JP2007197826A - Lubricant for compacting, composition for compacting and method for producing r-t-b based sintered magnet - Google Patents

Lubricant for compacting, composition for compacting and method for producing r-t-b based sintered magnet Download PDF

Info

Publication number
JP2007197826A
JP2007197826A JP2006347613A JP2006347613A JP2007197826A JP 2007197826 A JP2007197826 A JP 2007197826A JP 2006347613 A JP2006347613 A JP 2006347613A JP 2006347613 A JP2006347613 A JP 2006347613A JP 2007197826 A JP2007197826 A JP 2007197826A
Authority
JP
Japan
Prior art keywords
lubricant
general formula
powder
molding
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006347613A
Other languages
Japanese (ja)
Other versions
JP4753044B2 (en
Inventor
Eiji Kato
英治 加藤
Tsutomu Ishizaka
力 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006347613A priority Critical patent/JP4753044B2/en
Publication of JP2007197826A publication Critical patent/JP2007197826A/en
Application granted granted Critical
Publication of JP4753044B2 publication Critical patent/JP4753044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the sticking of powder to a mold without adding a large quantity of lubricant upon compacting metal powder in a process controlled at a low oxygen concentration, and to reduce the content of residual carbon in a sintered compact as well. <P>SOLUTION: The method for producing an R-T-B based sintered magnet composed of a sintered compact with crystal grains consisting of an R<SB>2</SB>T<SB>14</SB>B compound as the main phase comprises: a stage where a composition for compacting composed of a mixture consisting of alloy powder including an R<SB>2</SB>T<SB>14</SB>B compound and a lubricant is subjected to compacting in a magnetic field, so as to obtain a compact; and a stage where the compact is sintered. The lubricant comprises two or more kinds of fatty acid amides expressed by general formula R<SB>1</SB>-CONH<SB>2</SB>(wherein, R<SB>1</SB>is represented by C<SB>n</SB>H<SB>2n+1</SB>, and (n) denotes carbon number in R<SB>1</SB>), and in which the total carbon number (n+1) is ≤16 in the general formula, and also, the ratio of the fatty acid amides in which the total carbon number (n+1) is ≤16 occupies ≥80 wt.%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、R−T−B(RはY(イットリウム)を含む希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素、Bはホウ素)系の焼結磁石の製造に好適な潤滑剤、当該潤滑剤を含む成形用組成物及びR−T−B系焼結磁石の製造方法に関するものである。   In the present invention, R-T-B (R is one or more rare earth elements including Y (yttrium), T is one or more transition metal elements essential to Fe, Fe and Co, B relates to a lubricant suitable for producing a boron) -based sintered magnet, a molding composition containing the lubricant, and a method for producing an RTB-based sintered magnet.

希土類焼結磁石の中でもR−T−B系焼結磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であることから、各種電気機器に使用されている。
R−T−B系焼結磁石の高性能化のために種々の研究がなされているが、より高性能なものにするためには、焼結体中の希土類元素量を低減し、主相であるRFe14B相の割合を増やすことが有効である。しかし、希土類元素は、焼結時の液相成分であり、また焼結後の粒界成分ともなることから、十分な量を確保しないと焼結性、磁気特性の低下を生じる。そのため、希土類元素量の低減に伴い、酸素、炭素などの不純物、特に酸素量の低減が必要となる。
Among rare earth sintered magnets, RTB-based sintered magnets are used in various electrical equipment because they have excellent magnetic properties and Nd, which is the main component, is abundant in resources and relatively inexpensive. ing.
Various studies have been made to improve the performance of RTB-based sintered magnets. To achieve higher performance, the amount of rare earth elements in the sintered body is reduced, and the main phase It is effective to increase the proportion of the R 2 Fe 14 B phase. However, rare earth elements are liquid phase components at the time of sintering, and are also grain boundary components after sintering. Therefore, unless a sufficient amount is ensured, sinterability and magnetic properties are deteriorated. Therefore, as the amount of rare earth elements is reduced, it is necessary to reduce the amount of impurities such as oxygen and carbon, particularly the amount of oxygen.

R−T−B系焼結磁石は以下のようにして製造される。原料合金を粗粉砕及び微粉砕し、数μmの微粉砕粉を得る。このようにして得られた微粉砕粉を静磁場中で磁場配向させ、磁場が印加された状態のままプレス成形を行う。この場合、粉砕粉末だけでは成形時の粉末同士の摩擦や粉末と金型壁面との摩擦により配向性が上がらず、磁気特性の向上を十分に図ることができない。また、金型壁面及び成形体表面に傷、はがれ、割れ等が生じやすく、品質上及び製品歩留まり上好ましくなく、この解決策として、微粉砕粉に潤滑剤を添加し、潤滑剤を磁石粉末表面へ被覆することが行われている。微粉砕粉への潤滑剤の添加方法としては、潤滑剤を添加した後に微粉砕を行う方法が知られている(特許文献1)。また、金型への微粉砕粉の付着を防止する他の方法として、金型(ダイ)の壁面に潤滑剤を塗布する方法も知られている(特許文献2)。潤滑剤としては、通常、ステアリン酸亜鉛などの有機系材料が用いられている。   The RTB-based sintered magnet is manufactured as follows. The raw material alloy is coarsely and finely pulverized to obtain a finely pulverized powder of several μm. The finely pulverized powder thus obtained is magnetically oriented in a static magnetic field, and press molding is performed while the magnetic field is applied. In this case, the pulverized powder alone does not improve the orientation due to the friction between the powders during molding or the friction between the powder and the mold wall surface, and the magnetic properties cannot be sufficiently improved. In addition, the mold wall surface and the surface of the molded body are likely to be scratched, peeled off, cracked, etc., which is undesirable in terms of quality and product yield. As a solution, a lubricant is added to the finely pulverized powder, and the lubricant is added to the surface of the magnet powder. It is done to coat. As a method of adding a lubricant to finely pulverized powder, a method of performing fine pulverization after adding a lubricant is known (Patent Document 1). As another method for preventing the finely pulverized powder from adhering to the mold, a method of applying a lubricant to the wall surface of the mold (die) is also known (Patent Document 2). As the lubricant, an organic material such as zinc stearate is usually used.

焼結体の酸素量の低下は、粉砕から成形、焼結までの工程における酸素濃度を非常に低く、例えば200ppm以下に管理することにより実現可能である。しかし、低酸素濃度に管理された成形工程において、原料粉末の金型付着が顕著になるという問題がある。すなわち、低酸素濃度で管理された工程で作製された原料粉末は、非常に活性であり従来よりも金型への付着が起こりやすく、これまでの潤滑剤添加の手法では不十分である。潤滑剤を原料粉末に多量に混合することにより金型付着を抑制することも可能ではあるが、潤滑剤に由来する炭素が多量に焼結体に残留し、焼結性、磁気特性の低下を招いてしまう。   The oxygen content of the sintered body can be reduced by controlling the oxygen concentration in the processes from pulverization to molding and sintering to a very low level, for example, 200 ppm or less. However, in the molding process controlled to a low oxygen concentration, there is a problem that the adhesion of the raw material powder to the mold becomes remarkable. That is, the raw material powder produced in a process controlled at a low oxygen concentration is very active and is more likely to adhere to the mold than before, and conventional methods of adding a lubricant are insufficient. It is possible to suppress adhesion of the mold by mixing a large amount of lubricant with the raw material powder, but a large amount of carbon derived from the lubricant remains in the sintered body, resulting in a decrease in sinterability and magnetic properties. I will invite you.

特開平7−240330号公報JP-A-7-240330 特開2000−197997号公報JP 2000-197997 A

本発明は、このような技術的課題に基づいてなされたもので、低酸素濃度で管理された工程で金属粉末を成形する際に、潤滑剤を多量に添加することなく金型への粉末の付着を防止することを目的とする。本発明はさらに、また焼結体中の残留炭素量を低減できるような成形用粉末を提供することを目的とする。   The present invention has been made on the basis of such a technical problem. When molding metal powder in a process controlled at a low oxygen concentration, the powder to the mold is added without adding a large amount of lubricant. The purpose is to prevent adhesion. Another object of the present invention is to provide a molding powder capable of reducing the amount of residual carbon in the sintered body.

かかる目的のもと、本発明者らは、希土類元素を含み、加圧成形される金属粉末に対する潤滑剤として、一般式R−CONH(ただし、RはC2n+1で表され、nはRにおける炭素数を示している)で示され、前記一般式における総炭素数(n+1)が16以下の脂肪酸アミドが2種類以上で80wt%以上を占めるものが、低酸素濃度で管理された工程で金属粉末を成形する工程において、潤滑剤を多量に添加することなく金型への粉末の付着を防止することができることを知見した。 Under such a purpose, the present inventors have used a general formula R 1 -CONH 2 (where R 1 is represented by C n H 2n + 1 as a lubricant for a metal powder containing a rare earth element and pressed. n represents the number of carbon atoms in R 1 ), and two or more types of fatty acid amides having a total carbon number (n + 1) of 16 or less in the above general formula occupy 80 wt% or more are controlled at a low oxygen concentration It has been found that in the step of forming the metal powder in the step, the adhesion of the powder to the mold can be prevented without adding a large amount of lubricant.

焼結体中の残留炭素を低減するためには、炭素数の小さい脂肪酸アミドを用いることが好ましく、本発明では、前記一般式における総炭素数(n+1)が14以下の脂肪酸アミドが2種類以上で70wt%以上を占めること、さらには、前記一般式における総炭素数(n+1)が12以下の脂肪酸アミドが2種類以上で50wt%以上を占めることが推奨される。   In order to reduce residual carbon in the sintered body, it is preferable to use a fatty acid amide having a small number of carbon atoms. In the present invention, two or more types of fatty acid amides having a total carbon number (n + 1) of 14 or less in the general formula are used. It is recommended that two or more types of fatty acid amides having a total carbon number (n + 1) of 12 or less in the above general formula occupy 50 wt% or more.

以上の本発明による潤滑剤は、通常は固体、より具体的には粉体の形態で使用されるが、溶媒中に溶解して液状の潤滑剤として用いることができる。つまり本発明は、一般式R−CONH(ただし、RはC2n+1で表され、nはRにおける炭素数を示している)で示され、前記一般式における総炭素数(n+1)が16以下の脂肪酸アミドが2種類以上で80wt%以上を占める潤滑剤が溶媒中に溶解されたものとすることができる。 The lubricant according to the present invention is usually used in the form of a solid, more specifically in the form of a powder, but can be used as a liquid lubricant by dissolving in a solvent. That is, the present invention is represented by the general formula R 1 -CONH 2 (wherein R 1 is represented by C n H 2n + 1 and n represents the number of carbons in R 1 ), and the total number of carbons in the general formula ( It can be assumed that a lubricant in which n + 1) is 16 or less and two or more fatty acid amides occupy 80 wt% or more is dissolved in a solvent.

本発明の潤滑剤は、加圧成形に供される金属粉末と混合された組成物として使用される。すなわち本発明は、加圧成形に供される組成物であって、金属粉末と、金属粉末に対して0.05〜0.25wt%の比率で含まれる潤滑剤とを含み、この潤滑剤は、一般式R−CONH(ただし、RはC2n+1で表され、nはRにおける炭素数を示している)で示され、前記一般式における総炭素数(n+1)が16以下の脂肪酸アミドを2種類以上含み、かつ前記一般式における総炭素数(n+1)が16以下の脂肪酸アミドが80wt%以上を占めることを特徴とする。 The lubricant of the present invention is used as a composition mixed with metal powder to be subjected to pressure forming. That is, the present invention is a composition to be subjected to pressure molding, comprising a metal powder and a lubricant contained in a ratio of 0.05 to 0.25 wt% with respect to the metal powder. , R 1 —CONH 2 (where R 1 is represented by C n H 2n + 1 and n is the number of carbons in R 1 ), and the total number of carbons (n + 1) in the general formula is 16 A fatty acid amide containing two or more of the following fatty acid amides and having a total carbon number (n + 1) of 16 or less in the general formula occupies 80 wt% or more.

この金属粉末としては、R−T−B(RはY(イットリウム)を含む希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素、Bはホウ素)系焼結磁石の原料粉末が掲げられる。この原料粉末は、活性な元素であるRを含むために、酸素量が少ない場合の金型付着が顕著となる。R−T−B系焼結磁石を製造する場合には、金型付着のみならず、潤滑剤に由来する炭素の残留を考慮して潤滑剤の添加量を特定する必要があり、潤滑剤は、金属粉末に対して0.08〜0.2wt%含まれることが好ましい。   As this metal powder, R-T-B (R is one or more of rare earth elements including Y (yttrium), T is one or more of transition metals which essentially require Fe, Fe and Co. Element, B is boron) Raw material powder of a sintered magnet. Since this raw material powder contains R, which is an active element, adhesion of the mold when the amount of oxygen is small becomes significant. When manufacturing an RTB-based sintered magnet, it is necessary to specify the amount of lubricant added in consideration of not only adhesion of the mold but also carbon residue derived from the lubricant. It is preferable that 0.08 to 0.2 wt% is contained with respect to the metal powder.

本発明による潤滑剤を用いてR−T−B系焼結磁石を製造する方法は、R14B化合物(RはY(イットリウム)を含む希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素、Bはホウ素)からなる結晶粒を主相とする焼結体からなるR−T−B系焼結磁石の製造方法であって、R14B化合物を含む合金粉末と潤滑剤との混合物からなる成形用組成物を磁場中で加圧成形して成形体を得る工程と、成形体を焼結する工程と、を備え、潤滑剤は、一般式R−CONH(ただし、RはC2n+1で表され、nはRにおける炭素数を示している)で示され、前記一般式における総炭素数(n+1)が16以下の脂肪酸アミドを2種類以上含み、かつ前記一般式における総炭素数(n+1)が16以下の脂肪酸アミドが80wt%以上を占めることを特徴とする。 The method for producing an RTB-based sintered magnet using the lubricant according to the present invention includes an R 2 T 14 B compound (where R is one or more of rare earth elements including Y (yttrium), and T is Method for producing an RTB-based sintered magnet comprising a sintered body having crystal grains composed of Fe or Fe and Co as essential components and crystal grains composed of B or B) A step of pressing a molding composition comprising a mixture of an alloy powder containing an R 2 T 14 B compound and a lubricant in a magnetic field to obtain a molded body, and a step of sintering the molded body. The lubricant is represented by the general formula R 1 -CONH 2 (wherein R 1 is represented by C n H 2n + 1 and n represents the number of carbons in R 1 ), Including two or more fatty acid amides having 16 or less carbon atoms (n + 1), and the above general Total carbon number (n + 1) is 16 or less fatty acid amide is characterized in that account for more than 80 wt% in.

加圧成形に供される合金粉末は、原料合金を粉砕して得られるものであるが、潤滑剤は原料合金が粉砕される工程で添加することが、その分散状態を高めるために好ましい。ここで、原料合金の粉砕を複数段階に分けて行う場合、いずれの粉砕の段階で潤滑剤を添加してもよい。そして本発明は、原料合金が粉砕される工程から成形体を焼結する工程までの一連の雰囲気の酸素濃度が200ppm以下と、低酸素雰囲気での製造を行う場合に特に有効である。磁場中成形の雰囲気の酸素濃度が低く、かつそれまでの工程における雰囲気の酸素濃度が低いと、合金粉末は金型付着が非常に発生しやすい状況にあるからである。
磁場中成形において、使用する金型の壁面に潤滑剤を溶質として含む液状潤滑剤を塗布することにより、金型付着の防止効果をより発揮させることができる。
The alloy powder to be subjected to pressure forming is obtained by pulverizing the raw material alloy, but it is preferable to add the lubricant in the step of pulverizing the raw material alloy in order to increase the dispersion state. Here, when the raw material alloy is pulverized in a plurality of stages, the lubricant may be added at any stage of the pulverization. The present invention is particularly effective when manufacturing in a low oxygen atmosphere where the oxygen concentration in a series of atmospheres from the step of pulverizing the raw material alloy to the step of sintering the compact is 200 ppm or less. This is because if the oxygen concentration in the atmosphere in the molding in the magnetic field is low and the oxygen concentration in the atmosphere in the previous process is low, the alloy powder is very likely to adhere to the mold.
In molding in a magnetic field, by applying a liquid lubricant containing a lubricant as a solute to the wall surface of the mold to be used, the effect of preventing the adhesion of the mold can be exhibited more.

以上説明したように、本発明によれば、低酸素濃度で管理された工程で金属粉末を成形する際に、潤滑剤を多量に添加することなく金型への粉末の付着を防止することができる。本発明によればさらに、焼結体中の残留炭素量を低減することができる。   As described above, according to the present invention, when metal powder is molded in a process controlled at a low oxygen concentration, it is possible to prevent the powder from adhering to the mold without adding a large amount of lubricant. it can. According to the present invention, the amount of residual carbon in the sintered body can be further reduced.

<潤滑剤>
本発明は、潤滑剤として、一般式R−CONHで示される化合物である脂肪酸アミドを使用する。ここで、RはC2n+1で表され、nはRにおける炭素数を示している。特に本発明では、添加される潤滑剤のうち80wt%以上を、前記一般式における総炭素数(n+1)が16以下の脂肪酸アミドが2種類以上で占められることを特徴としている。なお、以下では前記一般式における総炭素数(n+1)を、総炭素数(n+1)と略記する。
総炭素数(n+1)を16以下とするのは、総炭素数(n+1)が16を超えると焼結後に残留する炭素の量(残留C量)が多くなるためである。したがって、残留C量を考慮すると、総炭素数(n+1)が16以下の範囲内で総炭素数(n+1)の小さい脂肪酸アミドを用いることが好ましい。ここで、本発明の潤滑剤として添加した一般式R−CONH以外の残りの部分の潤滑剤としては、一般式R−CONH以外で表される脂肪酸アミドを含んでもよい。
<Lubricant>
In the present invention, a fatty acid amide that is a compound represented by the general formula R 1 —CONH 2 is used as a lubricant. Here, R 1 is represented by C n H 2n + 1 , and n represents the number of carbon atoms in R 1 . In particular, the present invention is characterized in that 80% by weight or more of the added lubricant is occupied by two or more fatty acid amides having a total carbon number (n + 1) of 16 or less in the above general formula. Hereinafter, the total carbon number (n + 1) in the general formula is abbreviated as the total carbon number (n + 1).
The reason why the total carbon number (n + 1) is 16 or less is that when the total carbon number (n + 1) exceeds 16, the amount of carbon remaining after sintering (residual C amount) increases. Therefore, considering the amount of residual C, it is preferable to use a fatty acid amide having a total carbon number (n + 1) of 16 or less and a small total carbon number (n + 1). Here, the remaining part of the lubricant other than the general formula R 1 —CONH 2 added as the lubricant of the present invention may include a fatty acid amide represented by a formula other than the general formula R 1 —CONH 2 .

総炭素数(n+1)が16以下の脂肪酸アミドであっても、1種類では粉末の金型付着の防止には効果が不十分である。本発明のように、総炭素数(n+1)が16以下の脂肪酸アミドを2種類以上用いることにより、金型付着を防止することができる。しかも、総炭素数(n+1)が16以下の脂肪酸アミドを2種類以上用いることにより、残留C量を低減することができる。
本発明においては、潤滑剤の全量を総炭素数(n+1)が16以下の脂肪酸アミドで占めることが好ましい。しかし、潤滑剤の80wt%以上を、総炭素数(n+1)が16以下の脂肪酸アミドで占めることにすれば、本発明の効果を得ることができる。好ましくは、総炭素数(n+1)が14以下の脂肪酸アミドが潤滑剤添加量の70%以上、さらに好ましくは、総炭素数(n+1)が12以下の脂肪酸アミドが潤滑剤添加量の50%以上とする。
Even if it is a fatty acid amide having a total carbon number (n + 1) of 16 or less, one type is insufficient in preventing the powder from adhering to the mold. By using two or more types of fatty acid amides having a total carbon number (n + 1) of 16 or less as in the present invention, it is possible to prevent mold adhesion. Moreover, the amount of residual C can be reduced by using two or more fatty acid amides having a total carbon number (n + 1) of 16 or less.
In the present invention, the total amount of the lubricant is preferably occupied by a fatty acid amide having a total carbon number (n + 1) of 16 or less. However, if 80 wt% or more of the lubricant is occupied by a fatty acid amide having a total carbon number (n + 1) of 16 or less, the effects of the present invention can be obtained. Preferably, the fatty acid amide having a total carbon number (n + 1) of 14 or less is 70% or more of the lubricant addition amount, more preferably, the fatty acid amide having a total carbon number (n + 1) of 12 or less is 50% or more of the lubricant addition amount. And

本発明の潤滑剤は、総炭素数(n+1)が異なる2種類以上の脂肪酸アミドを含んでいる。したがって、焼結工程の昇温時において、総炭素数(n+1)が異なる2種類以上の脂肪酸アミドが順次に系外に放出することができるものと推測される。そのために、1種類の脂肪酸アミドを用いた場合には所定温度で一度に系外に放出されるのと比べて、放出が容易になるものと解される。その結果、焼結体中の残留C量が低減されている可能性が高い。加えて、本発明の潤滑剤によれば、総炭素数(n+1)が異なる2種類以上の脂肪酸アミドを含んでいるため、急激な分解反応を起こさないため、炭化や焼結体中へのクラックや空孔の発生を抑制できるものと解される。   The lubricant of the present invention contains two or more fatty acid amides having different total carbon numbers (n + 1). Therefore, it is presumed that two or more fatty acid amides having different total carbon numbers (n + 1) can be sequentially released out of the system at the time of temperature increase in the sintering process. Therefore, when one type of fatty acid amide is used, it is understood that the release is facilitated as compared with the case where the fatty acid amide is released from the system at a predetermined temperature all at once. As a result, there is a high possibility that the amount of residual C in the sintered body is reduced. In addition, according to the lubricant of the present invention, since it contains two or more types of fatty acid amides having different total carbon numbers (n + 1), a rapid decomposition reaction does not occur, so carbonization and cracks in the sintered body It is understood that the generation of holes and vacancies can be suppressed.

炭素数による脂肪酸アミドの名称は以下に示す通りであり、本発明では添加される潤滑剤のうち80wt%以上が、総炭素数(n+1)が16以下のパルミチン酸アミド、ペンタデシル酸アミド、ミリスチン酸アミド、ラウリン酸アミド、カプリン酸アミド、ペラルゴン酸アミド、カプリル酸アミド、エナント酸アミド、カプロン酸アミド、バレリアン酸アミド及びブチル酸アミド等の中から2種類以上の脂肪酸アミドを用いることができる。なお、以下の脂肪酸アミドの名称の括弧書きされた名称はIUPAC(国際純正・応用化学連合:International Union of Pure and Applied Chemistry)に基づく名称である。   The names of fatty acid amides based on the number of carbon atoms are as follows. In the present invention, 80 wt% or more of the lubricant added is palmitic acid amide, pentadecylic acid amide, myristic acid having a total carbon number (n + 1) of 16 or less. Two or more fatty acid amides can be used among amides, lauric acid amides, capric acid amides, pelargonic acid amides, caprylic acid amides, enanthic acid amides, caproic acid amides, valeric acid amides, butyric acid amides, and the like. In addition, the name of the following fatty acid amide names in parentheses is a name based on IUPAC (International Union of Pure and Applied Chemistry).

総炭素数(n+1)4:ブチル酸アミド(n−ブタン酸アミド)
総炭素数(n+1)5:バレリアン酸アミド(n−ペンタン酸アミド)
総炭素数(n+1)6:カプロン酸アミド(n−ヘキサン酸アミド)
総炭素数(n+1)7:エナント酸アミド(n−ヘプタン酸アミド)
総炭素数(n+1)8:カプリル酸アミド(n−オクタン酸アミド)
総炭素数(n+1)9:ペラルゴン酸アミド(n−ノナン酸アミド)
総炭素数(n+1)10:カプリン酸アミド(n−デカン酸アミド)
総炭素数(n+1)12:ラウリン酸アミド(n−ドデカン酸アミド)
総炭素数(n+1)14:ミリスチン酸アミド(n−テトラデカン酸アミド)
総炭素数(n+1)15:ペンタデシル酸アミド(n−ペンタデカン酸アミド)
総炭素数(n+1)16:パルミチン酸アミド(n−ヘキサデカン酸アミド)
総炭素数(n+1)17:マーガリン酸アミド(n−ヘプタデカン酸アミド)
総炭素数(n+1)18:ステアリン酸アミド(n−オクタデカン酸アミド)
総炭素数(n+1)20:アラキジン酸アミド(n−イコサン酸アミド)
総炭素数(n+1)22:ベヘン酸アミド(n−ドコサン酸アミド)
総炭素数(n+1)24:リグノセリン酸アミド(n−テトラコサン酸アミド)
総炭素数(n+1)26:セロチン酸アミド(n−ヘキサコサン酸アミド)
総炭素数(n+1)28:モンタン酸アミド(n−オクタコサン酸アミド)
総炭素数(n+1)30:メリシン酸アミド(n−トリアコンタン酸アミド)
Total carbon number (n + 1) 4: Butyramide (n-butanoic acid amide)
Total carbon number (n + 1) 5: Valeric acid amide (n-pentanoic acid amide)
Total carbon number (n + 1) 6: caproic acid amide (n-hexanoic acid amide)
Total carbon number (n + 1) 7: Enanthamide (n-heptanoic acid amide)
Total carbon number (n + 1) 8: caprylic acid amide (n-octanoic acid amide)
Total carbon number (n + 1) 9: Pelargonic acid amide (n-nonanoic acid amide)
Total carbon number (n + 1) 10: capric acid amide (n-decanoic acid amide)
Total carbon number (n + 1) 12: Lauric acid amide (n-dodecanoic acid amide)
Total carbon number (n + 1) 14: Myristic acid amide (n-tetradecanoic acid amide)
Total carbon number (n + 1) 15: pentadecylic acid amide (n-pentadecanoic acid amide)
Total carbon number (n + 1) 16: Palmitic acid amide (n-hexadecanoic acid amide)
Total carbon number (n + 1) 17: Margaric acid amide (n-heptadecanoic acid amide)
Total carbon number (n + 1) 18: stearamide (n-octadecanoamide)
Total carbon number (n + 1) 20: arachidic acid amide (n-icosanoic acid amide)
Total carbon number (n + 1) 22: behenic acid amide (n-docosanoic acid amide)
Total carbon number (n + 1) 24: lignoceric acid amide (n-tetracosanoic acid amide)
Total carbon number (n + 1) 26: serotic acid amide (n-hexacosanoic acid amide)
Total carbon number (n + 1) 28: Montanic acid amide (n-octacosanoic acid amide)
Total carbon number (n + 1) 30: Melicinamide (n-triacontanamid)

成形される粉末に対する潤滑剤の添加量は、金型付着を回避する点からすれば、なるべく多くするのがよい。しかし、R−T−B系焼結磁石を製造する場合には、磁気特性、焼結性を考慮すると、潤滑剤の添加量はなるべく少ない方が好ましい。したがって、R−T−B系焼結磁石を製造する場合には0.05〜0.25wt%とすることが好ましい。R−T−B系焼結磁石を製造する場合には、好ましくは0.08〜0.2wt%、さらに好ましくは0.1〜0.18wt%とする。   The amount of lubricant added to the powder to be molded is preferably as large as possible from the viewpoint of avoiding adhesion of the mold. However, when manufacturing an RTB-based sintered magnet, it is preferable that the amount of lubricant added is as small as possible in consideration of magnetic properties and sinterability. Therefore, when manufacturing an R-T-B system sintered magnet, it is preferable to set it as 0.05-0.25 wt%. When manufacturing an R-T-B type sintered magnet, it is preferably 0.08 to 0.2 wt%, more preferably 0.1 to 0.18 wt%.

<潤滑剤の添加方法>
成形用粉末に対する潤滑剤の添加方法は問われないが、成形用粉末と固体である潤滑剤とが均一に分散されていることが潤滑剤の添加効果を得る上で好ましい。そのためには、成形用粉末に潤滑剤を添加した上で、粉砕又は混合処理を施すことが好ましい。例えば、成形用粉末を得る過程で、原料合金を粉砕する工程が存在するのであれば、その粉砕工程で潤滑剤を添加することが好ましい。本発明の潤滑剤として用いられる脂肪酸アミドは固体物質であり、通常は成形用粉末に対して粒子の形態として添加されるが、溶剤に溶解して添加することもできる。
<Method of adding lubricant>
The method for adding the lubricant to the molding powder is not limited, but it is preferable to obtain a lubricant addition effect that the molding powder and the solid lubricant are uniformly dispersed. For this purpose, it is preferable to add a lubricant to the molding powder and then perform pulverization or mixing treatment. For example, if there is a step of pulverizing the raw material alloy in the process of obtaining the molding powder, it is preferable to add a lubricant in the pulverization step. The fatty acid amide used as the lubricant of the present invention is a solid substance and is usually added in the form of particles to the molding powder, but it can also be dissolved in a solvent and added.

また、この溶剤に溶解された本発明の潤滑剤は、成形用粉末に添加する他、成形用の金型の壁面に塗布することにより、成形用粉末の金型付着の防止に寄与することができる。金型壁面に塗布する場合には、エタノールその他の溶媒に本発明による潤滑剤を溶解した液状潤滑剤を作製し、この液状潤滑剤を金型壁面に塗布すればよい。液状潤滑剤における潤滑剤の濃度は特に限定されないが、5〜50wt%程度の濃度とすれば本発明の効果を享受することができる。   Further, the lubricant of the present invention dissolved in the solvent can be added to the molding powder and applied to the wall surface of the molding die, thereby contributing to prevention of the molding powder from adhering to the molding die. it can. In the case of applying to the mold wall surface, a liquid lubricant obtained by dissolving the lubricant according to the present invention in ethanol or other solvent may be prepared, and this liquid lubricant may be applied to the mold wall surface. The concentration of the lubricant in the liquid lubricant is not particularly limited, but the effect of the present invention can be enjoyed if the concentration is about 5 to 50 wt%.

<対象材料>
本発明の潤滑剤が添加される対象である成形用粉末の材質は問わない。金型を用いた加圧成形において金型への付着が危惧される金属粉末を広く包含する。もっとも、金型への付着は、成形用粉末が活性である場合に発生しやすいため、金属粉末、しかも希土類元素を含む金属粉末に対して本発明を適用することにより、金型付着低減の効果を顕著に享受することができる。また、希土類元素を含む金属粉末の場合、その酸素量が低いほどその表面が活性であり、金型付着が発生しやすい。したがって、本発明は、原料合金が粉砕される工程から粉砕する工程までの一連の雰囲気の酸素濃度が200ppm以下で作製した成形用粉末に対して有効である。また、成形用粉末に添加される潤滑剤は、金型付着を防止する機能の他に、成形用粉末を構成する各粒子同士の滑りをよくする機能を有しているため、磁場中で成形される粉末に対して適用することが好ましい。このような粉末として、上述したR−T−B系焼結磁石がある。この他に、希土類元素を含み、磁場中成形に供されるものとして超磁歪材料があり、その成形用粉末に対して本発明の潤滑剤を添加することが好ましい。
<Target material>
The material of the molding powder to which the lubricant of the present invention is added is not limited. Widely includes metal powders that are feared to adhere to the mold in pressure molding using the mold. However, since adhesion to the mold is likely to occur when the molding powder is active, the effect of reducing the adhesion of the mold can be achieved by applying the present invention to metal powder and metal powder containing rare earth elements. Can be remarkably enjoyed. Further, in the case of a metal powder containing rare earth elements, the lower the amount of oxygen, the more active the surface, and mold adhesion tends to occur. Therefore, the present invention is effective for a molding powder produced with an oxygen concentration in a series of atmospheres from the step of pulverizing the raw material alloy to the step of pulverizing at 200 ppm or less. Also, the lubricant added to the molding powder has a function of improving the slippage between particles constituting the molding powder in addition to the function of preventing adhesion of the mold. It is preferable to apply to the powder to be produced. As such a powder, there is the above-described RTB-based sintered magnet. In addition, there is a giant magnetostrictive material that contains a rare earth element and is subjected to molding in a magnetic field, and it is preferable to add the lubricant of the present invention to the molding powder.

<成形雰囲気>
本発明による潤滑剤を含む成形用粉末は、低酸素雰囲気で成形を行う場合に有効である。低酸素雰囲気での成形は、金型への成形用粉末の付着が発生しやすいからである。低酸素雰囲気での成形は、最終的に得たい焼結体の酸素量を低減することを目的に行われる。具体的には酸素量が2000ppm以下のR−T−B系焼結磁石を製造するには、原料合金の粉砕から焼結に至るまでの各工程、各工程間の酸素濃度を200ppm以下、好ましくは150ppm、さらに好ましくは100ppm以下にする。このような低酸素雰囲気での成形に対して、本発明の潤滑剤は金型への成形用粉末の付着防止に効果を発揮する。
<Molding atmosphere>
The molding powder containing the lubricant according to the present invention is effective when molding is performed in a low oxygen atmosphere. This is because molding in a low oxygen atmosphere tends to cause the molding powder to adhere to the mold. Molding in a low oxygen atmosphere is performed for the purpose of reducing the amount of oxygen in the sintered body to be finally obtained. Specifically, in order to produce an RTB-based sintered magnet having an oxygen amount of 2000 ppm or less, each step from pulverization of raw material alloy to sintering, oxygen concentration between the steps is preferably 200 ppm or less, preferably Is 150 ppm, more preferably 100 ppm or less. In contrast to molding in such a low oxygen atmosphere, the lubricant of the present invention is effective in preventing adhesion of the molding powder to the mold.

以下本発明の潤滑剤を用いてR−T−B系焼結磁石を製造する方法について説明する。
<化学組成>
はじめに、R−T−B系焼結磁石の望ましい化学組成について説明する。ここでいう化学組成は、焼結後における化学組成をいう。
本発明が適用されるR−T−B系焼結磁石は、希土類元素(R)を25〜37wt%含有する。
ここで、Rは、Y(イットリウム)を含む概念を有している。したがって本発明におけるRは、Y(イットリウム)、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの1種又は2種以上から選択される。Rの量が25wt%未満であると、R−T−B系焼結磁石の主相となるR14B相の生成が十分ではなく軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが37wt%を超えると主相であるR14B相の体積比率が低下し、残留磁束密度が低下する。またRが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なRリッチ相が減少し、保磁力の低下を招く。したがって、Rの量は25〜37wt%とする。望ましいRの量は28〜35wt%、さらに望ましいRの量は29〜33wt%である。
Hereinafter, a method for producing an RTB-based sintered magnet using the lubricant of the present invention will be described.
<Chemical composition>
First, the desirable chemical composition of the RTB-based sintered magnet will be described. The chemical composition here refers to the chemical composition after sintering.
The RTB-based sintered magnet to which the present invention is applied contains 25 to 37 wt% of a rare earth element (R).
Here, R has a concept including Y (yttrium). Therefore, R in the present invention is selected from one or more of Y (yttrium), La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. . If the amount of R is less than 25 wt%, the R 2 T 14 B phase, which is the main phase of the RTB-based sintered magnet, is not sufficiently generated, and α-Fe having soft magnetism is precipitated and retained. The magnetic force is significantly reduced. On the other hand, when R exceeds 37 wt%, the volume ratio of the R 2 T 14 B phase, which is the main phase, decreases, and the residual magnetic flux density decreases. Further, R reacts with oxygen, the amount of oxygen contained increases, and accordingly, the R-rich phase effective for the generation of coercive force decreases, leading to a decrease in coercive force. Therefore, the amount of R is set to 25 to 37 wt%. A desirable amount of R is 28 to 35 wt%, and a more desirable amount of R is 29 to 33 wt%.

また、R−T−B系焼結磁石は、ホウ素(B)を0.5〜4.5wt%含有する。Bが0.5wt%未満の場合には高い保磁力を得ることができない。一方で、Bが4.5wt%を超えると残留磁束密度が低下する傾向がある。したがって、上限を4.5wt%とする。望ましいBの量は0.5〜1.5wt%、さらに望ましいBの量は0.8〜1.2wt%である。   Moreover, the RTB-based sintered magnet contains 0.5 to 4.5 wt% of boron (B). When B is less than 0.5 wt%, a high coercive force cannot be obtained. On the other hand, when B exceeds 4.5 wt%, the residual magnetic flux density tends to decrease. Therefore, the upper limit is 4.5 wt%. A desirable amount of B is 0.5 to 1.5 wt%, and a more desirable amount of B is 0.8 to 1.2 wt%.

R−T−B系焼結磁石は、Coを4.0wt%以下(0を含まず)、望ましくは0.1〜2.0wt%、さらに望ましくは、0.3〜1.0wt%含有することができる。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上に効果がある。   The RTB-based sintered magnet contains Co of 4.0 wt% or less (excluding 0), desirably 0.1 to 2.0 wt%, and more desirably 0.3 to 1.0 wt%. be able to. Co forms the same phase as Fe, but is effective in improving the Curie temperature and improving the corrosion resistance of the grain boundary phase.

本発明が適用されるR−T−B系焼結磁石は、Al及びCuの1種又は2種を0.02〜0.5wt%の範囲で含有することができる。この範囲でAl及びCuの1種又は2種を含有させることにより、得られるR−T−B系焼結磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。Alを添加する場合において、望ましいAlの量は0.03〜0.3wt%、さらに望ましいAlの量は、0.05〜0.25wt%である。また、Cuを添加する場合において、望ましいCuの量は0.15wt%以下(0を含まず)、さらに望ましいCuの量は0.03〜0.12wt%である。   The RTB-based sintered magnet to which the present invention is applied can contain one or two of Al and Cu in a range of 0.02 to 0.5 wt%. By including one or two of Al and Cu in this range, it is possible to increase the coercive force, increase the corrosion resistance, and improve the temperature characteristics of the obtained RTB-based sintered magnet. In the case of adding Al, the desirable amount of Al is 0.03 to 0.3 wt%, and the more desirable amount of Al is 0.05 to 0.25 wt%. Further, in the case of adding Cu, the desirable amount of Cu is 0.15 wt% or less (not including 0), and the more desirable amount of Cu is 0.03 to 0.12 wt%.

また、R−T−B系焼結磁石は、他の元素の含有を許容する。例えば、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge等の元素を適宜含有させることができる。   In addition, the RTB-based sintered magnet allows the inclusion of other elements. For example, elements such as Zr, Ti, Bi, Sn, Ga, Nb, Ta, Si, V, Ag, and Ge can be appropriately contained.

本発明が適用されるR−T−B系焼結磁石は、その酸素量を2000ppm以下とすることが好ましい。酸素量が多いと非磁性成分である酸化物相が増大して、磁気特性を低下させる。そこで焼結体中に含まれる酸素量は、2000ppm以下、好ましくは1500ppm以下、さらに好ましくは1000ppm以下とする。   The RTB-based sintered magnet to which the present invention is applied preferably has an oxygen content of 2000 ppm or less. When the amount of oxygen is large, the oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated. Therefore, the amount of oxygen contained in the sintered body is 2000 ppm or less, preferably 1500 ppm or less, more preferably 1000 ppm or less.

<製造方法>
以下、本発明のR−T−B系焼結磁石の製造方法について説明する。
原料合金は、真空又は不活性ガス、望ましくはアルゴン雰囲気中でストリップキャスト法、その他公知の溶解法により作製することができる。ストリップキャスト法は、原料金属をアルゴンガス雰囲気などの非酸化性雰囲気中で溶解して得た溶湯を回転するロールの表面に噴出させる。ロールで急冷された溶湯は、薄板又は薄片(鱗片)状に急冷凝固される。この急冷凝固された合金は、結晶粒径が1〜50μmの均質な組織を有している。原料合金は、ストリップキャスト法に限らず、高周波誘導溶解などの溶解法によって得ることができる。なお、得られた合金に凝固偏析がある場合は必要に応じて溶体化処理を行う。その条件は真空又はアルゴン雰囲気下で700〜1500℃の温度で1時間以上保持すれば良い。
<Manufacturing method>
Hereinafter, the manufacturing method of the RTB system sintered magnet of the present invention is explained.
The raw material alloy can be produced by a strip casting method or other known melting methods in a vacuum or an inert gas, preferably an argon atmosphere. In the strip casting method, a molten metal obtained by melting a raw material metal in a non-oxidizing atmosphere such as an argon gas atmosphere is jetted onto the surface of a rotating roll. The melt rapidly cooled by the roll is rapidly solidified in the form of a thin plate or flakes (scales). This rapidly solidified alloy has a homogeneous structure with a crystal grain size of 1 to 50 μm. The raw material alloy can be obtained not only by the strip casting method but also by a melting method such as high frequency induction melting. In addition, when the obtained alloy has solidification segregation, solution treatment is performed as necessary. The conditions may be maintained at a temperature of 700 to 1500 ° C. for 1 hour or more in a vacuum or an argon atmosphere.

R−T−B系焼結磁石を得る場合、R14B相を主体とする合金(主相系合金)と、R14Bを含まない合金(粒界相系合金)とを用いる所謂混合法を本発明に適用することもできる。 When obtaining an RTB-based sintered magnet, an alloy mainly composed of the R 2 T 14 B phase (main phase alloy) and an alloy not containing R 2 T 14 B (grain boundary phase alloy) are used. The so-called mixing method used can also be applied to the present invention.

原料合金は粉砕工程に供される。混合法の場合は、各合金は別々に又は一緒に粉砕される。粉砕工程は、一般に粗粉砕程と微粉砕工程とに分けられる。
まず、粗粉砕において原料合金は、粒径数百μm程度になるまで粉砕される。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行なうことが望ましい。粗粉砕性を向上させるために、水素の吸蔵させた後、粗粉砕を行うことが効果的である。また、水素吸蔵を行った後に、水素を放出させ、さらに粗粉砕を行なうこともできる。
粗粉砕工程後、微粉砕工程に移る。粒径数百μm程度の粗粉砕粉は、平均粒径3〜8μmになるまで微粉砕される。なお、微粉砕にはジェットミルを用いることができる。
The raw material alloy is subjected to a grinding process. In the case of a mixing method, each alloy is ground separately or together. The pulverization process is generally divided into a coarse pulverization process and a fine pulverization process.
First, in the coarse pulverization, the raw material alloy is pulverized until the particle diameter is about several hundred μm. The coarse pulverization is desirably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. In order to improve the coarse pulverization property, it is effective to perform coarse pulverization after occlusion of hydrogen. Further, after hydrogen storage, hydrogen can be released and further coarse pulverization can be performed.
After the coarse pulverization process, the process proceeds to the fine pulverization process. The coarsely pulverized powder having a particle size of about several hundred μm is finely pulverized until the average particle size becomes 3 to 8 μm. A jet mill can be used for fine pulverization.

このとき、微粉砕工程において原料合金粉に潤滑剤を添加する。潤滑剤は微粉砕工程の開始前に原料合金粉へ添加することが好ましいが、微粉砕工程において粉砕中に添加してもよく、微粉砕工程の終了後であってもよい。このようにして、微粉砕粉と潤滑剤を含む成形用組成物を得る。
次いで、この成形用組成物を磁場中成形する。この磁場中成形は、12.0〜20.0kOe(955〜1600kA/m)の磁場中で、0.3〜3.0ton/cm(30〜300MPa)程度の圧力で行なえばよい。
At this time, a lubricant is added to the raw material alloy powder in the fine grinding step. The lubricant is preferably added to the raw material alloy powder before the start of the fine pulverization process. However, the lubricant may be added during the pulverization process or after the fine pulverization process. In this way, a molding composition containing finely pulverized powder and a lubricant is obtained.
Next, this molding composition is molded in a magnetic field. The molding in the magnetic field may be performed at a pressure of about 0.3 to 3.0 ton / cm 2 (30 to 300 MPa) in a magnetic field of 12.0 to 20.0 kOe (955 to 1600 kA / m).

磁場中成形後、その成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調節する必要があるが、1000〜1150℃で1〜5時間程度焼結すればよい。
焼結後、得られた焼結体に時効処理を施すことができる。この工程は、保磁力を制御する上で重要な工程である。時効処理を2段に分けて行なう場合には、800℃近傍、600℃近傍での所定時間の保持が有効である。800℃近傍での熱処理を焼結後に行なうと、保磁力が増大するため、混合法においては特に有効である。また、600℃近傍の熱処理で保磁力が大きく増加するため、時効処理を1段で行なう場合には、600℃近傍の時効処理を施すとよい。
After molding in a magnetic field, the compact is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, a difference of a particle size and a particle size distribution, what is necessary is just to sinter at 1000-1150 degreeC for about 1 to 5 hours.
After sintering, the obtained sintered body can be subjected to an aging treatment. This step is an important step in controlling the coercive force. In the case where the aging treatment is performed in two stages, holding for a predetermined time at around 800 ° C. and around 600 ° C. is effective. When the heat treatment at around 800 ° C. is performed after sintering, the coercive force increases, which is particularly effective in the mixing method. In addition, since the coercive force is greatly increased by the heat treatment at around 600 ° C., the aging treatment at around 600 ° C. is preferably performed when the aging treatment is performed in one stage.

以上、R−T−B系焼結磁石について説明したが、本発明の適用はこれに限定されない。例えば、RT(yは1<y<4を表す。)で示す組成の焼結体からなる超磁歪材料にも適用することができる。
ここで、RはY(イットリウム)を含む希土類元素の1種又は2種以上を表している。これらの中で、Rとしては、特に、Nd、Pr、Sm、Tb、Dy、Hoの希土類金属が望ましく、Tb、Dyがより一層望ましく、これらを複合して用いることができる。Tは、1種以上の遷移金属を表している。これらの中で、Tとしては、特に、Fe、Co、Ni、Mn、Cr、Mo等の遷移金属が望ましく、Fe、Co、Niが一層望ましく、これらを複合して用いることができる。
The R-T-B sintered magnet has been described above, but the application of the present invention is not limited to this. For example, the present invention can also be applied to a giant magnetostrictive material made of a sintered body having a composition represented by RT y (y represents 1 <y <4).
Here, R represents one or more rare earth elements including Y (yttrium). Among these, R is particularly preferably a rare earth metal such as Nd, Pr, Sm, Tb, Dy, and Ho, more preferably Tb and Dy, and these can be used in combination. T represents one or more transition metals. Among these, as T, transition metals such as Fe, Co, Ni, Mn, Cr, and Mo are particularly desirable, Fe, Co, and Ni are more desirable, and these can be used in combination.

以下本発明をR−T−B系焼結磁石に関する実施例に基づいて説明する。
原料合金を、Ar雰囲気中高周波溶解により作製した。なお、この実施例はR14B相を主体とする合金(主相系合金)と、R14Bを含まない合金(粒界相系合金)とを用いる混合法によりR−T−B系焼結磁石を製造した。
主相系合金の組成を以下に示す。
Nd:26wt%、Dy:4wt%、Al:0.2wt%、B:1.1wt%、Zr:0.2wt%、残部:Fe及び不可避不純物
粒界相系合金の組成を以下に示す。
Dy:32wt%、Co:10wt%、Cu:1wt%、Al:0.2wt%、残部:Fe及び不可避不純物
Hereinafter, the present invention will be described based on examples relating to an RTB-based sintered magnet.
A raw material alloy was produced by high frequency melting in an Ar atmosphere. In this example, R-T is obtained by a mixing method using an alloy mainly composed of R 2 T 14 B phase (main phase alloy) and an alloy not containing R 2 T 14 B (grain boundary phase alloy). A B-type sintered magnet was produced.
The composition of the main phase alloy is shown below.
Nd: 26 wt%, Dy: 4 wt%, Al: 0.2 wt%, B: 1.1 wt%, Zr: 0.2 wt%, balance: Fe and inevitable impurities The composition of the grain boundary phase alloy is shown below.
Dy: 32 wt%, Co: 10 wt%, Cu: 1 wt%, Al: 0.2 wt%, balance: Fe and inevitable impurities

以上により作製した原料合金を重量比で主相系合金:粒界相系合金=90:10にて混合後、室温にて水素を吸蔵させた後、Ar雰囲気中で600℃×1時間の脱水素を行う水素粉砕処理を施した。高磁気特性のR−T−B系焼結磁石を得るために、本実施例では焼結体酸素量を2000ppm以下に抑えるべく、水素粉砕処理(粉砕処理後の回収)から焼結(焼結炉に投入する)までの各工程の雰囲気を、100ppm未満の酸素濃度に抑える。以後、この一連の工程を低酸素プロセスと称す。   The raw material alloy produced as described above was mixed in a weight ratio of main phase alloy: grain boundary phase alloy = 90: 10, occluded hydrogen at room temperature, and then dehydrated at 600 ° C. for 1 hour in an Ar atmosphere. Hydrogen pulverization treatment was performed. In order to obtain an RTB-based sintered magnet with high magnetic properties, in this example, sintering (sintering) from hydrogen pulverization (recovery after pulverization) was performed in order to suppress the sintered body oxygen content to 2000 ppm or less. The atmosphere of each step until the furnace is charged) is suppressed to an oxygen concentration of less than 100 ppm. Hereinafter, this series of steps is referred to as a low oxygen process.

ついで、水素粉砕処理が施された原料合金を微粉砕した。なお、通常、水素粉砕処理の後に粗粉砕と微粉砕による2段階の粉砕を行っているが、粗粉砕工程を低酸素プロセスで行うことが困難なため、本実施例では粗粉砕工程を省いた。
ただし、微粉砕を行う前に潤滑剤を添加混合した。潤滑剤は、総炭素数(n+1)の異なる各種の脂肪酸アミドを表1に示す割合(wt%)で添加し、混合した。添加量は、原料合金に対し0.15wt%とした。脂肪酸アミドは、前述したように、一般式R−CONH(ただし、RはC2n+1で表され、nはRにおける炭素数を示している)で示される。混合は、例えばナウタ−ミキサー等により5〜30分間ほど行えばよい。
潤滑剤の添加、混合後、ジェットミルを用いて原料合金が平均粒径3〜6μm程度の成形用粉末になるまで微粉砕を行った。本実施例では、平均粒径が4μmの粉砕粉を作製した。
Next, the raw material alloy that had been subjected to the hydrogen pulverization treatment was finely pulverized. Normally, two-stage pulverization by coarse pulverization and fine pulverization is performed after the hydrogen pulverization treatment. However, since it is difficult to perform the coarse pulverization process by a low oxygen process, the coarse pulverization process is omitted in this embodiment. .
However, a lubricant was added and mixed before pulverization. As the lubricant, various fatty acid amides having different total carbon numbers (n + 1) were added at a ratio (wt%) shown in Table 1 and mixed. The addition amount was 0.15 wt% with respect to the raw material alloy. As described above, the fatty acid amide is represented by the general formula R 1 -CONH 2 (where R 1 is represented by C n H 2n + 1 , and n represents the number of carbon atoms in R 1 ). The mixing may be performed for about 5 to 30 minutes using, for example, a Nauta mixer.
After the addition and mixing of the lubricant, pulverization was performed using a jet mill until the raw material alloy became a molding powder having an average particle size of about 3 to 6 μm. In this example, pulverized powder having an average particle diameter of 4 μm was produced.

Figure 2007197826
Figure 2007197826

得られた微粉砕粉(成形用組成物)を、直径10mmの金型に1gの微粉砕粉を投入し、1.5ton/cmの圧力にて成形を行った後、金型壁面への微粉砕粉の付着を確認した。結果を表2に示す。表中のマークは、壁面への付着が無い場合を「○」、付着がある場合を「×」とした。 The obtained finely pulverized powder (molding composition) was charged with 1 g of finely pulverized powder into a mold having a diameter of 10 mm, and molded at a pressure of 1.5 ton / cm 2 . The adhesion of finely pulverized powder was confirmed. The results are shown in Table 2. The mark in the table is “◯” when there is no adhesion to the wall surface, and “x” when there is adhesion.

また、得られた微粉砕粉を磁場中にて成形した。具体的には、15kOeの磁場中で1.2ton/cmの圧力で成形して成形体を得た。この成形体を真空中において、1090℃で4時間焼結した後に、急冷した。次いで得られた焼結体に800℃×1時間と550℃×1時間(ともにAr雰囲気中)の2段時効処理を施した。
得られた焼結体に残留するC量、磁気特性(残留磁束密度(Br)、保磁力(HcJ))を測定し、その結果を表2に示す。なお、表2には、総炭素数(n+1)が16以下の物質の種類(数)及び総炭素数(n+1)が16以下の物質が潤滑剤に占める比率(wt%)を記載している。
The obtained finely pulverized powder was molded in a magnetic field. Specifically, it was molded at a pressure of 1.2 ton / cm 2 in a magnetic field of 15 kOe to obtain a molded body. The molded body was sintered at 1090 ° C. for 4 hours in a vacuum and then rapidly cooled. Next, the obtained sintered body was subjected to a two-stage aging treatment of 800 ° C. × 1 hour and 550 ° C. × 1 hour (both in an Ar atmosphere).
The amount of C remaining in the obtained sintered body and magnetic characteristics (residual magnetic flux density (Br), coercive force (HcJ)) were measured, and the results are shown in Table 2. Table 2 shows the type (number) of substances having a total carbon number (n + 1) of 16 or less and the ratio (wt%) of the substances having a total carbon number (n + 1) of 16 or less in the lubricant. .

Figure 2007197826
Figure 2007197826

表2に示すように、総炭素数(n+1)が16以下の潤滑剤が2種類以上で、全潤滑剤の80wt%以上を占める実施例1〜5は、金型付着の発生がなく、焼結体に残留するC量も低い。そのため、磁気特性、特に保磁力(HcJ)も高い値となっている。
これに対して、総炭素数(n+1)が16以下の潤滑剤が2種類以上含むが、全潤滑剤の80wt%未満しかない比較例1、2は、金型付着が発生するとともに、残留するC量も高い値となっている。さらに、総炭素数(n+1)が16を超える潤滑剤のみからなる比較例3は、金型付着が発生するとともに、残留するC量は比較例1、2よりも高い値となっている。また、総炭素数(n+1)が16以下の潤滑剤が80%wt以上(100wt%)を占めるが、1種類しか含まれない比較例4は残留するC量、磁気特性は実施例1〜5と同等であるが、金型付着が発生した。
As shown in Table 2, Examples 1 to 5 in which two or more types of lubricants having a total carbon number (n + 1) of 16 or less and 80% by weight or more of all the lubricants are free from mold adhesion and baked. The amount of C remaining in the body is also low. For this reason, the magnetic properties, particularly the coercive force (HcJ) are also high.
On the other hand, although two or more types of lubricants having a total carbon number (n + 1) of 16 or less are included, Comparative Examples 1 and 2 having less than 80 wt% of the total lubricants are accompanied by die adhesion and remain. The amount of C is also a high value. Furthermore, in Comparative Example 3 consisting only of a lubricant having a total carbon number (n + 1) exceeding 16, die adhesion occurs and the amount of remaining C is higher than those of Comparative Examples 1 and 2. Further, a lubricant having a total carbon number (n + 1) of 16 or less occupies 80% wt or more (100 wt%), but Comparative Example 4 in which only one type is included is the amount of C remaining, and the magnetic characteristics are Examples 1 to 5 However, mold adhesion occurred.

実施例1の潤滑剤を使用し、潤滑剤の添加量を0.03、0.1、0.15、0.2及び0.3wt%と変えて、以上と同様の検討を行った。その結果を表3に示す。なお、表3に実施例1(添加量:0.15wt%)の結果も示している。   The same study as described above was performed by using the lubricant of Example 1 and changing the addition amount of the lubricant to 0.03, 0.1, 0.15, 0.2, and 0.3 wt%. The results are shown in Table 3. Table 3 also shows the results of Example 1 (added amount: 0.15 wt%).

Figure 2007197826
Figure 2007197826

表3に示すように、潤滑剤の添加量が少ないと金型付着の防止に効果がない。逆に、潤滑剤の添加量が多いと金型付着の防止効果は得られるものの、焼結体に残留するC量が多くなり、磁気特性(保磁力(HcJ))が劣化する。以上の結果より、R−T−B系焼結磁石を製造する場合には、潤滑剤の添加量は0.05〜0.25wt%の範囲とすることが好ましく、さらには0.1〜0.2wt%とすることがより好ましいことがわかる。
比較例1に用いた潤滑剤の添加量を増やして以上と同様の検討を行ったところ、潤滑剤の添加量を増やすことにより金型付着を防止することはできたものの、焼結体に残留するC量が多くなり、磁気特性(保磁力(HcJ))が顕著に低下した。
As shown in Table 3, if the addition amount of the lubricant is small, there is no effect in preventing the adhesion of the mold. Conversely, if the amount of lubricant added is large, the effect of preventing the adhesion of the mold can be obtained, but the amount of C remaining in the sintered body increases and the magnetic properties (coercivity (HcJ)) deteriorate. From the above results, when producing an RTB-based sintered magnet, the amount of lubricant added is preferably in the range of 0.05 to 0.25 wt%, and more preferably 0.1 to 0. It can be seen that the content is more preferably 2 wt%.
The amount of lubricant used in Comparative Example 1 was increased and the same study as described above was conducted. Although the adhesion of the mold could be prevented by increasing the amount of lubricant added, it remained in the sintered body. The amount of C to be increased increased, and the magnetic properties (coercive force (HcJ)) significantly decreased.

次に、実施例1で用いた潤滑剤をエタノールに溶解して液状潤滑剤を作製した。液状潤滑剤における実施例1の潤滑剤の溶解量は10wt%である。この液状潤滑剤を、金型壁面に塗布した後に、以上と同様にして加圧成形を行って、金型付着の有無を確認した。
また、磁場中成形の金型壁面にも液状潤滑剤を塗布した後に磁場中成形を上記と同様に行って、さらに得られた成形体を上記と同様に焼結、時効処理を行った。得られた焼結体について、残留するC量、磁気特性(残留磁束密度(Br)、保磁力(HcJ))を測定した。その結果を表4に示す。なお、微粉砕粉にも実施例1で用いた潤滑剤を、表4に示す量だけ添加した。
Next, the lubricant used in Example 1 was dissolved in ethanol to prepare a liquid lubricant. The amount of the lubricant of Example 1 dissolved in the liquid lubricant is 10 wt%. After applying this liquid lubricant to the mold wall surface, pressure molding was performed in the same manner as described above to confirm the presence or absence of the mold adhesion.
Further, after applying the liquid lubricant to the mold wall surface formed in the magnetic field, the molding in the magnetic field was performed in the same manner as described above, and the obtained molded body was sintered and aged in the same manner as described above. About the obtained sintered compact, the residual C amount and magnetic characteristics (residual magnetic flux density (Br), coercive force (HcJ)) were measured. The results are shown in Table 4. Note that the lubricant used in Example 1 was also added to the finely pulverized powder in an amount shown in Table 4.

Figure 2007197826
Figure 2007197826

表4に示すように、液状潤滑剤を金型壁面に塗布することにより、微粉砕粉末に添加する潤滑剤の量を少なくしても、金型付着を防止することができる。金型付着防止だけを考慮した場合には、液状潤滑剤を金型に塗布することが好ましい。ただし、微粉砕粉に潤滑剤を添加しないと、磁場中成形における磁石粉末の配向が不十分となり、磁気特性(残留磁束密度(Br))が低下する。   As shown in Table 4, by applying the liquid lubricant to the mold wall surface, the adhesion of the mold can be prevented even if the amount of the lubricant added to the finely pulverized powder is reduced. When considering only prevention of mold adhesion, it is preferable to apply a liquid lubricant to the mold. However, unless a lubricant is added to the finely pulverized powder, the orientation of the magnet powder in the molding in the magnetic field becomes insufficient, and the magnetic properties (residual magnetic flux density (Br)) are lowered.

次に、原料合金として以下の組成の主相系合金及び粒界相系合金を用意した。
主相系合金:Nd;22wt%、Pr;6wt%、Dy;2wt%、Al;0.2wt%、Cu;0.01wt%、B;1.1wt%、残部;Fe及び不可避不純物
粒界相系合金:Nd;40wt%、Co;5wt%、Cu;1wt%、Al;0.2wt%、残部:Fe及び不可避不純物
上記主相系合金及び粒界相系合金を用い、微粉砕時の酸素濃度を表5に示すように調整した以外は、実施例1と同様の手順、条件で焼結、2段時効処理まで行った。微粉砕時の酸素濃度の調整は、ジェットミル内で高速気流を形成する不活性ガスに含まれる酸素濃度を調整することにより行った。また、微粉砕処理を除いて、水素粉砕処理(粉砕処理後の回収)から焼結(焼結炉に投入する)までの各工程の雰囲気を、100ppm未満の酸素濃度に抑えた。
磁場中成形時の金型壁面への微粉砕粉の付着の確認、焼結体の酸素量、磁気特性の評価を行った。その結果を表5に併せて示す。なお、得られた焼結体に残留するC量はいずれも700ppm以下であった。
Next, a main phase alloy and a grain boundary phase alloy having the following composition were prepared as raw material alloys.
Main phase alloy: Nd: 22 wt%, Pr: 6 wt%, Dy: 2 wt%, Al: 0.2 wt%, Cu: 0.01 wt%, B: 1.1 wt%, balance: Fe and inevitable impurities Grain boundary phase Alloy: Nd: 40 wt%, Co: 5 wt%, Cu: 1 wt%, Al: 0.2 wt%, balance: Fe and inevitable impurities Oxygen during pulverization using the above main phase alloy and grain boundary phase alloy Except for adjusting the concentration as shown in Table 5, sintering and two-stage aging treatment were performed in the same procedure and conditions as in Example 1. The oxygen concentration at the time of fine pulverization was adjusted by adjusting the oxygen concentration contained in the inert gas that forms a high-speed air flow in the jet mill. Further, except for the fine pulverization treatment, the atmosphere of each step from the hydrogen pulverization treatment (recovery after the pulverization treatment) to the sintering (put into the sintering furnace) was suppressed to an oxygen concentration of less than 100 ppm.
The adhesion of finely pulverized powder to the mold wall surface during molding in a magnetic field was confirmed, and the oxygen content and magnetic properties of the sintered body were evaluated. The results are also shown in Table 5. Note that the amount of C remaining in the obtained sintered body was 700 ppm or less.

Figure 2007197826
Figure 2007197826

表5に示すように、いずれの場合も金型付着の発生は見られなかった。しかし、粉砕時の酸素濃度の増加に伴い焼結体酸素量が増加した。さらに焼結体の磁気特性は、残留磁束密度(Br)に差異は見られなかったが、保磁力(HcJ)は粉砕時の酸素濃度が高くなるにつれて低下する傾向を示した。この保磁力(HcJ)の低下は焼結体酸素量の増加のためと考えられる。この実験では、調整が容易な微粉砕時の酸素濃度を調整したが、微粉砕時に限らず、焼結体の酸素量を増加させうる各工程の雰囲気の酸素濃度は低く、具体的には200ppm以下とすることが高い保磁力(HcJ)を得る上で効果的である。   As shown in Table 5, in any case, occurrence of mold adhesion was not observed. However, as the oxygen concentration during pulverization increased, the amount of oxygen in the sintered body increased. Furthermore, the magnetic characteristics of the sintered body showed no difference in residual magnetic flux density (Br), but the coercive force (HcJ) tended to decrease as the oxygen concentration during pulverization increased. This decrease in coercive force (HcJ) is thought to be due to an increase in the amount of oxygen in the sintered body. In this experiment, the oxygen concentration during fine pulverization, which is easy to adjust, was adjusted. However, the oxygen concentration in the atmosphere of each process that can increase the amount of oxygen in the sintered body is low, specifically 200 ppm. The following is effective in obtaining a high coercive force (HcJ).

Claims (10)

希土類元素を含み、加圧成形される金属粉末に対する潤滑剤であって、
一般式R−CONH(ただし、RはC2n+1で表され、nはRにおける炭素数を示している)で示され、前記一般式における総炭素数(n+1)が16以下の脂肪酸アミドが2種類以上で80wt%以上を占めることを特徴とする粉末成形用潤滑剤。
A lubricant for a metal powder containing rare earth elements and press-molded,
It is represented by the general formula R 1 —CONH 2 (wherein R 1 is represented by C n H 2n + 1 and n represents the carbon number in R 1 ), and the total carbon number (n + 1) in the general formula is 16 or less. A powder molding lubricant characterized by comprising two or more fatty acid amides and occupying 80 wt% or more.
前記潤滑剤は、前記一般式における総炭素数(n+1)が14以下の脂肪酸アミドが2種類以上で70wt%以上を占めることを特徴とする請求項1に記載の粉末成形用潤滑剤。   2. The powder molding lubricant according to claim 1, wherein the lubricant comprises two or more fatty acid amides having a total carbon number (n + 1) of 14 or less in the general formula and occupies 70 wt% or more. 前記一般式における総炭素数(n+1)が12以下の脂肪酸アミドが2種類以上で50wt%以上を占めることを特徴とする請求項1に記載の粉末成形用潤滑剤。   2. The powder molding lubricant according to claim 1, wherein two or more types of fatty acid amides having a total carbon number (n + 1) of 12 or less in the general formula occupy 50 wt% or more. 一般式R−CONH(ただし、RはC2n+1で表され、nはRにおける炭素数を示している)で示され、前記一般式における総炭素数(n+1)が16以下の脂肪酸アミドが2種類以上で80wt%以上を占める前記潤滑剤が溶媒中に溶解されたものであることを特徴とする請求項1〜3のいずれかに記載の粉末成形用潤滑剤。 It is represented by the general formula R 1 —CONH 2 (wherein R 1 is represented by C n H 2n + 1 and n represents the carbon number in R 1 ), and the total carbon number (n + 1) in the general formula is 16 or less. The powder molding lubricant according to any one of claims 1 to 3, wherein two or more types of the fatty acid amide and the lubricant occupying 80 wt% or more are dissolved in a solvent. 加圧成形に供される組成物であって、
金属粉末と、
前記金属粉末に対して0.05〜0.25wt%の比率で含まれる潤滑剤とを含み、
前記潤滑剤は、一般式R−CONH(ただし、RはC2n+1で表され、nはRにおける炭素数を示している)で示され、前記一般式における総炭素数(n+1)が16以下の脂肪酸アミドを2種類以上含み、かつ前記一般式における炭素数(n+1)が16以下の脂肪酸アミドが80wt%以上を占めることを特徴とする成形用組成物。
A composition that is subjected to pressure molding,
Metal powder,
A lubricant contained in a ratio of 0.05 to 0.25 wt% with respect to the metal powder,
The lubricant is represented by the general formula R 1 —CONH 2 (where R 1 is represented by C n H 2n + 1 , and n represents the number of carbons in R 1 ), and the total number of carbons in the general formula ( A molding composition characterized in that n + 1) contains two or more fatty acid amides having 16 or less, and the fatty acid amide having 16 or less carbon atoms (n + 1) in the general formula occupies 80 wt% or more.
前記金属粉末は、R−T−B(RはY(イットリウム)を含む希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素、Bはホウ素)系焼結磁石の原料粉末であることを特徴とする請求項5に記載の成形用組成物。   The metal powder is R-T-B (R is one or more rare earth elements including Y (yttrium), and T is one or more transition metal elements essential to Fe, Fe and Co. The molding composition according to claim 5, wherein B is a raw material powder of a boron) -based sintered magnet. 前記潤滑剤は、前記金属粉末に対して0.08〜0.2wt%含まれることを特徴とする請求項6に記載の成形用組成物。   The molding composition according to claim 6, wherein the lubricant is contained in an amount of 0.08 to 0.2 wt% with respect to the metal powder. 14B化合物(RはY(イットリウム)を含む希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素、Bはホウ素)からなる結晶粒を主相とする焼結体からなるR−T−B系焼結磁石の製造方法であって、
前記R14B化合物を含む合金粉末と潤滑剤との混合物からなる成形用組成物を磁場中で加圧成形して成形体を得る工程と、
前記成形体を焼結する工程と、
を備え、
前記潤滑剤は、一般式R−CONH(ただし、RはC2n+1で表され、nはRにおける炭素数を示している)で示され、前記一般式における炭素数(n+1)が16以下の脂肪酸アミドを2種類以上含み、かつ前記一般式における炭素数(n+1)が16以下の脂肪酸アミドが80wt%以上を占めることを特徴とするR−T−B系焼結磁石の製造方法。
R 2 T 14 B compound (R is one or more of rare earth elements including Y (yttrium), T is one or more transition metal elements in which Fe or Fe and Co are essential, and B is boron And a method for producing an RTB-based sintered magnet made of a sintered body having a crystal grain as a main phase,
A step of pressure-molding a molding composition comprising a mixture of an alloy powder containing the R 2 T 14 B compound and a lubricant in a magnetic field to obtain a molded body;
Sintering the molded body;
With
The lubricant is represented by the general formula R 1 -CONH 2 (where R 1 is represented by C n H 2n + 1 , and n represents the number of carbons in R 1 ), and the number of carbons in the general formula (n + 1) ) Includes two or more fatty acid amides having 16 or less, and the fatty acid amide having 16 or less carbon atoms (n + 1) in the general formula occupies 80 wt% or more. Production method.
前記合金粉末は、原料合金を粉砕して得られるものであり、前記潤滑剤は前記原料合金が粉砕される工程で添加され、
前記原料合金が粉砕される工程から前記成形体を焼結する工程までの雰囲気の酸素量が200ppm以下であることを特徴とする請求項8に記載のR−T−B系焼結磁石の製造方法。
The alloy powder is obtained by pulverizing a raw material alloy, and the lubricant is added in the step of pulverizing the raw material alloy,
The production of an RTB-based sintered magnet according to claim 8, wherein an oxygen amount in an atmosphere from a step of pulverizing the raw material alloy to a step of sintering the compact is 200 ppm or less. Method.
前記磁場中で加圧成形を行う金型の壁面に前記潤滑剤を溶質として含む液状潤滑剤を塗布することを特徴とする請求項8又は9に記載のR−T−B系焼結磁石の製造方法。   10. The RTB-based sintered magnet according to claim 8, wherein a liquid lubricant containing the lubricant as a solute is applied to a wall surface of a mold that performs pressure molding in the magnetic field. Production method.
JP2006347613A 2005-12-27 2006-12-25 Powder molding lubricant, molding composition, and method for producing RTB-based sintered magnet Active JP4753044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006347613A JP4753044B2 (en) 2005-12-27 2006-12-25 Powder molding lubricant, molding composition, and method for producing RTB-based sintered magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005374716 2005-12-27
JP2005374716 2005-12-27
JP2006347613A JP4753044B2 (en) 2005-12-27 2006-12-25 Powder molding lubricant, molding composition, and method for producing RTB-based sintered magnet

Publications (2)

Publication Number Publication Date
JP2007197826A true JP2007197826A (en) 2007-08-09
JP4753044B2 JP4753044B2 (en) 2011-08-17

Family

ID=38452705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006347613A Active JP4753044B2 (en) 2005-12-27 2006-12-25 Powder molding lubricant, molding composition, and method for producing RTB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP4753044B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571325A (en) * 2021-07-23 2021-10-29 包头天和磁材科技股份有限公司 Magnet mold release composition, use thereof, and method for producing magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02161701A (en) * 1989-11-02 1990-06-21 Seiko Epson Corp Manufacture of permanent magnet
JP2004143562A (en) * 2002-10-28 2004-05-20 Nof Corp Additive for powder metallurgy
JP2005136356A (en) * 2003-10-31 2005-05-26 Tdk Corp Method of manufacturing sintered rare-earth magnet
JP2005256073A (en) * 2004-03-11 2005-09-22 Hitachi Powdered Metals Co Ltd Method for manufacturing soft magnetic member by powder metallurgy method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02161701A (en) * 1989-11-02 1990-06-21 Seiko Epson Corp Manufacture of permanent magnet
JP2004143562A (en) * 2002-10-28 2004-05-20 Nof Corp Additive for powder metallurgy
JP2005136356A (en) * 2003-10-31 2005-05-26 Tdk Corp Method of manufacturing sintered rare-earth magnet
JP2005256073A (en) * 2004-03-11 2005-09-22 Hitachi Powdered Metals Co Ltd Method for manufacturing soft magnetic member by powder metallurgy method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571325A (en) * 2021-07-23 2021-10-29 包头天和磁材科技股份有限公司 Magnet mold release composition, use thereof, and method for producing magnet

Also Published As

Publication number Publication date
JP4753044B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP5477282B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6089535B2 (en) R-T-B sintered magnet
JPWO2005123974A1 (en) R-Fe-B rare earth permanent magnet material
JP2009302318A (en) RL-RH-T-Mn-B-BASED SINTERED MAGNET
WO2004029995A1 (en) R-t-b rare earth permanent magnet
JP4179973B2 (en) Manufacturing method of sintered magnet
JP4821128B2 (en) R-Fe-B rare earth permanent magnet
JP2006270087A (en) Method of producing rare-earth sintered magnet
CN113593882A (en) 2-17 type samarium-cobalt permanent magnet material and preparation method and application thereof
JP4353402B2 (en) Rare earth permanent magnet manufacturing method
JP4955217B2 (en) Raw material alloy for RTB-based sintered magnet and method for manufacturing RTB-based sintered magnet
JP4753044B2 (en) Powder molding lubricant, molding composition, and method for producing RTB-based sintered magnet
JP2007266026A (en) Manufacturing method of rare-earth sintered magnet
JP4662009B2 (en) Rare earth permanent magnet manufacturing method
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP5188674B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP2006274344A (en) Production method of r-t-b system sintered magnet
JP4076080B2 (en) Rare earth permanent magnet manufacturing method
JP4716020B2 (en) Method for producing rare earth permanent magnet and method for mixing raw material powder and lubricant
JP2005286174A (en) R-t-b-based sintered magnet
JP4506981B2 (en) Manufacturing method of rare earth sintered magnet
JP2005286173A (en) R-t-b based sintered magnet
JP4057562B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet
JP4716022B2 (en) Rare earth permanent magnet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4753044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250