JP2008157592A - Stacked integrated self heat exchange structure - Google Patents

Stacked integrated self heat exchange structure Download PDF

Info

Publication number
JP2008157592A
JP2008157592A JP2006349796A JP2006349796A JP2008157592A JP 2008157592 A JP2008157592 A JP 2008157592A JP 2006349796 A JP2006349796 A JP 2006349796A JP 2006349796 A JP2006349796 A JP 2006349796A JP 2008157592 A JP2008157592 A JP 2008157592A
Authority
JP
Japan
Prior art keywords
planar
fluid
opening
heat exchange
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006349796A
Other languages
Japanese (ja)
Inventor
Tamotsu Kobuchi
存 小渕
Jiyunko Uchisawa
潤子 内澤
Akihiko Oi
明彦 大井
Tetsuya Nanba
哲哉 難波
Norio Iijima
則夫 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006349796A priority Critical patent/JP2008157592A/en
Priority to PCT/JP2007/074896 priority patent/WO2008078758A1/en
Publication of JP2008157592A publication Critical patent/JP2008157592A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0006Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2458Flat plates, i.e. plates which are not corrugated or otherwise structured, e.g. plates with cylindrical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2459Corrugated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2462Heat exchange aspects the reactants being in indirect heat exchange with a non reacting heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2467Additional heat exchange means, e.g. electric resistance heaters, coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2479Catalysts coated on the surface of plates or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2481Catalysts in granular from between plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2482Catalytically active foils; Plates having catalytically activity on their own
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2483Construction materials of the plates
    • B01J2219/2485Metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2498Additional structures inserted in the channels, e.g. plates, catalyst holding meshes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0022Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact heat exchange structure with high heat efficiency suitable for temporarily heating a fluid. <P>SOLUTION: Planar fluid passages partitioned by stacked planar partition walls 17 serving as heat exchange surfaces extend in one direction. An opening 21 allowing a fluid to flow in the section of each of the alternate stacked planar fluid passages is formed at one end of each of the planar passages in the extending direction. An opening 22 allowing the fluid to flow out of the section of each of the alternate planar fluid passages in which the openings are not formed in the areas above are formed in the other area in the side surface or the other side surface in proximity to the side surface. An opening 4 for communicating the planar fluid passages adjacent to each other with the external space of the structure interposed therebetween with all the sections of all the planar flow passages is formed in at least one side surface positioned at the end in the extending direction on the opposite side of the opening allowing the fluid to flow in and flow out. The uniformity of the gaps between the planar flow passages and the strength of the structure are secured by stacking the planar partition walls 28 having corrugated irregularities. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自己熱交換構造体に関し、より詳しくは、熱交換体の内部で発生させた熱を利用して流体を効率的に一時的に加熱することができる積層一体型の熱交換構造体に関する。   The present invention relates to a self-heat exchanging structure, and more specifically, a laminated integrated heat exchanging structure capable of efficiently and temporarily heating a fluid using heat generated inside the heat exchanging body. About.

流体を一時的に加熱することは種々の産業分野において様々な要請に応じて行われている。例えば、化学工業分野では、目的とする化学反応に適する温度まで原料をあらかじめ加熱することが数多くの化学装置において行われている。   Temporarily heating a fluid is performed according to various demands in various industrial fields. For example, in the chemical industry field, in many chemical apparatuses, a raw material is heated in advance to a temperature suitable for a target chemical reaction.

また、いわゆる悪臭ガス又は揮発性有機溶剤(VOC)は、一般に、燃焼あるいは触媒燃焼によって無臭の無害ガスに転化させることができるが、これらの燃焼を開始し継続さるためには、有機物質を低濃度で含む大量の比較的温度の低いガスを燃焼領域に流入する前に予熱する必要がある。また、自動車エンジン等の内燃機関の排ガスに関し、一般に、ガソリンエンジンの排ガスには、有害物質の一酸化炭素、炭化水素類、及び窒素酸化物が含まれ、ディーゼルエンジンの排ガスには、さらにパティキュレートが含まれる。これらの有害物質は、酸化触媒、三元触媒、選択還元触媒等の触媒作用により浄化され得るが、同時に燃費の向上も要請されている。この燃費が向上されるにつれてエンジン排ガスの温度は必然的に低下するため、かかる触媒作用による浄化を高効率に行うためには、やはり予熱することが必要になってきている。   Also, so-called malodorous gases or volatile organic solvents (VOC) can generally be converted to odorless and harmless gases by combustion or catalytic combustion, but in order to initiate and continue these combustion, organic substances must be reduced. A large amount of relatively cool gas, including concentration, must be preheated before entering the combustion zone. Further, regarding exhaust gas from an internal combustion engine such as an automobile engine, in general, exhaust gas from a gasoline engine contains harmful substances such as carbon monoxide, hydrocarbons, and nitrogen oxides, and exhaust gas from a diesel engine further includes particulates. Is included. These harmful substances can be purified by the catalytic action of an oxidation catalyst, a three-way catalyst, a selective reduction catalyst, etc., but at the same time, improvement in fuel consumption is also demanded. As the fuel efficiency is improved, the temperature of the engine exhaust gas inevitably decreases. Therefore, in order to perform purification by such catalytic action with high efficiency, it is also necessary to preheat.

一方、自動車排ガスについては、エンジンの空燃比制御や燃料後噴射の技術の向上により、燃費をそれ程低下させることなく、Oの存在下で排ガス中に、例えば数1000ppm程度のCOを含ませることが可能となっている。先行技術においては、こうした発熱成分を利用するとともに熱交換作用により有利に排ガスを予熱し、効率的に浄化を行うことが可能な、触媒反応と熱交換機能を一体化した装置又はデバイスが提案されている(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6)。 On the other hand, for automobile exhaust gas, by improving the air-fuel ratio control of the engine and the technology of fuel post-injection, for example, about several thousand ppm of CO should be included in the exhaust gas in the presence of O 2 without significantly reducing fuel consumption. Is possible. In the prior art, an apparatus or device that integrates a catalytic reaction and a heat exchanging function is proposed that can utilize such exothermic components and preheat the exhaust gas advantageously by heat exchanging action to efficiently purify the exhaust gas. (Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, Patent Literature 5, Patent Literature 6).

予熱の効果を高くするためには、熱交換部の伝熱面積を大きくしなければならず、装置あるいはシステムの規模が大きくなってしまうが、自動車排ガス浄化あるいは小規模のVOC発生源対策においては、装置等の規模をコンパクトに抑えることが強く求められている。上記の先行技術では、このコンパクト性を確保するため、基本的には、熱交換性能が高い向流プレート型の熱交換構造が採用されている。プレート型熱交換構造では、低温および高温流体の流路が積層構造の狭いすきま間隔の平板型流路としてひとつ置きに配置されていることから、流体の流入部および流出部の分離しつつ両流路間どうしあるいは各流路と装置外部とのシーリングを達成できる構造を得ることが設計、製作上の最大の課題となっている。   In order to increase the effect of preheating, the heat transfer area of the heat exchanging section must be increased, and the scale of the apparatus or system will be increased. However, in automobile exhaust gas purification or small-scale VOC generation source countermeasures Therefore, there is a strong demand to keep the scale of devices and the like compact. In the above prior art, in order to ensure this compactness, a counter-current plate type heat exchange structure with high heat exchange performance is basically employed. In the plate-type heat exchange structure, the low-temperature and high-temperature fluid flow paths are arranged alternately as flat-type flow paths with a narrow gap in the laminated structure. The biggest problem in designing and manufacturing is to obtain a structure that can achieve sealing between the roads or between each flow path and the outside of the apparatus.

例えば、特許文献1では、流体の流入部および流出部を分離する具体的な構造は提示されていない。   For example, Patent Document 1 does not provide a specific structure for separating a fluid inflow portion and an outflow portion.

特許文献2〜5では、上記の課題に対して一枚の波形伝熱板を用いることで解決が図られている。この構造では、流体の流入部および流出部を波形伝熱板をはさんで波形が伸長する方向の中央部にそれぞれ相対するように配置することにより、波形伝熱板の波形が伸長する方向と平行な両端部のみをシールすることにより、流入部と流出部の分離と低温流体の流路と高温流体の流路の分離が実現されうる。しかしこの構造では、波形伝熱体の稜線と交わる方向の両端部で低温側と高温側の流路が連通することになるため、目的とする反応を行わせる温度が極値(最高)となる領域が装置内の2箇所に生じてしまう。このことにより、目的とする反応のための温度制御が困難になるとともに、装置からの放熱量が増して予熱の効率が落ちてしまうという問題がある。   In patent documents 2-5, the solution is achieved by using one corrugated heat exchanger plate with respect to said subject. In this structure, the inflow portion and the outflow portion of the fluid are arranged so as to be opposed to the central portion of the direction in which the waveform extends across the corrugated heat transfer plate, respectively, so that the waveform of the corrugated heat transfer plate extends. By sealing only both parallel end portions, separation of the inflow portion and the outflow portion and separation of the flow path of the low temperature fluid and the flow path of the high temperature fluid can be realized. However, in this structure, the flow path on the low temperature side and the high temperature side communicate with each other at both ends in the direction intersecting the ridgeline of the corrugated heat transfer body, so that the temperature at which the target reaction is performed becomes an extreme value (maximum). Regions occur in two places in the device. This makes it difficult to control the temperature for the intended reaction, and increases the amount of heat released from the apparatus, leading to a decrease in preheating efficiency.

特許文献2〜6では、一枚の波形伝熱体を用いた構造、あるいは角形の流路を積層させた構造において、温度が極値となる領域を1箇所とする流入部および流出部の配置方法についても提示されているが、この場合には、波形伝熱体あるいは角形の稜線が伸長する方向と交わる方向の一つの端部をシールしなければならない。しかし、この部分は間隔がきわめて小さい波形あるいは平行積層の断面が露出している箇所であり、そのシールを高い耐久性を確保しつつ実現することは、製作上かなりの困難を伴う。   In Patent Documents 2 to 6, in a structure using a single corrugated heat transfer body or a structure in which rectangular flow paths are stacked, the arrangement of an inflow portion and an outflow portion with one region having an extreme temperature is provided. A method is also presented, but in this case one end in the direction that intersects the direction in which the corrugated heat transfer body or square ridgeline extends must be sealed. However, this portion is a portion where a corrugation with a very small interval or a cross section of a parallel laminate is exposed, and it is extremely difficult to manufacture the seal while ensuring high durability.

特許文献6では、さらに、一体型ハニカム構造体の流入部近傍に、個々のハニカム流路を一列に連通する横穴をハニカム流路列の一つ置きに形成することにより、上記の課題解決が図られている。しかし、この方法においても、ハニカム構造体の機械的強度を保ちつつ十分な大きさの複数の該横穴を形成し、さらには必要なシールを行うことは、製作上かなりの困難を伴う。
特表平7−506884号公報 特開2000−189757号公報 国際特許公開第2002/29218号パンフレット 特表2003−524728号公報 特開2004−69293号公報 国際特許公開第2004/99577号パンフレット
In Patent Document 6, further, the above-mentioned problem is solved by forming lateral holes for communicating individual honeycomb channels in a row in every other vicinity of the inflow portion of the integral honeycomb structure. It has been. However, even in this method, it is very difficult to manufacture the plurality of lateral holes having a sufficiently large size while maintaining the mechanical strength of the honeycomb structure, and further, performing necessary sealing.
Japanese National Patent Publication No. 7-506684 JP 2000-189757 A International Patent Publication No. 2002/29218 Pamphlet JP-T-2003-524728 JP 2004-69293 A International Patent Publication No. 2004/99577 pamphlet

本発明は、以上のような事情に鑑みてなされたものであって、本発明の目的は、自己熱交換構造体のより一層の改良であり、製作が比較的容易であり、かつ、高い熱交換効率を有し、圧力損失が小さいながら、コンパクトな一体型自己熱交換構造体を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is a further improvement of the self-heat exchange structure, which is relatively easy to manufacture and has a high heat An object of the present invention is to provide a compact integrated self-heat exchange structure having exchange efficiency and low pressure loss.

発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、熱交換面となる積層された面状隔壁によって仕切られた複数の面状流路を内部に設け、該複数の面状流路を通過する流体の上流と下流との間で熱交換が可能な自己熱交換構造体により、上記の目的が達成しうるという知見を得た。
本発明は、これらの知見に基づいて完成に至ったものであり、以下のとおりのものである。
As a result of intensive studies to achieve the above object, the inventors have provided a plurality of planar flow channels partitioned by stacked planar partition walls that serve as heat exchange surfaces. It has been found that the above object can be achieved by a self-heat exchange structure capable of exchanging heat between upstream and downstream of a fluid passing through a channel.
The present invention has been completed based on these findings, and is as follows.

(1)内部で、往路を通過する流体と復路を通過する流体との間で熱交換が可能な自己熱交換構造体であって、
熱交換面となる積層された面状隔壁によって仕切られた複数の面状流路を備えた一体形成された構造を有し、
前記複数の面状流路は、往路と復路が一方向に伸長しており、
前記伸長方向の一端に位置する前記構造体の側面は、往路に流体を注入するための領域と復路から流体を排出するための領域とに二分され、前者の領域には、前記複数の面状流路断面に流体注入のための開口部が一つ置きに設けられ、後者の領域には、前記開口部が設けられていない一つ置きの複数の面状流路断面に流体排出のための開口部が設けられ、
前記構造体の前記伸長方向他端に位置する側面には、面状流路断面のすべてに対して、該構造体の外部空間を介して往路と復路を連通させるための開口部が設けられていることを特徴とする積層一体型自己熱交換構造体。
(2)前記二分された領域が、異なる側面に設けられていることを特徴とする上記(1)の積層一体型自己熱交換構造体。
(3)前記隣り合う面状流路を連通させるための開口部が、往路からいったん流出するための開口部と復路へ再流入するための開口部とからなり、それぞれの開口部は、異なる領域において、一つ置きの面状流路断面に設けられていることを特徴とする上記(1)又は(2)の積層一体型自己熱交換構造体。
(4)前記異なる領域が、異なる側面に設けられていることを特徴とする上記(3)の積層一体型自己熱交換構造体。
(5)前記面状隔壁がその伸長方向と交わる方向に伸長した周期的な溝を有する面形状であることを特徴とする上記(1)〜(4)の積層一体型自己熱交換構造体。
(6)前記隣り合う面状流路を連通させるための開口部の近傍に、流体に含まれる成分による発熱反応を促進する触媒を配置したことを特徴とする上記(1)〜(5)の積層一体型自己熱交換構造体。
(1) A self-heat exchange structure capable of exchanging heat between a fluid passing through an outward path and a fluid passing through a return path,
It has an integrally formed structure with a plurality of planar flow paths partitioned by stacked planar partition walls that serve as heat exchange surfaces,
In the plurality of planar flow paths, the forward path and the return path extend in one direction,
A side surface of the structure located at one end in the extending direction is divided into a region for injecting fluid in the forward path and a region for discharging fluid from the return path, and the former region includes the plurality of planar shapes. Every other opening for injecting fluid is provided in the cross section of the flow path, and in the latter area, a plurality of other planar flow path cross sections in which the opening is not provided are provided for discharging the fluid. An opening is provided,
The side surface located at the other end in the extension direction of the structure is provided with an opening for communicating the forward path and the return path through the external space of the structure with respect to all the cross sections of the planar flow path. A laminate-integrated self-heat exchange structure characterized by comprising:
(2) The laminated integrated self-heat exchange structure according to (1), wherein the bisected regions are provided on different side surfaces.
(3) The opening for communicating the adjacent planar flow paths comprises an opening for once flowing out from the forward path and an opening for re-inflowing into the return path, and each opening is a different region. And (1) or (2), wherein the laminated integrated self-heat exchange structure is provided in every other planar channel cross section.
(4) The laminated integrated self-heat exchange structure according to (3), wherein the different regions are provided on different side surfaces.
(5) The laminate-integrated self-heat exchange structure according to any one of (1) to (4) above, wherein the planar partition has a planar shape having a periodic groove extending in a direction intersecting with the extending direction.
(6) The catalyst according to any one of (1) to (5) above, wherein a catalyst for promoting an exothermic reaction due to a component contained in the fluid is disposed in the vicinity of the opening for communicating the adjacent planar channels. Laminated integrated self-heat exchange structure.

本発明の積層一体型自己熱交換構造体は、製作が比較的容易であり、かつ、高い熱交換率と低圧力損失性能とコンパクト性を併せ持つものであり、面状隔壁の積層間隔や、面状隔壁あるいは板状スペーサーの形状を調節することにより、従来のハニカム構造体と同程度の幾何表面積を有する触媒支持体を容易に製作することができる。また、きわめて狭いながら比較的平滑な流路を形成でき、特に、波形の面状隔壁を積層したものを用いれば、伝熱面積が大きいとともに伝熱面に流体が衝突しやすくなることにより熱伝達性を大きくできることから、従来のプレート型熱交換器と同等あるいはそれ以上の熱交換性能を発揮すると期待できる。さらに、熱発生と熱交換が同一の構造体の中で完結することから、熱損失も少ない。これらの効果により、処理する流体に対して、小さな加熱エネルギーで大きな昇温効果が得られる。   The laminate-integrated self-heat exchange structure of the present invention is relatively easy to manufacture, and has both a high heat exchange rate, low pressure loss performance, and compactness. A catalyst support having a geometric surface area comparable to that of a conventional honeycomb structure can be easily manufactured by adjusting the shape of the partition walls or the plate spacers. In addition, a relatively smooth flow path can be formed though it is extremely narrow, and heat transfer can be achieved by using a laminate of corrugated planar partition walls, because the heat transfer area is large and the fluid easily collides with the heat transfer surface. Therefore, it can be expected that the heat exchange performance is equal to or higher than that of the conventional plate heat exchanger. Furthermore, since heat generation and heat exchange are completed in the same structure, there is little heat loss. Due to these effects, a large temperature increase effect can be obtained with a small heating energy for the fluid to be treated.

本発明の実施の形態について、図を用いて説明する。
図1ないし3は、本発明の積層一体型自己熱交換構造体の一形態を示すものであって、図1は、ケーシングに収納した該構造体の面状隔壁面に垂直な方向から見た透視図であり、図2は、該構造体を流入及び排出のための開口部領域を設けた側面の方向から見た外観図であり、図3は、往路と復路を連通させるための開口部を設けた側面の方向から見た外観図である。
これらの図において、1は積層一体型自己熱交換構造体、2は流入口がある領域、3は排出口がある領域、4は往路と復路の面状流路が連通するための開口部を有する側面、5は全面がシールされた流路の伸長方向に沿った側面、6は該側面5と相対する側面、7はケーシング、8はケーシングに設けた流入口、9はケーシングに設けた排出口、10はパッキング兼断熱材、11は往路と復路を連通させるための空間、12は該空間11を形成するためのスペーサー、13は構造体内部の往路側の面状流路内の流れ、14は構造体内部の復路側の面状流路内の流れ、15はヒーター、16は触媒配置領域、17は面状隔壁、18は流入口、19は排出口、20は封止材、21は往路の開口部、22は復路の開口部、をそれぞれ示している。
Embodiments of the present invention will be described with reference to the drawings.
1 to 3 show an embodiment of a laminated integrated self-heat exchange structure according to the present invention. FIG. 1 is viewed from a direction perpendicular to a planar partition wall surface of the structure housed in a casing. FIG. 2 is an external view of the structure as seen from the direction of the side surface provided with an opening region for inflow and discharge, and FIG. 3 is an opening for communicating the forward path and the return path. It is the external view seen from the direction of the side surface which provided.
In these figures, 1 is a laminated integrated self-heat exchange structure, 2 is an area having an inflow port, 3 is an area having an exhaust port, and 4 is an opening for communicating the planar flow paths of the forward path and the return path. The side surface 5 has a side surface along the extending direction of the flow path whose entire surface is sealed, 6 is a side surface opposite to the side surface 5, 7 is a casing, 8 is an inlet provided in the casing, and 9 is a drain provided in the casing. Outlet, 10 is a packing and heat insulating material, 11 is a space for communicating the forward path and the return path, 12 is a spacer for forming the space 11, 13 is a flow in a planar flow path on the forward path inside the structure, 14 is a flow in a planar flow path on the return path inside the structure, 15 is a heater, 16 is a catalyst arrangement region, 17 is a planar partition, 18 is an inlet, 19 is a discharge port, 20 is a sealing material, 21 Indicates the opening of the forward path, and 22 indicates the opening of the return path.

図に示すとおり、該構造体1は、熱交換面となる積層された面状隔壁17によって仕切られた複数の面状流路を備えた、一体形成された構造を有し、該複数の面状流路は、往路と復路が一方向(図1では上下方向)に伸長している。
該伸長方向の一端となる側面の少なくとも一部の領域2に、積層された複数の面状流路(往路)のみに流体流入のための開口部18を設けるとともに、該側面の別の領域3には前記領域で開口部を設けなかった方の一つ置きの流路(復路)のみに流出のための開口部19を設ける。各流入口から入った流体は、面状に広がるそれぞれの往路において、伸長方向に対する幅全体にも広がるような流路形態とする。また、それぞれの復路において、伸長方向の幅全体に広がった流体が各排出口から排出されうる流路形態とする。一方、領域2、3が設けられたのとは反対側の該伸長方向の端部の側面4には、前記構造体1の外の空間11を介して該往路と該復路を連通させるための開口部を設ける。また、伸長方向に沿った側面5および6は全面シールする。
As shown in the figure, the structure 1 has an integrally formed structure including a plurality of planar flow paths partitioned by stacked planar partition walls 17 serving as heat exchange surfaces, and the plurality of surfaces. The forward channel and the return channel extend in one direction (vertical direction in FIG. 1).
An opening 18 for inflow of fluid is provided only in a plurality of stacked planar flow paths (outward paths) in at least a part of the side surface 2 that is one end in the extending direction, and another region 3 on the side surface. Is provided with an opening 19 for outflow only in every other flow path (return path) in which no opening is provided in the region. The fluid that has entered from each inflow port has a flow path configuration that extends in the entire width with respect to the extending direction in each outward path that spreads in a planar shape. Moreover, it is set as the flow-path form which can discharge the fluid which spread over the whole width | variety of the expansion | extension direction in each return path from each discharge port. On the other hand, the side surface 4 of the end portion in the extending direction opposite to the regions 2 and 3 is provided for communicating the forward path and the return path via the space 11 outside the structure 1. Opening is provided. Further, the side surfaces 5 and 6 along the extending direction are entirely sealed.

本発明の積層一体型自己熱交換構造体1の作用は以下の通りである。ケーシング7の流入口8より入った処理すべき流体は、1側面の一部領域2に設けた開口部18を通って構造体1内の1つ置きの面状流路(往路)に進入し、図1に流れ13として示すように、構造体1の伸長方向を下行する。別の側面4に達した流体は、側面4に設けた往路の開口部21からいったん構造体1の外の空間11に出る。次いで、空間11と復路の開口部22を通って再び構造体1に進入し、図1に流れ14として示すように、上行する。そして最終的に、領域2と近接する別の領域3に設けた復路のみと連通する開口部19を通り、さらにケーシング7の排出口9を通って、系外に排出される。   The operation of the laminated integrated self-heat exchange structure 1 of the present invention is as follows. The fluid to be processed which has entered from the inlet 8 of the casing 7 enters every other planar flow path (outward path) in the structure 1 through the opening 18 provided in the partial region 2 on one side surface. As shown as flow 13 in FIG. 1, the extending direction of the structure 1 is descended. The fluid reaching the other side surface 4 once exits to the space 11 outside the structure 1 from the forward opening 21 provided in the side surface 4. Next, it enters the structure 1 again through the space 11 and the opening 22 in the return path, and ascends as shown as a flow 14 in FIG. Finally, the gas is discharged out of the system through the opening 19 communicating with only the return path provided in another area 3 adjacent to the area 2 and further through the discharge port 9 of the casing 7.

本発明において、以上のような流路を形成し、さらに、流体の折り返し部である空間11の近傍に適当な加熱手段、たとえば領域4に面した電気ヒータ15あるいは流体内の可燃成分と構造体1内部の領域4近傍に配置した酸化触媒16の組み合わせなど、を設けて流体を加熱することにより、復路の流体が往路に比べて高温にできるが、空間11近傍における流体温度は、単に加熱量を流体の熱容量流量で除した値になるに止まらず、該面状隔壁を通して高温の復路流体から低温の往路流体に移動した熱量に応じて、さらに高温にすることができる。
たとえば、ある流量条件のもとで該構造体の熱回収率が80%、加熱手段のみによる流体上昇温度が50Kの場合、熱回収の効果が加わることにより、往路から復路への折り返し部分での流入口を基準とする上昇温度は、外壁などを通しての熱損失がない場合、その5倍の250Kに達する。
In the present invention, the flow path as described above is formed, and further, suitable heating means, for example, the electric heater 15 facing the region 4 or the combustible component in the fluid and the structure in the vicinity of the space 11 which is the folded portion of the fluid. 1, by providing a combination of oxidation catalysts 16 disposed in the vicinity of the region 4 inside and heating the fluid, the fluid in the return path can be heated to a temperature higher than that in the forward path. However, the temperature can be further increased according to the amount of heat transferred from the high temperature return fluid to the low temperature outward fluid through the planar partition.
For example, when the heat recovery rate of the structure is 80% under a certain flow rate condition and the fluid rising temperature by only the heating means is 50K, the effect of heat recovery is added, so that at the folded part from the forward path to the return path The rising temperature with respect to the inlet reaches 250K, which is five times that when there is no heat loss through the outer wall or the like.

本発明の構造体1を形成するための材料、すなわち、面状隔壁の材料、領域2および3の非開口部の封止材20、側面5および6の封止材としては、使用最高温度に耐えることができ、最終的に構造体1を一体構造体にすることができるならば、どのようなものでも構わず、また、単一材料でも、それぞれの部分に異なる組成の材料を用いても構わない。比較的低温度で使用するならば、各種の熱硬化性プラスチック、より高温であればコージェライト、ムライト、炭化珪素等のセラミックなどが使用できる。   The material for forming the structure 1 of the present invention, that is, the material for the planar partition, the sealing material 20 for the non-openings in the regions 2 and 3, and the sealing materials for the side surfaces 5 and 6 are used at the maximum operating temperature Any material can be used as long as it can withstand and finally the structure 1 can be made into a monolithic structure, and a single material or a material having a different composition can be used for each part. I do not care. Various thermosetting plastics can be used if used at a relatively low temperature, and ceramics such as cordierite, mullite, and silicon carbide can be used at higher temperatures.

図4は、本発明の別の実施の形態を、ケーシングとともに示した図である。
図1では、流入のための開口部と排出のための開口部を設けた領域が同一側面内に設けられているが、この形態では、構造体1の伸長方向に対しては、同一の端側にありながら近接する2つの異なる側面に設けられている。これら2つの側面がなす角度としては60〜150°、より好ましくは90〜120°とすることがよい。このような角度をつけることにより、流入した直後および排出直前の流体間でも熱交換が起こるようになるとともに、1の往・復路の幅一杯に流体が広がりやすくなるので、熱交換性能を向上させることができる。
図5は、図4と同様の構造体1の別の実施の形態をケーシングとともに示した図である。
なお、流入口および排出口が設けられた側面は、これまでに図示したような平面でなく円筒側面のような曲面になっていてもよい。
FIG. 4 is a view showing another embodiment of the present invention together with a casing.
In FIG. 1, the area provided with the opening for inflow and the opening for discharge is provided in the same side surface. However, in this embodiment, the same end is formed in the extending direction of the structure 1. It is provided on two different side surfaces that are close to each other. The angle formed by these two side surfaces is preferably 60 to 150 °, more preferably 90 to 120 °. By providing such an angle, heat exchange occurs between the fluid immediately after flowing in and immediately before discharging, and the fluid easily spreads to the full width of the forward / return path of 1 so that heat exchange performance is improved. be able to.
FIG. 5 is a view showing another embodiment of the structure 1 similar to FIG. 4 together with a casing.
In addition, the side surface provided with the inflow port and the discharge port may be a curved surface such as a cylindrical side surface instead of the flat surface as illustrated in the above.

図6は、本発明の更に別の実施の形態をケーシングとともに示した図である。
この形態では、往路と復路を連通させるための側面4上の往路の開口部21と復路の開口部22を設けた領域が、面状流路の互いに異なる一つ置きのみに開口部を設けることによって、該構造体の異なる側面に分離されて設けられている。この形態では、図4の場合と同様に、流入口および排出口も異なる側面に分離されているが、図1の場合と同様に、流入口と排出口は同一側面内の異なる領域に形成されていてもよい。いずれの場合も、流入口のある領域2と側面4上の往路の開口部を設けた領域、および排出口のある領域3と側面4上の復路の開口部を設けた領域が、構造体1の伸長方向に対してそれぞれ対角に位置することが、熱交換性能を上げる上で望ましい。
FIG. 6 is a view showing still another embodiment of the present invention together with a casing.
In this embodiment, the areas where the forward opening 21 and the backward opening 22 on the side surface 4 for communicating the forward path and the backward path are provided only in every other one of the planar channels. Are provided separately on different sides of the structure. In this embodiment, the inlet and outlet are separated on different side surfaces as in the case of FIG. 4, but the inlet and outlet are formed in different regions within the same side as in FIG. It may be. In any case, the region 1 having the inlet and the region provided with the opening of the forward path on the side surface 4 and the region 3 having the discharge port and the region provided with the opening of the return path on the side surface 4 are the structures 1. In order to improve the heat exchange performance, it is desirable to be positioned diagonally with respect to the extending direction.

以上のいずれの様態においても、面状隔壁間のすきまを平均的に一定間隔に保ち、かつ領域2から流入した流体が往路内で1の伸長方向の幅一杯に広がって側面4に向かって流れるようにし、かつ、側面4で折り返した流体が復路内で幅一杯に広がって流れた後に領域3から排出されるようにすることが、該構造体の強度を保つ上でも、高い熱交換性能を得る上でも重要である。
そのための方法としては、面状隔壁の全面にわたって高さが等しい多数の突起をつければよい。この突起は、構造体1の伸長方向および伸長方向と交わる方向のいずれに対しても流体が大きな抵抗なく流通できる形状および密度で配置されていればよく、規則的な周期配置であっても、平均的にはほぼ等密度であるが不規則に配置してあってもよい。
このような突起を有する該構造体の形成方法としては、たとえば、硬化処理前の各面状隔壁素材にプレス加工などによりあらかじめ突起形状を形成し、必要に応じて接着材を表面にコーティングした上で複数の面状隔壁を突起部で接着するように積層し、さらに必要に応じて振動を与えるなどして接点の密着性を増した後、硬化処理を行って一体形成すればよい。
In any of the above modes, the gap between the planar partition walls is maintained at a constant interval on the average, and the fluid flowing in from the region 2 spreads to the full width in the extending direction 1 and flows toward the side surface 4 in the forward path. In addition, in order to maintain the strength of the structure, high heat exchange performance can be achieved by allowing the fluid folded back on the side surface 4 to flow out to the full width in the return path and then discharged from the region 3. It is important to get.
As a method for that purpose, a plurality of protrusions having the same height may be formed over the entire surface of the planar partition wall. The protrusions only need to be arranged in a shape and density that allows fluid to flow without great resistance in both the extending direction of the structure 1 and the direction intersecting with the extending direction. Although the average density is almost equal, they may be arranged irregularly.
As a method of forming the structure having such protrusions, for example, a protrusion shape is formed in advance on each planar partition wall material before the curing process by pressing, and an adhesive is coated on the surface as necessary. Then, after laminating a plurality of planar partition walls so as to be bonded at the protrusions, and further increasing the adhesiveness of the contacts by applying vibration as necessary, it may be integrally formed by performing a curing process.

図7は、前記の条件を満たした面状隔壁間のすきま流路を形成するための別の形態を示したもので、図8は、図7に示す構造体1を、流入口及び流出口を設けた側面からみた外観図である。
図7、8に示す構造体は、図4に示した形態の構造体において、各面状流路内に、波形の凹凸を有する板状スペーサーを配置したものであり、この波形の稜線は、往路では、流入口を設けた側面から、まず排出口のある側面と平行に伸長した後、屈曲して構造体1の伸長方向と平行に伸長して側面4に至る。同様に、復路に置かれた板状スペーサーの稜線は、側面4から、まず構造体1の伸長方向と平行に伸長した後、排出口の近くで屈曲して流入口のある側面と平行に伸長し、排出口のある側面に至る。このようなスペーサーを設けることにより、構造体としても強度を増すとともに、往・復路内で流体が流路幅一杯に等分に流れるようになって熱交換性能が向上する。
FIG. 7 shows another embodiment for forming a clearance channel between planar partition walls that satisfies the above-mentioned conditions. FIG. 8 shows the structure 1 shown in FIG. It is the external view seen from the side surface which provided.
The structure shown in FIGS. 7 and 8 is a structure of the form shown in FIG. 4 in which plate-like spacers having corrugated irregularities are arranged in each planar flow path. In the forward path, the side surface provided with the inflow port first extends in parallel with the side surface with the discharge port, then bends and extends in parallel with the extending direction of the structure 1 to reach the side surface 4. Similarly, the edge of the plate-like spacer placed on the return path first extends from the side surface 4 in parallel with the extending direction of the structure 1 and then bends in the vicinity of the discharge port to extend in parallel with the side surface having the inflow port. To the side with the outlet. Providing such a spacer increases the strength of the structure as well as improves the heat exchange performance by allowing the fluid to flow equally over the width of the flow path in the forward and backward paths.

図9に示す構造体は、前記と同様にして、図6に示した形態の構造体において、各面状流路内に、波形の凹凸を有する板状スペーサーを配置したものである。この場合には、スペーサーの波形の稜線は2箇所で屈曲部を持つ。   The structure shown in FIG. 9 has a structure in the form shown in FIG. 6 in which plate-like spacers having corrugated irregularities are arranged in each planar flow channel in the same manner as described above. In this case, the corrugated ridgeline of the spacer has two bent portions.

伝熱面となる面状隔壁間に平均的に均等な面状流路を形成する別の方法としては、該伸長方向と交わる方向に伸長した周期的な溝を有する複数の面状隔壁を互いに積層させてもよい。
図10及び図11は、その一形態を示したもので、図11は、流入口及び排出口を設けた側面からみた外観図である。
これらの図に示すように、面状隔壁が構造体1の伸長方向と交わる方向に伸長した稜線を有する波形であるものである。互いに隣り合う面状隔壁28は、構造体1の伸長方向と交わる方向に伸長した稜線を有する波形で、さらに、隣り合う面状隔壁の該稜線は互いに異なる方向に伸長されている。これにより、隣り合う波形の隔壁間に、構造体1の伸長方向及びこれと交わる方向に広がるすきま流路が形成される。
As another method of forming an average uniform planar flow path between the planar partition walls serving as heat transfer surfaces, a plurality of planar partition walls having periodic grooves extending in a direction intersecting with the extending direction are mutually connected. It may be laminated.
FIG.10 and FIG.11 shows the one form, FIG.11 is the external view seen from the side surface which provided the inflow port and the discharge port.
As shown in these drawings, the planar partition has a waveform having a ridge line extending in a direction intersecting with the extending direction of the structure 1. The adjacent planar partition walls 28 have a waveform having a ridge line extending in a direction intersecting with the extending direction of the structure 1, and the ridge lines of adjacent planar partition walls are extended in different directions. As a result, a gap channel is formed between adjacent corrugated partition walls that extends in the extending direction of the structure 1 and the direction intersecting with the extending direction.

この形態ではさらに、流入口と排出口が異なる側面に形成された図4と同様の構造体において、波形の稜線の2つの伸長方向が、往路では排出口を設けた側面と、復路では流入口を設けた側面とそれぞれ平行になっている。さらに、流入口および流出口を設けた側面で面状隔壁28の波形断面の下側のみを封止する。これにより、図11に示すように流入口と排出口のある領域が2つの側面のそれぞれに分離されて形成される。一方、2方向の稜線のいずれも往路と復路を連通させるための側面4と交わるので、側面4では両流路とも全面的に開口されている。面状隔壁をこのような波形にすると、平面の場合に比べて隔壁面積が増大するとともに波形の溝に当たる流路が交差し合うため流れが乱されるので、熱交換性能が向上する。さらに、流体が該構造体の伸長方向に流れるためには、図10に示すようにこれとは方向の異なる波形の溝をジグザグに流れなければならないので、該構造体内部で流れが絶えず分割、再合流することにより各部の流速が一様化する。これによって熱交換性能が向上する効果もある。
なお、ここでは図4の形態の構造体について例示したが、図1、5あるいは6のような形態の構造体についても、同様に波形の面状隔壁を用いて形成することが可能である。
In this embodiment, in the structure similar to FIG. 4 in which the inlet and the outlet are formed on different side surfaces, the two extending directions of the corrugated ridge line are the side surface where the outlet port is provided and the inlet port on the return path. Each side is parallel to the side. Further, only the lower side of the corrugated cross section of the planar partition wall 28 is sealed with the side surface provided with the inflow port and the outflow port. Thereby, as shown in FIG. 11, the area | region with an inflow port and a discharge port is isolate | separated and formed in each of two side surfaces. On the other hand, since both of the ridge lines in the two directions intersect with the side surface 4 for communicating the forward path and the return path, both the flow paths are completely opened on the side surface 4. When the planar partition walls have such a corrugated shape, the partition area increases as compared to a flat surface, and the flow is disturbed because the flow paths corresponding to the corrugated grooves cross each other, so that the heat exchange performance is improved. Further, in order for the fluid to flow in the extending direction of the structure, the grooves having different corrugations must flow in a zigzag manner as shown in FIG. 10, so that the flow is constantly divided inside the structure. By rejoining, the flow velocity of each part becomes uniform. This also has the effect of improving the heat exchange performance.
In addition, although the structure of the form of FIG. 4 is illustrated here, the structure of the form of FIG. 1, 5 or 6 can be similarly formed using a corrugated planar partition.

さらに、伝熱面となる面状隔壁間に平均的に均等な面状流路を形成し、また、熱交換性能を向上する別の方法として、面状隔壁を波形にするとともに突起をつけた形態としてもよい。
図12はその一例を示したものである。この様態では、隣り合う面状隔壁29の波形を同位相とするとともに、その稜線の伸長方向を該構造体の伸長方向と直交する方向(図12では、図面に垂直な方向)に配置している。このようにすると、流体は、図12において流線31、32で示すように、往・復路の両流路において、波形の隔壁面と衝突して絶えず流路方向を曲げられながら該構造体の伸長方向に進むので、隔壁と流体との熱交換が促進される。
In addition, an evenly uniform planar flow path is formed between the planar partition walls that become the heat transfer surface, and as another method for improving the heat exchange performance, the planar partition walls are corrugated and provided with protrusions. It is good also as a form.
FIG. 12 shows an example. In this mode, the waveforms of the adjacent planar partition walls 29 have the same phase, and the extending direction of the ridge line is arranged in a direction perpendicular to the extending direction of the structure (in FIG. 12, a direction perpendicular to the drawing). Yes. In this way, as shown by the flow lines 31 and 32 in FIG. 12, the fluid collides with the corrugated partition wall surface in both the forward and backward flow paths and is continuously bent in the flow path direction. Since the process proceeds in the extending direction, heat exchange between the partition wall and the fluid is promoted.

本発明において、構造体1内部における流体の温度を上昇させるためには、側面4近傍において流体を加熱することが必要である。この方法としては、図1、4、5に示すように、側面4にほぼ密着する形でパネル状のヒータを配置すればよい。あるいは、図6に示すように、流体が折り返すための流路内に、流体が通過可能な形態のヒータを配置すればよい。あるいは、図1、4、5、6に示すように、側面4近傍の構造体1の内部に、流体に含まれる成分による発熱反応を促進する触媒を配置してもよい。
触媒の配置方法としては、面状流路内にペレットとして充填する方法や、面状隔壁、あるいは図8に示した板状スペーサー25の表面にコーティングする方法がある。
In the present invention, in order to increase the temperature of the fluid in the structure 1, it is necessary to heat the fluid in the vicinity of the side surface 4. As this method, as shown in FIGS. 1, 4, and 5, a panel-like heater may be disposed so as to be in close contact with the side surface 4. Or as shown in FIG. 6, what is necessary is just to arrange | position the heater of the form which a fluid can pass in the flow path for a fluid to return. Alternatively, as shown in FIGS. 1, 4, 5, and 6, a catalyst that promotes an exothermic reaction due to components contained in the fluid may be disposed inside the structure 1 near the side surface 4.
As a method for arranging the catalyst, there are a method of filling the planar flow channel as pellets, a method of coating the surface of the planar partition walls, or the plate spacer 25 shown in FIG.

流体に含まれる成分とは、例えばCOや炭化水素類をはじめとする有機成分が挙げられる。これらは処理すべき流体にはじめから含まれているものでもよいし、必要な加熱量を得るため該構造体に入る前の流体に人為的に加えたものでも良い。一方、触媒としては、例えばPtやPd等の白金属元素を活性成分とするものやその他の一般的な酸化触媒を使用すればよい。これらの成分はOの存在下、該触媒上で容易に完全酸化されてCOやHOに転化されるとともに反応熱を発生して流体を加熱する。これと熱交換によって回収された熱により、往路から復路への折り返し部分である空間11を通る流体の温度を著しく上昇させることができる。例えば、該構造体の熱回収率が80%、構造体1を通過する流体の主成分が空気で0.5%のCOが含まれている場合を考えると、このCOが酸化触媒上で完全酸化されてCOに転化したときに発生する熱量は流体を約48K上昇させる程度のものであるが、熱回収の効果が加わることにより、該構造体の外壁などを通しての熱損失がない場合、往路から復路への折り返し部分での流入口を基準とする上昇温度はその5倍の240Kに達する。 Examples of the component contained in the fluid include organic components such as CO and hydrocarbons. These may be contained in the fluid to be treated from the beginning, or may be artificially added to the fluid before entering the structure in order to obtain a necessary heating amount. On the other hand, as the catalyst, for example, a catalyst having a white metal element such as Pt or Pd as an active component or other general oxidation catalyst may be used. These components are easily completely oxidized on the catalyst in the presence of O 2 to be converted into CO 2 or H 2 O and generate heat of reaction to heat the fluid. By this and the heat recovered by heat exchange, the temperature of the fluid passing through the space 11 that is a turn-back portion from the forward path to the return path can be significantly increased. For example, if the heat recovery rate of the structure is 80% and the main component of the fluid passing through the structure 1 is air and contains 0.5% CO, this CO is completely contained on the oxidation catalyst. The amount of heat generated when oxidized and converted to CO 2 is such that the fluid is raised by about 48K, but when there is no heat loss through the outer wall of the structure due to the effect of heat recovery, The rising temperature based on the inlet at the turn-back portion from the forward path to the return path reaches 240K, which is five times as high.

以上の本発明の構造体が有する性能により、低濃度VOCの触媒酸化などのような小さな発熱しか伴わない化学反応でも、外部からの加熱エネルギーを与えることなく、その反応で発生する熱エネルギーのみで十分な高温を維持し、反応を継続させることが可能になる。あるいは、無害化反応を行わせることができないほど低温のエンジン排ガスにおいて、電気ヒータの併用、あるいは排ガス中あるいは人為的に少量添加した発熱成分の触媒反応熱を利用して、反応層の温度を小さなエネルギー損失で必要な高さにまで上げることを可能にする。このように、本発明は、化学反応プロセスにおける予熱と触媒反応を同時に行う装置の反応部に利用することができる。特に、悪臭又は低濃度の揮発性有機溶剤(VOC)を含む汚染空気の触媒燃焼式浄化装置、自動車エンジン等の内燃機関の排ガス浄化装置において、反応部の触媒支持体として利用することが効果的である。   Due to the performance of the structure of the present invention described above, even in a chemical reaction that involves only a small amount of heat, such as catalytic oxidation of low-concentration VOCs, only the heat energy generated by the reaction can be obtained without applying external heating energy. It becomes possible to maintain a sufficiently high temperature and continue the reaction. Alternatively, the temperature of the reaction layer can be reduced by using an electric heater in combination with an electric heater, or by using the catalytic reaction heat of an exothermic component added to the exhaust gas or artificially in small amounts so that the detoxification reaction cannot be performed. It is possible to raise to the required height with energy loss. As described above, the present invention can be used in a reaction section of an apparatus that simultaneously performs preheating and catalytic reaction in a chemical reaction process. In particular, it is effective to use it as a catalyst support in a reaction part in a catalytic combustion purification device for polluted air containing bad odor or low concentration volatile organic solvent (VOC), or an exhaust gas purification device for an internal combustion engine such as an automobile engine. It is.

積層一体型自己熱交換構造体の一形態をケーシングとともに示した図The figure which showed one form of a lamination integrated self heat exchange structure with a casing 図1の構造体を流入口及び流出口を設けた側面方向からみた外観図1 is an external view of the structure shown in FIG. 1 as viewed from the side in which an inlet and an outlet are provided. 図1の構造体を往路と復路が連通する開口部を設けた側面方向からみた外観図1 is an external view of the structure shown in FIG. 1 as viewed from the side provided with an opening for communication between the forward path and the return path. 流入口と排出口のある領域を異なる側面に設けた、積層一体型自己熱交換構造体をケーシングとともに示した図The figure which showed the laminated integrated self-heat exchange structure with the casing which provided the area with the inlet and outlet on different sides 流入口と排出口のある領域を異なる側面に設けた、別の様態の積層一体型自己熱交換構造体をケーシングとともに示した図Figure showing a different type of laminated integrated self-heat exchange structure with casings, with areas with inlets and outlets on different sides 隣り合う面状流路を連通させるための往路の開口部と復路の開口部を設けた領域が構造体の異なる側面に分離された、積層一体型自己熱交換構造体をケーシングとともに示した図The figure which showed the lamination | stacking integrated self-heat exchange structure with the casing where the area | region which provided the opening part of the outward path for connecting the adjacent planar flow path and the opening part of a return path was isolate | separated into the different side surface of a structure 図4の構造体において、面状流路内に波形の板状スペーサを配置した様子を示す図FIG. 4 is a diagram showing a state in which corrugated plate spacers are arranged in a planar flow path in the structure of FIG. 図7の構造体の流入口及び流出口を設けた側面からみた外観図The external view seen from the side which provided the inflow port and the outflow port of the structure of FIG. 図6の構造体において、面状流路内に波形の板状スペーサを配置した様子を示す図FIG. 6 is a view showing a state in which corrugated plate spacers are arranged in a planar flow path in the structure of FIG. 隣り合う面状隔壁が異なる方向に伸長した稜線を有する波状構造のものを示す図The figure which shows the thing of the wavy structure which has the ridgeline which the adjacent planar partition extended in the different direction 図10の構造体を流入口及び流出口を設けた側面方向からみた外観図10 is an external view of the structure of FIG. 10 as viewed from the side where the inlet and the outlet are provided. 突起を有する波状の面状隔壁を積層させた構造体の流れを、隔壁面に垂直で且つ構造体の伸長方向と平行な断面でみた図A view of the flow of a structure in which wavy planar partition walls having protrusions are stacked, viewed in a cross section perpendicular to the partition surface and parallel to the extending direction of the structure

符号の説明Explanation of symbols

1:積層一体型自己熱交換構造体
2:流入口がある領域
3:排出口がある領域
4:往路と復路の面状流路が連通するための開口部を有する側面
5:全面がシールされた流路の伸長方向に沿った側面
6:該側面5と相対する側面
7:ケーシング
8:ケーシングに設けた流入口
9:ケーシングに設けた排出口
10:パッキング兼断熱材
11:往路と復路を連通させるための空間
12:空間11を形成するためのスペーサー
13:構造体内部の往路側の面状流路内の流れ
14:構造体内部の復路側の面状流路内の流れ
15:ヒータ
16:触媒配置領域
17:面状隔壁
18:流入口
19:排出口
20:封止材
21:往路の開口部
22:復路の開口部
23:往路側に配置した波形の板状スペーサの稜線
24:復路側に配置した波形の板状スペーサの稜線
25:板状スペーサ
26:波形の面状隔壁の稜線
27:稜線26と隣り合う波形の面状隔壁の稜線
28:波形の面状隔壁
29:突起を有する波形の面状隔壁
30:構造体の伸長方向
31:往路内の流線
32:復路内の流線
1: Stacked and integrated self-heat exchange structure 2: Area with inflow port 3: Area with discharge port 4: Side face with opening for communication between forward and return planar flow paths 5: The entire surface is sealed 6: Side face opposite to the side face 7: Casing 8: Inlet provided in the casing 9: Outlet provided in the casing 10: Packing and heat insulating material 11: Outward path and return path Space for communication 12: Spacer for forming the space 11 13: Flow in the planar flow path on the forward path inside the structure 14: Flow in the planar flow path on the return path inside the structure 15: Heater 16: Catalyst arrangement region 17: Planar partition wall 18: Inlet 19: Discharge port 20: Sealing material 21: Outward opening 22: Return opening 23: Ridge of corrugated plate spacer arranged on the outward side 24 : Corrugated plate placed on the return path Edge of spacer 25: Plate spacer 26: Edge of corrugated planar partition wall 27: Edge of corrugated planar partition wall adjacent to ridge line 26 28: Corrugated planar partition wall 29: Corrugated planar partition wall with protrusions 30: Structure extension direction 31: Streamline in forward path 32: Streamline in backward path

Claims (6)

内部で、往路を通過する流体と復路を通過する流体との間で熱交換が可能な自己熱交換構造体であって、
熱交換面となる積層された面状隔壁によって仕切られた複数の面状流路を備えた一体形成された構造を有し、
前記複数の面状流路は、往路と復路が一方向に伸長しており、
前記伸長方向の一端に位置する前記構造体の側面は、往路に流体を注入するための領域と復路から流体を排出するための領域とに二分され、前者の領域には、前記複数の面状流路断面に流体注入のための開口部が一つ置きに設けられ、後者の領域には、前記開口部が設けられていない一つ置きの複数の面状流路断面に流体排出のための開口部が設けられ、
前記構造体の前記伸長方向他端に位置する側面には、面状流路断面のすべてに対して、該構造体の外部空間を介して往路と復路を連通させるための開口部が設けられていることを特徴とする積層一体型自己熱交換構造体。
Inside, a self-heat exchange structure capable of exchanging heat between the fluid passing through the forward path and the fluid passing through the return path,
It has an integrally formed structure with a plurality of planar flow paths partitioned by stacked planar partition walls that serve as heat exchange surfaces,
In the plurality of planar flow paths, the forward path and the return path extend in one direction,
A side surface of the structure located at one end in the extending direction is divided into a region for injecting fluid in the forward path and a region for discharging fluid from the return path, and the former region includes the plurality of planar shapes. Every other opening for injecting fluid is provided in the cross section of the flow path, and in the latter area, a plurality of other planar flow path cross sections in which the opening is not provided are provided for discharging the fluid. An opening is provided,
The side surface located at the other end in the extension direction of the structure is provided with an opening for communicating the forward path and the return path through the external space of the structure with respect to all the cross sections of the planar flow path. A laminate-integrated self-heat exchange structure characterized by comprising:
前記二分された領域が、異なる側面に設けられていることを特徴とする請求項1に記載の積層一体型自己熱交換構造体。   The laminated monolithic self-heat exchange structure according to claim 1, wherein the divided regions are provided on different side surfaces. 前記隣り合う面状流路を連通させるための開口部が、往路からいったん流出するための開口部と復路へ再流入するための開口部とからなり、それぞれの開口部は、異なる領域において、一つ置きの面状流路断面に設けられていることを特徴とする請求項1又は2に記載の積層一体型自己熱交換構造体。   The opening for communicating the adjacent planar flow paths is composed of an opening for once flowing out from the forward path and an opening for re-inflowing into the return path. The laminated integrated self-heat exchange structure according to claim 1 or 2, characterized in that it is provided in a cross section of every other planar flow path. 前記異なる領域が、異なる側面に設けられていることを特徴とする請求項3に記載の積層一体型自己熱交換構造体。   The multilayer integrated self-heat exchange structure according to claim 3, wherein the different regions are provided on different side surfaces. 前記面状隔壁がその伸長方向と交わる方向に伸長した周期的な溝を有する面形状であることを特徴とする請求項1〜4のいずれか1つに記載の積層一体型自己熱交換構造体。   The laminated integrated self-heat exchange structure according to any one of claims 1 to 4, wherein the planar partition has a planar shape having a periodic groove extending in a direction intersecting with the extending direction. . 前記隣り合う面状流路を連通させるための開口部の近傍に、流体に含まれる成分による発熱反応を促進する触媒を配置したことを特徴とする請求項1〜5のいずれか1つに記載の積層一体型自己熱交換構造体。   6. The catalyst according to claim 1, wherein a catalyst that promotes an exothermic reaction due to a component contained in the fluid is disposed in the vicinity of an opening for communicating the adjacent planar channels. Multi-layer self-exchange structure.
JP2006349796A 2006-12-26 2006-12-26 Stacked integrated self heat exchange structure Pending JP2008157592A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006349796A JP2008157592A (en) 2006-12-26 2006-12-26 Stacked integrated self heat exchange structure
PCT/JP2007/074896 WO2008078758A1 (en) 2006-12-26 2007-12-26 Reactor with stacked integrated self heat exchange structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349796A JP2008157592A (en) 2006-12-26 2006-12-26 Stacked integrated self heat exchange structure

Publications (1)

Publication Number Publication Date
JP2008157592A true JP2008157592A (en) 2008-07-10

Family

ID=39562548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349796A Pending JP2008157592A (en) 2006-12-26 2006-12-26 Stacked integrated self heat exchange structure

Country Status (2)

Country Link
JP (1) JP2008157592A (en)
WO (1) WO2008078758A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074154A1 (en) * 2008-12-25 2010-07-01 独立行政法人産業技術総合研究所 Reactor with integrated heat exchange unit
WO2010110410A1 (en) * 2009-03-27 2010-09-30 独立行政法人産業技術総合研究所 Heat exchanger-integrated reaction device having outgoing and return ducts for reaction section
JP2011126756A (en) * 2009-12-21 2011-06-30 National Institute Of Advanced Industrial Science & Technology Intra-laminate heat exchange type reactor, and method for manufacturing the same
JP2012527599A (en) * 2009-05-22 2012-11-08 アメリカ合衆国 Compact radial counter-flow recuperator
WO2019151567A1 (en) * 2018-02-01 2019-08-08 주식회사 하이낸드 Heat exchange device
US10458714B2 (en) * 2017-08-15 2019-10-29 Hamilton Sundstrand Corporation Heat exchanger assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871435A1 (en) * 2013-11-07 2015-05-13 Air To Air Sweden AB A sheet for exchange of heat or mass transfer between fluid flows, a device comprising such a sheet, and a method of manufacturing the sheet
EP4022241A1 (en) * 2019-08-31 2022-07-06 Corning Incorporated Improved heat exchange flow reactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069293A (en) * 2002-07-22 2004-03-04 National Institute Of Advanced Industrial & Technology Heat exchanger, reactor using the heat exchanger, and radiation heater
JP2004167293A (en) * 2002-11-15 2004-06-17 Matsushita Electric Ind Co Ltd Exhaust gas cleaning apparatus and exhaust gas cleaning method
JP2006313030A (en) * 2005-05-06 2006-11-16 Mitsubishi Heavy Ind Ltd Plate fin type heat exchanger and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2146244A1 (en) * 1992-11-19 1994-05-26 Patrick Lee Burk Method and apparatus for treating an engine exhaust gas stream
JP4310882B2 (en) * 2000-04-12 2009-08-12 株式会社デンソー Heat exchanger and exhaust gas purification apparatus using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069293A (en) * 2002-07-22 2004-03-04 National Institute Of Advanced Industrial & Technology Heat exchanger, reactor using the heat exchanger, and radiation heater
JP2004167293A (en) * 2002-11-15 2004-06-17 Matsushita Electric Ind Co Ltd Exhaust gas cleaning apparatus and exhaust gas cleaning method
JP2006313030A (en) * 2005-05-06 2006-11-16 Mitsubishi Heavy Ind Ltd Plate fin type heat exchanger and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074154A1 (en) * 2008-12-25 2010-07-01 独立行政法人産業技術総合研究所 Reactor with integrated heat exchange unit
WO2010110410A1 (en) * 2009-03-27 2010-09-30 独立行政法人産業技術総合研究所 Heat exchanger-integrated reaction device having outgoing and return ducts for reaction section
US8574507B2 (en) 2009-03-27 2013-11-05 National Institute Of Advanced Industrial Science And Technology Heat exchanger-integrated reaction device having supplying and return ducts for reaction section
JP5679457B2 (en) * 2009-03-27 2015-03-04 独立行政法人産業技術総合研究所 Heat exchanger integrated reactor with reciprocating duct in reaction section
JP2012527599A (en) * 2009-05-22 2012-11-08 アメリカ合衆国 Compact radial counter-flow recuperator
JP2011126756A (en) * 2009-12-21 2011-06-30 National Institute Of Advanced Industrial Science & Technology Intra-laminate heat exchange type reactor, and method for manufacturing the same
US10458714B2 (en) * 2017-08-15 2019-10-29 Hamilton Sundstrand Corporation Heat exchanger assembly
WO2019151567A1 (en) * 2018-02-01 2019-08-08 주식회사 하이낸드 Heat exchange device

Also Published As

Publication number Publication date
WO2008078758A1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP2008157592A (en) Stacked integrated self heat exchange structure
US6776814B2 (en) Dual section exhaust aftertreatment filter and method
US8057746B2 (en) Carrier for exhaust-gas purification and exhaust-gas purifier having the carrier
US7211226B2 (en) Catalyst and filter combination
US20040116276A1 (en) Exhaust aftertreatment emission control regeneration
KR100249437B1 (en) Metallic catalyst carrier
US7252809B2 (en) Radial-flow and segmented honeycomb body
JP4659360B2 (en) Equipment for processing gas streams
JP2007198706A (en) Internal heating type heat exchange structure having intersecting passage directions
TW200809077A (en) Bypass flow filter with improved filter efficiency
JP5679457B2 (en) Heat exchanger integrated reactor with reciprocating duct in reaction section
JP4041888B2 (en) Self heat exchange type heat exchanger
JP5495066B2 (en) Heat exchanger integrated reactor
JP4521513B2 (en) Internal heating type heat exchange structure
US20060153755A1 (en) Heat exchanger and reactor and radiation heater using the heat exchanger
SE524226C2 (en) An apparatus for treating a gas flow
WO2005075800A1 (en) Reactor with heat exchange function
JP4613355B2 (en) Reactor using self heat exchange type heat exchanger
JP4288377B2 (en) Radiant heater using self-heat exchange type heat exchanger
Obuchi et al. A Multifunctional Converter for Purifying Diesel Exhaust Gas with a Self-Heat Exchange Function
KR20030040004A (en) Filter for diesel particulate filter trap system embedding electric heater
JP2007032464A (en) Exhaust emission control device
JP2007023853A (en) Exhaust emission control device
JP2007032395A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018