the fluid in its flow.

好ましい態様において、この発熱手段は、流体に含まれる発熱成分を化学反応により発熱させる触媒であり、この触媒が、回り込み部の近傍の隔壁に担持される。限定されるものではないが、この発熱成分は、CO、H、又はCH等の炭化水素のような可燃成分と酸素の組み合わせが適切であり、触媒としては、Pt、Pdのような酸化触媒が適切に例示される。この態様においては、例えば、回り込み部の近傍の隔壁に、ウォッシュコートによって活性アルミナのような担体材料をコートし、その担体材料にPt、Pd等を担持することにより発熱手段が構成される。 In a preferred embodiment, the heat generating means is a catalyst that generates heat by a chemical reaction of a heat generating component contained in the fluid, and this catalyst is supported on a partition wall in the vicinity of the wraparound portion. Although not limited, the exothermic component is suitably a combination of a combustible component such as a hydrocarbon such as CO, H 2 or CH 4 and oxygen, and the catalyst is an oxidation such as Pt or Pd. A catalyst is suitably exemplified. In this aspect, for example, the heat generating means is configured by coating a partition material in the vicinity of the wraparound portion with a carrier material such as activated alumina by wash coating, and carrying Pt, Pd, etc. on the carrier material.

あるいは、この触媒は、ペレットや網のような通気性材料に、上記のPt、Pdのような酸化触媒を担持し、これを回り込み部の近傍の流路内に充填して配置することもできる。
かかる触媒を用いることにより、例えば、1%程度、あるいはそれ以下の1000ppm程度の可燃成分と数%の酸素からなる発熱成分を含む流体であっても、酸化反応等により熱を発生させることができる。
Alternatively, this catalyst can be arranged by carrying an oxidation catalyst such as Pt or Pd on a breathable material such as a pellet or a net and filling it in a flow path near the wraparound portion. .
By using such a catalyst, heat can be generated by an oxidation reaction or the like even for a fluid containing a combustible component of about 1% or less, such as about 1000 ppm of combustible component and several percent of oxygen. .

別な好ましい態様において、この発熱手段が、回り込み部又はその近傍に配置された電気ヒーター又は燃焼バーナーである。即ち、一般的な加熱装置である電気ヒーターや燃焼バーナーを本発明における発熱手段として用いることもできる。
これらの発熱手段は、好ましくは、回り込み部又はその近傍に配置される。これにより、発熱手段が、熱交換構造体の中の流通経路におけるほぼ中央部分に位置することができ、縦流路を全体的に伝熱が生じる流路として最大限に利用することができる。
In another preferred embodiment, the heat generating means is an electric heater or a combustion burner disposed at or near the wraparound portion. That is, an electric heater or a combustion burner, which is a general heating device, can be used as the heating means in the present invention.
These heat generating means are preferably arranged at or near the wraparound portion. As a result, the heat generating means can be positioned at a substantially central portion of the flow path in the heat exchange structure, and the longitudinal flow path can be used to the fullest extent as a flow path where heat transfer occurs as a whole.

この発熱手段から供給される熱量は、限定されるものではないが、一応の目安として、流体の平均温度を1〜500℃、より好ましくは5〜100℃、さらに好ましくは10〜50℃昇温させる熱量である。この発生した熱量は、下流側の縦流路を流れる流体から上流側の縦流路を流れる流体に隔壁を介して伝達され、この伝熱により発熱手段の上流側の温度がさらに高められ、それにより発熱手段の直下の温度がさらに高められる。   The amount of heat supplied from the heat generating means is not limited, but as a guide, the average temperature of the fluid is 1 to 500 ° C, more preferably 5 to 100 ° C, and still more preferably 10 to 50 ° C. The amount of heat to be generated. The amount of generated heat is transferred from the fluid flowing in the downstream longitudinal flow path to the fluid flowing in the upstream longitudinal flow path through the partition wall, and this heat transfer further increases the temperature upstream of the heat generating means. As a result, the temperature immediately below the heating means is further increased.

こうした熱の循環により、本発明の熱交換構造体は、いわゆる自己熱交換加熱器として機能することができ、効率的に流体の温度を、流れの中で一時的に著しく高めることができる。上述のように、発熱手段により、流体に20℃の温度上昇に相当する熱量を与え、上記の隔壁を介する熱交換率が80%とすると、流体の最高温度を100℃上昇させることができ、熱効率の極めて優れた加熱手段として利用することができる。   By such heat circulation, the heat exchange structure of the present invention can function as a so-called self-heat exchange heater, and can efficiently raise the temperature of the fluid temporarily in the flow efficiently. As described above, when the heat generation means gives the fluid an amount of heat corresponding to a temperature increase of 20 ° C. and the heat exchange rate through the partition wall is 80%, the maximum temperature of the fluid can be increased by 100 ° C. It can be used as a heating means with extremely excellent thermal efficiency.

本発明の熱交換構造体により加熱される流体は、一時的に高温に曝されることが必要な任意の流体であることができ、気体又は液体のいずれでもよく、あるいはサスペンジョンやエマルジョンのような二相以上を含む流体であることもでき、即ち、流動性のある任意の流体であることができる。   The fluid heated by the heat exchange structure of the present invention can be any fluid that needs to be temporarily exposed to high temperatures, and can be either a gas or a liquid, such as a suspension or emulsion. It can also be a fluid containing more than one phase, i.e. it can be any fluid fluid.

本発明の熱交換構造体の構成を例示する斜視図である。It is a perspective view which illustrates the composition of the heat exchange structure of the present invention. 図1の熱交換構造体の平面図である。It is a top view of the heat exchange structure of FIG. 本発明の別な態様の熱交換構造体を例示する斜視図である。It is a perspective view which illustrates the heat exchange structure of another mode of the present invention. 目封じされた縦流路のパターンの1つの態様を示す平面図である。It is a top view which shows one aspect | mode of the pattern of the vertical flow path sealed. 目封じされた縦流路のパターンの別の態様の1つを示す平面図である。It is a top view which shows one of the other aspects of the pattern of the longitudinal flow path sealed. 目封じされた縦流路のパターンの別の態様の1つを示す平面図である。It is a top view which shows one of the other aspects of the pattern of the longitudinal flow path sealed. 目封じされた縦流路のパターンの別の態様の1つを示す平面図である。It is a top view which shows one of the other aspects of the pattern of the longitudinal flow path sealed. 本発明のさらに別な態様の熱交換構造体を例示する斜視図である。It is a perspective view which illustrates the heat exchange structure of another mode of the present invention. 図8の熱交換構造体の平面図である。It is a top view of the heat exchange structure of FIG.

符号の説明Explanation of symbols

10 熱交換構造体
11 隔壁
12 縦流路
13 目封じ材料
14、14´ 外壁面の穴
15 回り込み部
16 横断流路
17 横断穴
DESCRIPTION OF SYMBOLS 10 Heat exchange structure 11 Partition 12 Longitudinal channel 13 Sealing material 14, 14 'Outer wall surface hole 15 Rounding part 16 Transverse channel 17 Transverse hole

Claims (20)

隔壁によって仕切られた並行に一方向に伸長する多数の縦流路を備えて一体に形成されたハニカム構造と、流体を加熱するための発熱手段とを備えた熱交換構造体であって、
前記ハニカム構造の縦流路方向の一方の端面において一部の縦流路が目封じされ、他方の端面において、該目封じされた縦流路と目封じされていない縦流路とを連絡して流体の流れ方向を反転させる回り込み部が形成され、
該目封じされた各縦流路に、熱交換構造体の外壁の少なくとも1面に形成された穴まで、該縦流路に交差し前記隔壁を貫いて該縦流路を連結する横断流路が形成されており、
前記回り込み部の上流側の縦流路を流れる流体と前記回り込み5部の下流側の縦流路を流れる流体とが向流を形成し、かつ前記発熱手段によって生じた熱が、該下流側の縦流路を流れる流体から該上流側の縦流路を流れる流体に隔壁を介して伝達されることを特徴とする熱交換構造体。
A heat exchange structure including a honeycomb structure integrally formed with a number of longitudinal flow paths that are partitioned by partition walls and extending in one direction in parallel, and a heating means for heating fluid,
A part of the longitudinal flow path is sealed at one end face in the longitudinal flow path direction of the honeycomb structure, and the sealed longitudinal flow path is connected to the unsealed longitudinal flow path at the other end face. A wraparound that reverses the fluid flow direction is formed,
A transverse flow path that crosses the vertical flow path and connects the vertical flow path through the partition wall to each sealed vertical flow path up to a hole formed in at least one surface of the outer wall of the heat exchange structure. Is formed,
The fluid flowing in the longitudinal flow path upstream of the wraparound portion and the fluid flowing in the longitudinal flow path downstream of the wraparound portion 5 form a countercurrent, and the heat generated by the heat generating means A heat exchange structure, wherein the heat exchange structure is transmitted from a fluid flowing in a longitudinal flow path to a fluid flowing in the upstream longitudinal flow path via a partition wall.
前記流体は、前記ハニカム構造の目封じされていない縦流路から流入し、前記上流側の縦流路、前記回り込み部、前記下流側の縦流路、及び前記横断流路を順に流通して外壁に形成された穴から流出する請求項1に記載の熱交換構造体。   The fluid flows in from the non-sealed vertical flow path of the honeycomb structure, and sequentially flows through the upstream vertical flow path, the wraparound portion, the downstream vertical flow path, and the transverse flow path. The heat exchange structure according to claim 1, which flows out from a hole formed in the outer wall. 前記流体は、外壁に形成された穴から流入し、前記横断流路、前記上流側の縦流路、前記回り込み部、前記下流側の縦流路を順に流通して、前記ハニカム構造の目封じされていない縦流路から流出する請求項1に記載の熱交換構造体。   The fluid flows in from a hole formed in the outer wall, and flows in the transverse channel, the upstream longitudinal channel, the wraparound portion, and the downstream longitudinal channel in this order to seal the honeycomb structure. The heat exchange structure according to claim 1, which flows out from a longitudinal channel that is not formed. 前記横断流路が、前記縦流路の目封じされた部分材料と前記隔壁の端部との間隙によって形成された請求項1ないし3のいずれか1項に記載の熱交換構造体。   The heat exchange structure according to any one of claims 1 to 3, wherein the transverse channel is formed by a gap between a sealed partial material of the longitudinal channel and an end of the partition wall. 前記横断流路が、前記隔壁を連通する穴によって形成された請求項1ないし3のいずれか1項に記載の熱交換構造体。   The heat exchange structure according to any one of claims 1 to 3, wherein the transverse channel is formed by a hole communicating with the partition wall. 前記横断流路が、該ハニカム構造を一体に形成した後に、前記隔壁を穿孔して形成されたものである請求項1ないし5のいずれか1項に記載の熱交換構造体。   The heat exchange structure according to any one of claims 1 to 5, wherein the transverse channel is formed by perforating the partition walls after the honeycomb structure is integrally formed. 前記ハニカム構造の縦流路の一方の端面において、目封じされた縦流路が、縞状のパターンを形成した請求項1ないし6のいずれか1項に記載の熱交換構造体。   The heat exchange structure according to any one of claims 1 to 6, wherein the sealed longitudinal flow path forms a striped pattern on one end face of the longitudinal flow path of the honeycomb structure. 前記ハニカム構造の縦流路の一方の端面において、目封じされた縦流路が、格子状のパターンを形成している請求項1ないし6のいずれか1項に記載の熱交換構造体。   The heat exchange structure according to any one of claims 1 to 6, wherein the sealed longitudinal flow path forms a lattice pattern on one end face of the longitudinal flow path of the honeycomb structure. 前記ハニカム構造の縦流路の一方の端面において、目封じされた縦流路が、屈曲した線状のパターンを形成している請求項1ないし5のいずれか1項に記載の熱交換構造体。   The heat exchange structure according to any one of claims 1 to 5, wherein the sealed longitudinal flow path forms a bent linear pattern on one end face of the longitudinal flow path of the honeycomb structure. . 前記ハニカム構造の縦流路の一方の端面において、目封じされた縦流路が、分枝した線状のパターンを形成している請求項1ないし5のいずれか1項に記載の熱交換構造体。   The heat exchange structure according to any one of claims 1 to 5, wherein the sealed longitudinal flow path forms a branched linear pattern on one end face of the longitudinal flow path of the honeycomb structure. body. 前記外壁に形成された穴が、1つの外壁面に形成された請求項1ないし10のいずれか1項に記載の熱交換構造体。   The heat exchange structure according to any one of claims 1 to 10, wherein a hole formed in the outer wall is formed in one outer wall surface. 前記外壁に形成された穴が、2つ以上の外壁面に形成された請求項1ないし10のいずれか1項に記載の熱交換構造体。   The heat exchange structure according to any one of claims 1 to 10, wherein the hole formed in the outer wall is formed in two or more outer wall surfaces. 前記縦流路が、三角形、四角形、六角形、及びこれらの組み合わせから選択された断面形状を有する請求項1ないし12のいずれか1項に記載の熱交換構造体。   The heat exchange structure according to any one of claims 1 to 12, wherein the longitudinal channel has a cross-sectional shape selected from a triangle, a quadrangle, a hexagon, and a combination thereof. 前記熱交換構造体の外壁が延長され、記回り込み部が、その外壁端部を封止することにより形成された縦流路の端部の先の空洞からなる請求項1ないし13のいずれか1項に記載の熱交換構造体。   The outer wall of the heat exchange structure is extended, and the encircling part is composed of a cavity at the end of the end of the longitudinal channel formed by sealing the end of the outer wall. The heat exchange structure according to item. 前記ハニカム構造の縦流路方向の一方の端面において一部の縦流路が目封じされ、他方の端面において全ての縦流路が目封じされており、前記回り込み部が、該他方の目封じされた縦流路の端部近傍の隔壁を該横断流路の伸長方向と交差して貫く横断穴によって形成されている請求項1ないし13のいずれか1項に記載の熱交換構造体。   A part of the longitudinal flow path is sealed at one end face in the longitudinal flow path direction of the honeycomb structure, and the entire longitudinal flow path is sealed at the other end face, and the wraparound portion is sealed with the other sealing face. The heat exchange structure according to any one of claims 1 to 13, wherein the heat exchange structure is formed by a transverse hole penetrating a partition wall in the vicinity of an end portion of the longitudinal channel, intersecting with an extending direction of the transverse channel. 前記発熱手段が、前記流体に含まれる発熱成分を化学反応により発熱させる触媒であり、該触媒が、前記回り込み部の近傍の隔壁に担持された請求項1ないし15のいずれか1項に記載の熱交換構造体。   16. The heat generation unit according to claim 1, wherein the heat generating unit is a catalyst that generates heat by a chemical reaction of a heat generation component contained in the fluid, and the catalyst is supported on a partition wall in the vicinity of the wraparound portion. Heat exchange structure. 前記発熱手段が、前記流体に含まれる発熱成分を化学反応により発熱させる触媒であり、該触媒が、前記回り込み部の近傍の流路内に充填された請求項1ないし15のいずれか1項に記載の熱交換構造体。   The heat generation means is a catalyst that generates heat by a chemical reaction of a heat generation component contained in the fluid, and the catalyst is filled in a flow path near the wraparound portion. The heat exchange structure as described. 前記発熱手段が、前記回り込み部又はその近傍に配置された電気ヒーターである請求項1ないし15のいずれか1項に記載の熱交換構造体。   The heat exchanging structure according to any one of claims 1 to 15, wherein the heat generating means is an electric heater disposed at or near the wraparound portion. 前記発熱手段が、前記回り込み部又はその近傍に配置された燃焼バーナーである請求項1ないし15のいずれか1項に記載の熱交換構造体。   The heat exchange structure according to any one of claims 1 to 15, wherein the heat generating means is a combustion burner disposed at or near the wraparound portion. 焼成により硬化するセラミック材料配合物を用いて、前記ハニカム構造を一体に形成した後、該縦流路を連結する複数の横断流路を設け、次いで該セラミック材料配合物を焼成することを特徴とする請求項1ないし15のいずれか1項に記載の熱交換構造体の製造方法。
Using the ceramic material composition that hardens by firing, the honeycomb structure is integrally formed, and then a plurality of transverse channels that connect the longitudinal channels are provided, and then the ceramic material composition is fired. The manufacturing method of the heat exchange structure of any one of Claim 1 thru | or 15.
JP2006020305A 2006-01-30 2006-01-30 Internal heating type heat exchange structure having intersecting passage directions Pending JP2007198706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020305A JP2007198706A (en) 2006-01-30 2006-01-30 Internal heating type heat exchange structure having intersecting passage directions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006020305A JP2007198706A (en) 2006-01-30 2006-01-30 Internal heating type heat exchange structure having intersecting passage directions

Publications (1)

Publication Number Publication Date
JP2007198706A true JP2007198706A (en) 2007-08-09

Family

ID=38453474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020305A Pending JP2007198706A (en) 2006-01-30 2006-01-30 Internal heating type heat exchange structure having intersecting passage directions

Country Status (1)

Country Link
JP (1) JP2007198706A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196180A (en) * 2006-01-30 2007-08-09 National Institute Of Advanced Industrial & Technology Inner heat generating type heat exchange structure
KR100964137B1 (en) * 2007-10-11 2010-06-16 임성구 Porous Heat Exchanger Element and Production Method of Porous Heat Exchanger Element
JP2010216736A (en) * 2009-03-17 2010-09-30 Toshiba Corp Heat exchanger
JP2011032931A (en) * 2009-07-31 2011-02-17 Isuzu Motors Ltd Catalyst temperature raising device
WO2012098572A1 (en) * 2011-01-18 2012-07-26 三菱電機株式会社 Laminate-type heat exchanger and heat pump system equipped with same
JP2012200840A (en) * 2011-03-28 2012-10-22 Ngk Insulators Ltd Heat conducting member
EP2557288A1 (en) * 2011-08-09 2013-02-13 Universität Stuttgart Device and method for purifying waste gas for combustion engines
KR101324120B1 (en) 2012-01-31 2013-11-01 삼성중공업 주식회사 Vessel
WO2014071424A1 (en) * 2012-11-08 2014-05-15 Ibiden Porzellanfabrik Frauenthal Gmbh Honeycomb body made of ceramic material
JP2015029940A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Honeycomb filter

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138695A (en) * 1980-03-31 1981-10-29 Nippon Sanso Kk Heat exchanger for high-pressure fluid
JPS57493A (en) * 1979-09-25 1982-01-05 Ceraver Large contact surface type fixed integral honey comb cylindrical construction body
JPS58107487A (en) * 1981-12-21 1983-06-27 Mitsubishi Gas Chem Co Inc Chemical dissolution treatment of nickel and nickel alloy
JPS61195286A (en) * 1985-02-22 1986-08-29 Matsushita Electric Works Ltd Ventilating device
JPH03109202A (en) * 1989-09-22 1991-05-09 Ngk Insulators Ltd Fuel reformer for fuel cell system
JPH08283002A (en) * 1995-03-29 1996-10-29 Chubu Electric Power Co Inc Fuel reforming device
JPH11137968A (en) * 1997-11-14 1999-05-25 Ishikawajima Harima Heavy Ind Co Ltd Heat exchange-type denitrification device
JP2002022372A (en) * 2000-07-07 2002-01-23 Kawasaki Heavy Ind Ltd Heat exchanger and turbine apparatus using same
JP2003222478A (en) * 2002-01-28 2003-08-08 Matsushita Electric Works Ltd Deodorizing device
JP2004069293A (en) * 2002-07-22 2004-03-04 National Institute Of Advanced Industrial & Technology Heat exchanger, reactor using the heat exchanger, and radiation heater
JP2004344842A (en) * 2003-05-26 2004-12-09 Shin Nihon Denshi Kk Heat exchange structure and catalyst type gas oxidative decomposition apparatus using the same
WO2005075800A1 (en) * 2004-02-05 2005-08-18 National Institute Of Advanced Industrial Science And Technology Reactor with heat exchange function

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57493A (en) * 1979-09-25 1982-01-05 Ceraver Large contact surface type fixed integral honey comb cylindrical construction body
JPS56138695A (en) * 1980-03-31 1981-10-29 Nippon Sanso Kk Heat exchanger for high-pressure fluid
JPS58107487A (en) * 1981-12-21 1983-06-27 Mitsubishi Gas Chem Co Inc Chemical dissolution treatment of nickel and nickel alloy
JPS61195286A (en) * 1985-02-22 1986-08-29 Matsushita Electric Works Ltd Ventilating device
JPH03109202A (en) * 1989-09-22 1991-05-09 Ngk Insulators Ltd Fuel reformer for fuel cell system
JPH08283002A (en) * 1995-03-29 1996-10-29 Chubu Electric Power Co Inc Fuel reforming device
JPH11137968A (en) * 1997-11-14 1999-05-25 Ishikawajima Harima Heavy Ind Co Ltd Heat exchange-type denitrification device
JP2002022372A (en) * 2000-07-07 2002-01-23 Kawasaki Heavy Ind Ltd Heat exchanger and turbine apparatus using same
JP2003222478A (en) * 2002-01-28 2003-08-08 Matsushita Electric Works Ltd Deodorizing device
JP2004069293A (en) * 2002-07-22 2004-03-04 National Institute Of Advanced Industrial & Technology Heat exchanger, reactor using the heat exchanger, and radiation heater
JP2004344842A (en) * 2003-05-26 2004-12-09 Shin Nihon Denshi Kk Heat exchange structure and catalyst type gas oxidative decomposition apparatus using the same
WO2005075800A1 (en) * 2004-02-05 2005-08-18 National Institute Of Advanced Industrial Science And Technology Reactor with heat exchange function

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196180A (en) * 2006-01-30 2007-08-09 National Institute Of Advanced Industrial & Technology Inner heat generating type heat exchange structure
JP4521513B2 (en) * 2006-01-30 2010-08-11 独立行政法人産業技術総合研究所 Internal heating type heat exchange structure
KR100964137B1 (en) * 2007-10-11 2010-06-16 임성구 Porous Heat Exchanger Element and Production Method of Porous Heat Exchanger Element
JP2010216736A (en) * 2009-03-17 2010-09-30 Toshiba Corp Heat exchanger
JP2011032931A (en) * 2009-07-31 2011-02-17 Isuzu Motors Ltd Catalyst temperature raising device
JPWO2012098572A1 (en) * 2011-01-18 2014-06-09 三菱電機株式会社 Laminated heat exchanger and heat pump system equipped with the same
JP5496369B2 (en) * 2011-01-18 2014-05-21 三菱電機株式会社 Laminated heat exchanger and heat pump system equipped with the same
WO2012098572A1 (en) * 2011-01-18 2012-07-26 三菱電機株式会社 Laminate-type heat exchanger and heat pump system equipped with same
JP2012200840A (en) * 2011-03-28 2012-10-22 Ngk Insulators Ltd Heat conducting member
EP2557288A1 (en) * 2011-08-09 2013-02-13 Universität Stuttgart Device and method for purifying waste gas for combustion engines
KR101324120B1 (en) 2012-01-31 2013-11-01 삼성중공업 주식회사 Vessel
WO2014071424A1 (en) * 2012-11-08 2014-05-15 Ibiden Porzellanfabrik Frauenthal Gmbh Honeycomb body made of ceramic material
AT513563A1 (en) * 2012-11-08 2014-05-15 Ibiden Porzellanfabrik Frauenthal Gmbh Honeycomb body made of ceramic material
AT513563B1 (en) * 2012-11-08 2014-09-15 Ibiden Porzellanfabrik Frauenthal Gmbh Honeycomb body made of ceramic material
US9630135B2 (en) 2012-11-08 2017-04-25 Ibiden Porzellanfabrik Frauenthal Gmbh Honeycomb body made of ceramic material
JP2015029940A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Honeycomb filter

Similar Documents

Publication Publication Date Title
JP2007198706A (en) Internal heating type heat exchange structure having intersecting passage directions
EP2078834B1 (en) Method and system for purification of exhaust gas from diesel engines
JP5999368B2 (en) Gas reformer, exhaust purification system, air purifier
JP6085316B2 (en) Use of catalytic converter parts and catalytic converter parts of automobile exhaust gas purification equipment
ATE550089T1 (en) EMISSION CONTROL SYSTEM
JP2009106913A (en) Selectively reducing catalyst
WO2016109323A1 (en) Close coupled single module aftertreatment system
JP5474468B2 (en) Exhaust gas purification device using plasma discharge
EP2191108B1 (en) Filter media and method of filtering exhaust gas
CN104781516B (en) The emission-control equipment of internal combustion engine
JP4521513B2 (en) Internal heating type heat exchange structure
US20050079110A1 (en) Device for treatment of a gas flow
JP2008157592A (en) Stacked integrated self heat exchange structure
US8071038B2 (en) Progressive catalyst loading for integrated particulate filter and selective catalytic reduction unit
JP6733352B2 (en) Oxidation catalyst and exhaust gas purification system
CN106573229B (en) Oxidation catalyst for diesel engine
EP1016777A2 (en) Catalytic purification device
JP2013509523A5 (en)
JP4499424B2 (en) Equipment for processing gas streams
WO2010146720A1 (en) Exhaust purifier of internal combustion engine
US20140331638A1 (en) Method for producing a catalyst flow element and catalyst flow element
KR101488198B1 (en) Multi-functional particulate filter and exhaust gas filtering device using this
US10920646B2 (en) Exhaust gas purification system
JPWO2005075800A1 (en) Reactor with heat exchange function
JP4639381B2 (en) Exhaust gas purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906