WO2012098572A1 - Laminate-type heat exchanger and heat pump system equipped with same - Google Patents

Laminate-type heat exchanger and heat pump system equipped with same Download PDF

Info

Publication number
WO2012098572A1
WO2012098572A1 PCT/JP2011/000222 JP2011000222W WO2012098572A1 WO 2012098572 A1 WO2012098572 A1 WO 2012098572A1 JP 2011000222 W JP2011000222 W JP 2011000222W WO 2012098572 A1 WO2012098572 A1 WO 2012098572A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
refrigerant
transfer tube
flow path
heat exchanger
Prior art date
Application number
PCT/JP2011/000222
Other languages
French (fr)
Japanese (ja)
Inventor
瑞朗 酒井
浩昭 中宗
寿守務 吉村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012553451A priority Critical patent/JP5496369B2/en
Priority to PCT/JP2011/000222 priority patent/WO2012098572A1/en
Priority to EP11856572.0A priority patent/EP2667136B1/en
Publication of WO2012098572A1 publication Critical patent/WO2012098572A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0081Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by a single plate-like element ; the conduits for one heat-exchange medium being integrated in one single plate-like element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/043Condensers made by assembling plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2220/00Closure means, e.g. end caps on header boxes or plugs on conduits

Definitions

  • the present invention relates to a heat exchanger that performs heat exchange between a first refrigerant and a second refrigerant that are a low-temperature fluid or a high-temperature fluid, and a heat pump system equipped with the heat exchanger.
  • a first heat transfer tube through which a low-temperature fluid flows and a second heat transfer tube arranged such that a high-temperature fluid flows and the flow direction of the high-temperature fluid is parallel to the flow direction of the low-temperature fluid are alternately arranged.
  • the heat exchanger is formed by stacking at least one heat transfer tube with a plurality of heat transfer tubes arranged in the stacking direction, and both ends of the plurality of heat transfer tubes are arranged in either the flow direction or the stacking direction of each fluid. Also, it is configured to be bent in a direction orthogonal to the above.
  • a parallel flow path is constituted by the plurality of heat transfer tubes and the inlet header and the outlet header, either the inlet header or the outlet header is constituted by a tubular header, and the plurality of heat transfer pipes constituting the parallel flow path are provided.
  • Some are bundled and connected so that the tube axis direction of the tubular header and the fluid flow direction of the heat transfer tube are perpendicular to each other (for example, see Patent Document 1).
  • the heat exchanger described in Patent Document 1 has a structure in which heat transfer tubes are stacked, although it has high performance and high space efficiency, at least one of the header tubes into which the refrigerant flows is perpendicular to the stacking direction. Since it has the structure connected with the heat exchanger tube bent in the direction, there existed a problem that it had the bending process to the width direction of the heat exchanger tube at that time, and the dead space by a header pipe increased.
  • the present invention was made in order to solve the above-described problems, and has an object to obtain a stacked heat exchanger without a dead space due to a header pipe and a heat pump system equipped with the same without a heat transfer pipe bending step. To do.
  • the laminated heat exchanger according to the present invention has a flat shape, a plurality of first heat transfer tubes in which the first refrigerant flows through a first refrigerant flow path therein, and a flat shape.
  • a plurality of second heat transfer tubes, in which a second refrigerant having a temperature different from that of the first refrigerant flows through a second refrigerant flow path therein, the first heat transfer tube, and the second heat exchanger are stacked in contact with the heat tubes alternately.
  • any one of the two outermost heat transfer tubes which are the first heat transfer tube or the second heat transfer tube which communicate with the first refrigerant flow paths and are located at both ends in the stacking direction in the stacked structure.
  • first communication holes formed so as to communicate with the first refrigerant flow path and the outside.
  • the second refrigerant flow paths communicate with each other, and the two outermost heat transfer tubes
  • Two sets of second communication holes formed so as to allow the second refrigerant flow path to communicate with the outside in any one of the outermost heat transfer tubes, and the first refrigerant of each first heat transfer tube
  • Closing means for closing the flow passages and openings formed at both ends of the second refrigerant flow passages of the second refrigerant flow passages of the second heat transfer tubes, and the second heat transfer tubes
  • First blocking means for blocking the first communication hole so as not to communicate with the second refrigerant flow path, and the second communication hole formed in each of the first heat transfer tubes communicates with the first refrigerant flow path.
  • a second shut-off means for shutting off so as not to be formed, and the two first communication holes formed in the outermost heat transfer tube for communicating the refrigerant flow path inside the outermost heat transfer tube with the outside, respectively, 1 functions as an inlet and an outlet for the refrigerant, formed in the outermost heat transfer tube
  • the two second communication holes for communicating the refrigerant flow path with the outside function as an inlet and an outlet for the second refrigerant, respectively, and contact surfaces of the first heat transfer pipe and the second heat transfer pipe are provided.
  • the first refrigerant flow path of each first heat transfer tube is communicated with the first port that is the outflow inlet of the first refrigerant, and the second port from the second port that is the outflow inlet of the second refrigerant.
  • FIG. 1 is a three-side view including a top view, a cross-sectional view along AA, and a side view of a heat exchanger 10 that is a stacked heat exchanger according to Embodiment 1 of the present invention. It is a three-view figure of the lid
  • FIG. 6 is a three-side view including a top view, a BB cross-sectional view, and a side view of a heat exchanger 10a that is a stacked heat exchanger according to Embodiment 2 of the present invention.
  • FIG. 10a shows the manufacturing method of the heat exchanger 10a which is a laminated heat exchanger which concerns on Embodiment 2 of this invention. It is sectional drawing of the heat exchanger tube of the laminated heat exchanger which concerns on Embodiment 3 of this invention. It is a block diagram of the heat pump system using the heat of the heat exchanger which concerns on Embodiment 4 of this invention. It is a block diagram of another form of the heat pump system which concerns on Embodiment 4 of this invention. It is a block diagram of another form of the heat pump system which concerns on Embodiment 4 of this invention. It is a block diagram of another form of the heat pump system which concerns on Embodiment 4 of this invention. It is a block diagram of another form of the heat pump system which concerns on Embodiment 4 of this invention.
  • FIG. 1 is a perspective view of a heat exchanger 10 that is a stacked heat exchanger according to Embodiment 1 of the present invention.
  • FIG. 2 is a top view of the heat exchanger 10, a cross-sectional view taken along line AA, and a side view.
  • FIG. 3 is a three-side view of the lid 8 inserted into the heat transfer tube end portion of the heat exchanger 10.
  • the configuration of the heat exchanger 10 that is the stacked heat exchanger according to the present embodiment will be described with reference to FIGS. 1 to 3. Moreover, in the following description, it demonstrates according to the up-down and left-right direction of FIG.
  • the heat exchanger 10 has a refrigerant flow path in which the refrigerant flows in a rectangular shape, and has substantially the same length in the refrigerant flow direction of the refrigerant flow path.
  • a plurality of rectangular first heat transfer tubes 1 and second heat transfer tubes 2 having substantially the same length in the width direction of the refrigerant flow path are alternately stacked.
  • the rectangular refrigerant flow path penetrating the first heat transfer tube end portion 5, which is the end portions on both sides of the first heat transfer tube 1, is defined as the first refrigerant flow passage 1 a, and the end portions on both sides of the second heat transfer tube 2.
  • a rectangular refrigerant flow path penetrating through the second heat transfer tube end 6 is defined as a second refrigerant flow path 2a.
  • the first refrigerant flow path 1a at the first heat transfer tube end 5 and the second refrigerant flow path 2a at the second heat transfer tube end 6 are respectively closed by a lid 8.
  • the lid 8 includes a rectangular heat transfer tube insertion portion 8 a erected vertically with respect to one surface of the lid 8. Further, the heat transfer tube insertion portion 8 a is erected in such a manner that it is closer to one side from the longitudinal center of the lid 8.
  • the heat transfer tube insertion portion 8a is placed inside. Inserted. At this time, the heat transfer tube insertion portions 8a inserted into the first refrigerant flow paths 1a at all the first heat transfer tube end portions 5 are inserted so as to be closer to the same side from the longitudinal center of the lid 8. On the other hand, each heat transfer tube insertion portion 8a inserted into the second refrigerant flow path 2a in all the second heat transfer tube end portions 6 is inserted into the first refrigerant flow path 1a from the center in the longitudinal direction of the lid 8. It is inserted so as to be closer to the opposite side to the heat transfer tube insertion portion 8a.
  • the first heat transfer tube 1 and the second heat transfer tube 2 have substantially the same length in the refrigerant flow direction of the refrigerant flow channel and in the width direction of the refrigerant flow channel, but are not limited thereto. There may be different lengths.
  • the lid 8 and the heat exchanger 10 correspond to the “closing means” and the “stacked heat exchanger” of the present invention, respectively.
  • the heat transfer tube insertion portion 8a inserted into the second refrigerant flow path 2a and the heat transfer tube insertion portion 8a inserted into the first refrigerant flow path 1a are the “first blocking means” and “first” of the present invention, respectively. This corresponds to “2 blocking means”.
  • the upper surface of the uppermost heat transfer tube (in FIG. 1 and FIG. 2, the first heat transfer tube 1) of the laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2 is used.
  • a tubular first port 3 communicating with the first refrigerant flow path 1a of the first heat transfer tube 1 and a tubular first port 3 communicating with the second refrigerant flow path 2a of the second heat transfer tube 2 are included.
  • the two ports 4 are brazed with a brazing material 21 such as an aluminum-silicon system.
  • Two first ports 3 and two second ports 4 are installed for the refrigerant inlet and the outlet, respectively, and are connected to a refrigerant circuit or the like in the heat pump system.
  • the uppermost heat transfer tube in the laminated structure of the heat transfer tubes is the first heat transfer tube 1, but is not limited to this, and the second heat transfer tube 2 is not limited to this. It goes without saying that the top row may be used.
  • FIG.1 and FIG.2 although it is set as the structure by which the 1st port 3 and the 2nd port 4 are installed in the uppermost heat transfer tube among the laminated structures of a heat transfer tube, it is limited to this Instead of this, the first port 3 and the second port 4 are not installed, and a communication hole formed in the uppermost heat transfer tube is used as a connection port to directly connect piping such as a refrigerant circuit in the heat pump system. Good.
  • FIG. 2A is a top view of the heat exchanger 10 according to the present embodiment
  • FIG. 2B is a cross-sectional view taken along the line AA in FIG. 2A
  • FIG. ) Is a side view of the heat exchanger 10.
  • the first communication hole 3 a passes through the upper surface and the lower surface of the uppermost first heat transfer tube 1, and the first port 3 is connected to the first heat transfer tube 1. It communicates with the first refrigerant flow path 1a through the first communication hole 3a on the upper surface.
  • the first communication hole 3 a formed in the lower surface of the first heat transfer tube 1 communicates with the first communication hole 3 b formed through the upper surface of the second heat transfer tube 2 immediately below the first heat transfer tube 1. is doing.
  • the heat transfer tube insertion portion 8a of the lid 8 is inserted into the second refrigerant flow path 2a of the second heat transfer tube 2 communicating with the first communication hole 3b.
  • a communication hole 8 b is formed through the heat transfer tube insertion portion 8 a, and the communication hole 8 b and the first communication hole 3 b on the upper surface of the second heat transfer tube 2 Further, they communicate with each other, and also communicate with a first communication hole 3 b formed through the lower surface of the second heat transfer tube 2. Further, in the first heat transfer tube 1 immediately below the second heat transfer tube 2, the first communication hole 3a is penetrated through the upper surface and the lower surface of the first heat transfer tube 1 in the same manner as the uppermost first heat transfer tube 1. The first communication hole 3b on the lower surface of the second heat transfer tube 2 directly above the heat transfer tube 1 communicates with the first refrigerant flow path 1a through the first communication hole 3a on the upper surface of the first heat transfer tube 1. Yes.
  • the first port 3 communicates with the first refrigerant flow path 1a of the uppermost first heat transfer tube 1, and the first refrigerant flow path 1a further passes through the second heat transfer tube 2 directly below the first refrigerant flow path 1a. Furthermore, it communicates with the first refrigerant flow path 1a of the first heat transfer tube 1 therebelow.
  • coolant flow path 1a of the 1st port 3 and each 1st heat exchanger tube 1 has the structure connected
  • cover. 8 has a structure blocked by the heat transfer tube insertion portion 8a.
  • the first refrigerant flowing from one of the two first ports 3 (hereinafter referred to as the first refrigerant) flows through the first refrigerant flow path 1a of each first heat transfer tube 1 in the laminated structure. , Flows out from the other first port 3.
  • a second communication hole 4 a passes through the upper surface and the lower surface of the uppermost first heat transfer tube 1, and the second port 4 passes through the second communication hole 4 a on the upper surface of the first heat transfer tube 1. And communicated with the first refrigerant flow path 1a.
  • the heat transfer tube insertion portion 8a of the lid 8 described above is inserted into the first refrigerant channel 1a of the first heat transfer tube 1 communicating with the second communication hole 4a.
  • a communication hole 8 b is formed through the heat transfer tube insertion portion 8 a, and the communication hole 8 b and the second communication hole 4 a on the upper surface of the first heat transfer tube 1 Further, they communicate with each other and a second communication hole 4 a formed so as to penetrate the lower surface of the first heat transfer tube 1.
  • the second heat transfer tube 2 directly below the first heat transfer tube 1 has a second communication hole 4b passing through the upper surface and the lower surface thereof, and the first heat transfer tube 1 directly above the second heat transfer tube 2
  • the second communication hole 4 a on the lower surface communicates with the second refrigerant flow path 2 a through the second communication hole 4 b on the upper surface of the second heat transfer tube 2.
  • the second communication hole 4 b formed in the lower surface of the second heat transfer tube 2 communicates with the second communication hole 4 a formed through the upper surface of the first heat transfer tube 1 immediately below the second heat transfer tube 2. is doing.
  • the heat transfer tube insertion portion 8a is inserted into the first refrigerant flow path 1a of the first heat transfer tube 1 communicating with the second communication hole 4a, and the heat transfer tube insertion portion 8a is inserted into the heat transfer tube insertion portion 8a. Is formed through the communication hole 8b, and the communication hole 8b and the second communication hole 4a on the upper surface of the first heat transfer tube 1 communicate with each other, and these further penetrate the lower surface of the first heat transfer tube 1.
  • the second communication hole 4a formed in this way is also communicated.
  • the second heat transfer tube 2 directly below the first heat transfer tube 1 has a second communication hole 4b passing through the upper surface and the lower surface thereof, and the first heat transfer tube 1 directly above the second heat transfer tube 2
  • the second communication hole 4a on the lower surface communicates with the second refrigerant flow path 2a through the second communication hole 4b on the upper surface of the second heat transfer tube 2 among them.
  • the second port 4 communicates with the second refrigerant flow path 2a of the second heat transfer pipe 2 immediately below the uppermost first heat transfer pipe 1, and further, the second refrigerant flow path 2a is directly below it.
  • the first heat transfer tube 1 is further communicated with the second refrigerant flow path 2a of the second heat transfer tube 2 therebelow.
  • the same structure is adopted, and the second refrigerant flow path 2a of the second port 4 and each of the second heat transfer tubes 2 has a communication structure, and the first refrigerant flow path 1a of the first heat transfer tube 1 is a lid. 8 has a structure blocked by the heat transfer tube insertion portion 8a.
  • the lowermost second heat transfer tube 2 the lowermost heat transfer tube in FIG.
  • the second communication hole 4b is formed only on the upper surface.
  • the refrigerant flowing from one of the two second ports 4 flows through the second refrigerant flow path 2a of each second heat transfer tube 2 in the laminated structure. , And flows out from the other second port 4.
  • each of the four first heat transfer tubes 1 and the second heat transfer tubes 2 is configured to be alternately stacked.
  • the first heat transfer tube 1 and the second heat transfer tube 2 may be alternately stacked.
  • the number of the first heat transfer tubes 1 and the second heat transfer tubes 2 to be stacked is not limited to the same number.
  • the number of the first heat transfer tubes 1 is one more than the number of the second heat transfer tubes 2. It is good also as a laminated structure with few or one.
  • a first refrigerant channel 1a and a second refrigerant channel 2a having a rectangular cross section are formed in the first heat transfer tube 1 and the second heat transfer tube 2, respectively.
  • the present invention is not limited to this, and other shapes such as an ellipse may be used.
  • the heat transfer tube insertion portion 8a has a rectangular shape, but is not limited thereto, and may have a different shape as long as the communication hole 8b can be formed.
  • the upper surface of the 1st heat exchanger tube 1 and the 2nd heat exchanger tube 2 is made into the rectangle, it is not limited to this,
  • the shape may be a parallelogram or the like, or the shape may be appropriately changed depending on the position mounted on the heat pump system or the like.
  • the first communication hole 3a formed in the first heat transfer tube 1, the first communication hole 3b formed in the second heat transfer tube 2, and the second refrigerant channel 2a are inserted.
  • the communication hole 8b of the heat transfer tube insertion portion 8a formed is concentrically formed in the same diameter and in the stacking direction, but is not limited thereto, and is not limited to the same diameter or concentric in the stacking direction.
  • the first refrigerant flow path 1a of each first heat transfer tube 1 may be formed so as to communicate with each other.
  • each second heat transfer tube 2 may be formed to communicate with each other.
  • each said hole is not limited to circular shape, You may form in other shapes, such as a rectangular shape.
  • the communication hole 8b corresponds to the “insertion part communication hole” of the present invention.
  • FIG. 4 is a cross-sectional view of a main part of the heat exchanger 10 that is the stacked heat exchanger according to Embodiment 1 of the present invention
  • FIG. 5 is a diagram illustrating a method for manufacturing the heat exchanger 10.
  • the first heat transfer tube 1 and the second heat transfer tube 2 of the heat exchanger 10 of the present embodiment shown in FIGS. 1 and 2 are made of a material having good heat conductivity, such as an aluminum alloy, copper, or stainless steel. After bending a flat plate by roll forming, etc., the seam at both ends of the flat plate is formed by electro-sewing (welding), the cylinder is roll-formed or press-molded, or extruded or pultruded. Manufactured by doing.
  • the laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2 shown in FIG. 4 is brazed and joined with a brazing material 21 such as an aluminum-silicon system at the contact surfaces of each other.
  • the heat transfer tube insertion portion 8a of the lid 8 is inserted into the opening of the second refrigerant flow path 2a at the heat transfer tube end 6 and is closed by the lid 8, respectively.
  • the heat transfer tube insertion portion 8a is brazed to the inner surface of the first refrigerant channel 1a and the inner surface of the second refrigerant channel 2a by the brazing material 21, and further, the first heat transfer tube end 5 and the second 2
  • the joining surface between the heat transfer tube end 6 and the lid 8 is also brazed and joined by the brazing material 21. Accordingly, the refrigerant does not leak from the first heat transfer tube end 5 and the second heat transfer tube end 6.
  • the heat transfer tube insertion portion 8a is brazed to each of the inner surface of the first refrigerant channel 1a and the inner surface of the second refrigerant channel 2a, whereby the first refrigerant channel 1a and the second refrigerant channel 2a are The first refrigerant flowing through the first refrigerant flow path 1a and the second refrigerant flowing through the second refrigerant flow path 2a are not mixed without being communicated.
  • a tubular first port is formed on the upper surface of the first heat transfer tube 1 which is the uppermost heat transfer tube of the laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2.
  • Two each of the third port 4 and the second port 4 are installed by brazing with a brazing material (not shown).
  • the first port 3 is configured to communicate with the first refrigerant flow paths 1a of all the first heat transfer tubes 1, and the second port 4 includes all the second heat transfer tubes 2.
  • the second refrigerant channel 2a is configured to communicate with the second refrigerant channel 2a.
  • the heat exchanger 10 that is a stacked heat exchanger is configured by the above method.
  • a heat exchanger 10 that is a stacked heat exchanger according to the present embodiment is mounted on a heat pump system that uses hot or cold heat.
  • the high-temperature first refrigerant flowing from the refrigerant circuit flows into the heat exchanger 10 from one first port 3, and the first refrigerant in each first heat transfer tube 1. It flows through the flow path 1 a and flows out from the other first port 3.
  • the second refrigerant flowing from the use side circuit flows into the heat exchanger 10 from one second port 4 and flows through the second refrigerant flow path 2a of each second heat transfer tube 2, while the other refrigerant flows. Outflow from the second port 4.
  • the first refrigerant and the second refrigerant flow in a counterflow or parallel flow through the first refrigerant flow path 1a of the first heat transfer tube 1 and the second refrigerant flow path 2a of the second heat transfer tube 2, respectively.
  • the heat exchange is carried out through the wall surfaces of the first heat transfer tube 1 and the second heat transfer tube 2.
  • the flow area of the first refrigerant flow path 1a of the first heat transfer tube 1 and the flow area of the second refrigerant flow path 2a of the second heat transfer tube 2 are as follows. , Not necessarily the same. If there is a difference between the first refrigerant and the second refrigerant in terms of thermophysical values such as specific heat or density, flow rate, pressure conditions, fluid cleanliness, etc., the first refrigerant channel 1a and the second refrigerant The flow passage area may be different between the refrigerant flow passage 2a.
  • the refrigerant flow channel area may be larger than the flow channel area of the first refrigerant flow channel 1a.
  • the heat exchanger described in Patent Document 1 has a dead space due to a header pipe that distributes the refrigerant to each heat transfer pipe, and has reduced space efficiency.
  • a header pipe that distributes the refrigerant to each heat transfer pipe
  • the heat exchanger described in Patent Document 1 needs to bend the heat transfer tube joined to the header tube, the heat transfer tube (first heat transfer tube) in the heat exchanger 10 according to the present embodiment.
  • the first and second heat transfer tubes 2) are excellent in workability because it is not necessary to perform such bending processing and only hole processing is required.
  • the heat exchange efficiency between the first refrigerant and the second refrigerant can be improved.
  • the 1st heat exchanger tube 1 and the 2nd heat exchanger tube 2 are made into the substantially same length in the distribution direction of the refrigerant
  • the two first ports 3 and the second port 4 are diagonally connected on the upper surface of the uppermost heat transfer tube (the first heat transfer tube 1 in FIGS. 1 and 2) of the stacked structure of the heat exchanger 10.
  • the flow path length through which the refrigerant flows in each first refrigerant flow path 1a and each second refrigerant flow path 2a is substantially the longest. The heat exchange efficiency between the first refrigerant and the second refrigerant can be further improved.
  • first port 3 and the second port 4 it is not limited to installing the first port 3 and the second port 4 at the above positions, and the positions of the first port 3 and the second port 4 depending on the mounting position of the heat exchanger 10 in the heat pump system or the like.
  • the first port 3 communicates with the communication hole 8b in the heat transfer tube insertion portion 8a inserted into the second refrigerant flow path 2a
  • the second port 4 It is necessary to communicate with the communication hole 8b in the heat transfer tube insertion portion 8a inserted into the one refrigerant flow path 1a.
  • each of the two first ports 3 and the second ports 4 is configured to be installed on the upper surface of the uppermost heat transfer tube of the laminated structure of the heat exchanger 10. This is not limited.
  • one of the two first ports 3 may be installed on the upper surface of the uppermost heat transfer tube of the laminated structure, and the other may be installed on the lower surface of the lowermost heat transfer tube.
  • the first port 3 and the second port 4 may not be installed on the same surface.
  • the two first ports 3 may be installed on the upper surface of the uppermost heat transfer tube of the laminated structure, and the two second ports 4 may be installed on the lower surface of the lowermost heat transfer tube of the laminated structure.
  • the heat transfer tube insertion portion 8a is brazed to each of the inner surface of the first refrigerant channel 1a and the inner surface of the second refrigerant channel 2a, whereby the first refrigerant channel 1a and the second refrigerant channel 2a are Therefore, the first refrigerant flowing through the first refrigerant flow path 1a and the second refrigerant flowing through the second refrigerant flow path 2a can be prevented from being mixed without being blocked and communicated.
  • FIG. 6 is a perspective view of a heat exchanger 10a that is a stacked heat exchanger according to Embodiment 2 of the present invention
  • FIG. 7 is a top view, a BB sectional view, and a side view of the heat exchanger 10a.
  • FIG. 6 and FIG. 7 the configuration of the heat exchanger 10 a that is the stacked heat exchanger according to the present embodiment is different from the configuration of the heat exchanger 10 according to the first embodiment. The explanation is centered.
  • the heat exchanger 10a has a refrigerant flow path in which the refrigerant flows in a rectangular shape, and has the same length in the flow direction of the refrigerant in the refrigerant flow path,
  • a plurality of rectangular first heat transfer tubes 1 and second heat transfer tubes 2 having substantially the same length in the width direction of the refrigerant flow path are alternately stacked.
  • the rectangular refrigerant flow path penetrating the first heat transfer tube end portion 5, which is the end portions on both sides of the first heat transfer tube 1, is defined as the first refrigerant flow passage 1 a, and the end portions on both sides of the second heat transfer tube 2.
  • a rectangular refrigerant flow path penetrating through the second heat transfer tube end 6 is defined as a second refrigerant flow path 2a.
  • the first heat transfer tube 1 and the second heat transfer tube 2 have substantially the same length in the refrigerant flow direction of the refrigerant flow channel and in the width direction of the refrigerant flow channel, but are not limited thereto. There may be different lengths.
  • the heat exchanger 10a corresponds to the “stacked heat exchanger” of the present invention.
  • the first heat transfer tube 1 extends from one end portion in the longitudinal direction to the other end side in a region of a predetermined length from the first heat transfer tube end portion 5 toward the inside as viewed from the penetration direction of the first refrigerant flow path 1a. It has the crushing part 9a formed by crushing the part to the middle from the up-down direction in FIG. A part of the opening of the first refrigerant flow path 1a is closed by the crushing portion 9a. Similarly, in the first heat transfer tube end portion 5 on the opposite side of the first heat transfer tube end portion 5 where the crushing portion 9a is formed, a crushing portion 9a is formed, and at this time, two crushing portions are formed.
  • the swelled portion 9b is formed so that the portion on the other end side that has not been crushed when the crushed portion 9a is formed is swelled from the center portion.
  • Two raised portions 9b are formed corresponding to the two crushed portions 9a, and are formed so as to be diagonally positioned when viewed from the upper surface of the first heat transfer tube 1.
  • a crushing portion 9 c and a raised portion 9 d are formed for the second heat transfer tube end portions 6 on both sides.
  • a part of the opening of the first refrigerant flow path 1a of the first heat transfer tube 1 is closed by the crushing part 9a, but the part of the rising part 9b is open, Inside this, there is formed a first refrigerant auxiliary channel 1b communicating with the first refrigerant channel 1a.
  • a second refrigerant auxiliary channel 2b communicating with the second refrigerant channel 2a is formed.
  • the laminated structure of the 1st heat exchanger tube 1 and the 2nd heat exchanger tube 2 is the 1st heat exchanger tube 1 so that the crushing part 9a of the 1st heat exchanger tube 1 and the rising part 9d of the 2nd heat exchanger tube 2 may overlap.
  • the raised portion 9b and the crushing portion 9c of the second heat transfer tube 2 are stacked so as to overlap each other. At this time, the crushed portion 9 a and the raised portion 9 d are brazed by the brazing material 21, and similarly, the raised portion 9 b and the crushed portion 9 c are also brazed by the brazing material 21.
  • both sides of the uppermost heat transfer tube (in FIG. 6 and FIG. 7, the first heat transfer tube 1) of the laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2.
  • the tubular first communicating with the first refrigerant auxiliary flow path 1b is described later.
  • a tubular second port 4 communicating with the second refrigerant auxiliary flow path 2b is brazed to the upper surface of the 1 port 3 and the crushing portion 9a with a brazing material 21, respectively, as will be described later.
  • the first port 3 and the second port 4 are provided for the refrigerant inlet and outlet, respectively, as described above, and are connected to a refrigerant circuit or the like in the heat pump system.
  • FIG. 7A is a top view of the heat exchanger 10a according to the present embodiment
  • FIG. 7B is a cross-sectional view taken along the line BB in FIG. 7A
  • FIG. ) Is a side view of the heat exchanger 10a.
  • the first communication hole 3c is penetrated through the upper surface and the lower surface of the raised portion 9b formed in the uppermost first heat transfer tube 1, and the first port 3 is
  • the first refrigerant auxiliary flow path 1b formed inside the raised portion 9b communicates with the first communicating hole 3c on the upper surface of the raised portion 9b.
  • the first refrigerant auxiliary flow path 1 b communicates with the first refrigerant flow path 1 a of the first heat transfer tube 1.
  • the 1st communicating hole 3c formed in the lower surface of the rise part 9b is penetrated and formed in the crushing part 9c located in the 2nd heat exchanger tube 2 directly under the 1st heat transfer pipe 1 directly under the rise part 9b.
  • the first communication hole 3d communicated.
  • the crushing portion 9c closes a part of the opening of the second refrigerant flow path 2a of the second heat transfer tube 2, and the first communication hole 3d serves as the second refrigerant flow path. It does not communicate with 2a.
  • the raised portion 9b located immediately below the crushing portion 9c is also the same as the raised portion 9b formed in the uppermost first heat transfer tube 1.
  • the first communication hole 3c is penetrated through the upper surface and the lower surface, and the first communication hole 3d is formed inside the first communication hole 3c on the upper surface of the raised portion 9b. It communicates with the first refrigerant auxiliary channel 1b and further communicates with the first refrigerant channel 1a of the first heat transfer tube 1.
  • the first port 3 communicates with the first refrigerant flow path 1a of the uppermost first heat transfer tube 1, and the first refrigerant flow path 1a further passes through the second heat transfer tube 2 directly below the first refrigerant flow path 1a. Furthermore, it communicates with the first refrigerant flow path 1a of the first heat transfer tube 1 therebelow.
  • the same structure is taken, and the first refrigerant flow path 1a of the first port 3 and each of the first heat transfer tubes 1 has a communication structure, and the second refrigerant flow path 2a of the second heat transfer tube 2
  • the second heat transfer tube 2 has a structure blocked by a crushing portion 9 c formed in the second heat transfer tube 2.
  • the second communication hole 4c is penetrated through the crushing portion 9a formed in the uppermost first heat transfer tube 1, and the second port 4 is communicated with the second communication hole 4c.
  • the raised portion 9d located immediately below the crushing portion 9a has second communication holes 4d formed on the upper and lower surfaces thereof.
  • the second communication hole 4c of the crushing portion 9a formed in the first heat transfer tube 1 immediately above the second heat transfer tube 2 is inserted into the inside thereof via the second communication hole 4d on the upper surface of the raised portion 9d. It communicates with the formed second refrigerant auxiliary flow path 2b.
  • the second refrigerant auxiliary flow path 2 b communicates with the second refrigerant flow path 2 a of the second heat transfer tube 2. Further, the second communication hole 4d formed in the lower surface of the raised portion 9d is formed through the crushing portion 9a located immediately below the raised portion 9d in the first heat transfer tube 1 immediately below the second heat transfer tube 2. The second communication hole 4c communicated.
  • the raised portion 9d located immediately below the crushing portion 9a has a second communication hole 4d penetrating through the upper surface and the lower surface,
  • the second communication hole 4c communicates with the second refrigerant auxiliary flow path 2b formed therein via the second communication hole 4d on the upper surface of the raised portion 9d, and further the second heat transfer tube 2.
  • the second port 4 communicates with the second refrigerant flow path 2a of the second heat transfer pipe 2 immediately below the uppermost first heat transfer pipe 1, and further, the second refrigerant flow path 2a is directly below it.
  • the first heat transfer tube 1 is further communicated with the second refrigerant flow path 2a of the second heat transfer tube 2 therebelow.
  • the same structure is taken, and the second refrigerant flow path 2a of the second port 4 and each of the second heat transfer tubes 2 has a communication structure, and the first refrigerant flow path 1a of the first heat transfer tube 1
  • the first heat transfer tube 1 has a structure blocked by a crushing portion 9a formed in the first heat transfer tube 1.
  • the first refrigerant auxiliary flow channel 1b and the second refrigerant auxiliary flow channel 2b having a rectangular cross section are provided in the first heat transfer tube 1 and the second heat transfer tube 2, respectively.
  • the present invention is not limited to this.
  • other shapes such as an ellipse may be used.
  • the first communication hole 3c formed in the raised portion 9b and the first communication hole 3d formed in the crushing portion 9c have the same diameter and are concentric in the stacking direction.
  • the present invention is not limited to this, and the first refrigerant flow path 1a of each first heat transfer tube 1 may be formed so as not to have the same diameter or to be concentric in the stacking direction. May be formed to communicate with each other.
  • the second communication hole 4c formed in the crushed portion 9a and the second communication hole 4d formed in the raised portion 9d are formed in the same diameter and concentrically in the stacking direction.
  • each said hole is not limited to circular shape, You may form in other shapes, such as a rectangular shape.
  • FIG. 8 is a diagram showing a method of manufacturing the heat exchanger 10a that is a stacked heat exchanger according to Embodiment 2 of the present invention.
  • the first heat transfer tube 1 and the second heat transfer tube 2 of the heat exchanger 10 of the present embodiment shown in FIG. 8 are made of a material having good heat conductivity, for example, aluminum alloy, copper, stainless steel, etc. After bending by roll forming or the like, by forming the seam at both ends of this flat plate by electro-sewing (welding), by rolling or press forming the cylinder, or by extrusion or pultrusion Manufactured.
  • the central portion sandwiched between the two crushing portions 9a of the first heat transfer tube 1 is so sized that the first refrigerant flow path 1a inside the first heat transfer tube 1 is not crushed and disappears in FIG.
  • the swelled portion 9b is formed such that the other end side portion that is not crushed when the crushed portion 9a is formed is swelled from the central portion.
  • Two raised portions 9b are formed corresponding to the two crushed portions 9a, and are formed so as to be diagonally positioned when viewed from the upper surface of the first heat transfer tube 1.
  • a crushing portion 9 c corresponding to the crushing portion 9 a and a rising portion 9 d corresponding to the rising portion 9 b are formed on the second heat transfer tube end portions 6 on both sides.
  • the crushing portion 9a blocks a part of the opening of the first refrigerant flow path 1a of the first heat transfer tube 1, whereas the swelled portion 9b is open, Is formed with a first refrigerant auxiliary channel 1b communicating with the first refrigerant channel 1a.
  • the crushing portion 9c blocks a part of the opening of the second refrigerant flow path 2a of the second heat transfer tube 2, whereas the swelled portion 9d is open, Is formed with a second refrigerant auxiliary channel 2b communicating with the second refrigerant channel 2a.
  • the crushing portion 9a and the raised portion 9b are formed for the first heat transfer tube 1, and the crushing portion 9c and the raised portion 9d are formed for the second heat transfer tube 2.
  • the laminated structure is formed as follows for the first heat transfer tube 1 and the second heat transfer tube 2. That is, the crushing portion 9a of the first heat transfer tube 1 and the bulging portion 9d of the second heat transfer tube 2 overlap so that the crushing portion 9d of the first heat transfer tube 1 and the crushing portion 9c of the second heat transfer tube 2 are overlapped. They are stacked so that they overlap. At this time, the central portions of the first heat transfer tube 1 and the second heat transfer tube 2 are brazed to each other by the brazing material 21 and joined.
  • the crushing portion 9a and the raised portion 9d are brazed with the brazing material 21, and similarly, the raised portion 9b and the crushing portion 9c are also brazed with the brazing material 21 and joined thereto.
  • the brazing material 21 may be filled into the gap and brazed.
  • the brazing material 21 may be filled into the gap and brazed.
  • the lid 13 includes a rectangular parallelepiped heat transfer tube insertion portion 13 a erected vertically with respect to one surface of the lid 13.
  • the respective openings are covered with the lid 13.
  • the heat transfer tube insertion portion 13a is inserted, and the lid 13 is joined to each opening portion by the brazing material 21 to be closed. This prevents the refrigerant from leaking from the opening portions of the raised portion 9b and the raised portion 9d.
  • each raised portion 9b of the first heat transfer tube 1 which is the uppermost heat transfer tube of the laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2 is formed on the upper surface.
  • the tubular first port 3 is brazed with a brazing material (not shown), and the tubular second port 4 is brazed with the brazing material on the upper surface of each crushing portion 9a of the first heat transfer tube 1. Installed.
  • the first port 3 is configured to communicate with the first refrigerant auxiliary flow path 1b and the first refrigerant flow path 1a of all the first heat transfer tubes 1, and the second port 4 is The second refrigerant auxiliary flow path 2b and the second refrigerant flow path 2a of all the second heat transfer tubes 2 are configured to communicate with each other.
  • the heat exchanger 10a which is a stacked heat exchanger, is configured by the above method.
  • coolant flow path 1a inside the 1st heat exchanger tube 1 crushes the center part pinched
  • it is formed by crushing from the vertical direction in FIG. 8 to such an extent that it does not disappear, but it is not limited to this. That is, when the crushing portion 9a is formed, the opening portion of the first refrigerant flow path 1a in the first heat transfer tube end portion 5 that is not blocked is expanded from the inside to the outside, so that the rising portion 9b is It may be formed. The same applies to the formation of the raised portion 9d of the second heat transfer tube 2.
  • the first heat transfer tube 1 is formed with a raised portion 9b having a shape that is raised in the vertical direction with respect to the center portion sandwiched between the two crushed portions 9a.
  • the present invention is not limited to this. That is, it is not necessary to form the raised portion 9b so as to rise in the vertical direction rather than the central portion of the first heat transfer tube 1, and the upper surface and the lower surface of the central portion are substantially the same as the upper surface and the lower surface of the raised portion 9b, respectively. It is good also as what forms so that it may become flush. The same applies to the formation of the raised portion 9d of the second heat transfer tube 2.
  • the opening of the raised portion 9b of the first heat transfer tube 1 and the opening of the raised portion 9d of the second heat transfer tube 2 are closed by the lid 13.
  • the present invention is not limited to this. That is, it is good also as a structure which is crushed and block
  • the lid 13 becomes unnecessary, the number of parts can be reduced, and the heat exchanger 10a can be reduced in weight.
  • the lid 13 corresponds to the “closing means” of the present invention.
  • the heat exchanger 10a which is a stacked heat exchanger according to the present embodiment, is mounted on a heat pump system that uses hot or cold heat.
  • the high-temperature first refrigerant flowing from the refrigerant circuit flows into the heat exchanger 10a from one first port 3 and rises 9b of each first heat transfer tube 1. It flows into the first refrigerant auxiliary flow path 1b inside, and flows through the first refrigerant flow path 1a of each first heat transfer tube 1 and the first refrigerant auxiliary flow path 1b inside the other rising portion 9b, Outflow from the other first port 3.
  • the second refrigerant flowing from the use side circuit flows into the heat exchanger 10 from the one second port 4, and the second refrigerant auxiliary flow path 2 b inside the rising portion 9 d of each second heat transfer tube 2. And flows through each second refrigerant flow path 2a and the second refrigerant auxiliary flow path 2b inside the other raised portion 9d and flows out from the other second port 4.
  • the first refrigerant and the second refrigerant flow in a counterflow or parallel flow through the first refrigerant flow path 1a of the first heat transfer tube 1 and the second refrigerant flow path 2a of the second heat transfer tube 2, respectively.
  • the heat exchange is carried out through the wall surfaces of the first heat transfer tube 1 and the second heat transfer tube 2.
  • the heat exchanger described in Patent Document 1 has a dead space due to a header pipe that distributes the refrigerant to each heat transfer pipe, and has reduced space efficiency.
  • a header pipe that distributes the refrigerant to each heat transfer pipe
  • the heat exchange efficiency between the first refrigerant and the second refrigerant can be improved.
  • the 1st heat exchanger tube 1 and the 2nd heat exchanger tube 2 are made into the substantially same length in the distribution direction of the refrigerant
  • the two first ports 3 are configured to be diagonal positions. Since the two second ports 4 are installed on the upper surface of the crushing portion 9a configured to be in a diagonal position, each of the first refrigerant channels 1a and The length of the flow path through which the refrigerant flows in each second refrigerant flow path 2a can be made substantially long, and the heat exchange efficiency between the first refrigerant and the second refrigerant can be further improved.
  • the first port 3 and the second port 4 are configured to be installed on the upper surface of the uppermost heat transfer tube of the laminated structure of the heat exchanger 10a, respectively.
  • one of the two first ports 3 may be installed on the upper surface of the uppermost heat transfer tube of the laminated structure, and the other may be installed on the lower surface of the lowermost heat transfer tube.
  • the first port 3 and the second port 4 may not be installed on the same surface.
  • the two first ports 3 may be installed on the upper surface of the uppermost heat transfer tube of the laminated structure, and the two second ports 4 may be installed on the lower surface of the lowermost heat transfer tube of the laminated structure.
  • a crushing portion 9a is formed for the opening portion of the first refrigerant flow path 1a of the first heat transfer tube 1
  • a crushing portion 9c is formed for the opening portion of the second refrigerant auxiliary flow path 2b of the second heat transfer tube 2.
  • FIG. 9 is a cross-sectional view of a heat transfer tube of a stacked heat exchanger according to Embodiment 3 of the present invention.
  • the configuration of the heat transfer tube of the stacked heat exchanger according to the present embodiment will be described with reference to FIG.
  • All of the heat transfer tubes shown in FIGS. 9 (a) to 9 (d) have a flat cross section.
  • the heat transfer tube 14a shown in FIG. 9A has a rectangular cross section, and the cross sectional shape of the refrigerant flow path inside thereof is also rectangular.
  • the heat transfer tube 14b shown in FIG. 9 (b) has a cross-sectional shape in which both end portions in the longitudinal direction are R-shaped, and the cross-sectional shape of the refrigerant flow path inside the heat-transfer tube 14b has a similar shape. Since both the heat transfer tube 14a and the heat transfer tube 14b have a flat upper surface and a lower surface and can be bonded to each other in a laminated structure, the heat exchange efficiency can be improved.
  • the cross section of the heat transfer tube 14c shown in FIG. 9C is R-shaped at both ends in the longitudinal direction, and the cross-sectional shape of the refrigerant flow path inside thereof is the same shape.
  • a plurality of linear grooves 15 are formed on the inner wall surface, which is the refrigerant flow path, in the direction from one opening to the other opening of the heat transfer tube 14c.
  • the pressure loss of the refrigerant can be reduced by setting the direction of the groove 15 to be the direction from one opening of the heat transfer tube 14c toward the other opening. Moreover, it cannot be overemphasized that it also has the effect of the heat exchanger tube 14a and the heat exchanger tube 14b mentioned above.
  • the groove 15 is formed on the inner wall surface of the refrigerant flow path of the heat transfer tube 14c from the one opening to the other opening.
  • the present invention is not limited to this.
  • the groove 15 may be formed in a wavy line or an oblique line.
  • the cross section makes the both ends in a longitudinal direction R shape, and the cross-sectional shape of the refrigerant flow path inside becomes the same shape.
  • the corrugated plate 16 is inserted into the refrigerant flow path inside.
  • the corrugated plate 16 is installed so that the ridge line direction in the wave shape of the corrugated plate 16 is a direction from one opening of the heat transfer tube 14d toward the other opening.
  • each convex part in the wave shape of the corrugated plate 16 is in contact with the inner wall surface of the heat transfer tube 14d.
  • the corrugated plate 16 By inserting the corrugated plate 16, the refrigerant flowing through the refrigerant flow path contacts the inner wall surface, and also contacts the corrugated plate 16, so that hot or cold heat is transmitted to the inner wall surface via the corrugated plate 16. Therefore, it has the effect similar to the effect by having increased the area of the inner wall surface like the heat exchanger tube 14c, ie, the effect which the heat exchange efficiency with the refrigerant
  • any one of the heat transfer tubes 14a to 14d shown in FIG. 9 is used as the first heat transfer tube 1 and the second heat transfer tube in the heat exchanger 10 according to the first embodiment or the heat exchanger 10a according to the second embodiment. It shall be applied as the heat tube 2, and the following effects can be obtained thereby. Further, any one of 14a to 14d shown in FIG. 9 is replaced with the first heat transfer tube 1 and the second heat transfer tube 2 in the heat exchanger 10 according to the first embodiment or the heat exchanger 10a according to the second embodiment.
  • the heat exchanger 10 and the heat exchanger 10a configured as described above are collectively referred to as a heat exchanger 10b.
  • the heat exchanger 10b corresponds to the “stacked heat exchanger” of the present invention.
  • Each of the heat transfer tubes 14a to 14d shown in FIG. 9 has an upper surface and a lower surface that are flat, and can be bonded in close contact with each other in the case of a laminated structure, thereby improving heat exchange efficiency. be able to.
  • the groove 15 is formed on the inner wall surface of the refrigerant flow path of the heat transfer tube 14c, so that the area of the inner wall surface of the heat transfer tube 14c increases, and the adjacent heat transfer tube Heat exchange efficiency with the flowing refrigerant can be improved. Moreover, the pressure loss of a refrigerant
  • FIG. 10 is a configuration diagram of a heat pump system using the heat of the heat exchanger according to Embodiment 4 of the present invention.
  • the heat exchanger 10 according to Embodiment 1 as a stacked heat exchanger that performs heat exchange between the first refrigerant and the second refrigerant is mounted will be described with reference to FIG. 10.
  • the heat pump system includes a first refrigerant circuit 100 through which the first refrigerant flows, a second refrigerant circuit 101 through which the second refrigerant flows, and the first refrigerant and the second refrigerant. It is the structure provided with the heat exchanger 10 which performs heat exchange with a refrigerant
  • the first refrigerant circuit 100 is configured by connecting a compressor 31, a heat exchanger 10, an expansion valve 33, and an outdoor heat exchanger 34 in this order by refrigerant piping. Further, a fan 39 is installed near the outdoor heat exchanger 34 to send outside air to the outdoor heat exchanger 34 and to perform heat exchange between the outside air and the first refrigerant circulating in the outdoor heat exchanger 34.
  • a fan 39 is installed near the outdoor heat exchanger 34 to send outside air to the outdoor heat exchanger 34 and to perform heat exchange between the outside air and the first refrigerant circulating in the outdoor heat exchanger 34.
  • R410A another chlorofluorocarbon refrigerant, or a natural refrigerant such as carbon dioxide or hydrocarbon may be used as the first refrigerant.
  • the second refrigerant circuit 101 is configured by connecting the pump 36, the use side heat exchanger 35, and the heat exchanger 10 in order by refrigerant piping.
  • the use side heat exchanger 35 is used as a radiator or a floor heater.
  • coolant such as a CFC-type refrigerant
  • coolant for this 2nd refrigerant circuit 101 is just to use the natural refrigerant
  • coolant such as a CFC-type refrigerant
  • the outdoor heat exchanger 34 corresponds to the “heat source side heat exchanger” of the present invention.
  • the operation of the heat pump system according to the present embodiment will be described with reference to FIG.
  • the first refrigerant circuit 100 the high-temperature and high-pressure gaseous first refrigerant compressed and discharged by the compressor 31 flows into the heat exchanger 10.
  • the first refrigerant that has flowed into the heat exchanger 10 exchanges heat with the second refrigerant that flows in a counterflow or parallel flow with respect to the first refrigerant in the heat exchanger 10, so that the second refrigerant On the other hand, it radiates heat and flows out of the heat exchanger 10.
  • the first refrigerant flowing out of the heat exchanger 10 flows into the expansion valve 33, and is expanded and depressurized by the expansion valve 33 to become a low temperature and low pressure first refrigerant.
  • This low-temperature and low-pressure first refrigerant flows into the outdoor heat exchanger 34, exchanges heat with the outside air sent by the rotational drive of the fan 39, and becomes a low-temperature and low-pressure gas-state first refrigerant. It flows out of the heat exchanger 34.
  • the first refrigerant in the gas state flowing out from the outdoor heat exchanger 34 flows into the compressor 31 and is compressed again.
  • the second refrigerant that has flowed into the heat exchanger 10 heats the first refrigerant and the heat flowing inside the heat exchanger 10 so as to be opposed or parallel to the second refrigerant. Exchange is performed, heated by the first refrigerant, and flows out of the heat exchanger 10.
  • the second refrigerant flowing out of the heat exchanger 10 is circulated through the second refrigerant circuit 101 by the pump 36 and flows into the use side heat exchanger 35.
  • the second refrigerant that has flowed into the use side heat exchanger 35 radiates heat to the outside and flows out of the use side heat exchanger 35.
  • the second refrigerant flowing out from the use side heat exchanger 35 flows into the heat exchanger 10 again and is heated.
  • the second heat transfer tube 2 and the second port 4 in the heat exchanger 10 are formed of a corrosion-resistant material. It is desirable that the portion in contact with water has a corrosion resistance against water.
  • the heat pump system shown in FIG. 10 is configured to be mounted with the heat exchanger 10 according to the first embodiment, but is not limited to this, and the heat exchanger 10a according to the second embodiment or It is good also as a structure by which the heat exchanger 10b which concerns on Embodiment 3 is mounted.
  • heat pump system according to the present embodiment is not limited to the configuration shown in FIG. 10, and may be, for example, the configuration of the heat pump system shown in FIGS. 11 to 13 below.
  • FIG. 11 is a configuration diagram of another form of the heat pump system according to the present embodiment, and uses the heat of the heat exchanger similarly to the heat pump system shown in FIG. 10.
  • the heat pump system shown in FIG. 11 has a use-side heat exchanger 35 in the heat pump system shown in FIG. 10 installed in a tank 38, and the other configurations are the same as those of the heat pump system shown in FIG. .
  • coolant heated in the heat exchanger 10 becomes a structure which can heat and take in the water in the tank 38 by distribute
  • the use-side heat exchanger 35 is applied to the heating operation or the hot water supply operation using the heat of the heat exchanger 10.
  • the energy saving effect can be improved as compared with a heating or hot water supply system using a conventional boiler as a heat source.
  • FIG. 12 is a block diagram of another form of the heat pump system according to the present embodiment, and uses the cold energy of the heat exchanger.
  • the heat pump system shown in FIG. 12 is configured so that the suction port and the discharge port of the compressor 31 are reversed and the refrigerant flow direction in the first refrigerant circuit 100 is reversed in the heat pump system shown in FIG. It is a thing.
  • the use side heat exchanger 35 is used as an air heat exchanger or a cold water panel.
  • Other configurations are the same as those of the heat pump system shown in FIG.
  • the first refrigerant in a high-temperature and high-pressure gas state compressed and discharged by the compressor 31 flows into the outdoor heat exchanger.
  • the first refrigerant flowing into the outdoor heat exchanger 34 exchanges heat with the outside air sent by the rotational drive of the fan 39, dissipates heat to the outside air, and flows out of the outdoor heat exchanger 34.
  • the first refrigerant that has flowed out of the outdoor heat exchanger 34 flows into the expansion valve 33, is expanded and depressurized by the expansion valve 33, and becomes a low-temperature and low-pressure first refrigerant.
  • This low-temperature and low-pressure first refrigerant flows into the heat exchanger 10 and performs heat exchange with the second refrigerant that flows in a counterflow or parallel flow with respect to the first refrigerant in the heat exchanger 10. Then, it absorbs heat from the second refrigerant, becomes a first refrigerant in a low-temperature and low-pressure gas state, and flows out of the heat exchanger 10.
  • the first refrigerant in a gas state flowing out from the heat exchanger 10 flows into the compressor 31 and is compressed again.
  • the second refrigerant that has flowed into the heat exchanger 10 heats the first refrigerant and the heat flowing in the heat exchanger 10 so as to be opposed or parallel to the second refrigerant. Exchange is performed, cooled by the first refrigerant, and flows out of the heat exchanger 10.
  • the second refrigerant flowing out of the heat exchanger 10 is circulated through the second refrigerant circuit 101 by the pump 36 and flows into the use side heat exchanger 35.
  • the second refrigerant that has flowed into the use side heat exchanger 35 cools outside air and the like, and flows out of the use side heat exchanger 35.
  • the second refrigerant flowing out of the use side heat exchanger 35 flows into the heat exchanger 10 again and is cooled.
  • FIG. 13 is a block diagram of another form of the heat pump system which concerns on this Embodiment, and utilizes the warmth or cold by a heat exchanger.
  • the heat pump system shown in FIG. 13 is obtained by adding a four-way valve 32 to the first refrigerant circuit 100 in the heat pump system shown in FIG. Specifically, the first refrigerant circuit 100 is connected by refrigerant piping in the order of the compressor 31, the four-way valve 32, the heat exchanger 10, the expansion valve 33, the outdoor heat exchanger 34, the four-way valve 32, and the compressor 31. It has been done.
  • Other configurations are the same as those of the heat pump system shown in FIG. In such a configuration, by switching the flow path of the four-way valve 32, the heat of the heat exchanger 10 is used like the heat pump system shown in FIG. 10, or the heat like the heat pump system shown in FIG. The cold heat of the exchanger 10 can be used.
  • the second refrigerant heated in the heat exchanger 10 can be circulated through the use side heat exchanger 35 to heat the water in the tank 38 and take water.
  • the second refrigerant cooled in the heat exchanger 10 can be circulated through the use-side heat exchanger 35 to cool the water in the tank 38 and take water.
  • the heat pump system shown in FIGS. 11 to 13 is configured to be mounted with the heat exchanger 10 according to the first embodiment, but is not limited to this, and the heat exchange according to the second embodiment is performed. It is good also as a structure by which the heat exchanger 10b which concerns on the apparatus 10a or Embodiment 3 is mounted.
  • 1 1st heat transfer pipe 1a 1st refrigerant flow path, 1b 1st refrigerant auxiliary flow path, 2nd 2nd heat transfer pipe, 2a 2nd refrigerant flow path, 2b 2nd refrigerant auxiliary flow path, 3rd first port, 3a-3d 1st communication hole, 4 2nd port, 4a-4d 2nd communication hole, 5 1st heat transfer tube end, 6 2nd heat transfer tube end, 8 lid, 8a heat transfer tube insertion part, 8b communication hole, 9a crushing Part, 9b raised part, 9c crushing part, 9d raised part, 10, 10a, 10b heat exchanger, 13 lid, 13a heat transfer tube insertion part, 14a-14d heat transfer tube, 15 groove, 16 corrugated plate, 21 brazing material, 31 compressor, 32 four-way valve, 33 expansion valve, 34 outdoor heat exchanger, 35 use side heat exchanger, 36 pump, 38 tank, 39 fan, 100 first refrigerant circuit, 101 second refrigerant circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided is a laminate-type heat exchanger that requires no bending process for a heat transfer pipe and has no dead space caused by a header pipe, and also provided is a heat pump system equipped with the laminate-type heat exchanger. A heat exchanger (10) has a construction in which a plurality of first heat transfer pipes (1) and second heat transfer pipes (2) having a rectangular shape are stacked alternately. The first and second heat transfer pipes comprise refrigerant passages having rectangular cross sections through which a refrigerant flows, wherein the refrigerant passages have substantially the same length in the direction in which the refrigerant flows, and substantially the same length in the width direction of the refrigerant passages.

Description

積層型熱交換器及びそれを搭載したヒートポンプシステムLaminated heat exchanger and heat pump system equipped with the same
 本発明は、低温流体又は高温流体である第1冷媒と第2冷媒との熱交換を実施する熱交換器及びそれを搭載したヒートポンプシステムに関する。 The present invention relates to a heat exchanger that performs heat exchange between a first refrigerant and a second refrigerant that are a low-temperature fluid or a high-temperature fluid, and a heat pump system equipped with the heat exchanger.
 従来の熱交換器として、低温流体が流れる第1伝熱管と、高温流体が流れ、その高温流体の流れ方向が上記低温流体の流れ方向と並行になるように配置した第2伝熱管とを交互に積層した熱交換器であって、少なくとも一方の伝熱管を、積層方向に並んだ複数の伝熱管で構成し、その複数の伝熱管の両端を、各流体の流れ方向と積層方向とのいずれにも直交する方向に曲げて構成している。さらに、その複数の伝熱管と、入口ヘッダー及び出口ヘッダーにより並列流路を構成し、入口ヘッダー又は出口ヘッダーのいずれかを管状ヘッダーで構成し、そして、並列流路を構成する複数の伝熱管を束ねて、管状ヘッダーの管軸方向と伝熱管の流体の流れ方向とが垂直となるようにして接続するものがある(例えば、特許文献1参照)。 As a conventional heat exchanger, a first heat transfer tube through which a low-temperature fluid flows and a second heat transfer tube arranged such that a high-temperature fluid flows and the flow direction of the high-temperature fluid is parallel to the flow direction of the low-temperature fluid are alternately arranged. The heat exchanger is formed by stacking at least one heat transfer tube with a plurality of heat transfer tubes arranged in the stacking direction, and both ends of the plurality of heat transfer tubes are arranged in either the flow direction or the stacking direction of each fluid. Also, it is configured to be bent in a direction orthogonal to the above. Furthermore, a parallel flow path is constituted by the plurality of heat transfer tubes and the inlet header and the outlet header, either the inlet header or the outlet header is constituted by a tubular header, and the plurality of heat transfer pipes constituting the parallel flow path are provided. Some are bundled and connected so that the tube axis direction of the tubular header and the fluid flow direction of the heat transfer tube are perpendicular to each other (for example, see Patent Document 1).
WO2007/122685A1(第28頁、図17)WO2007 / 122865A1 (page 28, FIG. 17)
 しかし、特許文献1に記載された熱交換器は、伝熱管を積層した構造であるため、高性能かつ高スペース効率ではあるが、冷媒を流入するヘッダー管のうち少なくとも一方は積層方向に対し垂直方向に曲げられた伝熱管と接続する構造を有するため、その際の伝熱管の幅方向への曲げ工程を有すること、及び、ヘッダー管によるデッドスペースが増大してしまうという問題点があった。 However, since the heat exchanger described in Patent Document 1 has a structure in which heat transfer tubes are stacked, although it has high performance and high space efficiency, at least one of the header tubes into which the refrigerant flows is perpendicular to the stacking direction. Since it has the structure connected with the heat exchanger tube bent in the direction, there existed a problem that it had the bending process to the width direction of the heat exchanger tube at that time, and the dead space by a header pipe increased.
 本発明は、上記の課題を解決するためになされたもので、伝熱管の曲げ工程をなくし、ヘッダー管によるデッドスペースのない積層型熱交換器及びそれを搭載したヒートポンプシステムを得ることを目的とする。 The present invention was made in order to solve the above-described problems, and has an object to obtain a stacked heat exchanger without a dead space due to a header pipe and a heat pump system equipped with the same without a heat transfer pipe bending step. To do.
 本発明に係る積層型熱交換器は、扁平形状を有し、第1冷媒がその内部の第1冷媒流路を流通する複数の第1伝熱管と、扁平形状を有し、前記第1伝熱管と交互に当接して積層され、前記第1冷媒と温度が異なる第2冷媒がその内部の第2冷媒流路を流通する複数の第2伝熱管と、前記第1伝熱管及び前記第2伝熱管において、前記各第1冷媒流路を互いに連通させ、かつ、前記積層構造における積層方向の両端に位置する前記第1伝熱管又は前記第2伝熱管である2つの最外伝熱管のうちいずれか一方の該最外伝熱管において前記第1冷媒流路と外部とを連通させるように、貫通して形成された2組の第1連通穴と、前記第1伝熱管及び前記第2伝熱管において、前記各第2冷媒流路を互いに連通させ、かつ、2つの前記最外伝熱管のうちいずれか一方の該最外伝熱管において前記第2冷媒流路と外部とを連通させるように、貫通して形成された2組の第2連通穴と、前記各第1伝熱管の前記第1冷媒流路、及び、前記各第2伝熱管の前記第2冷媒流路の冷媒の流通方向の両端部に形成された開口部を閉塞する閉塞手段と、前記各第2伝熱管に形成された前記第1連通穴が、前記第2冷媒流路に連通しないように遮断する第1遮断手段と、前記各第1伝熱管に形成された前記第2連通穴が、前記第1冷媒流路に連通しないように遮断する第2遮断手段と、を備え、前記最外伝熱管に形成され、該最外伝熱管の内部の冷媒流路と外部とを連通させる2つの前記第1連通穴は、それぞれ前記第1冷媒の流入口及び流出口として機能し、前記最外伝熱管に形成され、該最外伝熱管の内部の冷媒流路と外部とを連通させる2つの前記第2連通穴は、それぞれ前記第2冷媒の流入口及び流出口として機能し、前記第1伝熱管及び前記第2伝熱管の当接面を介して、前記第1冷媒と前記第2冷媒との熱交換を実施するものである。 The laminated heat exchanger according to the present invention has a flat shape, a plurality of first heat transfer tubes in which the first refrigerant flows through a first refrigerant flow path therein, and a flat shape. A plurality of second heat transfer tubes, in which a second refrigerant having a temperature different from that of the first refrigerant flows through a second refrigerant flow path therein, the first heat transfer tube, and the second heat exchanger are stacked in contact with the heat tubes alternately. In the heat transfer tube, any one of the two outermost heat transfer tubes which are the first heat transfer tube or the second heat transfer tube which communicate with the first refrigerant flow paths and are located at both ends in the stacking direction in the stacked structure. In one of the outermost heat transfer tubes, in the first heat transfer tube and the second heat transfer tube, two sets of first communication holes formed so as to communicate with the first refrigerant flow path and the outside. The second refrigerant flow paths communicate with each other, and the two outermost heat transfer tubes Two sets of second communication holes formed so as to allow the second refrigerant flow path to communicate with the outside in any one of the outermost heat transfer tubes, and the first refrigerant of each first heat transfer tube Closing means for closing the flow passages and openings formed at both ends of the second refrigerant flow passages of the second refrigerant flow passages of the second heat transfer tubes, and the second heat transfer tubes First blocking means for blocking the first communication hole so as not to communicate with the second refrigerant flow path, and the second communication hole formed in each of the first heat transfer tubes communicates with the first refrigerant flow path. A second shut-off means for shutting off so as not to be formed, and the two first communication holes formed in the outermost heat transfer tube for communicating the refrigerant flow path inside the outermost heat transfer tube with the outside, respectively, 1 functions as an inlet and an outlet for the refrigerant, formed in the outermost heat transfer tube, The two second communication holes for communicating the refrigerant flow path with the outside function as an inlet and an outlet for the second refrigerant, respectively, and contact surfaces of the first heat transfer pipe and the second heat transfer pipe are provided. Thus, heat exchange between the first refrigerant and the second refrigerant is performed.
 本発明によれば、第1冷媒の流出入口である第1ポートから各第1伝熱管の第1冷媒流路を連通させ、そして、第2冷媒の流出入口である第2ポートから各第2伝熱管の第2冷媒流路を連通させることによって、ヘッダー管を不要とすることができ、デッドスペースをなくすことができ、積層型熱交換器全体をコンパクトにすることができる。 According to the present invention, the first refrigerant flow path of each first heat transfer tube is communicated with the first port that is the outflow inlet of the first refrigerant, and the second port from the second port that is the outflow inlet of the second refrigerant. By making the 2nd refrigerant | coolant flow path of a heat exchanger tube connect, a header pipe | tube can be made unnecessary, a dead space can be eliminated, and the whole laminated heat exchanger can be made compact.
本発明の実施の形態1に係る積層型熱交換器である熱交換器10の斜視図である。It is a perspective view of the heat exchanger 10 which is a laminated heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る積層型熱交換器である熱交換器10の上面図、A-A断面図及び側面図からなる三面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a three-side view including a top view, a cross-sectional view along AA, and a side view of a heat exchanger 10 that is a stacked heat exchanger according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る積層型熱交換器である熱交換器10の伝熱管端部に挿入する蓋8の三面図である。It is a three-view figure of the lid | cover 8 inserted in the heat exchanger tube edge part of the heat exchanger 10 which is a laminated heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る積層型熱交換器である熱交換器10の構成を示す伝熱管の要部断面図である。It is principal part sectional drawing of the heat exchanger tube which shows the structure of the heat exchanger 10 which is a laminated heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る積層型熱交換器である熱交換器10の製造方法を示す図である。It is a figure which shows the manufacturing method of the heat exchanger 10 which is a laminated heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る積層型熱交換器である熱交換器10aの斜視図である。It is a perspective view of the heat exchanger 10a which is a laminated heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る積層型熱交換器である熱交換器10aの上面図、B-B断面図及び側面図からなる三面図である。FIG. 6 is a three-side view including a top view, a BB cross-sectional view, and a side view of a heat exchanger 10a that is a stacked heat exchanger according to Embodiment 2 of the present invention. 本発明の実施の形態2に係る積層型熱交換器である熱交換器10aの製造方法を示す図である。It is a figure which shows the manufacturing method of the heat exchanger 10a which is a laminated heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る積層型熱交換器の伝熱管の断面図である。It is sectional drawing of the heat exchanger tube of the laminated heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る熱交換器の温熱を利用したヒートポンプシステムの構成図である。It is a block diagram of the heat pump system using the heat of the heat exchanger which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係るヒートポンプシステムの別形態の構成図である。It is a block diagram of another form of the heat pump system which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係るヒートポンプシステムの別形態の構成図である。It is a block diagram of another form of the heat pump system which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係るヒートポンプシステムの別形態の構成図である。It is a block diagram of another form of the heat pump system which concerns on Embodiment 4 of this invention.
実施の形態1.
(熱交換器10の構造)
 図1は、本発明の実施の形態1に係る積層型熱交換器である熱交換器10の斜視図であり、図2は、同熱交換器10の上面図、A-A断面図及び側面図からなる三面図であり、そして、図3は、同熱交換器10の伝熱管端部に挿入する蓋8の三面図である。以下、図1~図3を参照しながら、本実施の形態に係る積層型熱交換器である熱交換器10の構成について説明する。また、以下の説明では、図1の上下左右方向に合わせて説明する。
Embodiment 1 FIG.
(Structure of heat exchanger 10)
FIG. 1 is a perspective view of a heat exchanger 10 that is a stacked heat exchanger according to Embodiment 1 of the present invention. FIG. 2 is a top view of the heat exchanger 10, a cross-sectional view taken along line AA, and a side view. FIG. 3 is a three-side view of the lid 8 inserted into the heat transfer tube end portion of the heat exchanger 10. Hereinafter, the configuration of the heat exchanger 10 that is the stacked heat exchanger according to the present embodiment will be described with reference to FIGS. 1 to 3. Moreover, in the following description, it demonstrates according to the up-down and left-right direction of FIG.
 図1及び図2で示されるように、熱交換器10は、冷媒が流れる断面が矩形状の冷媒流路を有し、その冷媒流路の冷媒の流通方向に略同一の長さを有し、かつ、冷媒流路の幅方向においても略同一の長さを有した長方形状の複数の第1伝熱管1及び第2伝熱管2が交互に積層された構造を有している。このうち、第1伝熱管1の両側の端部である第1伝熱管端部5を貫通する矩形状の冷媒流路を第1冷媒流路1aとし、第2伝熱管2の両側の端部である第2伝熱管端部6を貫通する矩形状の冷媒流路を第2冷媒流路2aとする。この第1伝熱管端部5における第1冷媒流路1a、及び、第2伝熱管端部6における第2冷媒流路2aは、それぞれ蓋8によって塞がれている。この蓋8は、図3で示されるように、蓋8の片側の面に対して垂直に立設された矩形状の伝熱管挿入部8aを備えている。また、この伝熱管挿入部8aは、蓋8の長手方向の中心より片側に寄った態様で立設されている。第1伝熱管端部5における第1冷媒流路1a、及び、第2伝熱管端部6における第2冷媒流路2aは、蓋8によって塞がれる際、この伝熱管挿入部8aが内部に挿入される。このとき、すべての第1伝熱管端部5における第1冷媒流路1aに挿入される各伝熱管挿入部8aは、蓋8の長手方向の中心から同一側寄りとなるように挿入される。これに対し、すべての第2伝熱管端部6における第2冷媒流路2aに挿入される各伝熱管挿入部8aは、蓋8の長手方向の中心から第1冷媒流路1aに挿入された伝熱管挿入部8aとは逆側寄りとなるように挿入される。 As shown in FIGS. 1 and 2, the heat exchanger 10 has a refrigerant flow path in which the refrigerant flows in a rectangular shape, and has substantially the same length in the refrigerant flow direction of the refrigerant flow path. In addition, a plurality of rectangular first heat transfer tubes 1 and second heat transfer tubes 2 having substantially the same length in the width direction of the refrigerant flow path are alternately stacked. Among these, the rectangular refrigerant flow path penetrating the first heat transfer tube end portion 5, which is the end portions on both sides of the first heat transfer tube 1, is defined as the first refrigerant flow passage 1 a, and the end portions on both sides of the second heat transfer tube 2. A rectangular refrigerant flow path penetrating through the second heat transfer tube end 6 is defined as a second refrigerant flow path 2a. The first refrigerant flow path 1a at the first heat transfer tube end 5 and the second refrigerant flow path 2a at the second heat transfer tube end 6 are respectively closed by a lid 8. As shown in FIG. 3, the lid 8 includes a rectangular heat transfer tube insertion portion 8 a erected vertically with respect to one surface of the lid 8. Further, the heat transfer tube insertion portion 8 a is erected in such a manner that it is closer to one side from the longitudinal center of the lid 8. When the first refrigerant flow path 1a at the first heat transfer tube end 5 and the second refrigerant flow path 2a at the second heat transfer tube end 6 are closed by the lid 8, the heat transfer tube insertion portion 8a is placed inside. Inserted. At this time, the heat transfer tube insertion portions 8a inserted into the first refrigerant flow paths 1a at all the first heat transfer tube end portions 5 are inserted so as to be closer to the same side from the longitudinal center of the lid 8. On the other hand, each heat transfer tube insertion portion 8a inserted into the second refrigerant flow path 2a in all the second heat transfer tube end portions 6 is inserted into the first refrigerant flow path 1a from the center in the longitudinal direction of the lid 8. It is inserted so as to be closer to the opposite side to the heat transfer tube insertion portion 8a.
 なお、第1伝熱管1及び第2伝熱管2を、その冷媒流路の冷媒の流通方向、及び、冷媒流路の幅方向において略同一の長さとしているが、これに限定されるものではなく、異なる長さであってもよい。 The first heat transfer tube 1 and the second heat transfer tube 2 have substantially the same length in the refrigerant flow direction of the refrigerant flow channel and in the width direction of the refrigerant flow channel, but are not limited thereto. There may be different lengths.
 また、蓋8及び熱交換器10は、それぞれ本発明の「閉塞手段」及び「積層型熱交換器」に相当する。また、第2冷媒流路2aに挿入された伝熱管挿入部8a、及び、第1冷媒流路1aに挿入された伝熱管挿入部8aは、それぞれ本発明の「第1遮断手段」及び「第2遮断手段」に相当する。 Further, the lid 8 and the heat exchanger 10 correspond to the “closing means” and the “stacked heat exchanger” of the present invention, respectively. Further, the heat transfer tube insertion portion 8a inserted into the second refrigerant flow path 2a and the heat transfer tube insertion portion 8a inserted into the first refrigerant flow path 1a are the “first blocking means” and “first” of the present invention, respectively. This corresponds to “2 blocking means”.
 また、図1及び図2で示されるように、第1伝熱管1及び第2伝熱管2の積層構造の最上段の伝熱管(図1及び図2においては、第1伝熱管1)の上面には、後述するように、第1伝熱管1の第1冷媒流路1aに連通する管状の第1ポート3、及び、第2伝熱管2の第2冷媒流路2aに連通する管状の第2ポート4が、それぞれアルミ-シリコン系等のろう材21によってろう付けされている。この第1ポート3及び第2ポート4は、冷媒の入口用及び出口用にそれぞれ2つ設置されており、ヒートポンプシステムにおける冷媒回路等に接続される。 1 and 2, the upper surface of the uppermost heat transfer tube (in FIG. 1 and FIG. 2, the first heat transfer tube 1) of the laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2 is used. As will be described later, a tubular first port 3 communicating with the first refrigerant flow path 1a of the first heat transfer tube 1 and a tubular first port 3 communicating with the second refrigerant flow path 2a of the second heat transfer tube 2 are included. The two ports 4 are brazed with a brazing material 21 such as an aluminum-silicon system. Two first ports 3 and two second ports 4 are installed for the refrigerant inlet and the outlet, respectively, and are connected to a refrigerant circuit or the like in the heat pump system.
 なお、図1及び図2で示されるように、伝熱管の積層構造のうち最上段の伝熱管を第1伝熱管1としているが、これに限定されるものではなく、第2伝熱管2を最上段としてもよいのは言うまでもない。
 また、図1及び図2で示されるように、伝熱管の積層構造のうち最上段の伝熱管に第1ポート3及び第2ポート4が設置される構成としているが、これに限定されるものではなく、この第1ポート3及び第2ポート4を設置せず、最上段の伝熱管に形成された連通穴を接続ポートとして、ヒートポンプシステムにおける冷媒回路等の配管が直接接続されるものとしてもよい。
As shown in FIGS. 1 and 2, the uppermost heat transfer tube in the laminated structure of the heat transfer tubes is the first heat transfer tube 1, but is not limited to this, and the second heat transfer tube 2 is not limited to this. It goes without saying that the top row may be used.
Moreover, as shown in FIG.1 and FIG.2, although it is set as the structure by which the 1st port 3 and the 2nd port 4 are installed in the uppermost heat transfer tube among the laminated structures of a heat transfer tube, it is limited to this Instead of this, the first port 3 and the second port 4 are not installed, and a communication hole formed in the uppermost heat transfer tube is used as a connection port to directly connect piping such as a refrigerant circuit in the heat pump system. Good.
 次に、図2及び図3を参照しながら、第1ポート3及び積層された第1伝熱管1の第1冷媒流路1aが連通する構造、並びに、第2ポート4及び積層された第2伝熱管2の第2冷媒流路2aが連通する構造について説明する。図2(a)は、本実施の形態に係る熱交換器10の上面図であり、図2(b)は、図2(a)におけるA-A断面図であり、そして、図2(c)は、同熱交換器10の側面図である。 Next, referring to FIG. 2 and FIG. 3, a structure in which the first port 3 and the first refrigerant flow path 1a of the stacked first heat transfer tubes 1 communicate with each other, and the second port 4 and the stacked second A structure in which the second refrigerant flow path 2a of the heat transfer tube 2 communicates will be described. 2A is a top view of the heat exchanger 10 according to the present embodiment, FIG. 2B is a cross-sectional view taken along the line AA in FIG. 2A, and FIG. ) Is a side view of the heat exchanger 10.
 図2(b)で示されるように、最上段の第1伝熱管1の上面及び下面には、第1連通穴3aが貫通されており、第1ポート3は、この第1伝熱管1の上面の第1連通穴3aを介して、第1冷媒流路1aに連通している。また、第1伝熱管1の下面に形成された第1連通穴3aは、その第1伝熱管1の直下の第2伝熱管2の上面に貫通して形成された第1連通穴3bに連通している。ここで、この第1連通穴3bに連通する第2伝熱管2の第2冷媒流路2aには、前述した蓋8の伝熱管挿入部8aが挿入されている。ただし、図3で示されるように、伝熱管挿入部8aには連通穴8bが貫通して形成されており、この連通穴8b、及び、第2伝熱管2の上面の第1連通穴3bは連通しており、さらに、これらは第2伝熱管2の下面に貫通して形成された第1連通穴3bとも連通している。さらに、この第2伝熱管2の直下の第1伝熱管1には、最上段の第1伝熱管1と同様に、その上面及び下面に第1連通穴3aが貫通されており、この第1伝熱管1の直上の第2伝熱管2の下面の第1連通穴3bは、このうち第1伝熱管1の上面の第1連通穴3aを介してその第1冷媒流路1aに連通している。 As shown in FIG. 2 (b), the first communication hole 3 a passes through the upper surface and the lower surface of the uppermost first heat transfer tube 1, and the first port 3 is connected to the first heat transfer tube 1. It communicates with the first refrigerant flow path 1a through the first communication hole 3a on the upper surface. The first communication hole 3 a formed in the lower surface of the first heat transfer tube 1 communicates with the first communication hole 3 b formed through the upper surface of the second heat transfer tube 2 immediately below the first heat transfer tube 1. is doing. Here, the heat transfer tube insertion portion 8a of the lid 8 is inserted into the second refrigerant flow path 2a of the second heat transfer tube 2 communicating with the first communication hole 3b. However, as shown in FIG. 3, a communication hole 8 b is formed through the heat transfer tube insertion portion 8 a, and the communication hole 8 b and the first communication hole 3 b on the upper surface of the second heat transfer tube 2 Further, they communicate with each other, and also communicate with a first communication hole 3 b formed through the lower surface of the second heat transfer tube 2. Further, in the first heat transfer tube 1 immediately below the second heat transfer tube 2, the first communication hole 3a is penetrated through the upper surface and the lower surface of the first heat transfer tube 1 in the same manner as the uppermost first heat transfer tube 1. The first communication hole 3b on the lower surface of the second heat transfer tube 2 directly above the heat transfer tube 1 communicates with the first refrigerant flow path 1a through the first communication hole 3a on the upper surface of the first heat transfer tube 1. Yes.
 すなわち、第1ポート3は、最上段の第1伝熱管1の第1冷媒流路1aに連通しており、さらにこの第1冷媒流路1aは、その直下の第2伝熱管2を介して、さらにその下の第1伝熱管1の第1冷媒流路1aに連通している。以下、同様の構造を取り、第1ポート3及び各第1伝熱管1の第1冷媒流路1aは連通した構造を有し、第2伝熱管2の第2冷媒流路2aとは、蓋8の伝熱管挿入部8aによって遮断された構造を有している。ただし、第1伝熱管1及び第2伝熱管2の積層構造の最下段の第1伝熱管1(図2(b)における下から二番目の伝熱管)においては、上面のみ第1連通穴3aが形成されている。このような構造によって、2つの第1ポート3のうち一方から流入した冷媒(以下、第1冷媒という)は、積層構造のうち各第1伝熱管1の第1冷媒流路1aを流通して、他方の第1ポート3から流出する。 That is, the first port 3 communicates with the first refrigerant flow path 1a of the uppermost first heat transfer tube 1, and the first refrigerant flow path 1a further passes through the second heat transfer tube 2 directly below the first refrigerant flow path 1a. Furthermore, it communicates with the first refrigerant flow path 1a of the first heat transfer tube 1 therebelow. Hereinafter, the same structure is taken, the 1st refrigerant | coolant flow path 1a of the 1st port 3 and each 1st heat exchanger tube 1 has the structure connected, and the 2nd refrigerant | coolant flow path 2a of the 2nd heat exchanger tube 2 is a lid | cover. 8 has a structure blocked by the heat transfer tube insertion portion 8a. However, in the lowermost first heat transfer tube 1 (the second heat transfer tube from the bottom in FIG. 2B) of the laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2, only the upper surface has the first communication hole 3a. Is formed. With such a structure, the refrigerant flowing from one of the two first ports 3 (hereinafter referred to as the first refrigerant) flows through the first refrigerant flow path 1a of each first heat transfer tube 1 in the laminated structure. , Flows out from the other first port 3.
 また、最上段の第1伝熱管1の上面及び下面には、第2連通穴4aが貫通しており、第2ポート4は、この第1伝熱管1の上面の第2連通穴4aを介して、第1冷媒流路1aに連通している。ここで、この第2連通穴4aに連通する第1伝熱管1の第1冷媒流路1aには、前述した蓋8の伝熱管挿入部8aが挿入されている。ただし、図3で示されるように、伝熱管挿入部8aには連通穴8bが貫通して形成されており、この連通穴8b、及び、第1伝熱管1の上面の第2連通穴4aは連通しており、さらに、これらは第1伝熱管1の下面に貫通して形成された第2連通穴4aとも連通している。また、この第1伝熱管1の直下の第2伝熱管2には、その上面及び下面に第2連通穴4bが貫通されており、この第2伝熱管2の直上の第1伝熱管1の下面の第2連通穴4aは、このうち第2伝熱管2の上面の第2連通穴4bを介して、第2冷媒流路2aに連通している。さらに、第2伝熱管2の下面に形成された第2連通穴4bは、その第2伝熱管2の直下の第1伝熱管1の上面に貫通して形成された第2連通穴4aに連通している。ここで、上記と同様に、この第2連通穴4aに連通する第1伝熱管1の第1冷媒流路1aには、伝熱管挿入部8aが挿入されており、この伝熱管挿入部8aには連通穴8bが貫通して形成され、この連通穴8b、及び、第1伝熱管1の上面の第2連通穴4aは連通しており、さらに、これらは第1伝熱管1の下面に貫通して形成された第2連通穴4aとも連通している。また、この第1伝熱管1の直下の第2伝熱管2には、その上面及び下面に第2連通穴4bが貫通されており、この第2伝熱管2の直上の第1伝熱管1の下面の第2連通穴4aは、このうちの第2伝熱管2の上面の第2連通穴4bを介して、第2冷媒流路2aに連通している。 A second communication hole 4 a passes through the upper surface and the lower surface of the uppermost first heat transfer tube 1, and the second port 4 passes through the second communication hole 4 a on the upper surface of the first heat transfer tube 1. And communicated with the first refrigerant flow path 1a. Here, the heat transfer tube insertion portion 8a of the lid 8 described above is inserted into the first refrigerant channel 1a of the first heat transfer tube 1 communicating with the second communication hole 4a. However, as shown in FIG. 3, a communication hole 8 b is formed through the heat transfer tube insertion portion 8 a, and the communication hole 8 b and the second communication hole 4 a on the upper surface of the first heat transfer tube 1 Further, they communicate with each other and a second communication hole 4 a formed so as to penetrate the lower surface of the first heat transfer tube 1. The second heat transfer tube 2 directly below the first heat transfer tube 1 has a second communication hole 4b passing through the upper surface and the lower surface thereof, and the first heat transfer tube 1 directly above the second heat transfer tube 2 The second communication hole 4 a on the lower surface communicates with the second refrigerant flow path 2 a through the second communication hole 4 b on the upper surface of the second heat transfer tube 2. Further, the second communication hole 4 b formed in the lower surface of the second heat transfer tube 2 communicates with the second communication hole 4 a formed through the upper surface of the first heat transfer tube 1 immediately below the second heat transfer tube 2. is doing. Here, similarly to the above, the heat transfer tube insertion portion 8a is inserted into the first refrigerant flow path 1a of the first heat transfer tube 1 communicating with the second communication hole 4a, and the heat transfer tube insertion portion 8a is inserted into the heat transfer tube insertion portion 8a. Is formed through the communication hole 8b, and the communication hole 8b and the second communication hole 4a on the upper surface of the first heat transfer tube 1 communicate with each other, and these further penetrate the lower surface of the first heat transfer tube 1. The second communication hole 4a formed in this way is also communicated. The second heat transfer tube 2 directly below the first heat transfer tube 1 has a second communication hole 4b passing through the upper surface and the lower surface thereof, and the first heat transfer tube 1 directly above the second heat transfer tube 2 The second communication hole 4a on the lower surface communicates with the second refrigerant flow path 2a through the second communication hole 4b on the upper surface of the second heat transfer tube 2 among them.
 すなわち、第2ポート4は、最上段の第1伝熱管1の直下の第2伝熱管2の第2冷媒流路2aに連通しており、さらにこの第2冷媒流路2aは、その直下の第1伝熱管1を介して、さらにその下の第2伝熱管2の第2冷媒流路2aに連通している。以下、同様の構造を取り、第2ポート4及び各第2伝熱管2の第2冷媒流路2aは連通した構造を有し、第1伝熱管1の第1冷媒流路1aとは、蓋8の伝熱管挿入部8aによって遮断された構造を有している。ただし、第1伝熱管1及び第2伝熱管2の積層構造の最下段の第2伝熱管2(図2(b)における最下段の伝熱管)においては、上面のみ第2連通穴4bが形成されている。このような構造によって、2つの第2ポート4のうち一方から流入した冷媒(以下、第2冷媒という)は、積層構造のうち各第2伝熱管2の第2冷媒流路2aを流通して、他方の第2ポート4から流出する。 That is, the second port 4 communicates with the second refrigerant flow path 2a of the second heat transfer pipe 2 immediately below the uppermost first heat transfer pipe 1, and further, the second refrigerant flow path 2a is directly below it. The first heat transfer tube 1 is further communicated with the second refrigerant flow path 2a of the second heat transfer tube 2 therebelow. Hereinafter, the same structure is adopted, and the second refrigerant flow path 2a of the second port 4 and each of the second heat transfer tubes 2 has a communication structure, and the first refrigerant flow path 1a of the first heat transfer tube 1 is a lid. 8 has a structure blocked by the heat transfer tube insertion portion 8a. However, in the lowermost second heat transfer tube 2 (the lowermost heat transfer tube in FIG. 2B) of the laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2, the second communication hole 4b is formed only on the upper surface. Has been. With such a structure, the refrigerant flowing from one of the two second ports 4 (hereinafter referred to as the second refrigerant) flows through the second refrigerant flow path 2a of each second heat transfer tube 2 in the laminated structure. , And flows out from the other second port 4.
 なお、図1で示されるように、それぞれ4つの第1伝熱管1及び第2伝熱管2が交互に積層される構造としているが、これに限定されるものではなく、それぞれ4つ以外の個数の第1伝熱管1及び第2伝熱管2が交互に積層される構造としてもよい。 In addition, as shown in FIG. 1, each of the four first heat transfer tubes 1 and the second heat transfer tubes 2 is configured to be alternately stacked. The first heat transfer tube 1 and the second heat transfer tube 2 may be alternately stacked.
 また、積層される第1伝熱管1及び第2伝熱管2の個数は同数に限定されるものではなく、例えば、第1伝熱管1の個数が、第2伝熱管2の個数よりも1つ少なく、又は、1つ多い積層構造としてもよい。 Further, the number of the first heat transfer tubes 1 and the second heat transfer tubes 2 to be stacked is not limited to the same number. For example, the number of the first heat transfer tubes 1 is one more than the number of the second heat transfer tubes 2. It is good also as a laminated structure with few or one.
 また、図2(b)で示されるように、第1伝熱管1及び第2伝熱管2それぞれに、断面が矩形状の第1冷媒流路1a及び第2冷媒流路2aを形成しているものとしているが、これに限定されるものではなく、例えば、楕円状等のその他の形状としてもよい。 Further, as shown in FIG. 2B, a first refrigerant channel 1a and a second refrigerant channel 2a having a rectangular cross section are formed in the first heat transfer tube 1 and the second heat transfer tube 2, respectively. However, the present invention is not limited to this, and other shapes such as an ellipse may be used.
 また、図3で示されるように、伝熱管挿入部8aを矩形状としているが、これに限定されるものではなく、連通穴8bを形成することができる範囲で、異なる形状としてもよい。 Further, as shown in FIG. 3, the heat transfer tube insertion portion 8a has a rectangular shape, but is not limited thereto, and may have a different shape as long as the communication hole 8b can be formed.
 また、図1及び図2で示されるように、第1伝熱管1及び第2伝熱管2の上面は長方形としているが、これに限定されるものではなく、例えば、長方形の四隅をR形状としてもよく、平行四辺形等としてもよく、あるいは、ヒートポンプシステム等に搭載される位置によって形状を適宜変更するものとしてもよい。 Moreover, as shown in FIG.1 and FIG.2, although the upper surface of the 1st heat exchanger tube 1 and the 2nd heat exchanger tube 2 is made into the rectangle, it is not limited to this, For example, let the four corners of a rectangle be R shape Alternatively, the shape may be a parallelogram or the like, or the shape may be appropriately changed depending on the position mounted on the heat pump system or the like.
 また、図2で示されるように、第1伝熱管1に形成された第1連通穴3a、第2伝熱管2に形成された第1連通穴3b、及び、第2冷媒流路2aに挿入された伝熱管挿入部8aの連通穴8bは、同一径、かつ、積層方向に同心状に形成されているが、これに限定されるものではなく、同一径ではなく、あるいは、積層方向に同心状でないように形成されてもよく、各第1伝熱管1の第1冷媒流路1aが連通されるように形成されるものとすればよい。同様に、第1伝熱管1に形成された第2連通穴4a、第2伝熱管2に形成された第2連通穴4b、及び、第1冷媒流路1aに挿入された伝熱管挿入部8aの連通穴8bは、同一径、かつ、積層方向に同心状に形成されているが、これに限定されるものではなく、同一径ではなく、あるいは、積層方向に同心状でないように形成されてもよく、各第2伝熱管2の第2冷媒流路2aが連通されるように形成されるものとすればよい。また、上記の各穴は、円形状に限定されるものでもなく、矩形状等のその他の形状で形成されてもよい。 Further, as shown in FIG. 2, the first communication hole 3a formed in the first heat transfer tube 1, the first communication hole 3b formed in the second heat transfer tube 2, and the second refrigerant channel 2a are inserted. The communication hole 8b of the heat transfer tube insertion portion 8a formed is concentrically formed in the same diameter and in the stacking direction, but is not limited thereto, and is not limited to the same diameter or concentric in the stacking direction. The first refrigerant flow path 1a of each first heat transfer tube 1 may be formed so as to communicate with each other. Similarly, the 2nd communicating hole 4a formed in the 1st heat exchanger tube 1, the 2nd communicating hole 4b formed in the 2nd heat exchanger tube 2, and the heat exchanger tube insertion part 8a inserted in the 1st refrigerant channel 1a. The communication holes 8b have the same diameter and are concentrically formed in the stacking direction, but are not limited to this, and are not limited to the same diameter or are not concentric in the stacking direction. Alternatively, the second refrigerant flow path 2a of each second heat transfer tube 2 may be formed to communicate with each other. Moreover, each said hole is not limited to circular shape, You may form in other shapes, such as a rectangular shape.
 また、連通穴8bは、本発明の「挿入部連通穴」に相当する。 The communication hole 8b corresponds to the “insertion part communication hole” of the present invention.
(熱交換器10の製造方法)
 図4は、本発明の実施の形態1に係る積層型熱交換器である熱交換器10の要部断面図であり、図5は、同熱交換器10の製造方法を示す図である。
 図1及び図2で示される本実施の形態の熱交換器10の第1伝熱管1及び第2伝熱管2は、熱伝導性の良い材質、例えば、アルミ合金、銅又はステンレス等によって構成され、平板をロール成形等で曲げた後、この平板の両端部である継ぎ目を電縫(溶接)して形成したり、円筒をロール成形若しくはプレス成形したり、又は、押し出し成形若しくは引き抜き成形したりすることによって製造される。
(Manufacturing method of the heat exchanger 10)
FIG. 4 is a cross-sectional view of a main part of the heat exchanger 10 that is the stacked heat exchanger according to Embodiment 1 of the present invention, and FIG. 5 is a diagram illustrating a method for manufacturing the heat exchanger 10.
The first heat transfer tube 1 and the second heat transfer tube 2 of the heat exchanger 10 of the present embodiment shown in FIGS. 1 and 2 are made of a material having good heat conductivity, such as an aluminum alloy, copper, or stainless steel. After bending a flat plate by roll forming, etc., the seam at both ends of the flat plate is formed by electro-sewing (welding), the cylinder is roll-formed or press-molded, or extruded or pultruded. Manufactured by doing.
 また、図4で示される第1伝熱管1及び第2伝熱管2の積層構造は、互いの当接面において、アルミ-シリコン系等のろう材21によってろう付けされて接合されている。 Also, the laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2 shown in FIG. 4 is brazed and joined with a brazing material 21 such as an aluminum-silicon system at the contact surfaces of each other.
 また、図5(a)で示されるように、第1伝熱管1の両側の第1伝熱管端部5における第1冷媒流路1aの開口部、及び、第2伝熱管2の両側の第2伝熱管端部6における第2冷媒流路2aの開口部は、前述したように、それぞれ、蓋8の伝熱管挿入部8aが挿入され、蓋8によって塞がれる。このとき、伝熱管挿入部8aは、第1冷媒流路1aの内面及び第2冷媒流路2aの内面のそれぞれに、ろう材21によってろう付けされ、さらに、第1伝熱管端部5及び第2伝熱管端部6と、蓋8との接合面もろう材21によってろう付けされて接合される。これによって、第1伝熱管端部5及び第2伝熱管端部6から冷媒が漏洩することがない。また、伝熱管挿入部8aが第1冷媒流路1aの内面及び第2冷媒流路2aの内面のそれぞれにろう付けされることによって、第1冷媒流路1aと第2冷媒流路2aとは、連通することがなく、第1冷媒流路1aを流通する第1冷媒と、第2冷媒流路2aを流通する第2冷媒とが混合されてしまうこともない。 Further, as shown in FIG. 5A, the openings of the first refrigerant flow path 1 a at the first heat transfer tube end portions 5 on both sides of the first heat transfer tube 1 and the second heat transfer tube 2 on both sides. As described above, the heat transfer tube insertion portion 8a of the lid 8 is inserted into the opening of the second refrigerant flow path 2a at the heat transfer tube end 6 and is closed by the lid 8, respectively. At this time, the heat transfer tube insertion portion 8a is brazed to the inner surface of the first refrigerant channel 1a and the inner surface of the second refrigerant channel 2a by the brazing material 21, and further, the first heat transfer tube end 5 and the second 2 The joining surface between the heat transfer tube end 6 and the lid 8 is also brazed and joined by the brazing material 21. Accordingly, the refrigerant does not leak from the first heat transfer tube end 5 and the second heat transfer tube end 6. Further, the heat transfer tube insertion portion 8a is brazed to each of the inner surface of the first refrigerant channel 1a and the inner surface of the second refrigerant channel 2a, whereby the first refrigerant channel 1a and the second refrigerant channel 2a are The first refrigerant flowing through the first refrigerant flow path 1a and the second refrigerant flowing through the second refrigerant flow path 2a are not mixed without being communicated.
 また、図5(b)で示されるように、第1伝熱管1及び第2伝熱管2の積層構造の最上段の伝熱管である第1伝熱管1の上面には、管状の第1ポート3及び第2ポート4が、それぞれ2つずつ、ろう材(図示せず)によってろう付けされて設置される。そして、前述したように、第1ポート3は、すべての第1伝熱管1の第1冷媒流路1aに連通するように構成され、そして、第2ポート4は、すべての第2伝熱管2の第2冷媒流路2aに連通するように構成される。 Further, as shown in FIG. 5B, a tubular first port is formed on the upper surface of the first heat transfer tube 1 which is the uppermost heat transfer tube of the laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2. Two each of the third port 4 and the second port 4 are installed by brazing with a brazing material (not shown). As described above, the first port 3 is configured to communicate with the first refrigerant flow paths 1a of all the first heat transfer tubes 1, and the second port 4 includes all the second heat transfer tubes 2. The second refrigerant channel 2a is configured to communicate with the second refrigerant channel 2a.
 以上のような方法によって、積層型熱交換器である熱交換器10が構成される。 The heat exchanger 10 that is a stacked heat exchanger is configured by the above method.
(熱交換器10の熱交換動作)
 本実施の形態に係る積層型熱交換器である熱交換器10は、温熱又は冷熱を利用するヒートポンプシステムに搭載される。例えば、温熱を利用する動作の場合、冷媒回路から流れてきた高温の第1冷媒は、一方の第1ポート3から熱交換器10内に流入して、各第1伝熱管1の第1冷媒流路1aを流通し、他方の第1ポート3から流出する。また、利用側回路から流れてきた第2冷媒は、一方の第2ポート4から熱交換器10内に流入して、各第2伝熱管2の第2冷媒流路2aを流通し、他方の第2ポート4から流出する。このとき、第1冷媒及び第2冷媒は、それぞれ第1伝熱管1の第1冷媒流路1a、及び、第2伝熱管2の第2冷媒流路2aを対向流又は平行流となるように流れて、第1伝熱管1及び第2伝熱管2の壁面を介して、互いに熱交換が実施される。
(Heat exchange operation of the heat exchanger 10)
A heat exchanger 10 that is a stacked heat exchanger according to the present embodiment is mounted on a heat pump system that uses hot or cold heat. For example, in the case of the operation using the warm heat, the high-temperature first refrigerant flowing from the refrigerant circuit flows into the heat exchanger 10 from one first port 3, and the first refrigerant in each first heat transfer tube 1. It flows through the flow path 1 a and flows out from the other first port 3. The second refrigerant flowing from the use side circuit flows into the heat exchanger 10 from one second port 4 and flows through the second refrigerant flow path 2a of each second heat transfer tube 2, while the other refrigerant flows. Outflow from the second port 4. At this time, the first refrigerant and the second refrigerant flow in a counterflow or parallel flow through the first refrigerant flow path 1a of the first heat transfer tube 1 and the second refrigerant flow path 2a of the second heat transfer tube 2, respectively. The heat exchange is carried out through the wall surfaces of the first heat transfer tube 1 and the second heat transfer tube 2.
 なお、本実施の形態に係る熱交換器10において、第1伝熱管1の第1冷媒流路1aの流路面積、及び、第2伝熱管2の第2冷媒流路2aの流路面積は、必ずしも同一である必要はない。第1冷媒と第2冷媒との間に、比熱若しくは密度等の熱物性値、流量、圧力条件、又は、流体の清浄度等について差がある場合には、第1冷媒流路1aと第2冷媒流路2aとで流路面積を異なるようにしてもよい。例えば、第1冷媒として二酸化炭素又はフロン系の冷媒を用いて、第2冷媒として十分には水質管理されていない水道水等を用いる場合には、熱交換性能を向上するために、あるいは、冷媒流路内面へのスケール付着による圧力損失の増大を抑制するために、冷媒流路面積は、第2冷媒流路2aの流路面積を第1冷媒流路1aの流路面積より大きくするとよい。 In the heat exchanger 10 according to the present embodiment, the flow area of the first refrigerant flow path 1a of the first heat transfer tube 1 and the flow area of the second refrigerant flow path 2a of the second heat transfer tube 2 are as follows. , Not necessarily the same. If there is a difference between the first refrigerant and the second refrigerant in terms of thermophysical values such as specific heat or density, flow rate, pressure conditions, fluid cleanliness, etc., the first refrigerant channel 1a and the second refrigerant The flow passage area may be different between the refrigerant flow passage 2a. For example, when carbon dioxide or a fluorocarbon refrigerant is used as the first refrigerant and tap water or the like whose water quality is not sufficiently controlled is used as the second refrigerant, in order to improve heat exchange performance, or the refrigerant In order to suppress an increase in pressure loss due to scale adhesion to the inner surface of the flow channel, the refrigerant flow channel area may be larger than the flow channel area of the first refrigerant flow channel 1a.
(実施の形態1の効果)
 特許文献1に記載されている熱交換器は、各伝熱管へ冷媒を分配するヘッダー管によってデッドスペースを有しており、スペース効率を低下させていたが、上記の構成のように、第1ポート3から各第1伝熱管1の第1冷媒流路1aを連通させ、そして、第2ポート4から各第2伝熱管2の第2冷媒流路2aを連通させることによって、ヘッダー管を不要とすることができ、デッドスペースをなくすことができ、熱交換器10全体をコンパクトにすることができる。
(Effect of Embodiment 1)
The heat exchanger described in Patent Document 1 has a dead space due to a header pipe that distributes the refrigerant to each heat transfer pipe, and has reduced space efficiency. By connecting the first refrigerant flow path 1a of each first heat transfer tube 1 from the port 3 and communicating the second refrigerant flow path 2a of each second heat transfer tube 2 from the second port 4, no header pipe is required. The dead space can be eliminated, and the entire heat exchanger 10 can be made compact.
 また、特許文献1に記載されている熱交換器は、ヘッダー管に接合された伝熱管を曲げ加工する必要があるが、本実施の形態に係る熱交換器10における伝熱管(第1伝熱管1及び第2伝熱管2)については、そのような曲げ加工を実施する必要がなく穴加工を施すのみでよいので、工作性に優れている。 Moreover, although the heat exchanger described in Patent Document 1 needs to bend the heat transfer tube joined to the header tube, the heat transfer tube (first heat transfer tube) in the heat exchanger 10 according to the present embodiment. The first and second heat transfer tubes 2) are excellent in workability because it is not necessary to perform such bending processing and only hole processing is required.
 また、第1伝熱管1及び第2伝熱管2を交互に積層することによって、第1冷媒と第2冷媒との熱交換効率を向上させることができる。さらに、第1伝熱管1及び第2伝熱管2を、その冷媒流路の冷媒の流通方向、及び、冷媒流路の幅方向において略同一の長さとすることによって、第1冷媒と第2冷媒との熱交換をさらに効果的に実施することができ、かつ、熱交換器10全体をコンパクトにすることができる。 Also, by alternately laminating the first heat transfer tubes 1 and the second heat transfer tubes 2, the heat exchange efficiency between the first refrigerant and the second refrigerant can be improved. Furthermore, the 1st heat exchanger tube 1 and the 2nd heat exchanger tube 2 are made into the substantially same length in the distribution direction of the refrigerant | coolant of the refrigerant | coolant flow path, and the width direction of a refrigerant | coolant flow path. Can be more effectively implemented, and the entire heat exchanger 10 can be made compact.
 また、熱交換器10の積層構造の最上段の伝熱管(図1及び図2においては、第1伝熱管1)の上面において、2つの第1ポート3及び第2ポート4をそれぞれ、対角となる位置、かつ、伝熱管における冷媒流路の端部である蓋8近傍に備えてるので、各第1冷媒流路1a及び各第2冷媒流路2aにおける冷媒が流れる流路長を略最長にすることができ、第1冷媒と第2冷媒との熱交換効率をさらに向上させることができる。
 ただし、第1ポート3及び第2ポート4を上記の位置に設置することに限定するものではなく、ヒートポンプシステム等における熱交換器10の搭載位置によって、第1ポート3及び第2ポート4の位置を適宜変更するものとしてもよく、この場合、第1ポート3については、第2冷媒流路2aに挿入された伝熱管挿入部8aにおける連通穴8bと連通させ、第2ポート4については、第1冷媒流路1aに挿入された伝熱管挿入部8aにおける連通穴8bと連通させることが必要である。
 さらに、図1及び図2で示されるように、それぞれ2つの第1ポート3及び第2ポート4は、熱交換器10の積層構造の最上段の伝熱管の上面に設置される構成としているが、これについても限定されるものではない。例えば、2つの第1ポート3のうち一方を積層構造の最上段の伝熱管の上面に設置し、他方を積層構造を最下段の伝熱管の下面に設置するものとしてもよい。これについては、2つの第2ポート4についても同様である。また、第1ポート3及び第2ポート4を同一面に設置するものとしなくてもよい。例えば、2つの第1ポート3を積層構造の最上段の伝熱管の上面に設置し、そして、2つの第2ポート4を積層構造の最下段の伝熱管の下面に設置するものとしてもよい。
In addition, on the upper surface of the uppermost heat transfer tube (the first heat transfer tube 1 in FIGS. 1 and 2) of the stacked structure of the heat exchanger 10, the two first ports 3 and the second port 4 are diagonally connected. And in the vicinity of the lid 8 which is the end of the refrigerant flow path in the heat transfer tube, the flow path length through which the refrigerant flows in each first refrigerant flow path 1a and each second refrigerant flow path 2a is substantially the longest. The heat exchange efficiency between the first refrigerant and the second refrigerant can be further improved.
However, it is not limited to installing the first port 3 and the second port 4 at the above positions, and the positions of the first port 3 and the second port 4 depending on the mounting position of the heat exchanger 10 in the heat pump system or the like. In this case, the first port 3 communicates with the communication hole 8b in the heat transfer tube insertion portion 8a inserted into the second refrigerant flow path 2a, and the second port 4 It is necessary to communicate with the communication hole 8b in the heat transfer tube insertion portion 8a inserted into the one refrigerant flow path 1a.
Further, as shown in FIGS. 1 and 2, each of the two first ports 3 and the second ports 4 is configured to be installed on the upper surface of the uppermost heat transfer tube of the laminated structure of the heat exchanger 10. This is not limited. For example, one of the two first ports 3 may be installed on the upper surface of the uppermost heat transfer tube of the laminated structure, and the other may be installed on the lower surface of the lowermost heat transfer tube. The same applies to the two second ports 4. The first port 3 and the second port 4 may not be installed on the same surface. For example, the two first ports 3 may be installed on the upper surface of the uppermost heat transfer tube of the laminated structure, and the two second ports 4 may be installed on the lower surface of the lowermost heat transfer tube of the laminated structure.
 また、伝熱管挿入部8aが第1冷媒流路1aの内面及び第2冷媒流路2aの内面のそれぞれにろう付けされることによって、第1冷媒流路1aと第2冷媒流路2aとは、遮断されて連通することがなく、第1冷媒流路1aを流通する第1冷媒と、第2冷媒流路2aを流通する第2冷媒とが混合されることを防止することができる。 Further, the heat transfer tube insertion portion 8a is brazed to each of the inner surface of the first refrigerant channel 1a and the inner surface of the second refrigerant channel 2a, whereby the first refrigerant channel 1a and the second refrigerant channel 2a are Therefore, the first refrigerant flowing through the first refrigerant flow path 1a and the second refrigerant flowing through the second refrigerant flow path 2a can be prevented from being mixed without being blocked and communicated.
実施の形態2.
(熱交換器10aの構造)
 図6は、本発明の実施の形態2に係る積層型熱交換器である熱交換器10aの斜視図であり、図7は、同熱交換器10aの上面図、B-B断面図及び側面図からなる三面図である。以下、図6及び図7を参照しながら、本実施の形態に係る積層型熱交換器である熱交換器10aの構成について、実施の形態1に係る熱交換器10の構成と相違する点を中心に説明する。
Embodiment 2. FIG.
(Structure of heat exchanger 10a)
FIG. 6 is a perspective view of a heat exchanger 10a that is a stacked heat exchanger according to Embodiment 2 of the present invention, and FIG. 7 is a top view, a BB sectional view, and a side view of the heat exchanger 10a. FIG. Hereinafter, with reference to FIG. 6 and FIG. 7, the configuration of the heat exchanger 10 a that is the stacked heat exchanger according to the present embodiment is different from the configuration of the heat exchanger 10 according to the first embodiment. The explanation is centered.
 図6及び図7で示されるように、熱交換器10aは、冷媒が流れる断面が矩形状の冷媒流路を有し、その冷媒流路の冷媒の流通方向に同一の長さを有し、かつ、冷媒流路の幅方向においても略同一の長さを有した長方形状の複数の第1伝熱管1及び第2伝熱管2が交互に積層された構造を有している。このうち、第1伝熱管1の両側の端部である第1伝熱管端部5を貫通する矩形状の冷媒流路を第1冷媒流路1aとし、第2伝熱管2の両側の端部である第2伝熱管端部6を貫通する矩形状の冷媒流路を第2冷媒流路2aとする。 As shown in FIGS. 6 and 7, the heat exchanger 10a has a refrigerant flow path in which the refrigerant flows in a rectangular shape, and has the same length in the flow direction of the refrigerant in the refrigerant flow path, In addition, a plurality of rectangular first heat transfer tubes 1 and second heat transfer tubes 2 having substantially the same length in the width direction of the refrigerant flow path are alternately stacked. Among these, the rectangular refrigerant flow path penetrating the first heat transfer tube end portion 5, which is the end portions on both sides of the first heat transfer tube 1, is defined as the first refrigerant flow passage 1 a, and the end portions on both sides of the second heat transfer tube 2. A rectangular refrigerant flow path penetrating through the second heat transfer tube end 6 is defined as a second refrigerant flow path 2a.
 なお、第1伝熱管1及び第2伝熱管2を、その冷媒流路の冷媒の流通方向、及び、冷媒流路の幅方向において略同一の長さとしているが、これに限定されるものではなく、異なる長さであってもよい。 The first heat transfer tube 1 and the second heat transfer tube 2 have substantially the same length in the refrigerant flow direction of the refrigerant flow channel and in the width direction of the refrigerant flow channel, but are not limited thereto. There may be different lengths.
 また、熱交換器10aは、本発明の「積層型熱交換器」に相当する。 The heat exchanger 10a corresponds to the “stacked heat exchanger” of the present invention.
 第1伝熱管1は、第1伝熱管端部5から内部に向かって所定長さの領域において、第1冷媒流路1aの貫通方向から見て、その長手方向の一端部から他端側に至る途中までの部分を、図6における上下方向から押し潰して形成された押し潰し部9aを有する。この押し潰し部9aによって、第1冷媒流路1aの開口部の一部が塞がれる。また、押し潰し部9aが形成された第1伝熱管端部5の反対側の第1伝熱管端部5においても、同様に、押し潰し部9aが形成され、この際、2つの押し潰し部9aは第1伝熱管1の上面から見て対角の位置となるように形成される。また、第1伝熱管1の2つの押し潰し部9aに挟まれた中央部は、第1伝熱管1の内部の第1冷媒流路1aが押し潰されて消失しない程度に、図6における上下方向から押し潰され、これによって、押し潰し部9aを形成する際に押し潰されなかった他端側の部分が、上記の中央部よりも盛り上がった形状の盛り上がり部9bが形成される。この盛り上がり部9bは、2つの押し潰し部9aに対応して2つ形成され、第1伝熱管1の上面から見て対角の位置となるように形成される。また、第2伝熱管2についても同様に、両側の第2伝熱管端部6について、それぞれ押し潰し部9c及び盛り上がり部9dが形成されている。また、上記のように、第1伝熱管1の第1冷媒流路1aの開口部の一部は、押し潰し部9aによって塞がれているが、盛り上がり部9bの部分は開口しており、この内部には、第1冷媒流路1aに連通した、第1冷媒補助流路1bが形成されている。同様に、第2伝熱管2の第2冷媒流路2aの開口部の一部は、押し潰し部9cによって塞がれているが、盛り上がり部9dの部分は開口しており、この内部には、第2冷媒流路2aに連通した、第2冷媒補助流路2bが形成されている。 The first heat transfer tube 1 extends from one end portion in the longitudinal direction to the other end side in a region of a predetermined length from the first heat transfer tube end portion 5 toward the inside as viewed from the penetration direction of the first refrigerant flow path 1a. It has the crushing part 9a formed by crushing the part to the middle from the up-down direction in FIG. A part of the opening of the first refrigerant flow path 1a is closed by the crushing portion 9a. Similarly, in the first heat transfer tube end portion 5 on the opposite side of the first heat transfer tube end portion 5 where the crushing portion 9a is formed, a crushing portion 9a is formed, and at this time, two crushing portions are formed. 9a is formed so that it may become a diagonal position seeing from the upper surface of the 1st heat exchanger tube 1. As shown in FIG. Further, the central portion sandwiched between the two crushing portions 9a of the first heat transfer tube 1 is arranged so that the first refrigerant flow path 1a inside the first heat transfer tube 1 is not crushed and disappears, as shown in FIG. As a result, the swelled portion 9b is formed so that the portion on the other end side that has not been crushed when the crushed portion 9a is formed is swelled from the center portion. Two raised portions 9b are formed corresponding to the two crushed portions 9a, and are formed so as to be diagonally positioned when viewed from the upper surface of the first heat transfer tube 1. Similarly, for the second heat transfer tube 2, a crushing portion 9 c and a raised portion 9 d are formed for the second heat transfer tube end portions 6 on both sides. In addition, as described above, a part of the opening of the first refrigerant flow path 1a of the first heat transfer tube 1 is closed by the crushing part 9a, but the part of the rising part 9b is open, Inside this, there is formed a first refrigerant auxiliary channel 1b communicating with the first refrigerant channel 1a. Similarly, a part of the opening of the second refrigerant flow path 2a of the second heat transfer tube 2 is blocked by the crushing part 9c, but the part of the rising part 9d is open, A second refrigerant auxiliary channel 2b communicating with the second refrigerant channel 2a is formed.
 また、第1伝熱管1及び第2伝熱管2の積層構造は、第1伝熱管1の押し潰し部9a及び第2伝熱管2の盛り上がり部9dが重なるように、かつ、第1伝熱管1の盛り上がり部9b及び第2伝熱管2の押し潰し部9cが重なるようにして積層して構成される。この際、押し潰し部9a及び盛り上がり部9dは、ろう材21によってろう付けされ、同様に、盛り上がり部9b及び押し潰し部9cも、ろう材21によってろう付けされる。 Moreover, the laminated structure of the 1st heat exchanger tube 1 and the 2nd heat exchanger tube 2 is the 1st heat exchanger tube 1 so that the crushing part 9a of the 1st heat exchanger tube 1 and the rising part 9d of the 2nd heat exchanger tube 2 may overlap. The raised portion 9b and the crushing portion 9c of the second heat transfer tube 2 are stacked so as to overlap each other. At this time, the crushed portion 9 a and the raised portion 9 d are brazed by the brazing material 21, and similarly, the raised portion 9 b and the crushed portion 9 c are also brazed by the brazing material 21.
 また、図6及び図7で示されるように、第1伝熱管1及び第2伝熱管2の積層構造の最上段の伝熱管(図6及び図7においては、第1伝熱管1)の両側の端部(図6及び図7においては、第1伝熱管端部5)に形成された盛り上がり部9bの上面には、後述するように、第1冷媒補助流路1bに連通する管状の第1ポート3、そして、押し潰し部9aの上面には、後述するように、第2冷媒補助流路2bに連通する管状の第2ポート4が、それぞれろう材21によってろう付けされている。この第1ポート3及び第2ポート4は、冷媒の入口用及び出口用に、上記のようにそれぞれ2つ設置されており、ヒートポンプシステムにおける冷媒回路等に接続される。 Further, as shown in FIGS. 6 and 7, both sides of the uppermost heat transfer tube (in FIG. 6 and FIG. 7, the first heat transfer tube 1) of the laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2. On the upper surface of the raised portion 9b formed at the end portion (the first heat transfer tube end portion 5 in FIGS. 6 and 7), the tubular first communicating with the first refrigerant auxiliary flow path 1b is described later. A tubular second port 4 communicating with the second refrigerant auxiliary flow path 2b is brazed to the upper surface of the 1 port 3 and the crushing portion 9a with a brazing material 21, respectively, as will be described later. The first port 3 and the second port 4 are provided for the refrigerant inlet and outlet, respectively, as described above, and are connected to a refrigerant circuit or the like in the heat pump system.
 次に、図6及び図7を参照しながら、第1ポート3及び積層された第1伝熱管1の第1冷媒流路1aが連通する構造、並びに、第2ポート4及び積層された第2伝熱管2の第2冷媒流路2aが連通する構造について説明する。図7(a)は、本実施の形態に係る熱交換器10aの上面図であり、図7(b)は、図7(a)におけるB-B断面図であり、そして、図7(c)は、同熱交換器10aの側面図である。 Next, referring to FIG. 6 and FIG. 7, the first port 3 and the structure in which the first refrigerant flow path 1a of the stacked first heat transfer tube 1 communicates, and the second port 4 and the stacked second A structure in which the second refrigerant flow path 2a of the heat transfer tube 2 communicates will be described. FIG. 7A is a top view of the heat exchanger 10a according to the present embodiment, FIG. 7B is a cross-sectional view taken along the line BB in FIG. 7A, and FIG. ) Is a side view of the heat exchanger 10a.
 図7(b)で示されるように、最上段の第1伝熱管1に形成された盛り上がり部9bの上面及び下面には、第1連通穴3cが貫通されており、第1ポート3は、この盛り上がり部9bの上面の第1連通穴3cを介して、盛り上がり部9bの内部に形成された第1冷媒補助流路1bに連通している。この第1冷媒補助流路1bは、第1伝熱管1の第1冷媒流路1aに連通している。また、盛り上がり部9bの下面に形成された第1連通穴3cは、第1伝熱管1の直下の第2伝熱管2において、盛り上がり部9bの直下に位置する押し潰し部9cに貫通して形成された第1連通穴3dに連通している。ここで、この押し潰し部9cは、前述のように、第2伝熱管2の第2冷媒流路2aの開口部の一部を塞いでおり、第1連通穴3dは、第2冷媒流路2aには連通していない。さらに、この第2伝熱管2の直下の第1伝熱管1において、押し潰し部9cの直下に位置する盛り上がり部9bも、最上段の第1伝熱管1に形成された盛り上がり部9bと同様に、その上面及び下面に第1連通穴3cが貫通されており、上記の第1連通穴3dは、このうちの盛り上がり部9bの上面の第1連通穴3cを介して、その内部に形成された第1冷媒補助流路1bに連通し、さらに、第1伝熱管1の第1冷媒流路1aに連通している。 As shown in FIG. 7B, the first communication hole 3c is penetrated through the upper surface and the lower surface of the raised portion 9b formed in the uppermost first heat transfer tube 1, and the first port 3 is The first refrigerant auxiliary flow path 1b formed inside the raised portion 9b communicates with the first communicating hole 3c on the upper surface of the raised portion 9b. The first refrigerant auxiliary flow path 1 b communicates with the first refrigerant flow path 1 a of the first heat transfer tube 1. Moreover, the 1st communicating hole 3c formed in the lower surface of the rise part 9b is penetrated and formed in the crushing part 9c located in the 2nd heat exchanger tube 2 directly under the 1st heat transfer pipe 1 directly under the rise part 9b. The first communication hole 3d communicated. Here, as described above, the crushing portion 9c closes a part of the opening of the second refrigerant flow path 2a of the second heat transfer tube 2, and the first communication hole 3d serves as the second refrigerant flow path. It does not communicate with 2a. Further, in the first heat transfer tube 1 directly below the second heat transfer tube 2, the raised portion 9b located immediately below the crushing portion 9c is also the same as the raised portion 9b formed in the uppermost first heat transfer tube 1. The first communication hole 3c is penetrated through the upper surface and the lower surface, and the first communication hole 3d is formed inside the first communication hole 3c on the upper surface of the raised portion 9b. It communicates with the first refrigerant auxiliary channel 1b and further communicates with the first refrigerant channel 1a of the first heat transfer tube 1.
 すなわち、第1ポート3は、最上段の第1伝熱管1の第1冷媒流路1aに連通しており、さらにこの第1冷媒流路1aは、その直下の第2伝熱管2を介して、さらにその下の第1伝熱管1の第1冷媒流路1aに連通している。以下、同様の構造を取り、第1ポート3及び各第1伝熱管1の第1冷媒流路1aは連通した構造を有し、第2伝熱管2の第2冷媒流路2aとは、この第2伝熱管2に形成された押し潰し部9cによって遮断された構造を有している。ただし、第1伝熱管1及び第2伝熱管2の積層構造の最下段の第1伝熱管1(図7(b)における下から二番目の伝熱管)の押し潰し部9aにおいては、上面のみ第1連通穴3cが形成されている。このような構造によって、2つの第1ポート3のうち一方から流入した第1冷媒は、積層構造のうち各第1伝熱管1の第1冷媒補助流路1b及び第1冷媒流路1aを流通して、他方の第1ポート3から流出する。 That is, the first port 3 communicates with the first refrigerant flow path 1a of the uppermost first heat transfer tube 1, and the first refrigerant flow path 1a further passes through the second heat transfer tube 2 directly below the first refrigerant flow path 1a. Furthermore, it communicates with the first refrigerant flow path 1a of the first heat transfer tube 1 therebelow. Hereinafter, the same structure is taken, and the first refrigerant flow path 1a of the first port 3 and each of the first heat transfer tubes 1 has a communication structure, and the second refrigerant flow path 2a of the second heat transfer tube 2 The second heat transfer tube 2 has a structure blocked by a crushing portion 9 c formed in the second heat transfer tube 2. However, in the crushing portion 9a of the lowermost first heat transfer tube 1 (second heat transfer tube from the bottom in FIG. 7B) of the laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2, only the upper surface is provided. A first communication hole 3c is formed. With such a structure, the first refrigerant flowing from one of the two first ports 3 flows through the first refrigerant auxiliary flow path 1b and the first refrigerant flow path 1a of each first heat transfer tube 1 in the laminated structure. Then, it flows out from the other first port 3.
 また、最上段の第1伝熱管1に形成された押し潰し部9aには、第2連通穴4cが貫通されており、第2ポート4は、この第2連通穴4cに連通している。また、この第1伝熱管1の直下の第2伝熱管2において、押し潰し部9aの直下に位置する盛り上がり部9dには、その上面及び下面に第2連通穴4dが形成されており、この第2伝熱管2の直上の第1伝熱管1に形成された押し潰し部9aの第2連通穴4cは、このうちの盛り上がり部9dの上面の第2連通穴4dを介して、その内部に形成された第2冷媒補助流路2bに連通している。この、第2冷媒補助流路2bは、第2伝熱管2の第2冷媒流路2aに連通している。また、盛り上がり部9dの下面に形成された第2連通穴4dは、第2伝熱管2の直下の第1伝熱管1において、盛り上がり部9dの直下に位置する押し潰し部9aに貫通して形成された第2連通穴4cに連通している。さらに、この第1伝熱管1の直下の第2伝熱管2において、押し潰し部9aの直下に位置する盛り上がり部9dには、その上面及び下面に第2連通穴4dが貫通されており、上記の第2連通穴4cは、このうちの盛り上がり部9dの上面の第2連通穴4dを介して、その内部に形成された第2冷媒補助流路2bに連通し、さらに、第2伝熱管2の第2冷媒流路2aに連通している。 Further, the second communication hole 4c is penetrated through the crushing portion 9a formed in the uppermost first heat transfer tube 1, and the second port 4 is communicated with the second communication hole 4c. Further, in the second heat transfer tube 2 immediately below the first heat transfer tube 1, the raised portion 9d located immediately below the crushing portion 9a has second communication holes 4d formed on the upper and lower surfaces thereof. The second communication hole 4c of the crushing portion 9a formed in the first heat transfer tube 1 immediately above the second heat transfer tube 2 is inserted into the inside thereof via the second communication hole 4d on the upper surface of the raised portion 9d. It communicates with the formed second refrigerant auxiliary flow path 2b. The second refrigerant auxiliary flow path 2 b communicates with the second refrigerant flow path 2 a of the second heat transfer tube 2. Further, the second communication hole 4d formed in the lower surface of the raised portion 9d is formed through the crushing portion 9a located immediately below the raised portion 9d in the first heat transfer tube 1 immediately below the second heat transfer tube 2. The second communication hole 4c communicated. Furthermore, in the second heat transfer tube 2 immediately below the first heat transfer tube 1, the raised portion 9d located immediately below the crushing portion 9a has a second communication hole 4d penetrating through the upper surface and the lower surface, The second communication hole 4c communicates with the second refrigerant auxiliary flow path 2b formed therein via the second communication hole 4d on the upper surface of the raised portion 9d, and further the second heat transfer tube 2. To the second refrigerant flow path 2a.
 すなわち、第2ポート4は、最上段の第1伝熱管1の直下の第2伝熱管2の第2冷媒流路2aに連通しており、さらにこの第2冷媒流路2aは、その直下の第1伝熱管1を介して、さらにその下の第2伝熱管2の第2冷媒流路2aに連通している。以下、同様の構造を取り、第2ポート4及び各第2伝熱管2の第2冷媒流路2aは連通した構造を有し、第1伝熱管1の第1冷媒流路1aとは、この第1伝熱管1に形成された押し潰し部9aによって遮断された構造を有している。ただし、第1伝熱管1及び第2伝熱管2の積層構造の最下段の第2伝熱管2(図7(b)における最下段の伝熱管)に押し潰し部9cにおいては、上面のみ第2連通穴4dが形成されている。このような構造によって、2つの第2ポート4のうち一方から流入した第2冷媒は、積層構造のうち各第2伝熱管2の第2冷媒補助流路2b及び第2冷媒流路2aを流通して、他方の第2ポート4から流出する。 That is, the second port 4 communicates with the second refrigerant flow path 2a of the second heat transfer pipe 2 immediately below the uppermost first heat transfer pipe 1, and further, the second refrigerant flow path 2a is directly below it. The first heat transfer tube 1 is further communicated with the second refrigerant flow path 2a of the second heat transfer tube 2 therebelow. Hereinafter, the same structure is taken, and the second refrigerant flow path 2a of the second port 4 and each of the second heat transfer tubes 2 has a communication structure, and the first refrigerant flow path 1a of the first heat transfer tube 1 The first heat transfer tube 1 has a structure blocked by a crushing portion 9a formed in the first heat transfer tube 1. However, in the crushing portion 9c, only the upper surface of the second heat transfer tube 2 (the lowermost heat transfer tube in FIG. 7B) of the laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2 is second only. A communication hole 4d is formed. With such a structure, the second refrigerant flowing from one of the two second ports 4 flows through the second refrigerant auxiliary flow path 2b and the second refrigerant flow path 2a of each second heat transfer tube 2 in the laminated structure. Then, it flows out from the other second port 4.
 なお、図6及び図7(b)で示されるように、第1伝熱管1及び第2伝熱管2それぞれに、断面が矩形状の第1冷媒補助流路1b及び第2冷媒補助流路2bを形成しているものとしているが、これに限定されるものではなく、例えば、楕円状等のその他の形状としてもよい。 As shown in FIG. 6 and FIG. 7B, the first refrigerant auxiliary flow channel 1b and the second refrigerant auxiliary flow channel 2b having a rectangular cross section are provided in the first heat transfer tube 1 and the second heat transfer tube 2, respectively. However, the present invention is not limited to this. For example, other shapes such as an ellipse may be used.
 また、図7で示されるように、盛り上がり部9bに形成された第1連通穴3c、及び、押し潰し部9cに形成された第1連通穴3dは、同一径、かつ、積層方向に同心状に形成されているが、これに限定されるものではなく、同一径ではなく、あるいは、積層方向に同心状でないように形成されてもよく、各第1伝熱管1の第1冷媒流路1aが連通されるように形成されるものとすればよい。同様に、押し潰し部9aに形成された第2連通穴4c、及び、盛り上がり部9dに形成された第2連通穴4dは、同一径、かつ、積層方向に同心状に形成されているが、これに限定されるものではなく、同一径ではなく、あるいは、積層方向に同心状でないように形成されてもよく、各第2伝熱管2の第2冷媒流路2aが連通されるように形成されるものとすればよい。また、上記の各穴は、円形状に限定されるものではなく、矩形状等のその他の形状で形成されてもよい。 Further, as shown in FIG. 7, the first communication hole 3c formed in the raised portion 9b and the first communication hole 3d formed in the crushing portion 9c have the same diameter and are concentric in the stacking direction. However, the present invention is not limited to this, and the first refrigerant flow path 1a of each first heat transfer tube 1 may be formed so as not to have the same diameter or to be concentric in the stacking direction. May be formed to communicate with each other. Similarly, the second communication hole 4c formed in the crushed portion 9a and the second communication hole 4d formed in the raised portion 9d are formed in the same diameter and concentrically in the stacking direction. However, the present invention is not limited to this, and it may be formed not to have the same diameter or to be concentric in the stacking direction, and to be formed so that the second refrigerant flow paths 2a of the second heat transfer tubes 2 communicate with each other. What should be done. Moreover, each said hole is not limited to circular shape, You may form in other shapes, such as a rectangular shape.
(熱交換器10aの製造方法)
 図8は、本発明の実施の形態2に係る積層型熱交換器である熱交換器10aの製造方法を示す図である。
 図8で示される本実施の形態の熱交換器10の第1伝熱管1及び第2伝熱管2は、熱伝導性の良い材質、例えば、アルミ合金、銅又はステンレス等によって構成され、平板をロール成形等で曲げた後、この平板の両端部である継ぎ目を電縫(溶接)して形成したり、円筒をロール成形若しくはプレス成形したり、又は、押し出し成形若しくは引き抜き成形したりすることによって製造される。
(Manufacturing method of heat exchanger 10a)
FIG. 8 is a diagram showing a method of manufacturing the heat exchanger 10a that is a stacked heat exchanger according to Embodiment 2 of the present invention.
The first heat transfer tube 1 and the second heat transfer tube 2 of the heat exchanger 10 of the present embodiment shown in FIG. 8 are made of a material having good heat conductivity, for example, aluminum alloy, copper, stainless steel, etc. After bending by roll forming or the like, by forming the seam at both ends of this flat plate by electro-sewing (welding), by rolling or press forming the cylinder, or by extrusion or pultrusion Manufactured.
 次に、第1伝熱管1の第1伝熱管端部5から内部に向かって所定長さの領域において、第1冷媒流路1aの貫通方向から見て、その長手方向の一端部から他端側に至る途中までの部分を、図8における上下方向から押し潰して、押し潰し部9aが形成される。この押し潰し部9aによって、第1冷媒流路1aの開口部の一部が塞がれる。また、押し潰し部9aが形成された第1伝熱管端部5の反対側の第1伝熱管端部5においても、同様に、押し潰し部9aを形成し、この際、2つの押し潰し部9aは第1伝熱管1の上面から見て対角の位置となるように形成される。 Next, in a region having a predetermined length from the first heat transfer tube end portion 5 to the inside of the first heat transfer tube 1, when viewed from the penetration direction of the first refrigerant flow path 1 a, one end portion to the other end in the longitudinal direction thereof. A portion up to the middle is crushed from the vertical direction in FIG. 8 to form a crushed portion 9a. A part of the opening of the first refrigerant flow path 1a is closed by the crushing portion 9a. Similarly, in the first heat transfer tube end portion 5 opposite to the first heat transfer tube end portion 5 in which the crushing portion 9a is formed, the crushing portion 9a is formed, and at this time, two crushing portions are formed. 9a is formed so that it may become a diagonal position seeing from the upper surface of the 1st heat exchanger tube 1. As shown in FIG.
 次に、第1伝熱管1の2つの押し潰し部9aに挟まれた中央部を、第1伝熱管1の内部の第1冷媒流路1aが押し潰されて消失しない程度に、図8における上下方向から押し潰し、この結果、押し潰し部9aを形成する際に押し潰されなかった他端側の部分が、上記の中央部よりも盛り上がった形状の盛り上がり部9bが形成される。この盛り上がり部9bは、2つの押し潰し部9aに対応して2つ形成され、第1伝熱管1の上面から見て対角の位置となるように形成される。 Next, the central portion sandwiched between the two crushing portions 9a of the first heat transfer tube 1 is so sized that the first refrigerant flow path 1a inside the first heat transfer tube 1 is not crushed and disappears in FIG. As a result, the swelled portion 9b is formed such that the other end side portion that is not crushed when the crushed portion 9a is formed is swelled from the central portion. Two raised portions 9b are formed corresponding to the two crushed portions 9a, and are formed so as to be diagonally positioned when viewed from the upper surface of the first heat transfer tube 1.
 そして、第2伝熱管2についても同様に、両側の第2伝熱管端部6について、それぞれ押し潰し部9aに相当する押し潰し部9c、及び、盛り上がり部9bに相当する盛り上がり部9dが形成される。 Similarly, in the second heat transfer tube 2, a crushing portion 9 c corresponding to the crushing portion 9 a and a rising portion 9 d corresponding to the rising portion 9 b are formed on the second heat transfer tube end portions 6 on both sides. The
 この段階で、押し潰し部9aが、第1伝熱管1の第1冷媒流路1aの開口部の一部を塞いでいるのに対し、盛り上がり部9bの部分は開口しており、この内部には、第1冷媒流路1aに連通する第1冷媒補助流路1bが形成される。また、同様に、押し潰し部9cが、第2伝熱管2の第2冷媒流路2aの開口部の一部を塞いでいるのに対し、盛り上がり部9dの部分は開口しており、この内部には、第2冷媒流路2aに連通する第2冷媒補助流路2bが形成される。 At this stage, the crushing portion 9a blocks a part of the opening of the first refrigerant flow path 1a of the first heat transfer tube 1, whereas the swelled portion 9b is open, Is formed with a first refrigerant auxiliary channel 1b communicating with the first refrigerant channel 1a. Similarly, the crushing portion 9c blocks a part of the opening of the second refrigerant flow path 2a of the second heat transfer tube 2, whereas the swelled portion 9d is open, Is formed with a second refrigerant auxiliary channel 2b communicating with the second refrigerant channel 2a.
 次に、上記のように、第1伝熱管1については押し潰し部9a及び盛り上がり部9bが形成された状態において、そして、第2伝熱管2については押し潰し部9c及び盛り上がり部9dが形成された状態において、第1伝熱管1及び第2伝熱管2について、次のように積層構造が形成される。すなわち、第1伝熱管1の押し潰し部9a及び第2伝熱管2の盛り上がり部9dが重なるように、かつ、第1伝熱管1の盛り上がり部9b及び第2伝熱管2の押し潰し部9cが重なるようにして積層される。この際、第1伝熱管1及び第2伝熱管2のそれぞれの中央部を互いにろう材21によってろう付けされて接合する。そして、押し潰し部9a及び盛り上がり部9dについては、ろう材21によってろう付けし、同様に、盛り上がり部9b及び押し潰し部9cも、ろう材21によってろう付けして、それぞれ接合される。
 なお、前述のように、第1伝熱管1及び第2伝熱管2のそれぞれの中央部を互いに接合した際に、押し潰し部9aと盛り上がり部9dとの間、又は、盛り上がり部9bと押し潰し部9cとの間に、隙間が存在する場合は、その隙間にろう材21を充填してろう付けするものとすればよい。同様に、押し潰し部9a及び盛り上がり部9d、並びに、盛り上がり部9b及び押し潰し部9cを接合した際に、第1伝熱管1の中央部と第2伝熱管2の中央部との間に、隙間が存在する場合は、その隙間にろう材21を充填してろう付けするものとすればよい。
Next, as described above, the crushing portion 9a and the raised portion 9b are formed for the first heat transfer tube 1, and the crushing portion 9c and the raised portion 9d are formed for the second heat transfer tube 2. In this state, the laminated structure is formed as follows for the first heat transfer tube 1 and the second heat transfer tube 2. That is, the crushing portion 9a of the first heat transfer tube 1 and the bulging portion 9d of the second heat transfer tube 2 overlap so that the crushing portion 9d of the first heat transfer tube 1 and the crushing portion 9c of the second heat transfer tube 2 are overlapped. They are stacked so that they overlap. At this time, the central portions of the first heat transfer tube 1 and the second heat transfer tube 2 are brazed to each other by the brazing material 21 and joined. The crushing portion 9a and the raised portion 9d are brazed with the brazing material 21, and similarly, the raised portion 9b and the crushing portion 9c are also brazed with the brazing material 21 and joined thereto.
In addition, as mentioned above, when each center part of the 1st heat exchanger tube 1 and the 2nd heat exchanger tube 2 mutually joined, it is between the crushing part 9a and the swelling part 9d, or crushing with the swelling part 9b. If there is a gap between the portion 9c, the brazing material 21 may be filled into the gap and brazed. Similarly, when joining the crushing part 9a and the raised part 9d, and the raised part 9b and the crushing part 9c, between the central part of the first heat transfer tube 1 and the central part of the second heat transfer tube 2, When there is a gap, the brazing material 21 may be filled into the gap and brazed.
 また、図8(a)で示されるように、第1伝熱管1の盛り上がり部9bの開口部、及び、第2伝熱管2の盛り上がり部9dの開口部は、それぞれ蓋13によって塞がれる。この蓋13は、図8(a)で示されるように、蓋13の片側の面に対して垂直に立設された直方体状の伝熱管挿入部13aを備えている。上記のように、第1伝熱管1の盛り上がり部9bの開口部、及び、第2伝熱管2の盛り上がり部9dの開口部が、それぞれ蓋13によって塞がれる際、それぞれの開口部に蓋13の伝熱管挿入部13aが挿入され、ろう材21によってそれぞれの開口部に蓋13が接合されて塞がれる。これによって、盛り上がり部9b及び盛り上がり部9dの開口部から冷媒が漏洩することがなくなる。 Further, as shown in FIG. 8A, the opening of the raised portion 9 b of the first heat transfer tube 1 and the opening of the raised portion 9 d of the second heat transfer tube 2 are respectively closed by the lid 13. As shown in FIG. 8A, the lid 13 includes a rectangular parallelepiped heat transfer tube insertion portion 13 a erected vertically with respect to one surface of the lid 13. As described above, when the opening of the raised portion 9b of the first heat transfer tube 1 and the opening of the raised portion 9d of the second heat transfer tube 2 are respectively closed by the lid 13, the respective openings are covered with the lid 13. The heat transfer tube insertion portion 13a is inserted, and the lid 13 is joined to each opening portion by the brazing material 21 to be closed. This prevents the refrigerant from leaking from the opening portions of the raised portion 9b and the raised portion 9d.
 また、図8(b)で示されるように、第1伝熱管1及び第2伝熱管2の積層構造の最上段の伝熱管である第1伝熱管1のそれぞれの盛り上がり部9bの上面には、管状の第1ポート3がろう材(図示せず)によってろう付けされ、第1伝熱管1のそれぞれの押し潰し部9aの上面には、管状の第2ポート4がろう材によってろう付けされて設置される。そして、前述したように、第1ポート3は、すべての第1伝熱管1の第1冷媒補助流路1b及び第1冷媒流路1aに連通するように構成され、そして、第2ポート4は、すべての第2伝熱管2の第2冷媒補助流路2b及び第2冷媒流路2aに連通するように構成される。 Further, as shown in FIG. 8B, the upper surface of each raised portion 9b of the first heat transfer tube 1 which is the uppermost heat transfer tube of the laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2 is formed on the upper surface. The tubular first port 3 is brazed with a brazing material (not shown), and the tubular second port 4 is brazed with the brazing material on the upper surface of each crushing portion 9a of the first heat transfer tube 1. Installed. As described above, the first port 3 is configured to communicate with the first refrigerant auxiliary flow path 1b and the first refrigerant flow path 1a of all the first heat transfer tubes 1, and the second port 4 is The second refrigerant auxiliary flow path 2b and the second refrigerant flow path 2a of all the second heat transfer tubes 2 are configured to communicate with each other.
 以上のような方法によって、積層型熱交換器である熱交換器10aが構成される。 The heat exchanger 10a, which is a stacked heat exchanger, is configured by the above method.
 なお、第1伝熱管1の盛り上がり部9bについて、第1伝熱管1の2つの押し潰し部9aに挟まれた中央部を、第1伝熱管1の内部の第1冷媒流路1aが押し潰されて消失しない程度に、図8における上下方向から押し潰すことによって形成されるものとしたが、これに限定されるものではない。すなわち、押し潰し部9aを形成した際に、塞がれなかった第1伝熱管端部5における第1冷媒流路1aの開口部を内部から外側に向かって拡張させることによって、盛り上がり部9bを形成するものとしてもよい。また、第2伝熱管2の盛り上がり部9dの形成についても同様である。 In addition, about the swelling part 9b of the 1st heat exchanger tube 1, the 1st refrigerant | coolant flow path 1a inside the 1st heat exchanger tube 1 crushes the center part pinched | interposed into the two crushing parts 9a of the 1st heat exchanger tube 1. However, it is formed by crushing from the vertical direction in FIG. 8 to such an extent that it does not disappear, but it is not limited to this. That is, when the crushing portion 9a is formed, the opening portion of the first refrigerant flow path 1a in the first heat transfer tube end portion 5 that is not blocked is expanded from the inside to the outside, so that the rising portion 9b is It may be formed. The same applies to the formation of the raised portion 9d of the second heat transfer tube 2.
 また、図8(a)で示されるように、第1伝熱管1について、2つの押し潰し部9aに挟まれた中央部よりも、上下方向に盛り上がった形状で盛り上がり部9bが形成されているが、これに限定されるものではない。すなわち、第1伝熱管1の中央部よりも、盛り上がり部9bが上下方向に盛り上るように形成しなくてもよく、その中央部の上面及び下面が、それぞれ盛り上がり部9bの上面及び下面と略面一となるように形成するものとしてもよい。これは、第2伝熱管2の盛り上がり部9dの形成についても同様である。このとき、第1伝熱管1及び第2伝熱管2を積層させる場合、押し潰し部9aと盛り上がり部9dとの間、及び、盛り上がり部9bと押し潰し部9cとの間には隙間が生じるが、その隙間にろう材21を充填させることによって、それぞれ接合するものとすればよい。 Further, as shown in FIG. 8 (a), the first heat transfer tube 1 is formed with a raised portion 9b having a shape that is raised in the vertical direction with respect to the center portion sandwiched between the two crushed portions 9a. However, the present invention is not limited to this. That is, it is not necessary to form the raised portion 9b so as to rise in the vertical direction rather than the central portion of the first heat transfer tube 1, and the upper surface and the lower surface of the central portion are substantially the same as the upper surface and the lower surface of the raised portion 9b, respectively. It is good also as what forms so that it may become flush. The same applies to the formation of the raised portion 9d of the second heat transfer tube 2. At this time, when the first heat transfer tube 1 and the second heat transfer tube 2 are stacked, a gap is generated between the crushing portion 9a and the rising portion 9d and between the rising portion 9b and the crushing portion 9c. Each of the gaps may be joined by filling the gap 21 with the brazing filler metal 21.
 また、図8(a)で示されるように、第1伝熱管1の盛り上がり部9bの開口部、及び、第2伝熱管2の盛り上がり部9dの開口部を、蓋13によって塞ぐ構成としているが、これに限定されるものではない。すなわち、盛り上がり部9bの開口部の端部を、盛り上がり部9b内部の第1冷媒補助流路1bが消失しない程度に、押し潰して塞がれる構成としてもよい。これは、第2伝熱管2の盛り上がり部9dの開口部についても同様である。これによって、蓋13が不要となり、部品点数を減らし、熱交換器10aを軽量化することができる。 Further, as shown in FIG. 8A, the opening of the raised portion 9b of the first heat transfer tube 1 and the opening of the raised portion 9d of the second heat transfer tube 2 are closed by the lid 13. However, the present invention is not limited to this. That is, it is good also as a structure which is crushed and block | closed the edge part of the opening part of the swelling part 9b to such an extent that the 1st refrigerant | coolant auxiliary flow path 1b inside the swelling part 9b does not lose | disappear. The same applies to the opening of the raised portion 9d of the second heat transfer tube 2. As a result, the lid 13 becomes unnecessary, the number of parts can be reduced, and the heat exchanger 10a can be reduced in weight.
 また、蓋13は、本発明の「閉塞手段」に相当する。 The lid 13 corresponds to the “closing means” of the present invention.
(熱交換器10aの熱交換動作)
 本実施の形態に係る積層型熱交換器である熱交換器10aは、温熱又は冷熱を利用するヒートポンプシステムに搭載される。例えば、温熱を利用する動作の場合、冷媒回路から流れてきた高温の第1冷媒は、一方の第1ポート3から熱交換器10a内に流入して、各第1伝熱管1の盛り上がり部9b内部の第1冷媒補助流路1bに流入し、そして、各第1伝熱管1の第1冷媒流路1a、及び、他方の盛り上がり部9b内部の第1冷媒補助流路1bを流通して、他方の第1ポート3から流出する。また、利用側回路から流れてきた第2冷媒は、一方の第2ポート4から熱交換器10内に流入して、各第2伝熱管2の盛り上がり部9d内部の第2冷媒補助流路2bに流入し、そして、各第2冷媒流路2a、及び、他方の盛り上がり部9d内部の第2冷媒補助流路2bを流通して、他方の第2ポート4から流出する。このとき、第1冷媒及び第2冷媒は、それぞれ第1伝熱管1の第1冷媒流路1a、及び、第2伝熱管2の第2冷媒流路2aを対向流又は平行流となるように流れて、第1伝熱管1及び第2伝熱管2の壁面を介して、互いに熱交換が実施される。
(Heat exchange operation of the heat exchanger 10a)
The heat exchanger 10a, which is a stacked heat exchanger according to the present embodiment, is mounted on a heat pump system that uses hot or cold heat. For example, in the case of an operation using warm heat, the high-temperature first refrigerant flowing from the refrigerant circuit flows into the heat exchanger 10a from one first port 3 and rises 9b of each first heat transfer tube 1. It flows into the first refrigerant auxiliary flow path 1b inside, and flows through the first refrigerant flow path 1a of each first heat transfer tube 1 and the first refrigerant auxiliary flow path 1b inside the other rising portion 9b, Outflow from the other first port 3. Further, the second refrigerant flowing from the use side circuit flows into the heat exchanger 10 from the one second port 4, and the second refrigerant auxiliary flow path 2 b inside the rising portion 9 d of each second heat transfer tube 2. And flows through each second refrigerant flow path 2a and the second refrigerant auxiliary flow path 2b inside the other raised portion 9d and flows out from the other second port 4. At this time, the first refrigerant and the second refrigerant flow in a counterflow or parallel flow through the first refrigerant flow path 1a of the first heat transfer tube 1 and the second refrigerant flow path 2a of the second heat transfer tube 2, respectively. The heat exchange is carried out through the wall surfaces of the first heat transfer tube 1 and the second heat transfer tube 2.
(実施の形態2の効果)
 特許文献1に記載されている熱交換器は、各伝熱管へ冷媒を分配するヘッダー管によってデッドスペースを有しており、スペース効率を低下させていたが、上記の構成のように、第1ポート3から各第1伝熱管1の第1冷媒流路1aを連通させ、そして、第2ポート4から各第2伝熱管2の第2冷媒流路2aを連通させることによって、ヘッダー管を不要とすることができ、デッドスペースを削減することができ、熱交換器10a全体をコンパクトにすることができる。
(Effect of Embodiment 2)
The heat exchanger described in Patent Document 1 has a dead space due to a header pipe that distributes the refrigerant to each heat transfer pipe, and has reduced space efficiency. By connecting the first refrigerant flow path 1a of each first heat transfer tube 1 from the port 3 and communicating the second refrigerant flow path 2a of each second heat transfer tube 2 from the second port 4, no header pipe is required. The dead space can be reduced, and the entire heat exchanger 10a can be made compact.
 また、第1伝熱管1及び第2伝熱管2を交互に積層することによって、第1冷媒と第2冷媒との熱交換効率を向上させることができる。さらに、第1伝熱管1及び第2伝熱管2を、その冷媒流路の冷媒の流通方向、及び、冷媒流路の幅方向において略同一の長さとすることによって、第1冷媒と第2冷媒との熱交換をさらに効果的に実施することができ、かつ、熱交換器10a全体をコンパクトにすることができる。 Also, by alternately laminating the first heat transfer tubes 1 and the second heat transfer tubes 2, the heat exchange efficiency between the first refrigerant and the second refrigerant can be improved. Furthermore, the 1st heat exchanger tube 1 and the 2nd heat exchanger tube 2 are made into the substantially same length in the distribution direction of the refrigerant | coolant of the refrigerant | coolant flow path, and the width direction of a refrigerant | coolant flow path. Can be more effectively carried out, and the entire heat exchanger 10a can be made compact.
 また、熱交換器10aの積層構造の最上段の伝熱管(図6及び図7においては、第1伝熱管1)において、2つの第1ポート3については、対角位置となるように構成された盛り上がり部9bの上面に設置し、2つの第2ポート4については、対角位置となるように構成された押し潰し部9aの上面に設置しているので、各第1冷媒流路1a及び各第2冷媒流路2aにおける冷媒が流れる流路長を略最長にすることができ、第1冷媒と第2冷媒との熱交換効率をさらに向上させることができる。
 ただし、第1ポート3及び第2ポート4を上記の位置に設置することに限定するものではなく、ヒートポンプシステム等における熱交換器10aの搭載位置によって、第1ポート3及び第2ポート4の位置を適宜変更するものとしてもよく、この場合、第1ポート3については、第2冷媒流路2aに挿入された伝熱管挿入部8aにおける連通穴8bと連通させ、第2ポート4については、第1冷媒流路1aに挿入された伝熱管挿入部8aにおける連通穴8bと連通させることが必要である。
 また、図6及び図7で示されるように、それぞれ2つの第1ポート3及び第2ポート4は、熱交換器10aの積層構造の最上段の伝熱管の上面に設置される構成としているが、これについても限定されるものではない。例えば、2つの第1ポート3のうち一方を積層構造の最上段の伝熱管の上面に設置し、他方を積層構造を最下段の伝熱管の下面に設置するものとしてもよい。これについては、2つの第2ポート4についても同様である。また、第1ポート3及び第2ポート4を同一面に設置するものとしなくてもよい。例えば、2つの第1ポート3を積層構造の最上段の伝熱管の上面に設置し、そして、2つの第2ポート4を積層構造の最下段の伝熱管の下面に設置するものとしてもよい。
Further, in the uppermost heat transfer tube (the first heat transfer tube 1 in FIGS. 6 and 7) of the stacked structure of the heat exchanger 10a, the two first ports 3 are configured to be diagonal positions. Since the two second ports 4 are installed on the upper surface of the crushing portion 9a configured to be in a diagonal position, each of the first refrigerant channels 1a and The length of the flow path through which the refrigerant flows in each second refrigerant flow path 2a can be made substantially long, and the heat exchange efficiency between the first refrigerant and the second refrigerant can be further improved.
However, it is not limited to installing the first port 3 and the second port 4 at the above positions, and the positions of the first port 3 and the second port 4 depending on the mounting position of the heat exchanger 10a in the heat pump system or the like. In this case, the first port 3 communicates with the communication hole 8b in the heat transfer tube insertion portion 8a inserted into the second refrigerant flow path 2a, and the second port 4 It is necessary to communicate with the communication hole 8b in the heat transfer tube insertion portion 8a inserted into the one refrigerant flow path 1a.
Further, as shown in FIGS. 6 and 7, the two first ports 3 and the second ports 4 are configured to be installed on the upper surface of the uppermost heat transfer tube of the laminated structure of the heat exchanger 10a, respectively. This is not limited. For example, one of the two first ports 3 may be installed on the upper surface of the uppermost heat transfer tube of the laminated structure, and the other may be installed on the lower surface of the lowermost heat transfer tube. The same applies to the two second ports 4. The first port 3 and the second port 4 may not be installed on the same surface. For example, the two first ports 3 may be installed on the upper surface of the uppermost heat transfer tube of the laminated structure, and the two second ports 4 may be installed on the lower surface of the lowermost heat transfer tube of the laminated structure.
 また、第1伝熱管1の第1冷媒流路1aの開口部については押し潰し部9a、そして、第2伝熱管2の第2冷媒補助流路2bの開口部については押し潰し部9cが形成されることによって、第1冷媒流路1aと第2冷媒流路2aとは、遮断されて連通することがなく、第1冷媒流路1aを流通する第1冷媒と、第2冷媒流路2aを流通する第2冷媒とが混合されることを防止することができる。 Further, a crushing portion 9a is formed for the opening portion of the first refrigerant flow path 1a of the first heat transfer tube 1, and a crushing portion 9c is formed for the opening portion of the second refrigerant auxiliary flow path 2b of the second heat transfer tube 2. As a result, the first refrigerant flow path 1a and the second refrigerant flow path 2a are not cut off and communicated, and the first refrigerant flowing through the first refrigerant flow path 1a and the second refrigerant flow path 2a It is possible to prevent the second refrigerant flowing through the refrigerant from being mixed.
実施の形態3.
 図9は、本発明の実施の形態3に係る積層型熱交換器の伝熱管の断面図である。以下、図9を参照しながら、本実施の形態に係る積層型熱交換器の伝熱管の構成について説明する。
Embodiment 3 FIG.
FIG. 9 is a cross-sectional view of a heat transfer tube of a stacked heat exchanger according to Embodiment 3 of the present invention. Hereinafter, the configuration of the heat transfer tube of the stacked heat exchanger according to the present embodiment will be described with reference to FIG.
 図9(a)~図9(d)で示される伝熱管は何れもその断面が扁平形状を呈している。図9(a)で示される伝熱管14aは、その断面を長方形状とし、その内部の冷媒流路の断面形状も長方形状となっている。また、図9(b)で示される伝熱管14bは、その断面が長手方向における両端部をR形状とし、その内部の冷媒流路の断面形状も同様の形状となっている。この伝熱管14a及び伝熱管14bはいずれも上面及び下面が平面となっており、積層構造とする場合に、互いに密着して接合することができるので、熱交換効率を向上させることができる。 All of the heat transfer tubes shown in FIGS. 9 (a) to 9 (d) have a flat cross section. The heat transfer tube 14a shown in FIG. 9A has a rectangular cross section, and the cross sectional shape of the refrigerant flow path inside thereof is also rectangular. Further, the heat transfer tube 14b shown in FIG. 9 (b) has a cross-sectional shape in which both end portions in the longitudinal direction are R-shaped, and the cross-sectional shape of the refrigerant flow path inside the heat-transfer tube 14b has a similar shape. Since both the heat transfer tube 14a and the heat transfer tube 14b have a flat upper surface and a lower surface and can be bonded to each other in a laminated structure, the heat exchange efficiency can be improved.
 また、図9(c)で示される伝熱管14cは、その断面が長手方向における両端部をR形状とし、その内部の冷媒流路の断面形状も同様の形状となっている。ただし、伝熱管14bとは異なり、その冷媒流路である内壁面には、伝熱管14cの一方の開口部から他方の開口部に向かう方向に、直線状の溝15が複数形成されている。この溝15が形成されることによって、伝熱管14cの内壁面の面積が増大し、隣接した伝熱管に流れる冷媒との熱交換効率を向上させることができる。また、前述したように、溝15の方向を伝熱管14cの一方の開口部から他方の開口部に向かう方向となるようにすることによって、冷媒の圧力損失を低減することができる。また、前述した、伝熱管14a及び伝熱管14bの効果も有することは言うまでもない。 Further, the cross section of the heat transfer tube 14c shown in FIG. 9C is R-shaped at both ends in the longitudinal direction, and the cross-sectional shape of the refrigerant flow path inside thereof is the same shape. However, unlike the heat transfer tube 14b, a plurality of linear grooves 15 are formed on the inner wall surface, which is the refrigerant flow path, in the direction from one opening to the other opening of the heat transfer tube 14c. By forming the groove 15, the area of the inner wall surface of the heat transfer tube 14 c is increased, and the efficiency of heat exchange with the refrigerant flowing in the adjacent heat transfer tube can be improved. Further, as described above, the pressure loss of the refrigerant can be reduced by setting the direction of the groove 15 to be the direction from one opening of the heat transfer tube 14c toward the other opening. Moreover, it cannot be overemphasized that it also has the effect of the heat exchanger tube 14a and the heat exchanger tube 14b mentioned above.
 なお、前述したように、伝熱管14cの冷媒流路の内壁面には、一方の開口部から他方の開口部に向かう方向に、溝15が形成されているものとしたが、これに限定されるものではなく、例えば、溝15は、波線状又は斜線状に形成されるものとしてもよい。これによって、伝熱管14cの内壁面の面積が増大し、隣接した伝熱管に流れる冷媒との熱交換効率を向上させることができると共に、冷媒の流れに乱流を発生させることができ、熱交換効率を向上させることができる。 As described above, the groove 15 is formed on the inner wall surface of the refrigerant flow path of the heat transfer tube 14c from the one opening to the other opening. However, the present invention is not limited to this. For example, the groove 15 may be formed in a wavy line or an oblique line. As a result, the area of the inner wall surface of the heat transfer tube 14c is increased, the efficiency of heat exchange with the refrigerant flowing in the adjacent heat transfer tubes can be improved, turbulence can be generated in the flow of the refrigerant, and heat exchange Efficiency can be improved.
 そして、図9(d)で示される伝熱管14dは、その断面が長手方向における両端部をR形状とし、その内部の冷媒流路の断面形状も同様の形状となっている。ただし、伝熱管14bとは異なり、その内部である冷媒流路に波形プレート16を挿入している。また、この波形プレート16の波形状における稜線方向が、伝熱管14dの一方の開口部から他方の開口部に向かう方向となるように、波形プレート16を設置している。また、波形プレート16の波形状における各凸部は、伝熱管14dの内壁面に当接している。この波形プレート16を挿入することによって、冷媒流路を流通する冷媒が内壁面に接することに加え、波形プレート16にも接することによって、その波形プレート16を介して内壁面に温熱又は冷熱が伝達するので、伝熱管14cのように内壁面の面積が増大したことによる効果と同様の効果、すなわち、隣接した伝熱管に流れる冷媒との熱交換効率が向上する効果を有する。また、前述した、伝熱管14a及び伝熱管14bの効果も有することは言うまでもない。 And as for the heat exchanger tube 14d shown by FIG.9 (d), the cross section makes the both ends in a longitudinal direction R shape, and the cross-sectional shape of the refrigerant flow path inside becomes the same shape. However, unlike the heat transfer tube 14b, the corrugated plate 16 is inserted into the refrigerant flow path inside. Further, the corrugated plate 16 is installed so that the ridge line direction in the wave shape of the corrugated plate 16 is a direction from one opening of the heat transfer tube 14d toward the other opening. Moreover, each convex part in the wave shape of the corrugated plate 16 is in contact with the inner wall surface of the heat transfer tube 14d. By inserting the corrugated plate 16, the refrigerant flowing through the refrigerant flow path contacts the inner wall surface, and also contacts the corrugated plate 16, so that hot or cold heat is transmitted to the inner wall surface via the corrugated plate 16. Therefore, it has the effect similar to the effect by having increased the area of the inner wall surface like the heat exchanger tube 14c, ie, the effect which the heat exchange efficiency with the refrigerant | coolant which flows into the adjacent heat exchanger tube improves. Moreover, it cannot be overemphasized that it also has the effect of the heat exchanger tube 14a and the heat exchanger tube 14b mentioned above.
 以上の図9で示される伝熱管14a~伝熱管14dのいずれかを、実施の形態1に係る熱交換器10又は実施の形態2に係る熱交換器10aにおける第1伝熱管1及び第2伝熱管2として適用するものとし、これによって、以下のような効果を得ることができる。また、図9で示される14a~伝熱管14dのいずれかを、実施の形態1に係る熱交換器10又は実施の形態2に係る熱交換器10aにおける第1伝熱管1及び第2伝熱管2として適用して構成された熱交換器10及び熱交換器10aを総称して熱交換器10bというものとする。 Any one of the heat transfer tubes 14a to 14d shown in FIG. 9 is used as the first heat transfer tube 1 and the second heat transfer tube in the heat exchanger 10 according to the first embodiment or the heat exchanger 10a according to the second embodiment. It shall be applied as the heat tube 2, and the following effects can be obtained thereby. Further, any one of 14a to 14d shown in FIG. 9 is replaced with the first heat transfer tube 1 and the second heat transfer tube 2 in the heat exchanger 10 according to the first embodiment or the heat exchanger 10a according to the second embodiment. The heat exchanger 10 and the heat exchanger 10a configured as described above are collectively referred to as a heat exchanger 10b.
 なお、熱交換器10bは、本発明の「積層型熱交換器」に相当する。 The heat exchanger 10b corresponds to the “stacked heat exchanger” of the present invention.
(実施の形態3の効果)
 図9で示される伝熱管14a~伝熱管14dは、いずれも上面及び下面が平面となっており、積層構造とする場合に、互いに密着して接合することができるので、熱交換効率を向上させることができる。
(Effect of Embodiment 3)
Each of the heat transfer tubes 14a to 14d shown in FIG. 9 has an upper surface and a lower surface that are flat, and can be bonded in close contact with each other in the case of a laminated structure, thereby improving heat exchange efficiency. be able to.
 また、図9(c)で示されるように、伝熱管14cの冷媒流路の内壁面に溝15が形成されることによって、伝熱管14cの内壁面の面積が増大し、隣接した伝熱管に流れる冷媒との熱交換効率を向上させることができる。また、この溝15の方向を伝熱管14cの一方の開口部から他方の開口部に向かう方向となるようにすることによって、冷媒の圧力損失を低減することができる。また、溝15を波線状又は斜線状に形成されるものとした場合、伝熱管14cの内壁面の面積が増大し、隣接した伝熱管に流れる冷媒との熱交換効率を向上させることができると共に、冷媒の流れに乱流を発生させることができ、熱交換効率を向上させることができる。 Further, as shown in FIG. 9C, the groove 15 is formed on the inner wall surface of the refrigerant flow path of the heat transfer tube 14c, so that the area of the inner wall surface of the heat transfer tube 14c increases, and the adjacent heat transfer tube Heat exchange efficiency with the flowing refrigerant can be improved. Moreover, the pressure loss of a refrigerant | coolant can be reduced by making the direction of this groove | channel 15 become a direction which goes to the other opening part from one opening part of the heat exchanger tube 14c. Further, when the groove 15 is formed in a wavy line or a diagonal line, the area of the inner wall surface of the heat transfer tube 14c increases, and the heat exchange efficiency with the refrigerant flowing in the adjacent heat transfer tube can be improved. In addition, turbulent flow can be generated in the refrigerant flow, and heat exchange efficiency can be improved.
 また、図9(d)で示されるように、伝熱管14dの内部である冷媒流路に波形プレート16を挿入することによって、冷媒流路を流通する冷媒が内壁面に接することに加え、波形プレート16にも接することによって、その波形プレート16を介して内壁面に温熱又は冷熱が伝達するので、隣接した伝熱管に流れる冷媒との熱交換効率が向上する効果を有する。 Further, as shown in FIG. 9 (d), by inserting the corrugated plate 16 into the refrigerant flow path inside the heat transfer tube 14d, in addition to the refrigerant flowing through the refrigerant flow path being in contact with the inner wall surface, the waveform By contacting the plate 16, heat or cold is transmitted to the inner wall surface via the corrugated plate 16, so that the efficiency of heat exchange with the refrigerant flowing in the adjacent heat transfer tube is improved.
実施の形態4.
(ヒートポンプシステムの構成)
 図10は、本発明の実施の形態4に係る熱交換器の温熱を利用したヒートポンプシステムの構成図である。以下、図10を参照しながら、第1冷媒と第2冷媒との熱交換を実施する積層型熱交換器としての実施の形態1に係る熱交換器10を搭載した構成について説明する。
Embodiment 4 FIG.
(Configuration of heat pump system)
FIG. 10 is a configuration diagram of a heat pump system using the heat of the heat exchanger according to Embodiment 4 of the present invention. Hereinafter, a configuration in which the heat exchanger 10 according to Embodiment 1 as a stacked heat exchanger that performs heat exchange between the first refrigerant and the second refrigerant is mounted will be described with reference to FIG. 10.
 図10で示されるように、本実施の形態に係るヒートポンプシステムは、第1冷媒が流通する第1冷媒回路100、第2冷媒が流通する第2冷媒回路101、及び、第1冷媒と第2冷媒との熱交換を実施する熱交換器10を備えた構成となっている。 As shown in FIG. 10, the heat pump system according to the present embodiment includes a first refrigerant circuit 100 through which the first refrigerant flows, a second refrigerant circuit 101 through which the second refrigerant flows, and the first refrigerant and the second refrigerant. It is the structure provided with the heat exchanger 10 which performs heat exchange with a refrigerant | coolant.
 第1冷媒回路100は、圧縮機31、熱交換器10、膨張弁33及び室外熱交換器34が順に冷媒配管によって接続されて構成されている。また、室外熱交換器34の近傍には、室外熱交換器34に外気を送り、その外気と室外熱交換器34内を流通する第1冷媒との熱交換を実施させるためのファン39が設置されている。この第1冷媒回路100には、第1冷媒として、例えば、R410A、その他のフロン系冷媒、又は、二酸化炭素若しくは炭化水素等の自然冷媒等を用いるものとすればよい。 The first refrigerant circuit 100 is configured by connecting a compressor 31, a heat exchanger 10, an expansion valve 33, and an outdoor heat exchanger 34 in this order by refrigerant piping. Further, a fan 39 is installed near the outdoor heat exchanger 34 to send outside air to the outdoor heat exchanger 34 and to perform heat exchange between the outside air and the first refrigerant circulating in the outdoor heat exchanger 34. Has been. In the first refrigerant circuit 100, for example, R410A, another chlorofluorocarbon refrigerant, or a natural refrigerant such as carbon dioxide or hydrocarbon may be used as the first refrigerant.
 第2冷媒回路101は、ポンプ36、利用側熱交換器35及び熱交換器10が順に冷媒配管によって接続されて構成されている。このうち、利用側熱交換器35は、ラジエーター又は床暖房ヒーター等として用いられる。また、この第2冷媒回路101には、第2冷媒として、例えば、フロン系冷媒、二酸化炭素若しくは炭化水素等の自然冷媒、又は、水道水、蒸留水若しくはブライン等を用いるものとすればよい。 The second refrigerant circuit 101 is configured by connecting the pump 36, the use side heat exchanger 35, and the heat exchanger 10 in order by refrigerant piping. Among these, the use side heat exchanger 35 is used as a radiator or a floor heater. Moreover, what is necessary is just to use the natural refrigerant | coolant, such as a CFC-type refrigerant | coolant, a carbon dioxide, or a hydrocarbon, or tap water, distilled water, a brine, etc. as this 2nd refrigerant | coolant for this 2nd refrigerant circuit 101.
 なお、室外熱交換器34は、本発明の「熱源側熱交換器」に相当する。 The outdoor heat exchanger 34 corresponds to the “heat source side heat exchanger” of the present invention.
(ヒートポンプシステムの動作)
 次に、図10を参照しながら、本実施の形態に係るヒートポンプシステムの動作について説明する。第1冷媒回路100において、圧縮機31によって圧縮され吐出された高温高圧のガス状態の第1冷媒は、熱交換器10へ流入する。熱交換器10へ流入した第1冷媒は、熱交換器10内部において、この第1冷媒に対して対向流又は平行流となるように流れる第2冷媒と熱交換を実施し、第2冷媒に対して放熱して、熱交換器10から流出する。熱交換器10から流出した第1冷媒は、膨張弁33に流れ込み、この膨張弁33によって膨張及び減圧され、低温低圧の第1冷媒となる。この低温低圧の第1冷媒は、室外熱交換器34に流入し、ファン39の回転駆動によって送られてくる外気と熱交換を実施し、低温低圧のガス状態の第1冷媒となって、室外熱交換器34から流出する。この室外熱交換器34から流出したガス状態の第1冷媒は、圧縮機31に流入し、再び、圧縮される。
(Operation of heat pump system)
Next, the operation of the heat pump system according to the present embodiment will be described with reference to FIG. In the first refrigerant circuit 100, the high-temperature and high-pressure gaseous first refrigerant compressed and discharged by the compressor 31 flows into the heat exchanger 10. The first refrigerant that has flowed into the heat exchanger 10 exchanges heat with the second refrigerant that flows in a counterflow or parallel flow with respect to the first refrigerant in the heat exchanger 10, so that the second refrigerant On the other hand, it radiates heat and flows out of the heat exchanger 10. The first refrigerant flowing out of the heat exchanger 10 flows into the expansion valve 33, and is expanded and depressurized by the expansion valve 33 to become a low temperature and low pressure first refrigerant. This low-temperature and low-pressure first refrigerant flows into the outdoor heat exchanger 34, exchanges heat with the outside air sent by the rotational drive of the fan 39, and becomes a low-temperature and low-pressure gas-state first refrigerant. It flows out of the heat exchanger 34. The first refrigerant in the gas state flowing out from the outdoor heat exchanger 34 flows into the compressor 31 and is compressed again.
 一方、第2冷媒回路101において、熱交換器10に流入した第2冷媒は、熱交換器10内部において、この第2冷媒に対して対向流又は平行流となるように流れる第1冷媒と熱交換を実施し、第1冷媒によって加熱され、熱交換器10から流出する。熱交換器10から流出した第2冷媒は、ポンプ36によって第2冷媒回路101を循環し、利用側熱交換器35へ流入する。利用側熱交換器35へ流入した第2冷媒は、外部に放熱し、利用側熱交換器35から流出する。利用側熱交換器35から流出した第2冷媒は、再び、熱交換器10に流入して加熱される。 On the other hand, in the second refrigerant circuit 101, the second refrigerant that has flowed into the heat exchanger 10 heats the first refrigerant and the heat flowing inside the heat exchanger 10 so as to be opposed or parallel to the second refrigerant. Exchange is performed, heated by the first refrigerant, and flows out of the heat exchanger 10. The second refrigerant flowing out of the heat exchanger 10 is circulated through the second refrigerant circuit 101 by the pump 36 and flows into the use side heat exchanger 35. The second refrigerant that has flowed into the use side heat exchanger 35 radiates heat to the outside and flows out of the use side heat exchanger 35. The second refrigerant flowing out from the use side heat exchanger 35 flows into the heat exchanger 10 again and is heated.
 ここで、第2冷媒回路101を流通する第2冷媒として、水を使用する場合、熱交換器10における第2伝熱管2及び第2ポート4を耐食性材で形成する等、熱交換器10において水と接液する部分は水に対する耐食性を有するように構成するのが望ましい。 Here, in the case where water is used as the second refrigerant flowing through the second refrigerant circuit 101, the second heat transfer tube 2 and the second port 4 in the heat exchanger 10 are formed of a corrosion-resistant material. It is desirable that the portion in contact with water has a corrosion resistance against water.
 なお、図10で示されるヒートポンプシステムは、実施の形態1に係る熱交換器10が搭載される構成としたが、これに限定されるものではなく、実施の形態2に係る熱交換器10a又は実施の形態3に係る熱交換器10bが搭載される構成としてもよい。 Note that the heat pump system shown in FIG. 10 is configured to be mounted with the heat exchanger 10 according to the first embodiment, but is not limited to this, and the heat exchanger 10a according to the second embodiment or It is good also as a structure by which the heat exchanger 10b which concerns on Embodiment 3 is mounted.
(実施の形態4の効果)
 以上の構成のように、第1伝熱管1及び第2伝熱管2の積層構造を有する熱交換器10、熱交換器10a又は熱交換器10bを搭載することによって、第1冷媒と第2冷媒との熱交換効率を向上させたヒートポンプシステムを得ることができる。
 さらに、実施の形態1~実施の形態3において説明した効果を有するのは言うまでもない。
(Effect of Embodiment 4)
By mounting the heat exchanger 10, the heat exchanger 10a, or the heat exchanger 10b having a laminated structure of the first heat transfer tube 1 and the second heat transfer tube 2 as described above, the first refrigerant and the second refrigerant are mounted. It is possible to obtain a heat pump system that improves the efficiency of heat exchange with.
Further, it goes without saying that the effects described in the first to third embodiments are obtained.
 なお、本実施の形態に係るヒートポンプシステムは、図10で示される構成に限定されるものではなく、例えば、以下の図11~図13で示されるヒートポンプシステムの構成としてもよい。 It should be noted that the heat pump system according to the present embodiment is not limited to the configuration shown in FIG. 10, and may be, for example, the configuration of the heat pump system shown in FIGS. 11 to 13 below.
 まず、図11は、本実施の形態に係るヒートポンプシステムの別形態の構成図であり、図10で示されるヒートポンプシステムと同様に熱交換器の温熱を利用するものである。

 図11で示されるヒートポンプシステムは、図10で示されるヒートポンプシステムにおける利用側熱交換器35をタンク38内に設置したものであり、その他の構成は、図10で示されるヒートポンプシステムと同様である。熱交換器10において加熱された第2冷媒が、利用側熱交換器35を流通することによって、タンク38内の水を加熱して取水することができる構成となっている。
First, FIG. 11 is a configuration diagram of another form of the heat pump system according to the present embodiment, and uses the heat of the heat exchanger similarly to the heat pump system shown in FIG. 10.

The heat pump system shown in FIG. 11 has a use-side heat exchanger 35 in the heat pump system shown in FIG. 10 installed in a tank 38, and the other configurations are the same as those of the heat pump system shown in FIG. . The 2nd refrigerant | coolant heated in the heat exchanger 10 becomes a structure which can heat and take in the water in the tank 38 by distribute | circulating the utilization side heat exchanger 35. FIG.
 この図11で示されるヒートポンプシステム、及び、前述した図10で示されるヒートポンプシステムのように、熱交換器10の温熱を利用して、利用側熱交換器35を暖房動作又は給湯動作に適用することによって、従来のボイラーを熱源とした暖房又は給湯システムと比較して省エネ効果を向上させることができる。 As in the heat pump system shown in FIG. 11 and the heat pump system shown in FIG. 10 described above, the use-side heat exchanger 35 is applied to the heating operation or the hot water supply operation using the heat of the heat exchanger 10. Thus, the energy saving effect can be improved as compared with a heating or hot water supply system using a conventional boiler as a heat source.
 また、図12は、本実施の形態に係るヒートポンプシステムの別形態の構成図であり、熱交換器の冷熱を利用するものである。
 図12で示されるヒートポンプシステムは、図10で示されるヒートポンプシステムにおいて、圧縮機31の吸入口と吐出口とを逆にし、第1冷媒回路100における冷媒の流通方向を逆方向となるように構成したものである。また、利用側熱交換器35は、冷房システムを構成するために、空気熱交換器又は冷水パネルとして用いられる。その他の構成は、図10で示されるヒートポンプシステムと同様である。
Moreover, FIG. 12 is a block diagram of another form of the heat pump system according to the present embodiment, and uses the cold energy of the heat exchanger.
The heat pump system shown in FIG. 12 is configured so that the suction port and the discharge port of the compressor 31 are reversed and the refrigerant flow direction in the first refrigerant circuit 100 is reversed in the heat pump system shown in FIG. It is a thing. Moreover, in order to comprise a cooling system, the use side heat exchanger 35 is used as an air heat exchanger or a cold water panel. Other configurations are the same as those of the heat pump system shown in FIG.
 この図12で示されるヒートポンプシステムにおいては、まず、第1冷媒回路100において、圧縮機31によって圧縮され吐出された高温高圧のガス状態の第1冷媒が、室外熱交換器34へ流入する。室外熱交換器34へ流入した第1冷媒は、ファン39の回転駆動によって送られてくる外気と熱交換を実施し、外気に対して放熱し、室外熱交換器34から流出する。室外熱交換器34から流出した第1冷媒は、膨張弁33に流れ込み、この膨張弁33によって膨張及び減圧され、低温低圧の第1冷媒となる。この低温低圧の第1冷媒は、熱交換器10へ流入し、熱交換器10内部において、この第1冷媒に対して対向流又は平行流となるように流れる第2冷媒と熱交換を実施し、第2冷媒から吸熱して、低温低圧のガス状態の第1冷媒となって、熱交換器10から流出する。この熱交換器10から流出したガス状態の第1冷媒は、圧縮機31に流入し、再び、圧縮される。 In the heat pump system shown in FIG. 12, first, in the first refrigerant circuit 100, the first refrigerant in a high-temperature and high-pressure gas state compressed and discharged by the compressor 31 flows into the outdoor heat exchanger. The first refrigerant flowing into the outdoor heat exchanger 34 exchanges heat with the outside air sent by the rotational drive of the fan 39, dissipates heat to the outside air, and flows out of the outdoor heat exchanger 34. The first refrigerant that has flowed out of the outdoor heat exchanger 34 flows into the expansion valve 33, is expanded and depressurized by the expansion valve 33, and becomes a low-temperature and low-pressure first refrigerant. This low-temperature and low-pressure first refrigerant flows into the heat exchanger 10 and performs heat exchange with the second refrigerant that flows in a counterflow or parallel flow with respect to the first refrigerant in the heat exchanger 10. Then, it absorbs heat from the second refrigerant, becomes a first refrigerant in a low-temperature and low-pressure gas state, and flows out of the heat exchanger 10. The first refrigerant in a gas state flowing out from the heat exchanger 10 flows into the compressor 31 and is compressed again.
 そして、第2冷媒回路101において、熱交換器10に流入した第2冷媒は、熱交換器10内部において、この第2冷媒に対して対向流又は平行流となるように流れる第1冷媒と熱交換を実施し、第1冷媒によって冷却され、熱交換器10から流出する。熱交換器10から流出した第2冷媒は、ポンプ36によって第2冷媒回路101を循環し、利用側熱交換器35へ流入する。利用側熱交換器35へ流入した第2冷媒は、外気等を冷却し、利用側熱交換器35から流出する。利用側熱交換器35から流出した第2冷媒は、再び、熱交換器10に流入して冷却される。 Then, in the second refrigerant circuit 101, the second refrigerant that has flowed into the heat exchanger 10 heats the first refrigerant and the heat flowing in the heat exchanger 10 so as to be opposed or parallel to the second refrigerant. Exchange is performed, cooled by the first refrigerant, and flows out of the heat exchanger 10. The second refrigerant flowing out of the heat exchanger 10 is circulated through the second refrigerant circuit 101 by the pump 36 and flows into the use side heat exchanger 35. The second refrigerant that has flowed into the use side heat exchanger 35 cools outside air and the like, and flows out of the use side heat exchanger 35. The second refrigerant flowing out of the use side heat exchanger 35 flows into the heat exchanger 10 again and is cooled.
 なお、この図12で示されるヒートポンプシステムに対して、図11で示されるヒートポンプシステムと同様に、タンク38を設置し、このタンク38に利用側熱交換器35を設置する構成としてもよい。この場合、利用側熱交換器35によってタンク38内の水を冷却して取水する構成とすることができる。 In addition, it is good also as a structure which installs the tank 38 with respect to the heat pump system shown by this FIG. 12, and installs the utilization side heat exchanger 35 in this tank 38 similarly to the heat pump system shown by FIG. In this case, it can be set as the structure which cools the water in the tank 38 with the utilization side heat exchanger 35, and takes water.
 そして、図13は、本実施の形態に係るヒートポンプシステムの別形態の構成図であり、熱交換器による温熱又は冷熱を利用するものである。
 図13で示されるヒートポンプシステムは、図10で示されるヒートポンプシステムにおける第1冷媒回路100に四方弁32を追加したものである。具体的には、第1冷媒回路100は、圧縮機31、四方弁32、熱交換器10、膨張弁33、室外熱交換器34、四方弁32、そして、圧縮機31という順に冷媒配管によって接続されたものである。その他の構成は、図10で示されるヒートポンプシステムと同様である。このような構成において、四方弁32の流路を切り替えることによって、図10で示されるヒートポンプシステムのように熱交換器10の温熱を利用し、あるいは、図12で示されるヒートポンプシステムのように熱交換器10の冷熱を利用することができる。
And FIG. 13 is a block diagram of another form of the heat pump system which concerns on this Embodiment, and utilizes the warmth or cold by a heat exchanger.
The heat pump system shown in FIG. 13 is obtained by adding a four-way valve 32 to the first refrigerant circuit 100 in the heat pump system shown in FIG. Specifically, the first refrigerant circuit 100 is connected by refrigerant piping in the order of the compressor 31, the four-way valve 32, the heat exchanger 10, the expansion valve 33, the outdoor heat exchanger 34, the four-way valve 32, and the compressor 31. It has been done. Other configurations are the same as those of the heat pump system shown in FIG. In such a configuration, by switching the flow path of the four-way valve 32, the heat of the heat exchanger 10 is used like the heat pump system shown in FIG. 10, or the heat like the heat pump system shown in FIG. The cold heat of the exchanger 10 can be used.
 なお、この図13で示されるヒートポンプシステムに対して、図11で示されるヒートポンプシステムと同様に、タンク38を設置し、このタンク38に利用側熱交換器35を設置する構成としてもよい。この場合、四方弁32の流路を切り替えることによって、熱交換器10において加熱された第2冷媒を利用側熱交換器35を流通させてタンク38内の水を加熱して取水することができる構成とし、あるいは、熱交換器10において冷却された第2冷媒を利用側熱交換器35を流通させてタンク38内の水を冷却して取水することができる構成とすることができる。 In addition, it is good also as a structure which installs the tank 38 and installs the utilization side heat exchanger 35 in this tank 38 similarly to the heat pump system shown in FIG. In this case, by switching the flow path of the four-way valve 32, the second refrigerant heated in the heat exchanger 10 can be circulated through the use side heat exchanger 35 to heat the water in the tank 38 and take water. Alternatively, the second refrigerant cooled in the heat exchanger 10 can be circulated through the use-side heat exchanger 35 to cool the water in the tank 38 and take water.
 なお、図11~図13で示されるヒートポンプシステムは、実施の形態1に係る熱交換器10が搭載される構成としたが、これに限定されるものではなく、実施の形態2に係る熱交換器10a又は実施の形態3に係る熱交換器10bが搭載される構成としてもよい。 The heat pump system shown in FIGS. 11 to 13 is configured to be mounted with the heat exchanger 10 according to the first embodiment, but is not limited to this, and the heat exchange according to the second embodiment is performed. It is good also as a structure by which the heat exchanger 10b which concerns on the apparatus 10a or Embodiment 3 is mounted.
 1 第1伝熱管、1a 第1冷媒流路、1b 第1冷媒補助流路、2 第2伝熱管、2a 第2冷媒流路、2b 第2冷媒補助流路、3 第1ポート、3a~3d 第1連通穴、4 第2ポート、4a~4d 第2連通穴、5 第1伝熱管端部、6 第2伝熱管端部、8 蓋、8a 伝熱管挿入部、8b 連通穴、9a 押し潰し部、9b 盛り上がり部、9c 押し潰し部、9d 盛り上がり部、10、10a、10b 熱交換器、13 蓋、13a 伝熱管挿入部、14a~14d 伝熱管、15 溝、16 波形プレート、21 ろう材、31 圧縮機、32 四方弁、33 膨張弁、34 室外熱交換器、35 利用側熱交換器、36 ポンプ、38 タンク、39 ファン、100 第1冷媒回路、101 第2冷媒回路。 1 1st heat transfer pipe, 1a 1st refrigerant flow path, 1b 1st refrigerant auxiliary flow path, 2nd 2nd heat transfer pipe, 2a 2nd refrigerant flow path, 2b 2nd refrigerant auxiliary flow path, 3rd first port, 3a-3d 1st communication hole, 4 2nd port, 4a-4d 2nd communication hole, 5 1st heat transfer tube end, 6 2nd heat transfer tube end, 8 lid, 8a heat transfer tube insertion part, 8b communication hole, 9a crushing Part, 9b raised part, 9c crushing part, 9d raised part, 10, 10a, 10b heat exchanger, 13 lid, 13a heat transfer tube insertion part, 14a-14d heat transfer tube, 15 groove, 16 corrugated plate, 21 brazing material, 31 compressor, 32 four-way valve, 33 expansion valve, 34 outdoor heat exchanger, 35 use side heat exchanger, 36 pump, 38 tank, 39 fan, 100 first refrigerant circuit, 101 second refrigerant circuit.

Claims (11)

  1.  扁平形状を有し、第1冷媒がその内部の第1冷媒流路を流通する複数の第1伝熱管と、
     扁平形状を有し、前記第1伝熱管と交互に当接して積層され、前記第1冷媒と温度が異なる第2冷媒がその内部の第2冷媒流路を流通する複数の第2伝熱管と、
     前記第1伝熱管及び前記第2伝熱管において、前記各第1冷媒流路を互いに連通させ、かつ、前記積層構造における積層方向の両端に位置する前記第1伝熱管又は前記第2伝熱管である2つの最外伝熱管のうちいずれか一方の該最外伝熱管において前記第1冷媒流路と外部とを連通させるように、貫通して形成された2組の第1連通穴と、
     前記第1伝熱管及び前記第2伝熱管において、前記各第2冷媒流路を互いに連通させ、かつ、2つの前記最外伝熱管のうちいずれか一方の該最外伝熱管において前記第2冷媒流路と外部とを連通させるように、貫通して形成された2組の第2連通穴と、
     前記各第1伝熱管の前記第1冷媒流路、及び、前記各第2伝熱管の前記第2冷媒流路の冷媒の流通方向の両端部に形成された開口部を閉塞する閉塞手段と、
     前記各第2伝熱管に形成された前記第1連通穴が、前記第2冷媒流路に連通しないように遮断する第1遮断手段と、
     前記各第1伝熱管に形成された前記第2連通穴が、前記第1冷媒流路に連通しないように遮断する第2遮断手段と、
     を備え、
     前記最外伝熱管に形成され、該最外伝熱管の内部の冷媒流路と外部とを連通させる2つの前記第1連通穴は、それぞれ前記第1冷媒の流入口及び流出口として機能し、
     前記最外伝熱管に形成され、該最外伝熱管の内部の冷媒流路と外部とを連通させる2つの前記第2連通穴は、それぞれ前記第2冷媒の流入口及び流出口として機能し、
     前記第1伝熱管及び前記第2伝熱管の当接面を介して、前記第1冷媒と前記第2冷媒との熱交換を実施する積層型熱交換器。
    A plurality of first heat transfer tubes having a flat shape, wherein the first refrigerant flows through the first refrigerant flow path therein;
    A plurality of second heat transfer tubes having a flat shape, stacked alternately in contact with the first heat transfer tubes, and having a second refrigerant having a temperature different from that of the first refrigerant flowing through a second refrigerant flow path therein; ,
    In the first heat transfer tube and the second heat transfer tube, the first heat transfer tubes or the second heat transfer tubes that communicate with the first refrigerant flow paths and are positioned at both ends in the stacking direction in the stacked structure. Two sets of first communication holes formed so as to penetrate the first refrigerant flow path and the outside in any one of the two outermost heat transfer tubes;
    In the first heat transfer tube and the second heat transfer tube, the second refrigerant flow paths are communicated with each other, and the second refrigerant flow path is provided in one of the two outermost heat transfer pipes. Two sets of second communication holes formed so as to communicate with the outside and the outside,
    Closure means for closing the first refrigerant flow path of each of the first heat transfer tubes and the openings formed at both ends of the refrigerant flow direction of the second refrigerant flow channels of the second heat transfer tubes;
    First blocking means for blocking the first communication hole formed in each of the second heat transfer tubes so as not to communicate with the second refrigerant flow path;
    A second blocking means for blocking the second communication hole formed in each first heat transfer tube so as not to communicate with the first refrigerant flow path;
    With
    The two first communication holes that are formed in the outermost heat transfer pipe and communicate with the refrigerant flow path inside the outermost heat transfer pipe and the outside function as an inlet and an outlet of the first refrigerant, respectively.
    The two second communication holes that are formed in the outermost heat transfer pipe and communicate with the refrigerant flow path inside the outermost heat transfer pipe and the outside function as an inlet and an outlet of the second refrigerant, respectively.
    A stacked heat exchanger that performs heat exchange between the first refrigerant and the second refrigerant through contact surfaces of the first heat transfer pipe and the second heat transfer pipe.
  2.  前記閉塞手段は、前記各第1冷媒流路及び前記各第2冷媒流路の一部に挿入され、挿入部連通穴が貫通して形成された伝熱管挿入部を有し、
     前記第1遮断手段は、前記各第2冷媒流路に挿入された前記伝熱管挿入部によって構成され、該各伝熱管挿入部の前記挿入部連通穴は、前記各第1連通穴と連通し、
     前記第2遮断手段は、前記各第1冷媒流路に挿入された前記伝熱管挿入部によって構成され、該各伝熱管挿入部の前記挿入部連通穴は、前記各第2連通穴と連通する請求項1記載の積層型熱交換器。
    The blocking means is inserted into a part of each of the first refrigerant flow path and the second refrigerant flow path, and has a heat transfer tube insertion portion formed through an insertion portion communication hole,
    The first shut-off means is configured by the heat transfer tube insertion portion inserted into each second refrigerant flow path, and the insertion portion communication hole of each heat transfer tube insertion portion communicates with each first communication hole. ,
    The second shut-off means is configured by the heat transfer tube insertion portion inserted into each first refrigerant flow path, and the insertion portion communication hole of each heat transfer tube insertion portion communicates with each second communication hole. The stacked heat exchanger according to claim 1.
  3.  前記第1遮断手段は、前記各第2伝熱管の開口部の一部であって前記第1連通穴を有する部分を積層方向に押し潰して形成された押し潰し部によって形成され、該押し潰し部における前記第1連通穴が、前記第2冷媒流路に連通しないように形成され、
     前記第2遮断手段は、前記各第1伝熱管の開口部の一部であって前記第2連通穴を有する部分を積層方向に押し潰して形成された押し潰し部によって形成され、該押し潰し部における前記第2連通穴が、前記第1冷媒流路に連通しないように形成された請求項1記載の積層型熱交換器。
    The first shut-off means is formed by a crushing portion formed by crushing a part of the opening of each second heat transfer tube and having the first communication hole in the stacking direction. The first communication hole in the portion is formed so as not to communicate with the second refrigerant flow path,
    The second blocking means is formed by a crushing part formed by crushing a part of the opening of each first heat transfer tube and having the second communication hole in the stacking direction. The stacked heat exchanger according to claim 1, wherein the second communication hole in the section is formed so as not to communicate with the first refrigerant flow path.
  4.  前記第1伝熱管及び前記第2伝熱管は、その冷媒流路の冷媒の流通方向、及び、該冷媒流路の幅方向において長さが同一である請求項1~請求項3のいずれか一項に記載の積層型熱交換器。 The first heat transfer tube and the second heat transfer tube have the same length in the flow direction of the refrigerant in the refrigerant flow path and in the width direction of the refrigerant flow path. The laminated heat exchanger according to item.
  5.  前記第1連通穴及び前記第2連通穴は、前記第1伝熱管及び前記第2伝熱管において、その冷媒流路の冷媒の流通方向の両端部近傍に形成された請求項1~請求項4のいずれか一項に記載の積層型熱交換器。 The first communication hole and the second communication hole are formed in the first heat transfer tube and the second heat transfer tube in the vicinity of both ends of the refrigerant flow direction of the refrigerant flow path. The stacked heat exchanger according to any one of the above.
  6.  前記2組の第1連通穴及び前記2組の第2連通穴は、積層方向から見て、それぞれ前記第1伝熱管及び前記第2伝熱管の対角となる位置に形成された請求項5記載の積層型熱交換器。 6. The two sets of first communication holes and the two sets of second communication holes are formed at positions diagonal to the first heat transfer tube and the second heat transfer tube, respectively, when viewed from the stacking direction. The laminated heat exchanger as described.
  7.  前記第1伝熱管の前記第1冷媒流路、又は、前記第2伝熱管の前記第2冷媒流路は、その内壁面に複数の溝を有した請求項1~請求項6のいずれか一項に記載の積層型熱交換器。 The first refrigerant channel of the first heat transfer tube or the second refrigerant channel of the second heat transfer tube has a plurality of grooves on an inner wall surface thereof. The laminated heat exchanger according to item.
  8.  前記第1伝熱管の前記第1冷媒流路、又は、前記第2伝熱管の前記第2冷媒流路には、波形プレートが設置され、
     該波形プレートは、その波形状の稜線方向が前記第1冷媒流路又は前記第2冷媒流路の冷媒の流通方向と同一であり、前記波形状における各凸部が前記第1冷媒流路又は前記第2冷媒流路の内壁面に当接した請求項1~請求項6のいずれか一項に記載の積層型熱交換器。
    A corrugated plate is installed in the first refrigerant channel of the first heat transfer tube or the second refrigerant channel of the second heat transfer tube,
    The corrugated plate has a corrugated ridge direction that is the same as a flow direction of the refrigerant in the first refrigerant flow path or the second refrigerant flow path, and each convex portion in the wave shape has the first refrigerant flow path or The stacked heat exchanger according to any one of claims 1 to 6, wherein the stacked heat exchanger is in contact with an inner wall surface of the second refrigerant channel.
  9.  前記第1冷媒は、R410A、フロン系冷媒、二酸化炭素若しくは炭化水素等の自然冷媒であり、
     前記第2冷媒は、水又はブラインである請求項1~請求項8のいずれか一項に記載の積層型熱交換器。
    The first refrigerant is a natural refrigerant such as R410A, a fluorocarbon refrigerant, carbon dioxide, or hydrocarbon,
    The stacked heat exchanger according to any one of claims 1 to 8, wherein the second refrigerant is water or brine.
  10.  圧縮機、請求項1~請求項9のいずれか一項に記載の積層型熱交換器、膨張装置及び熱源側熱交換器が冷媒配管によって接続された冷媒回路によって構成され、前記第1冷媒が流通する第1冷媒回路と、
     ポンプ、利用側熱交換器、前記積層型熱交換器が冷媒配管によって接続された冷媒回路によって構成され、前記第2冷媒が流通する第2冷媒回路と、
     を備えたヒートポンプシステム。
    A compressor, the stacked heat exchanger according to any one of claims 1 to 9, an expansion device, and a heat source side heat exchanger are configured by a refrigerant circuit connected by a refrigerant pipe, and the first refrigerant is A first refrigerant circuit that circulates;
    A second refrigerant circuit in which a pump, a use-side heat exchanger, the stacked heat exchanger is constituted by a refrigerant circuit connected by a refrigerant pipe, and the second refrigerant flows;
    With heat pump system.
  11.  内部に前記利用側熱交換器を備え、該利用側熱交換器によって内部の水が加熱又は冷却されるタンクを備えた請求項10記載のヒートポンプシステム。 The heat pump system according to claim 10, further comprising a tank in which the use side heat exchanger is provided, and water in the inside is heated or cooled by the use side heat exchanger.
PCT/JP2011/000222 2011-01-18 2011-01-18 Laminate-type heat exchanger and heat pump system equipped with same WO2012098572A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012553451A JP5496369B2 (en) 2011-01-18 2011-01-18 Laminated heat exchanger and heat pump system equipped with the same
PCT/JP2011/000222 WO2012098572A1 (en) 2011-01-18 2011-01-18 Laminate-type heat exchanger and heat pump system equipped with same
EP11856572.0A EP2667136B1 (en) 2011-01-18 2011-01-18 Stacked heat exchanger and heat pump system having the same installed therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000222 WO2012098572A1 (en) 2011-01-18 2011-01-18 Laminate-type heat exchanger and heat pump system equipped with same

Publications (1)

Publication Number Publication Date
WO2012098572A1 true WO2012098572A1 (en) 2012-07-26

Family

ID=46515228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000222 WO2012098572A1 (en) 2011-01-18 2011-01-18 Laminate-type heat exchanger and heat pump system equipped with same

Country Status (3)

Country Link
EP (1) EP2667136B1 (en)
JP (1) JP5496369B2 (en)
WO (1) WO2012098572A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116128A1 (en) * 2015-12-30 2017-07-06 한온시스템 주식회사 Heat exchanger for cooling electrical device
CN113959117A (en) * 2020-09-23 2022-01-21 杭州三花微通道换热器有限公司 Heat exchanger and multi-refrigerating-system air conditioning unit
CN114623630A (en) * 2020-12-09 2022-06-14 广东美的白色家电技术创新中心有限公司 Heat exchanger and dish washing machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195286A (en) * 1985-02-22 1986-08-29 Matsushita Electric Works Ltd Ventilating device
JPH08283002A (en) * 1995-03-29 1996-10-29 Chubu Electric Power Co Inc Fuel reforming device
JP2001021280A (en) * 1999-07-01 2001-01-26 Ishikawajima Harima Heavy Ind Co Ltd Heat exchanger
JP2007506928A (en) * 2003-06-25 2007-03-22 ベール ゲーエムベーハー ウント コー カーゲー Multi-stage heat exchange device and method for manufacturing such a device
JP2007198706A (en) * 2006-01-30 2007-08-09 National Institute Of Advanced Industrial & Technology Internal heating type heat exchange structure having intersecting passage directions
WO2007122685A1 (en) 2006-04-14 2007-11-01 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and refrigeration air conditioner
JP2010139185A (en) * 2008-12-12 2010-06-24 Mitsubishi Electric Corp Heat exchanger and method of heating liquid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0402175B1 (en) * 1989-06-09 1994-12-28 Brian Francis Mooney Method of and apparatus for forming the end of a flat metal tube, and closing and sealing the end thereof
DE19757803A1 (en) * 1997-12-24 1999-07-01 Behr Gmbh & Co Flat tube type heat exchanger used as radiator in motor vehicle engine
FR2859779B1 (en) * 2003-09-16 2008-08-29 Valeo Climatisation HEAT EXCHANGER WITH ALTERNATE FLAT TUBES
FR2891615B1 (en) * 2005-09-30 2008-01-11 Valeo Systemes Thermiques HEAT EXCHANGER WITH ALTERNATE FLAT TUBES.
GB2447090B (en) * 2007-03-02 2012-03-21 Statoil Asa Heat exchanger manifolds

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195286A (en) * 1985-02-22 1986-08-29 Matsushita Electric Works Ltd Ventilating device
JPH08283002A (en) * 1995-03-29 1996-10-29 Chubu Electric Power Co Inc Fuel reforming device
JP2001021280A (en) * 1999-07-01 2001-01-26 Ishikawajima Harima Heavy Ind Co Ltd Heat exchanger
JP2007506928A (en) * 2003-06-25 2007-03-22 ベール ゲーエムベーハー ウント コー カーゲー Multi-stage heat exchange device and method for manufacturing such a device
JP2007198706A (en) * 2006-01-30 2007-08-09 National Institute Of Advanced Industrial & Technology Internal heating type heat exchange structure having intersecting passage directions
WO2007122685A1 (en) 2006-04-14 2007-11-01 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and refrigeration air conditioner
JP2010139185A (en) * 2008-12-12 2010-06-24 Mitsubishi Electric Corp Heat exchanger and method of heating liquid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116128A1 (en) * 2015-12-30 2017-07-06 한온시스템 주식회사 Heat exchanger for cooling electrical device
KR20170079191A (en) * 2015-12-30 2017-07-10 한온시스템 주식회사 heat exchanger for cooling electric element
CN108141989A (en) * 2015-12-30 2018-06-08 翰昂汽车零部件有限公司 For cooling down the heat exchanger of electric device
CN108141989B (en) * 2015-12-30 2019-12-24 翰昂汽车零部件有限公司 Heat exchanger for cooling an electrical device
US10582649B2 (en) 2015-12-30 2020-03-03 Hanon Systems Heat exchanger for cooling electrical device
KR102413829B1 (en) * 2015-12-30 2022-06-29 한온시스템 주식회사 heat exchanger for cooling electric element
CN113959117A (en) * 2020-09-23 2022-01-21 杭州三花微通道换热器有限公司 Heat exchanger and multi-refrigerating-system air conditioning unit
CN113959117B (en) * 2020-09-23 2022-06-17 杭州三花微通道换热器有限公司 Heat exchanger and multi-refrigerating-system air conditioning unit
CN114623630A (en) * 2020-12-09 2022-06-14 广东美的白色家电技术创新中心有限公司 Heat exchanger and dish washing machine

Also Published As

Publication number Publication date
EP2667136A4 (en) 2016-01-20
JP5496369B2 (en) 2014-05-21
EP2667136A1 (en) 2013-11-27
EP2667136B1 (en) 2020-04-01
JPWO2012098572A1 (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5787992B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
JP5777622B2 (en) Heat exchanger, heat exchange method and refrigeration air conditioner
JP6641544B1 (en) Plate heat exchanger and heat pump device provided with the same
WO2013183629A1 (en) Plate-type heat exchanger and refrigeration cycle device comprising same
JP6305574B2 (en) Plate heat exchanger and heat pump outdoor unit
CN111819415B (en) Plate heat exchanger, heat pump device provided with same, and heat pump type cooling/heating/water heating system provided with heat pump device
JP5661205B2 (en) Laminated heat exchanger, heat pump system equipped with the same, and manufacturing method of laminated heat exchanger
WO2019176566A1 (en) Plate-type heat exchanger, heat pump device comprising plate-type heat exchanger, and heat pump-type heating/cooling hot water supply system comprising heat pump device
WO2020100276A1 (en) Plate-type heat exchanger, heat pump device, and heat-pump-type cooling/heating hot-water supply system
CN111684233B (en) Heat exchanger and air conditioner
JP4122670B2 (en) Heat exchanger
JP5496369B2 (en) Laminated heat exchanger and heat pump system equipped with the same
JP5744316B2 (en) Heat exchanger and heat pump system equipped with the heat exchanger
JP2016050718A (en) Air conditioner
JP2016183811A (en) Micro flow passage heat exchanger
JP5046748B2 (en) Gas cooler for hot water system
KR100943573B1 (en) Heat exchanger
CN111141163B (en) Welded plate heat exchanger
JP6493575B1 (en) Refrigeration system
JP3922088B2 (en) Heat exchanger
JP2010175158A (en) Heat exchanger and refrigerating air conditioner
KR20060122375A (en) A heat exchanger
JP5940152B2 (en) Plate heat exchanger and refrigeration cycle apparatus equipped with the same
JP7292435B2 (en) Plate heat exchanger and heat transfer device
KR100925097B1 (en) Water-cooled heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553451

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011856572

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE