JP2007197273A - Optical fiber strand and production method therefor - Google Patents

Optical fiber strand and production method therefor Download PDF

Info

Publication number
JP2007197273A
JP2007197273A JP2006019325A JP2006019325A JP2007197273A JP 2007197273 A JP2007197273 A JP 2007197273A JP 2006019325 A JP2006019325 A JP 2006019325A JP 2006019325 A JP2006019325 A JP 2006019325A JP 2007197273 A JP2007197273 A JP 2007197273A
Authority
JP
Japan
Prior art keywords
optical fiber
residual stress
temperature
core
slow cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006019325A
Other languages
Japanese (ja)
Inventor
Kenji Okada
健志 岡田
Shigetoshi Yamada
成敏 山田
Kuniharu Himeno
邦治 姫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006019325A priority Critical patent/JP2007197273A/en
Publication of JP2007197273A publication Critical patent/JP2007197273A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • C03B37/02727Annealing or re-heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method of efficiently producing a low loss optical fiber strand. <P>SOLUTION: In the method for producing an optical fiber strand, an optical fiber preform is heated and melted by a heating furnace, a bare optical fiber is drawn , the obtained bare optical fiber is annealed, the bare optical fiber is cooled to a temperature capable of resin coating, a coating liquid is applied to the circumference of the bare optical fiber, so as to be cured, and the obtained optical fiber strand is wound up, upon the annealing of the bare optical fiber, an annealing furnace is used, He gas or He-containing gas is used as atmospheric gas in the annealing furnace, and also, the temperature in the annealing furnace is set to 1,200 to 1,500°C, thus the optical fiber having a residual stress distribution where the residual stress of cladding in the vicinity of the core is a compressive stress, and the residual stress of the core is any of the compressive stress of the cladding or below, the residual stress of zero or tensile stress can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、低損失な光ファイバ素線及びその製造方法に関し、特に、低損失な光ファイバを線引きするために、徐冷を行う製造方法に適用される。本発明の製造方法は、徐冷紡糸を行っても、光ファイバ径方向の温度分布が均一となるため、光ファイバガラス中の残留応力の変化が少なく、構造不正損失成分が少ない光ファイバ素線を得ることができる。さらに、徐冷することによって光ファイバの構造緩和が進み、仮想温度が低くなり、結果として、レーリ散乱損失成分も少なくなるため、全体として伝送損失の小さい光ファイバ素線となり、長距離伝送用ファイバなどとして好適な光ファイバ素線が得られる。   The present invention relates to a low-loss optical fiber and a manufacturing method thereof, and in particular, is applied to a manufacturing method that performs slow cooling to draw a low-loss optical fiber. In the manufacturing method of the present invention, even if slow cooling spinning is performed, the temperature distribution in the radial direction of the optical fiber becomes uniform, so there is little change in residual stress in the optical fiber glass, and there is little structural irregular loss component. Can be obtained. Furthermore, the structure relaxation of the optical fiber is advanced by slow cooling, the fictive temperature is lowered, and as a result, the Rayleigh scattering loss component is also reduced, so that an optical fiber strand having a small transmission loss as a whole is obtained, and a long distance transmission fiber. As a result, a suitable optical fiber can be obtained.

近年、光ファイバ素線の損失低減に関する検討が盛んに行われている。損失低減の方法として、主に、光ファイバ素線の線引き工程における光ファイバ母材を加熱溶融した後の冷却過程において、該母材から線引きされた光ファイバ裸線を徐冷し、光ファイバ損失成分の中で、レーリ散乱損失を下げることで、全損失を低減させる方法が一般に行われている。   In recent years, studies on reducing the loss of an optical fiber have been actively conducted. As a method for reducing the loss, mainly in the cooling process after heating and melting the optical fiber preform in the drawing process of the optical fiber strand, the bare optical fiber drawn from the preform is gradually cooled to reduce the optical fiber loss. Among the components, a method of reducing the total loss by reducing the Rayleigh scattering loss is generally performed.

一方、線引き工程においては、生産性の向上の観点から、線引き速度が増加する傾向にある。このように高速紡糸になると、限られた高さの紡糸タワー(建築物)の中で光ファイバ裸線に被覆(コーティング)を施すために、光ファイバ裸線をコーティング可能な温度まで冷却筒にて急冷させる必要がある。しかし、光ファイバ温度が高温時に急冷を開始すると、光ファイバ伝送損失が悪化する。
よって、伝送損失を低減し、生産性を確保するために、主に、光ファイバ母材の線引き工程における、光ファイバ裸線徐冷方法の最適化が行われており、例えば、特許文献1〜4に記載されている技術が提案されている。
On the other hand, in the drawing process, the drawing speed tends to increase from the viewpoint of improving productivity. When spinning at such a high speed, in order to coat the bare optical fiber in a spinning tower (building) with a limited height, the cooling tube is brought to a temperature that allows the bare optical fiber to be coated. Need to be quickly cooled. However, if the optical fiber temperature is high and the rapid cooling starts, the optical fiber transmission loss deteriorates.
Therefore, in order to reduce transmission loss and ensure productivity, optimization of the optical fiber bare wire slow cooling method is mainly performed in the drawing process of the optical fiber preform. The technique described in 4 is proposed.

特許文献1に開示された方法では、紡糸冷却過程に徐冷炉を設置し、徐冷温度は500℃〜1500℃の範囲としている。また、徐冷炉突入ファイバ温度を500℃〜1500℃とし、徐冷時間は0.1〜10秒としている。
特許文献2に開示された方法では、光ファイバ温度が1300〜1700℃となる部分のうち、温度差が50℃以上となる区間を1000℃/秒以下で徐冷している。
特許文献3に開示された方法では、溶融変形部の外径が1mm以下の部分、実質的に変形を終えた部分の最も低い冷却温度を4000℃/秒以下としている。
特許文献4に開示された方法では、徐冷効果を高めるために、加熱炉と徐冷炉間に隙間を設け、Heを含む加熱炉雰囲気と徐冷炉雰囲気を区別し、徐冷炉ガスとして、N,Ar,空気のいずれかを流し、光ファイバ入線温度を1400〜1800℃としている。
特開平4−59631号公報 特開2000−335933号公報 特開2003−335545号公報 特開2000−335935号公報
In the method disclosed in Patent Document 1, a slow cooling furnace is installed in the spinning cooling process, and the slow cooling temperature is in the range of 500 ° C to 1500 ° C. Further, the annealing furnace rush fiber temperature is set to 500 ° C. to 1500 ° C., and the annealing time is set to 0.1 to 10 seconds.
In the method disclosed in Patent Document 2, the section in which the temperature difference is 50 ° C. or higher among the portions where the optical fiber temperature is 1300 to 1700 ° C. is gradually cooled at 1000 ° C./second or lower.
In the method disclosed in Patent Document 3, the lowest cooling temperature of the portion where the outer diameter of the melt-deformed portion is 1 mm or less and the portion where the deformation is substantially finished is set to 4000 ° C./second or less.
In the method disclosed in Patent Document 4, in order to enhance the slow cooling effect, a gap is provided between the heating furnace and the slow cooling furnace, the heating furnace atmosphere containing He and the slow cooling furnace atmosphere are distinguished, and as the slow cooling furnace gas, N 2 , Ar, Either one of air is allowed to flow, and the optical fiber inlet temperature is set to 1400 to 1800 ° C.
JP-A-4-59631 JP 2000-335933 A JP 2003-335545 A JP 2000-335935 A

しかしながら、前述したような従来技術では、本発明者らが鋭意検討を行った結果、次のような問題を生じることがわかった。
より伝送損失を低減させることを目的として、徐冷温度を上昇し、徐冷時間を長くすると、レーリ散乱損失成分は低減するものの、徐冷炉内雰囲気を対流熱伝達率の悪いN,Ar,空気等を使用していると、光ファイバ内に熱がたまり、光ファイバ内半径方向の温度分布の差が大きく、不均一になり、それにより、光ファイバ内の残留応力分布が変化し、結果として、別の損失成分である構造不正損失が増加する現象が生じる。
However, in the prior art as described above, as a result of intensive studies by the present inventors, it has been found that the following problems occur.
If the annealing temperature is increased and the annealing time is lengthened for the purpose of further reducing transmission loss, the Rayleigh scattering loss component is reduced, but the atmosphere in the annealing furnace is reduced in N 2 , Ar, air with a poor convective heat transfer coefficient. Etc., heat accumulates in the optical fiber, and the difference in temperature distribution in the radial direction of the optical fiber becomes large and non-uniform, thereby changing the residual stress distribution in the optical fiber, and as a result As a result, there occurs a phenomenon in which structural loss, which is another loss component, increases.

図2に、Ar雰囲気で徐冷した光ファイバ素線の残留応力分布を示し、図3に通常の徐冷なしで製造した光ファイバ素線の残留応力分布を示す。図2に示すように、Ar雰囲気で徐冷した場合、光ファイバ素線の残留応力が全体的に引っ張り応力側へシフトし、コア部引っ張り応力が大きく、また、コア外周部最内層クラッドも引っ張り応力であり、その外周のクラッドも中央から外周へ向けての応力変化が非常に大きくなっている。図3に示す通常の徐冷なしで製造した光ファイバの残留応力分布と比較すると、明らかに変化している。この残留応力と構造不正損失の間にも相関があり、残留応力を起因として構造不正損失が増加していると推測される。   FIG. 2 shows the residual stress distribution of an optical fiber strand annealed slowly in an Ar atmosphere, and FIG. 3 shows the residual stress distribution of an optical fiber strand manufactured without ordinary slow cooling. As shown in FIG. 2, when the glass fiber is gradually cooled in an Ar atmosphere, the residual stress of the optical fiber is shifted to the tensile stress side as a whole, the core portion tensile stress is large, and the innermost cladding of the core outer peripheral portion is also pulled. This is stress, and the change in stress from the center to the outer periphery of the outer cladding is very large. When compared with the residual stress distribution of the optical fiber manufactured without the usual slow cooling shown in FIG. 3, there is a clear change. There is also a correlation between the residual stress and the structural fraud loss, and it is assumed that the structural fraud loss is increased due to the residual stress.

以上のことから、レーリ散乱を低減させることを目的として、従来技術に示した方法にて、線引き工程における光ファイバ加熱溶融後の冷却過程において、徐冷をすると、条件によっては、光ファイバ半径方向の温度分布が不均一になり、残留応力が大きくなり、構造不正損失が増加するため、目的通り損失を低減した光ファイバ素線を安定して得ることができなかった。   From the above, for the purpose of reducing Rayleigh scattering, in the cooling process after heating and melting of the optical fiber in the drawing process with the method shown in the prior art, depending on the conditions, the radial direction of the optical fiber As a result, the temperature distribution of the optical fiber becomes non-uniform, the residual stress increases, and the structural fraud loss increases. Therefore, it is impossible to stably obtain an optical fiber with reduced loss as intended.

本発明は、前記事情に鑑みてなされ、低損失の光ファイバ素線を効率よく製造できる製造方法の提供を目的とする。   This invention is made | formed in view of the said situation, and aims at provision of the manufacturing method which can manufacture a low-loss optical fiber strand efficiently.

前記目的を達成するため、本発明は、光ファイバ母材を加熱炉で加熱溶融し、次いで光ファイバ裸線を引き出し、次いで得られた光ファイバ裸線を徐冷し、次いで前記光ファイバ裸線を樹脂コーティング可能な温度まで冷却し、次いで光ファイバ裸線の周りにコーティング液を塗布し硬化させて、得られた光ファイバ素線を巻き取る光ファイバ素線の製造方法において、光ファイバ裸線を徐冷する際に徐冷炉を使用し、徐冷炉内の雰囲気ガスとしてHeガス又はHe含有ガスを用い、且つ徐冷炉内を1200℃〜1500℃の温度に設定して徐冷を行うことによって、コア近傍のクラッドの残留応力が圧縮応力であり、コアの残留応力が前記クラッドより小さい圧縮応力、残留応力ゼロ、又は引っ張り応力のいずれかになっている残留応力分布を有する光ファイバ素線を得ることを特徴とする光ファイバ素線の製造方法を提供する。   In order to achieve the above object, the present invention provides an optical fiber preform that is heated and melted in a heating furnace, then the bare optical fiber is drawn out, and then the obtained bare optical fiber is gradually cooled, and then the bare optical fiber In a method for manufacturing an optical fiber, the optical fiber is wound around the bare optical fiber, and then the coating liquid is applied and cured around the bare optical fiber. By using a slow cooling furnace when slowly cooling, using He gas or He-containing gas as the atmosphere gas in the slow cooling furnace, and setting the inside of the slow cooling furnace to a temperature of 1200 ° C. to 1500 ° C., the vicinity of the core The residual stress of the clad is the compressive stress, and the residual stress of the core is one of the compressive stress, residual stress zero, or tensile stress smaller than the clad. It provides a method for manufacturing an optical fiber, characterized in that to obtain an optical fiber having.

本発明の光ファイバ素線の製造方法において、徐冷炉の温度を、1200℃〜1500℃の範囲内の全域又は一部の温度範囲の温度勾配をつけることが好ましい。   In the method for manufacturing an optical fiber according to the present invention, it is preferable that the temperature of the slow cooling furnace is provided with a temperature gradient in the entire region or a partial temperature range within a range of 1200 ° C to 1500 ° C.

また本発明は、前述した本発明に係る光ファイバ素線の製造方法により製造され、コアとそれを囲む少なくとも1層以上のクラッドと、該クラッドの外周に設けられた少なくとも1層以上の合成樹脂からなる被覆層とからなる光ファイバ素線であって、コア近傍のクラッドの残留応力が圧縮応力であり、コアの残留応力が前記クラッドより小さい圧縮応力、残留応力ゼロ、又は引っ張り応力のいずれかになっている残留応力分布を有することを特徴とする光ファイバ素線を提供する。   The present invention also provides a core, at least one clad surrounding the core, and at least one synthetic resin provided on the outer periphery of the core, manufactured by the above-described method for manufacturing an optical fiber according to the present invention. An optical fiber comprising a coating layer comprising: a clad residual stress in the vicinity of the core is a compressive stress, and the core residual stress is any of a compressive stress, a residual stress of zero, or a tensile stress smaller than the clad. An optical fiber having a residual stress distribution is provided.

本発明の光ファイバ素線において、伝送損失が0.180dB/km以下であることが好ましい。   In the optical fiber of the present invention, the transmission loss is preferably 0.180 dB / km or less.

本発明の光ファイバ素線において、レーリ散乱損失が0.165dB/km以下であることが好ましい。   In the optical fiber of the present invention, the Rayleigh scattering loss is preferably 0.165 dB / km or less.

本発明の光ファイバ素線の製造方法では、光ファイバ徐冷炉内にHeガスを含有させることで、光ファイバ裸線と徐冷炉内ガス雰囲気、及び徐冷炉ヒータとの対流熱伝達率が向上し、光ファイバ温度を所望の徐冷炉温度(1200℃〜1500℃)に応答性よく変化させることができるため、レーリ散乱低減に効率のよい温度域(1200℃〜1500℃)で徐冷することができ、これにより、レーリ散乱を低下させることできる。さらに、光ファイバ半径方向の温度分布が均一になりやすい。
また、本発明では、徐冷炉温度に勾配をつけることで、仮想温度の高止まりを防ぎ、より効率よくレーリ散乱を下げることができる。
また、本発明では、光ファイバ徐冷炉内にHeを含有させることで、光ファイバ裸線と徐冷炉内ガス雰囲気、及び徐冷炉ヒータとの対流熱伝達率が向上しているため、光ファイバ内半径方向の温度分布が均一になりやすく、残留応力分布の変化も小さくなるため、構造不正損失が増加しない低損失な光ファイバを得ることができる。
また、本発明では、効率よく徐冷して製造しているため、レーリ散乱の低い低損失な光ファイバ素線を得ることができる。
また、本発明では、光ファイバ径方向の残留応力分布が最適化されているため、構造不正損失の低い低損失な光ファイバ素線を得ることができる。
In the method for manufacturing an optical fiber according to the present invention, the convective heat transfer coefficient between the bare optical fiber, the gas atmosphere in the slow cooling furnace, and the slow cooling furnace heater is improved by containing He gas in the optical fiber slow cooling furnace. Since the temperature can be changed to a desired slow cooling furnace temperature (1200 ° C to 1500 ° C) with good responsiveness, it can be gradually cooled in a temperature range (1200 ° C to 1500 ° C) that is efficient in reducing Rayleigh scattering. , Rayleigh scattering can be reduced. Furthermore, the temperature distribution in the radial direction of the optical fiber tends to be uniform.
Further, in the present invention, by providing a gradient in the slow cooling furnace temperature, it is possible to prevent the virtual temperature from staying high and to lower the Rayleigh scattering more efficiently.
Further, in the present invention, by containing He in the optical fiber annealing furnace, the convective heat transfer coefficient between the optical fiber bare wire, the gas atmosphere in the annealing furnace, and the annealing furnace heater is improved. Since the temperature distribution tends to be uniform and the change in the residual stress distribution is small, it is possible to obtain a low-loss optical fiber that does not increase the structural loss.
Further, in the present invention, since it is manufactured by slowly cooling efficiently, a low-loss optical fiber with low Rayleigh scattering can be obtained.
In the present invention, since the residual stress distribution in the radial direction of the optical fiber is optimized, it is possible to obtain a low-loss optical fiber with low structural loss.

以下、図面を参照して本発明の実施形態を説明する。
図1は、本発明の光ファイバ素線の製造方法を実施するための光ファイバ素線製造装置の一例を示す構成図である。図1中、符号10は光ファイバ母材、11は紡糸炉、12は光ファイバ裸線、13は徐冷炉、14は冷却筒、15はコーター、16は架橋筒、17は光ファイバ素線、18はターンプーリー、19は引き取り部、20はダンサーロール、21は巻き取りボビンである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing an example of an optical fiber manufacturing apparatus for carrying out the optical fiber manufacturing method of the present invention. In FIG. 1, 10 is an optical fiber preform, 11 is a spinning furnace, 12 is an optical fiber bare wire, 13 is a slow cooling furnace, 14 is a cooling cylinder, 15 is a coater, 16 is a bridging cylinder, 17 is an optical fiber, 18 Is a turn pulley, 19 is a take-up portion, 20 is a dancer roll, and 21 is a take-up bobbin.

本発明の光ファイバ素線の製造方法は、光ファイバ母材10を紡糸炉11にセットし、その一端側をヒータで加熱溶融し、次いで光ファイバ裸線12を引き出し、次いで、得られた光ファイバ裸線12を、徐冷炉13内を通過させながら徐冷し、次いで、この光ファイバ裸線12を冷却筒14内を通過させながら、樹脂コーティング可能な温度まで冷却し、次いで冷却された光ファイバ裸線12をコーター15に導入してコーティング液を塗布し、次いで、これを架橋筒16に導入してコーティング液を硬化させ、光ファイバ裸線12の外周に合成樹脂からなる被覆層を形成して光ファイバ素線17を製造する。得られた光ファイバ素線17は、ターンプーリー18、引き取り部19、ダンサーロール20を経て移動させ、巻き取りボビン21に巻き取る。   In the method of manufacturing an optical fiber according to the present invention, an optical fiber preform 10 is set in a spinning furnace 11, one end side thereof is heated and melted with a heater, and then an optical fiber bare wire 12 is drawn out. The bare fiber 12 is gradually cooled while passing through the slow cooling furnace 13, and then the optical fiber bare wire 12 is cooled to a temperature capable of resin coating while passing through the cooling cylinder 14, and then the cooled optical fiber The bare wire 12 is introduced into the coater 15 to apply the coating liquid, then this is introduced into the cross-linking cylinder 16 to cure the coating liquid, and a coating layer made of a synthetic resin is formed on the outer periphery of the optical fiber bare wire 12. Thus, the optical fiber 17 is manufactured. The obtained optical fiber 17 is moved through a turn pulley 18, a take-up portion 19, and a dancer roll 20, and is taken up on a take-up bobbin 21.

本発明の製造方法において、光ファイバ母材10は、石英ガラスからなり、コアとそれを囲むクラッドとを有する各種の光ファイバ製造用の光ファイバ母材を用いることができる。この各種の光ファイバは特に限定されず、例えば、シングルモード光ファイバ、マルチモード光ファイバ、希土類添加光ファイバ、希土類添加ダブルクラッドファイバ、ホーリーファイバなどが挙げられる。   In the manufacturing method of the present invention, the optical fiber preform 10 is made of quartz glass, and various optical fiber preforms for manufacturing optical fibers having a core and a clad surrounding the core can be used. The various optical fibers are not particularly limited, and examples thereof include a single mode optical fiber, a multimode optical fiber, a rare earth doped optical fiber, a rare earth doped double clad fiber, and a holey fiber.

本発明の製造方法において、光ファイバ裸線12の外周に設けられる被覆層の材料は、従来公知の各種の合成樹脂材料の中から適宜選択して用いることができ、例えば、紫外線硬化型樹脂、熱硬化型樹脂等が好適に用いられる。また、光ファイバ裸線12外周に塗布したコーティング液を効果させる架橋筒16は、前記被覆層の使用樹脂に応じて変更され、前記紫外線硬化型樹脂を用いる場合には、紫外線ランプを内蔵し、紫外線をコーティング樹脂に照射する架橋筒16が用いられ、前記熱硬化型樹脂を用いる場合には、加熱ヒータを内蔵し、コーティング樹脂を加熱硬化させる架橋筒16が用いられる。なお、光ファイバ裸線12の外周に設けられる被覆層は、1層に限定されず、異なる樹脂からなる被覆層を2層以上設けても良い。   In the manufacturing method of the present invention, the material of the coating layer provided on the outer periphery of the bare optical fiber 12 can be appropriately selected and used from conventionally known various synthetic resin materials, such as an ultraviolet curable resin, A thermosetting resin or the like is preferably used. Further, the cross-linking cylinder 16 for effecting the coating liquid applied to the outer periphery of the bare optical fiber 12 is changed according to the resin used for the coating layer, and when the ultraviolet curable resin is used, an ultraviolet lamp is incorporated. A cross-linking cylinder 16 that irradiates the coating resin with ultraviolet rays is used. When the thermosetting resin is used, a cross-linking cylinder 16 that incorporates a heater and heat cures the coating resin is used. The coating layer provided on the outer periphery of the bare optical fiber 12 is not limited to one layer, and two or more coating layers made of different resins may be provided.

本発明の製造方法は、光ファイバ裸線12を徐冷する際に徐冷炉13を使用し、徐冷炉13内の雰囲気ガスとしてHeガス又はHe含有ガスを用い、且つ徐冷炉13内を1200℃〜1500℃の温度に設定して徐冷を行うことによって、コア近傍のクラッドの残留応力が圧縮応力であり、コアの残留応力が前記クラッドより小さい圧縮応力、残留応力ゼロ、又は引っ張り応力のいずれかになっている残留応力分布を有する光ファイバ素線17を得ることを特徴としている。   The manufacturing method of the present invention uses a slow cooling furnace 13 when gradually cooling the bare optical fiber 12, uses He gas or He-containing gas as the atmospheric gas in the slow cooling furnace 13, and the inside of the slow cooling furnace 13 is 1200 ° C. to 1500 ° C. By performing slow cooling at the temperature of the core, the residual stress of the cladding in the vicinity of the core is a compressive stress, and the residual stress of the core is one of the compressive stress, zero residual stress, or tensile stress smaller than the cladding. An optical fiber 17 having a residual stress distribution is obtained.

Heガスは、アルゴン(Ar)ガスと比較し、熱伝導率が10倍も大きいので、アルゴンガスよりも光ファイバとガス間、またガスと徐冷炉ヒータ間の熱伝達の応答性が良くなる。つまり、徐冷炉13のヒータから生じた熱は、雰囲気ガスへ伝熱し、暖められたガスは、ファイバへ伝熱する。逆に、ファイバの熱は、速やかに雰囲気ガスへ伝熱し、ガスから徐冷炉内壁などに伝熱する。これにより、光ファイバ半径方向の温度分布(例えば、光ファイバ中心と外周の温度)の差は小さくなり、結果として、ガラスの粘度差が小さくなり、線引き張力が均一に負担され、残留応力が比較的徐冷を行っていない場合に近付き、構造不正損失が増加しない。   Since the He gas has a thermal conductivity that is 10 times greater than that of the argon (Ar) gas, the responsiveness of heat transfer between the optical fiber and the gas and between the gas and the annealing furnace heater is improved compared to the argon gas. That is, the heat generated from the heater of the slow cooling furnace 13 is transferred to the atmospheric gas, and the warmed gas is transferred to the fiber. On the contrary, the heat of the fiber is quickly transferred to the atmospheric gas, and is transferred from the gas to the inner wall of the annealing furnace. As a result, the difference in temperature distribution in the radial direction of the optical fiber (for example, the temperature between the center and the outer periphery of the optical fiber) is reduced. As a result, the difference in viscosity of the glass is reduced, the drawing tension is uniformly applied, and the residual stress is compared. The structural loss will not increase if the product is not slowly cooled.

しかしながら、Heガスを導入すると、熱への応答性が良くなるため、光ファイバ温度は、徐冷炉温度と同じ温度まで急激に変化してしまう。つまり、低損失化のために行う徐冷効果を得るために、光ファイバの構造緩和が十分に短時間で生じる温度域に徐冷温度を合わせる必要がある。この温度として、1200℃〜1500℃の範囲内とすることが望ましい。これにより、光ファイバの構造緩和が生じ、仮想温度が低下し、結果としてレーリ散乱損失が低下する。   However, since the responsiveness to heat is improved when He gas is introduced, the temperature of the optical fiber changes rapidly to the same temperature as the annealing furnace temperature. That is, in order to obtain the slow cooling effect performed for reducing the loss, it is necessary to match the slow cooling temperature to a temperature range in which the structural relaxation of the optical fiber occurs in a sufficiently short time. This temperature is desirably in the range of 1200 ° C to 1500 ° C. As a result, structural relaxation of the optical fiber occurs, the fictive temperature decreases, and as a result, the Rayleigh scattering loss decreases.

さらに言えば、この徐冷炉温度に前記温度範囲内で温度勾配を設けることが望ましい。これは、高温では短時間で仮想温度が低下するのに対し、低温では、この時間が長くなるが、ファイバの持つ仮想温度に応じた温度にて徐冷を行うことで、最短時間で、低仮想温度まで下げることができることに加え、仮想温度が高温で高止まりしてしまうことを防ぐことができる。徐冷炉の温度を一定とした場合、設定温度が高温の場合には、レーリ散乱の低下速度は速いが、設定温度に応じた構造緩和しか起こらず、仮想温度が高止まりし、レーリ散乱も十分に下がらない。一方、低温の場合、上記のように構造緩和に時間がかかり、仮想温度低下に時間がかかる。そこで、徐冷炉温度に温度勾配をつけることで、仮想温度の低下速度を保ちつつ、仮想温度の低下の高止まりを防ぐことができるため、効率的にレーリ散乱を下げることができる。   Furthermore, it is desirable to provide a temperature gradient within the temperature range for the annealing furnace temperature. This is because the fictive temperature decreases in a short time at high temperatures, but this time becomes longer at low temperatures, but by slow cooling at a temperature corresponding to the fictive temperature of the fiber, it can be reduced in the shortest time. In addition to being able to lower the virtual temperature, the virtual temperature can be prevented from staying high at high temperatures. When the temperature of the slow cooling furnace is constant, if the set temperature is high, the rate of reduction of Rayleigh scattering is fast, but only the structural relaxation occurs according to the set temperature, the fictive temperature stays high, and the Rayleigh scattering is sufficient. It does not fall. On the other hand, at a low temperature, it takes time to relax the structure as described above, and it takes time to lower the virtual temperature. Therefore, by providing a temperature gradient to the slow cooling furnace temperature, it is possible to prevent the virtual temperature from decreasing at a high rate while maintaining the virtual temperature decreasing rate, and therefore, it is possible to efficiently reduce Rayleigh scattering.

一方、光ファイバ温度が1500℃以上の温度域においては、光ファイバ裸線12の粘度が低く、徐冷過程において激しく延伸されているために、外径変動が発生し、線引きすることが難しい。
さらに、光ファイバ温度が1200℃以下の温度域においては、レーリ散乱低下に要する時間が長くなり、線引き速度を極端に遅くする必要があり、生産性が悪くなり、現実的ではない。レーリ散乱は、仮想温度に依存し、この仮想温度が、光ファイバ徐冷過程に依存する。仮想温度は、構造緩和時間に依存し、高温では構造緩和が速く、低温では遅くなる。
On the other hand, in the temperature range where the optical fiber temperature is 1500 ° C. or more, the viscosity of the bare optical fiber 12 is low, and the fiber is stretched violently in the slow cooling process.
Furthermore, in the temperature range where the optical fiber temperature is 1200 ° C. or lower, the time required for lowering the Rayleigh scattering becomes longer, the drawing speed needs to be extremely slowed, and the productivity deteriorates, which is not practical. Rayleigh scattering depends on a fictive temperature that depends on the optical fiber annealing process. The fictive temperature depends on the structure relaxation time, and the structure relaxation is fast at high temperatures and slow at low temperatures.

以上のような製造方法にて製造された光ファイバ素線17は、次のような特徴を持つ。
得られた光ファイバ素線17は、コアとその周囲をなす少なくとも1層以上のクラッドとその外周に設けられた1層以上の被覆層とからなり、コア直近外層クラッドにおける光軸方向の残留応力の半径方向分布は、その半径方向のほぼ全域(層境界を除く)において、圧縮応力であり、かつ、コアの残留応力が、前記最内層クラッドより圧縮応力が小さいか、又は引っ張り応力側へ反転している。このような残留応力分布となることで、従来での線引き時とコア近傍においては同様な応力分布となるため、構造不正損失の増加しない光ファイバ素線17となる。
The optical fiber 17 manufactured by the above manufacturing method has the following characteristics.
The obtained optical fiber 17 is composed of a core, at least one cladding layer surrounding the core, and one or more coating layers provided on the outer periphery thereof, and the residual stress in the optical axis direction in the outermost cladding layer near the core. The radial distribution of is a compressive stress in almost the entire radial direction (excluding the layer boundary), and the residual stress of the core is smaller than that of the innermost clad or reversed to the tensile stress side. is doing. With such a residual stress distribution, the stress distribution is the same in the vicinity of the core as in the case of the conventional drawing, so that the optical fiber 17 does not increase in structural fraud loss.

以上より、本製造方法によって製造された光ファイバ素線は、徐冷しているために、レーリ散乱損失が低く、さらに、徐冷時の光ファイバ半径方向の温度分布が均一なため、残留応力分布が比較的均一となり、構造不正損失が増加しないことから、結果として、損失0.180dB/km以下、特にレーリ散乱損失が0.165dB/km以下である光ファイバ素線17を得ることができる。   As described above, since the optical fiber manufactured by this manufacturing method is gradually cooled, the Rayleigh scattering loss is low, and further, the temperature distribution in the radial direction of the optical fiber at the time of slow cooling is uniform. Since the distribution becomes relatively uniform and the structural irregularity loss does not increase, as a result, the optical fiber 17 having a loss of 0.180 dB / km or less, particularly a Rayleigh scattering loss of 0.165 dB / km or less can be obtained. .

[実施例1]
光ファイバ母材を加熱溶融し、ついで、引き出した光ファイバ裸線に対し、徐冷炉による徐冷を行い、徐冷炉内雰囲気をHeガスとし、徐冷炉温度を1500℃一定として線引きした。得られた光ファイバ素線の波長1.55μmでのレーリ散乱損失、及び構造不正損失はそれぞれ、0.160dB/km、0.01dB/kmであり、全損失は、0.179dB/kmであった。また、得られた光ファイバ素線の径方向の残留応力分布を図4の実施例1のグラフに示す。図4の実施例1のグラフより、コア近傍クラッドの残留応力は圧縮応力であり、かつ、コアの残留応力は、コア近傍の残留応力と比べ、低圧縮応力側へシフト(ほぼ応力0程度)しており、その差は10MPa以下であった。
[Example 1]
The optical fiber preform was heated and melted, and then, the drawn optical fiber bare wire was gradually cooled by a slow cooling furnace, and the atmosphere in the slow cooling furnace was He gas, and the slow cooling furnace temperature was fixed at 1500 ° C. The Rayleigh scattering loss and structural loss of the obtained optical fiber at a wavelength of 1.55 μm were 0.160 dB / km and 0.01 dB / km, respectively, and the total loss was 0.179 dB / km. It was. Also, the residual stress distribution in the radial direction of the obtained optical fiber is shown in the graph of Example 1 in FIG. From the graph of Example 1 in FIG. 4, the residual stress of the cladding near the core is a compressive stress, and the residual stress of the core is shifted to the low compressive stress side compared to the residual stress in the vicinity of the core (approximately zero stress). The difference was 10 MPa or less.

[実施例2]
光ファイバ母材を加熱溶融し、ついで、引き出した光ファイバ裸線に対し、徐冷炉による徐冷を行い、徐冷炉内雰囲気をHeガスとし、徐冷炉温度を1200℃一定として線引きした。得られた光ファイバ素線の波長1.55μmでのレーリ散乱損失、及び構造不正損失はそれぞれ、0.161dB/km、0.01dB/kmであり、全損失は、0.180dB/kmであった。また、得られた光ファイバ素線の径方向の残留応力分布を図4の実施例2のグラフに示す。図4の実施例2のグラフより、コア近傍クラッドの残留応力は圧縮応力であり、かつ、コアの残留応力は引っ張り応力であり、その差は20MPa以下であった。
[Example 2]
The optical fiber preform was heated and melted, and then, the drawn optical fiber bare wire was gradually cooled by a slow cooling furnace, and the atmosphere in the slow cooling furnace was He gas, and the slow cooling furnace temperature was kept constant at 1200 ° C. The obtained optical fiber had a Rayleigh scattering loss at a wavelength of 1.55 μm and a structural irregularity loss of 0.161 dB / km and 0.01 dB / km, respectively, and the total loss was 0.180 dB / km. It was. Also, the residual stress distribution in the radial direction of the obtained optical fiber is shown in the graph of Example 2 in FIG. From the graph of Example 2 in FIG. 4, the residual stress of the cladding near the core is a compressive stress, and the residual stress of the core is a tensile stress, and the difference is 20 MPa or less.

[実施例3]
光ファイバ母材を加熱溶融し、ついで、引き出した光ファイバ裸線に対し、徐冷炉による徐冷を行い、徐冷炉内雰囲気をHeガス50%とArガス50%の混合ガスとし、徐冷炉温度を1300℃一定として線引きした。得られた光ファイバ素線の波長1.55μmでのレーリ散乱損失、及び構造不正損失はそれぞれ、0.160dB/km、0.01dB/kmであり、全損失は、0.179dB/kmであった。また、得られた光ファイバ素線の径方向の残留応力分布を図4の実施例3のグラフに示す。図4の実施例3のグラフより、コア近傍クラッドの残留応力は圧縮応力であり、かつ、コアの残留応力は引っ張り応力であり、その差は20MPa以下であった。
[Example 3]
The optical fiber preform is heated and melted, and then the drawn optical fiber bare wire is gradually cooled by a slow cooling furnace, the atmosphere in the slow cooling furnace is a mixed gas of He gas 50% and Ar gas 50%, and the slow cooling furnace temperature is 1300 ° C. Draw as constant. The Rayleigh scattering loss and structural loss of the obtained optical fiber at a wavelength of 1.55 μm were 0.160 dB / km and 0.01 dB / km, respectively, and the total loss was 0.179 dB / km. It was. Also, the residual stress distribution in the radial direction of the obtained optical fiber is shown in the graph of Example 3 in FIG. From the graph of Example 3 in FIG. 4, the residual stress of the cladding near the core is a compressive stress, and the residual stress of the core is a tensile stress, and the difference is 20 MPa or less.

[実施例4]
光ファイバ母材を加熱溶融し、ついで、引き出した光ファイバ裸線に対し、徐冷炉による徐冷を行い、徐冷炉内雰囲気をHeガスとし、徐冷炉温度を1200℃〜1500℃の範囲内にて勾配をつけて線引きした。得られた光ファイバ素線の波長1.55μmでのレーリ散乱損失、及び構造不正損失はそれぞれ、0.156dB/km、0.01dB/kmであり、全損失は、0.175dB/kmであった。また、得られた光ファイバ素線の径方向の残留応力分布を図5の実施例4のグラフに示す。図5の実施例4のグラフより、コア近傍クラッドの残留応力は圧縮応力であり、かつ、コアの残留応力はほぼ0であり、その差は10MPa以下であった。
[Example 4]
The optical fiber preform is heated and melted, and then the drawn optical fiber bare wire is gradually cooled by a slow cooling furnace, the atmosphere in the slow cooling furnace is He gas, and the gradient of the slow cooling furnace temperature is in the range of 1200 ° C to 1500 ° C. I drew it. The obtained optical fiber had a Rayleigh scattering loss at a wavelength of 1.55 μm and a structural irregularity loss of 0.156 dB / km and 0.01 dB / km, respectively, and the total loss was 0.175 dB / km. It was. Also, the residual stress distribution in the radial direction of the obtained optical fiber is shown in the graph of Example 4 in FIG. From the graph of Example 4 in FIG. 5, the residual stress of the cladding near the core is a compressive stress, the residual stress of the core is almost 0, and the difference is 10 MPa or less.

[実施例5]
光ファイバ母材を加熱溶融し、ついで、引き出した光ファイバ裸線に対し、徐冷炉による徐冷を行い、徐冷炉内雰囲気をHeガスとし、徐冷炉温度を1300℃〜1400℃の範囲内にて勾配をつけて線引きした。得られた光ファイバ素線の波長1.55μmでのレーリ散乱損失、及び構造不正損失はそれぞれ、0.158dB/km、0.01dB/kmであり、全損失は、0.177dB/kmであった。また、得られた光ファイバ素線の径方向の残留応力分布を図5の実施例5のグラフに示す。図5の実施例5のグラフより、コア近傍クラッドの残留応力は圧縮応力であり、かつ、コアの残留応力はほぼ0であり、その差は15MPa以下であった。
[Example 5]
The optical fiber preform is heated and melted, and then, the drawn optical fiber bare wire is gradually cooled by a slow cooling furnace, the atmosphere in the slow cooling furnace is He gas, and the gradient of the slow cooling furnace temperature is in the range of 1300 ° C to 1400 ° C. I drew it. The obtained optical fiber had a Rayleigh scattering loss and a structural irregularity loss at a wavelength of 1.55 μm of 0.158 dB / km and 0.01 dB / km, respectively, and the total loss was 0.177 dB / km. It was. Further, the residual stress distribution in the radial direction of the obtained optical fiber is shown in the graph of Example 5 in FIG. From the graph of Example 5 in FIG. 5, the residual stress of the cladding near the core is a compressive stress, and the residual stress of the core is almost 0, and the difference is 15 MPa or less.

[比較例1]
光ファイバ母材を加熱溶融し、ついで、引き出した光ファイバ裸線に対し、徐冷炉による徐冷を行わずに線引きした。得られた光ファイバ素線の波長1.55μmでのレーリ散乱損失、及び構造不正損失はそれぞれ、0.170dB/km、0.01dB/kmであり、全損失は、0.188dB/kmであった。また、得られた光ファイバ素線の径方向の残留応力分布を図3に示す。図3のグラフより、コア近傍クラッドの残留応力は圧縮応力であり、かつ、コアの残留応力はほぼ0か、若干圧縮応力であり、その差は15MPa以下であった。外側クラッドの残留応力が外側へ行くほど引っ張り応力が大きくなっているのは、徐冷を行っていないために、光ファイバ外側から冷却されていることが原因である。
[Comparative Example 1]
The optical fiber preform was heated and melted, and then the drawn optical fiber bare wire was drawn without being gradually cooled by a slow cooling furnace. The obtained optical fiber has a Rayleigh scattering loss at a wavelength of 1.55 μm and a structural irregularity loss of 0.170 dB / km and 0.01 dB / km, respectively, and the total loss was 0.188 dB / km. It was. Moreover, the residual stress distribution of the radial direction of the obtained optical fiber strand is shown in FIG. From the graph of FIG. 3, the residual stress of the cladding in the vicinity of the core is a compressive stress, and the residual stress of the core is almost 0 or slightly compressive stress, and the difference is 15 MPa or less. The reason why the tensile stress increases as the residual stress of the outer cladding increases toward the outer side is that the outer cladding is cooled from the outside because it is not gradually cooled.

[比較例2]
光ファイバ母材を加熱溶融し、ついで、引き出した光ファイバ裸線に対し、徐冷炉による徐冷を行い、徐冷炉内雰囲気をArガスとし、徐冷炉温度を1400℃一定として線引きした。得られた光ファイバ素線の波長1.55μmでのレーリ散乱損失、及び構造不正損失はそれぞれ、0.159dB/km、0.02dB/kmであり、全損失は、0.188dB/kmであった。得られた光ファイバ素線の径方向の残留応力分布を図2に示す。図2のグラフより、コア近傍クラッドの残留応力は引っ張り応力であり、かつ、コアの残留応力もまた引っ張り応力であり、その差は20MPa以下であった。
[Comparative Example 2]
The optical fiber preform was heated and melted, and then, the drawn optical fiber bare wire was gradually cooled by a slow cooling furnace, and the atmosphere in the slow cooling furnace was Ar gas, and the slow cooling furnace temperature was kept constant at 1400 ° C. The obtained optical fiber had a Rayleigh scattering loss and a structural loss of 1.55 μm at a wavelength of 1.55 μm and a structural loss of 0.159 dB / km and 0.02 dB / km, respectively, and the total loss was 0.188 dB / km. It was. FIG. 2 shows the residual stress distribution in the radial direction of the obtained optical fiber. From the graph of FIG. 2, the residual stress of the cladding near the core is tensile stress, and the residual stress of the core is also tensile stress, and the difference is 20 MPa or less.

[比較例3]
光ファイバ母材を加熱溶融し、ついで、引き出した光ファイバ裸線に対し、徐冷炉による徐冷を行い、徐冷炉内雰囲気をHeガスとし、徐冷炉温度を1600℃一定として線引きを試みたが、徐冷温度が高温であるため、光ファイバ裸線が徐冷炉内部で延伸されてしまい、安定した外径を保つことができず、線引きが不可能であった。
[Comparative Example 3]
The optical fiber preform was heated and melted, and then the drawn bare optical fiber was gradually cooled in a slow cooling furnace, and the atmosphere in the slow cooling furnace was set to He gas, and the annealing temperature was kept constant at 1600 ° C. Since the temperature was high, the bare optical fiber was drawn inside the slow cooling furnace, so that a stable outer diameter could not be maintained, and drawing was impossible.

[比較例4]
光ファイバ母材を加熱溶融し、ついで、引き出した光ファイバ裸線に対し、徐冷炉による徐冷を行い、徐冷炉内雰囲気をHeガスとし、徐冷炉温度を1100℃一定として線引きした。得られた光ファイバ素線の波長1.55μmでのレーリ散乱損失、及び構造不正損失はそれぞれ、0.169dB/km、0.01dB/kmであり、全損失は、0.188dB/kmであった。得られた光ファイバ素線の径方向の残留応力分布を図6に示す。図6のグラフより、コア近傍クラッドの残留応力は圧縮応力であり、かつ、コアの残留応力は引っ張り応力であり、その差は20MPa以下であった。
以上の結果を表1にまとめて記す。
[Comparative Example 4]
The optical fiber preform was heated and melted, and then, the drawn optical fiber bare wire was gradually cooled by a slow cooling furnace, and the atmosphere in the slow cooling furnace was He gas and the slow cooling furnace temperature was kept constant at 1100 ° C. The obtained optical fiber had a Rayleigh scattering loss and a structural loss of 1.55 μm at a wavelength of 1.55 μm, respectively, and were 0.169 dB / km and 0.01 dB / km, respectively, and the total loss was 0.188 dB / km. It was. The residual stress distribution in the radial direction of the obtained optical fiber is shown in FIG. From the graph of FIG. 6, the residual stress of the cladding near the core is a compressive stress, and the residual stress of the core is a tensile stress, and the difference is 20 MPa or less.
The above results are summarized in Table 1.

Figure 2007197273
Figure 2007197273

表1に示した結果より、光ファイバ線引き時に徐冷炉が無い場合は、レーリ散乱損失が下がらないため、低損失光ファイバが得られない。
また、徐冷炉内雰囲気がArガスであると、残留応力波形が異常となるため、低損失光ファイバが得られない。一方、ArガスとHeガスとの混合ガスは、低損失光ファイバが得られる。
また、徐冷温度が1100℃以下であると、レーリ散乱が十分低下せず、徐冷温度が1600℃以上であると、紡糸困難となるため、低損失光ファイバが得られないことがわかる。
さらに、徐冷炉の温度勾配の有無では、所定の温度範囲であれば、温度一定でも、損失は0.180dB/km以下になるが、温度勾配をつけた方がより低損失の光ファイバが得られることが分かる。
From the results shown in Table 1, when there is no slow cooling furnace at the time of drawing the optical fiber, the Rayleigh scattering loss does not decrease, so a low-loss optical fiber cannot be obtained.
Further, if the atmosphere in the slow cooling furnace is Ar gas, the residual stress waveform becomes abnormal, so that a low-loss optical fiber cannot be obtained. On the other hand, a mixed gas of Ar gas and He gas provides a low-loss optical fiber.
It can also be seen that when the annealing temperature is 1100 ° C. or less, Rayleigh scattering is not sufficiently reduced, and when the annealing temperature is 1600 ° C. or more, spinning becomes difficult, and a low-loss optical fiber cannot be obtained.
Further, in the presence or absence of the temperature gradient of the slow cooling furnace, the loss is 0.180 dB / km or less even if the temperature is constant within the predetermined temperature range, but a lower loss optical fiber can be obtained by providing the temperature gradient. I understand that.

本発明の光ファイバ素線の製造方法を実施するための光ファイバ素線製造装置の一例を示す構成図である。It is a block diagram which shows an example of the optical fiber strand manufacturing apparatus for enforcing the manufacturing method of the optical fiber strand of this invention. 徐冷炉雰囲気をArガスとして徐冷を行った比較例2で得られた光ファイバ素線の残留応力分布を示すグラフである。It is a graph which shows the residual-stress distribution of the optical fiber strand obtained by the comparative example 2 which annealed slowly using the annealing furnace atmosphere as Ar gas. 徐冷無しで行った比較例1で得られた光ファイバ素線の残留応力分布を示すグラフである。It is a graph which shows the residual stress distribution of the optical fiber strand obtained by the comparative example 1 performed without slow cooling. 本発明に係る実施例1〜3で得られた光ファイバ素線の残留応力分布を示すグラフである。It is a graph which shows the residual stress distribution of the optical fiber strand obtained in Examples 1-3 which concern on this invention. 本発明に係る実施例4,5で得られた光ファイバ素線の残留応力分布を示すグラフである。It is a graph which shows the residual stress distribution of the optical fiber strand obtained in Example 4, 5 which concerns on this invention. 徐冷炉温度を1100℃で徐冷を行った比較例4で得られた光ファイバ素線の残留応力分布を示すグラフである。It is a graph which shows the residual-stress distribution of the optical fiber strand obtained by the comparative example 4 which annealed slowly at the annealing furnace temperature at 1100 degreeC.

符号の説明Explanation of symbols

10…光ファイバ母材、11…紡糸炉、12…光ファイバ裸線、13…徐冷炉、14…冷却筒、15…コーター、16…架橋筒、17…光ファイバ素線、18…ターンプーリー、19…引き取り部、20…ダンサーロール、21…巻き取りボビン。
DESCRIPTION OF SYMBOLS 10 ... Optical fiber base material, 11 ... Spinning furnace, 12 ... Bare optical fiber, 13 ... Slow cooling furnace, 14 ... Cooling cylinder, 15 ... Coater, 16 ... Bridging cylinder, 17 ... Optical fiber strand, 18 ... Turn pulley, 19 ... take-up part, 20 ... dancer roll, 21 ... take-up bobbin.

Claims (5)

光ファイバ母材を加熱炉で加熱溶融し、次いで光ファイバ裸線を引き出し、次いで得られた光ファイバ裸線を徐冷し、次いで前記光ファイバ裸線を樹脂コーティング可能な温度まで冷却し、次いで光ファイバ裸線の周りにコーティング液を塗布し硬化させて、得られた光ファイバ素線を巻き取る光ファイバ素線の製造方法において、
光ファイバ裸線を徐冷する際に徐冷炉を使用し、徐冷炉内の雰囲気ガスとしてHeガス又はHe含有ガスを用い、且つ徐冷炉内を1200℃〜1500℃の温度に設定して徐冷を行うことによって、コア近傍のクラッドの残留応力が圧縮応力であり、コアの残留応力が前記クラッドより小さい圧縮応力、残留応力ゼロ、又は引っ張り応力のいずれかになっている残留応力分布を有する光ファイバ素線を得ることを特徴とする光ファイバ素線の製造方法。
The optical fiber preform is heated and melted in a heating furnace, then the bare optical fiber is drawn out, and then the obtained bare optical fiber is gradually cooled, and then the bare optical fiber is cooled to a temperature capable of resin coating, In the method of manufacturing an optical fiber, the coating liquid is applied and cured around the bare optical fiber, and the obtained optical fiber is wound up.
A slow cooling furnace is used when the optical fiber bare wire is slowly cooled, He gas or a He-containing gas is used as the atmosphere gas in the slow cooling furnace, and the slow cooling furnace is set to a temperature of 1200 ° C to 1500 ° C to perform the slow cooling. By means of the above, an optical fiber having a residual stress distribution in which the residual stress of the clad in the vicinity of the core is a compressive stress, and the residual stress of the core is any one of the compressive stress, zero residual stress, or tensile stress smaller than the clad A method for manufacturing an optical fiber.
徐冷炉の温度を、1200℃〜1500℃の範囲内の全域又は一部の温度範囲の温度勾配をつけることを特徴とする請求項1に記載の光ファイバ素線の製造方法。   2. The method of manufacturing an optical fiber according to claim 1, wherein the temperature of the annealing furnace is provided with a temperature gradient in a whole range or a partial temperature range within a range of 1200 ° C. to 1500 ° C. 3. 請求項1又は2に記載の光ファイバ素線の製造方法により製造され、コアとそれを囲む少なくとも1層以上のクラッドと、該クラッドの外周に設けられた少なくとも1層以上の合成樹脂からなる被覆層とからなる光ファイバ素線であって、
コア近傍のクラッドの残留応力が圧縮応力であり、コアの残留応力が前記クラッドより小さい圧縮応力、残留応力ゼロ、又は引っ張り応力のいずれかになっている残留応力分布を有することを特徴とする光ファイバ素線。
A coating comprising the core, at least one clad surrounding the core, and at least one synthetic resin provided on the outer periphery of the core, manufactured by the optical fiber manufacturing method according to claim 1 or 2. An optical fiber comprising a layer,
Light having a residual stress distribution in which the residual stress of the cladding in the vicinity of the core is a compressive stress, and the residual stress of the core is any of a compressive stress, a residual stress of zero, or a tensile stress smaller than the cladding. Fiber strand.
伝送損失が0.180dB/km以下であることを特徴とする請求項3に記載の光ファイバ素線。   The optical fiber according to claim 3, wherein the transmission loss is 0.180 dB / km or less. レーリ散乱損失が0.165dB/km以下であることを特徴とする請求項3又は4に記載の光ファイバ素線。

The optical fiber strand according to claim 3 or 4, wherein the Rayleigh scattering loss is 0.165 dB / km or less.

JP2006019325A 2006-01-27 2006-01-27 Optical fiber strand and production method therefor Pending JP2007197273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006019325A JP2007197273A (en) 2006-01-27 2006-01-27 Optical fiber strand and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006019325A JP2007197273A (en) 2006-01-27 2006-01-27 Optical fiber strand and production method therefor

Publications (1)

Publication Number Publication Date
JP2007197273A true JP2007197273A (en) 2007-08-09

Family

ID=38452242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006019325A Pending JP2007197273A (en) 2006-01-27 2006-01-27 Optical fiber strand and production method therefor

Country Status (1)

Country Link
JP (1) JP2007197273A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308361A (en) * 2007-06-14 2008-12-25 Hitachi Cable Ltd Optical fiber and its production method
JP2009298664A (en) * 2008-06-16 2009-12-24 Fujikura Ltd Method for producing rare earth doped optical fiber
WO2010070931A1 (en) * 2008-12-19 2010-06-24 株式会社フジクラ Method for producing optical fiber preform
JP2011102964A (en) * 2009-10-14 2011-05-26 Sumitomo Electric Ind Ltd Optical fiber and method of manufacturing optical fiber
JP2013061559A (en) * 2011-09-14 2013-04-04 Sumitomo Electric Ind Ltd Optical fiber
JP2013190790A (en) * 2012-03-14 2013-09-26 Sumitomo Electric Ind Ltd Multimode optical fiber
US20130302000A1 (en) * 2012-05-08 2013-11-14 Sumitomo Electric Industries, Ltd. Multi-mode optical fiber
US8588573B2 (en) 2009-04-16 2013-11-19 Fujikura Ltd. Method for manufacturing optical fiber and optical fiber
JP2014118334A (en) * 2012-12-18 2014-06-30 Sumitomo Electric Ind Ltd Optical fiber manufacturing method
JP2015210315A (en) * 2014-04-24 2015-11-24 住友電気工業株式会社 Manufacturing method of grating
JP2017031023A (en) * 2015-08-04 2017-02-09 株式会社フジクラ Production method of optical fiber
JP2017081796A (en) * 2015-10-29 2017-05-18 株式会社フジクラ Method for manufacturing optical fiber

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308361A (en) * 2007-06-14 2008-12-25 Hitachi Cable Ltd Optical fiber and its production method
JP2009298664A (en) * 2008-06-16 2009-12-24 Fujikura Ltd Method for producing rare earth doped optical fiber
WO2010070931A1 (en) * 2008-12-19 2010-06-24 株式会社フジクラ Method for producing optical fiber preform
KR101226732B1 (en) 2008-12-19 2013-01-25 가부시키가이샤후지쿠라 Method for producing optical fiber
JP5250630B2 (en) * 2008-12-19 2013-07-31 株式会社フジクラ Optical fiber preform manufacturing method
US8661856B2 (en) 2008-12-19 2014-03-04 Fujikura Ltd. Manufacturing method of optical fiber
US8588573B2 (en) 2009-04-16 2013-11-19 Fujikura Ltd. Method for manufacturing optical fiber and optical fiber
JP2011102964A (en) * 2009-10-14 2011-05-26 Sumitomo Electric Ind Ltd Optical fiber and method of manufacturing optical fiber
EP2312349B1 (en) * 2009-10-14 2018-11-21 Sumitomo Electric Industries, Ltd. Optical fiber and method of manufacturing optical fiber
JP2013061559A (en) * 2011-09-14 2013-04-04 Sumitomo Electric Ind Ltd Optical fiber
US8798420B2 (en) 2012-03-14 2014-08-05 Sumitomo Electric Industries, Ltd. Multi-mode optical fiber
JP2013190790A (en) * 2012-03-14 2013-09-26 Sumitomo Electric Ind Ltd Multimode optical fiber
JP2013235264A (en) * 2012-05-08 2013-11-21 Sumitomo Electric Ind Ltd Multimode optical fiber
US9031371B2 (en) 2012-05-08 2015-05-12 Sumitomo Electric Industries, Ltd. Multi-mode optical fiber
US20130302000A1 (en) * 2012-05-08 2013-11-14 Sumitomo Electric Industries, Ltd. Multi-mode optical fiber
JP2014118334A (en) * 2012-12-18 2014-06-30 Sumitomo Electric Ind Ltd Optical fiber manufacturing method
JP2015210315A (en) * 2014-04-24 2015-11-24 住友電気工業株式会社 Manufacturing method of grating
JP2017031023A (en) * 2015-08-04 2017-02-09 株式会社フジクラ Production method of optical fiber
JP2017081796A (en) * 2015-10-29 2017-05-18 株式会社フジクラ Method for manufacturing optical fiber
US11008245B2 (en) 2015-10-29 2021-05-18 Fujikura Ltd. Optical fiber production method

Similar Documents

Publication Publication Date Title
JP2007197273A (en) Optical fiber strand and production method therefor
US20010006262A1 (en) Method of cooling an optical fiber while it is being drawn
CN111032588B (en) Method for manufacturing optical fiber
JP4663277B2 (en) Optical fiber and manufacturing method thereof
EP1571133A1 (en) Apparatus and method for manufacturing optical fiber including rotating optical fiber preforms during draw
JP2014062021A (en) Optical fiber manufacturing method
JP5949016B2 (en) Optical fiber manufacturing method
WO2000073224A1 (en) Production device and method for optical fiber
CN107108327B (en) Method for manufacturing optical fiber
JP2000335934A (en) Apparatus and method for producing optical fiber
JP4124254B2 (en) Optical fiber, optical fiber preform manufacturing method, and optical fiber manufacturing method
WO2013140688A1 (en) Method for producing optical fiber
JP4459720B2 (en) Manufacturing method of optical fiber
WO2017073203A1 (en) Optical fiber production method
WO2017158940A1 (en) Optical fiber production method
JP2003335545A (en) Method and apparatus for drawing optical fiber
JP4400026B2 (en) Optical fiber manufacturing method
JP2014118334A (en) Optical fiber manufacturing method
JP3952734B2 (en) Optical fiber manufacturing method
JP6174092B2 (en) Optical fiber manufacturing apparatus, optical fiber manufacturing method, and optical fiber
JP4252891B2 (en) Optical fiber drawing method
JP5942630B2 (en) Optical fiber manufacturing method
JP2023083734A (en) Method for manufacturing optical fiber
JP2003176149A (en) Method and apparatus for manufacturing optical fiber
JP4215943B2 (en) Manufacturing method of optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309