JP4215943B2 - Manufacturing method of optical fiber - Google Patents

Manufacturing method of optical fiber Download PDF

Info

Publication number
JP4215943B2
JP4215943B2 JP2000359771A JP2000359771A JP4215943B2 JP 4215943 B2 JP4215943 B2 JP 4215943B2 JP 2000359771 A JP2000359771 A JP 2000359771A JP 2000359771 A JP2000359771 A JP 2000359771A JP 4215943 B2 JP4215943 B2 JP 4215943B2
Authority
JP
Japan
Prior art keywords
optical fiber
bare
cooling device
slow cooling
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000359771A
Other languages
Japanese (ja)
Other versions
JP2002160946A (en
Inventor
健志 岡田
幸司 鶴崎
光一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2000359771A priority Critical patent/JP4215943B2/en
Publication of JP2002160946A publication Critical patent/JP2002160946A/en
Application granted granted Critical
Publication of JP4215943B2 publication Critical patent/JP4215943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/56Annealing or re-heating the drawn fibre prior to coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバ母材から溶融紡糸された光ファイバ裸線を、冷却装置にて冷却し、ついでこの光ファイバ裸線上に樹脂を塗布し、硬化して一次被覆層、二次被覆層を順次形成する光ファイバ素線の製造方法およびこの製造方法に用いられる製造装置に関し、溶融紡糸後の光ファイバ裸線の冷却方法を改善することにより、光ファイバ素線の波長1.55μmにおける伝送損失を低減するものである。
【0002】
【従来の技術】
図4は、光ファイバ素線の製造方法の一例を示す概略構成図である。
光ファイバ母材1を紡糸炉2において、アルゴンガスなどの不活性ガス雰囲気中で高温加熱して溶融紡糸し、光ファイバ裸線3の外径を125μmまで引き落として、光ファイバ裸線3とし、この光ファイバ裸線3を冷却装置4にて冷却し、ついでこの光ファイバ裸線3上に、樹脂塗布装置5にて樹脂を塗布し、ついで硬化装置6にて前記樹脂を硬化して一次被覆層を形成する。さらにこの一次被覆層上に樹脂塗布装置7にて樹脂を塗布し、硬化装置8にてこの樹脂を硬化して二次被覆層を形成する。このように製造された光ファイバ素線9は、ターンプーリー10によりパスラインを変えられ、引き取り機11、ダンサー12の順に通過し、巻取り装置13により巻取られる。
【0003】
ところで近年、光ファイバの溶融紡糸において、生産効率を高める目的から、光ファイバ裸線3の線引を高速で行うようになっている。
光ファイバ母材1の下端を紡糸炉2によって加熱し、軟化させて線引すると、下端が徐々に縮径されて円錐状のネックダウン部が形成される。光ファイバ裸線3の線引を高速で行うことにより、この光ファイバ母材1のネックダウン部の円錐形状が長くなり、光ファイバ裸線3の外径が125μmになる前に、光ファイバ裸線3が紡糸炉2の外に出てしまい、その後の冷却装置4において冷却ガスにより光ファイバ裸線3が急冷される。
【0004】
光ファイバ裸線3が線引時に急冷されると、光ファイバ裸線3における非架橋酸素ホールセンター(Non Bonding Oxygen Hole Center、以下NBOHCと略記する。)を含む欠陥が再結合しにくくなり、光ファイバ素線9の波長0.63μmにおける伝送損失が増加するという問題がある。
NBOHCを含む欠陥は、光ファイバ母材1を高温で溶融すると発生し、光ファイバ裸線3の溶融紡糸過程で徐冷すると、再結合しやすくなることが知られている。
また、光ファイバ素線9の波長0.63μmにおける伝送損失が増加すると、実際に伝送される波長域である波長1.55μmにける伝送損失も影響を受けることが分かっている。
【0005】
【発明が解決しようとする課題】
よって、本発明における課題は、光ファイバ素線の製造過程において、溶融紡糸後の光ファイバ裸線の冷却方法を改善することにより、波長1.55μmにおける伝送損失が小さい光ファイバ素線の製造方法およびその装置を提供することにある。
【0006】
【課題を解決するための手段】
かかる課題を解決するため、本発明は、光ファイバ母材から溶融紡糸された光ファイバ裸線を冷却装置にて冷却し、ついでこの光ファイバ裸線上に樹脂を塗布し、硬化して順次一次被覆層、二次被覆層を形成する光ファイバの製造方法において、
光ファイバ紡糸炉と冷却装置との間で、光ファイバ裸線を徐冷すること、および紡糸炉内の加熱装置により光ファイバ母材が加熱されて、紡糸炉内の最高温度に達した時点Aから、当該光ファイバ母材の溶融部分が線引きされ、徐冷装置内でこの溶融部分を徐冷しながら、外径125μmの光ファイバ裸線になる時点Bまでに要する時間を90〜500秒とすることを特徴とする光ファイバ素線の製造方法を提供する。
【0007】
また、本発明の光ファイバ製造方法において、前記光ファイバ紡糸炉の下部を延長するようにして徐冷装置を設け、該徐冷装置にて光ファイバ裸線を徐冷することが好ましい。
【0010】
【発明の実施の形態】
以下、本発明について、詳しく説明する。
本発明の光ファイバ素線の製造方法は、光ファイバ母材を光ファイバ紡糸炉で加熱することにより、溶融した光ファイバ母材を線引きする際に、光ファイバ母材のあるガラス部分が、紡糸炉内の最高温度位置に達してから外径125μmの光ファイバ裸線になるまでの過程に、光ファイバ裸線を徐冷するための徐冷装置を導入することにより、波長1.55μmにおける光ファイバ素線の伝送損失を低減するものである。
図1は、本発明の光ファイバ素線の製造方法および製造装置を用いた光ファイバ素線の製造工程の一例を示す概略構成図である。図中、図4に示す従来のものと同じ装置を示すものには同一の符号を付けた。
【0011】
紡糸炉2において光ファイバ母材1から溶融紡糸された光ファイバ裸線3は、徐冷装置14に送り込まれ、さらに冷却装置4に送りこまれ、ここで冷却されて樹脂塗布装置5に送られる。ここで、光ファイバ裸線3に樹脂が塗布され、ついで硬化装置6にて前記樹脂が硬化されて一次被覆層が形成される。さらに、この一次被覆層上に樹脂塗布装置7にて樹脂が塗布され、硬化装置8にてこの樹脂が硬化されて二次被覆層が形成される。このように製造された光ファイバ素線9は、ターンプーリー10によりパスラインを変えられ、引き取り機11、ダンサー12の順に通過し、巻取り装置13により巻取られる。
【0012】
上記徐冷装置14を設ける位置は、紡糸炉2と冷却装置4の間であればどこでもよいが、より徐冷効果を高めるためには、紡糸炉2の下部を延長するようにして設けることが好ましい。
【0013】
徐冷装置14の外形形状は、円筒形、多角形などがあるが、特に限定するものではない。また、徐冷装置14の光ファイバ裸線3が通過する内部形状は、円筒形、多角形、コルゲート形などがあるが、特に限定するものではない。
例えば、徐冷装置14の外形形状が円筒形の場合、外径は20〜150mm程度となっている。外径が20mm未満では、機械的強度が不足する。外径が150mmを超えると、光ファイバ線引き時の作業性が低下する。また、徐冷装置14の外周を、適宜、断熱材などで覆ってもよい。
また、内部形状も円筒形の場合、内径は10〜125mmの範囲で適宜選択できる。光ファイバ裸線3の線引き時に、徐冷の点で、内径は細い方が好ましいが、線ぶれによる光ファイバの接触や、光ファイバの軸出しを考慮すると、ある程度の大きさが必要となる。
【0014】
また、徐冷装置14の長さは、紡糸炉2で溶融された光ファイバ裸線3を緩やかに冷却するために、100mm以上必要であり、好ましい長さは、紡糸線速に応じて、適宜決定される。100mm未満では、光ファイバ裸線3のNBOHCを含む欠陥が再結合するために十分に徐冷することができない。
また、徐冷装置14は、取り外し可能な構造となっており、これを取り外すことにより、本発明の光ファイバ素線の製造装置は、従来の光ファイバ素線の製造装置としての使用も可能である。
【0015】
徐冷装置14内は、より徐冷効果を高めるために、徐冷装置14は、ヒーターなどで50〜1200℃程度まで温度制御することができるようになっており、またその周りが断熱材などで覆われている。
さらに、徐冷装置14の温度を、紡糸炉2に近い方から順に、段階的に下げるようにしてもよい。この場合、紡糸炉2に近い方から、徐冷装置14をいくつかに分割して温度制御可能とし、光ファイバ裸線3の引き出し口に向かって温度を下げるようにする。このような工程を経ることにより、光ファイバ裸線3をより緩やかに冷却することができる。
【0016】
光ファイバ裸線3の線引きを高速で行うと、光ファイバ母材1のネックダウン部の円錐形状は長くなり、それに伴って紡糸炉2で溶融された光ファイバ母材1のあるガラス部分が、紡糸炉内の最高温度位置に達してから外径125μmの光ファイバ裸線3になるまでの距離も長くなる。そこで、上記のような徐冷装置14を設けて、この徐冷装置14内でこのネックダウン部の円錐形状を徐冷しながら、外径125μmの光ファイバ裸線3を形成すれば、光ファイバ裸線3のNBOHCを含む欠陥がより再結合しやすくなる。
【0017】
図2に示すように、紡糸炉2内の加熱装置により光ファイバ母材1が加熱されて、紡糸炉内の最高温度に達した時点Aから、当該光ファイバ母材1の溶融部分が線引きされ、上記のように徐冷装置14内でこの溶融部分を徐冷しながら、外径125μmの光ファイバ裸線3になる時点Bまでに要する時間を、光ファイバの変形時間とする。
【0018】
この光ファイバの変形時間は、光ファイバ裸線3の線速により異なるが、90〜500秒が好ましい。特に好ましくは、120〜400秒である。
変形時間が90秒未満では、波長1.55μmにおける光ファイバ素線の伝送損失が増加し、500秒を超えると、光ファイバ素線の線速変動量が大きくなる。
【0019】
徐冷装置14で外径125μmに形成された光ファイバ裸線3は、冷却装置4において、一次被覆層となる樹脂が塗布可能な温度に冷却される。ついで、光ファイバ裸線3上に、樹脂塗布装置5にて樹脂を塗布し、ついで硬化装置6にて前記樹脂を硬化して一次被覆層を形成し、さらにこの一次被覆層上に樹脂塗布装置7にて樹脂を塗布し、硬化装置8にてこの樹脂を硬化して二次被覆層を形成し、光ファイバ素線9を得る。
上記被覆層に用いられる樹脂としては、紫外線硬化型樹脂が好適である。
【0020】
本発明の光ファイバ素線の製造方法およびその装置は、シングルモード光ファイバ、分散シフト、カットオフシフト、分散補償光ファイバなど、いかなる種類の光ファイバにも適用できるが、波長0.63μmにおける伝送損失、すなわちNBOHCによる吸収が大きい光ファイバに対して好適である。
気相軸付法(VAD法)、外付け法(OVD法)、内付け法(CVD法、MCVD法、PCVD法)またはロッドインチューブ法など、いかなる製法で作製された光ファイバ母材に対しても、その大きさや形状に拘わらず適用できるが、NBOHCを含む欠陥の発生量の低減が困難な種類のものに対して好適である。
【0021】
上記のように、徐冷装置14を設け、この装置の温度を制御することにより、紡糸炉2で溶融された光ファイバ母材1の下端が線引され、この溶融部分が外径125μmの光ファイバ裸線3になるまでの過程を調整することができる。
これにより、本発明の光ファイバ素線の製造方法およびその装置は、幅広い紡糸線速において、光ファイバ裸線のNBOHCを含む欠陥を再結合するために有効である。具体的には、紡糸線速30〜1500m/分において好適である。
【0022】
ところで、紡糸炉2で溶融された光ファイバ母材1の下端が線引され、この溶融部分が外径125μmの光ファイバ裸線3になるまでの過程において、光ファイバ母材1のネックダウン部の円錐形状が長すぎると、光ファイバ裸線3の線引き時において、線速制御が困難となる。また、線速変動が大きいと、光ファイバ素線9の一次、二次被覆層のコート径の変動が大きくなり、安定した被覆を施すのが困難となる。その結果、光ファイバ素線9の被覆層に偏肉が生じたり、側圧特性不良が生じたりする。
そこで、徐冷装置14の温度を制御し、光ファイバ裸線3の線速に応じて、光ファイバの変形時間を決定する。これにより、光ファイバ素線9の伝送損失の増加、被覆層の偏肉、側圧特性不良などを低減することができる。
【0023】
以下、具体例を示す。
本発明の光ファイバ素線9の製造方法によって、光ファイバ素線を製造した。まず、光ファイバ母材1を紡糸炉2より溶融紡糸し、紡糸炉2の光ファイバ裸線3の引き出し口に取付けた徐冷装置14で光ファイバ裸線3を徐冷し、外径125μmの光ファイバ裸線3を溶融紡糸した。
ここで用いた光ファイバ母材1は、波長多重伝送用光ファイバ母材である。
この徐冷装置14としては、筒の内径30mm、外径80mm、長さが500mmであるものを用いた。
ついで、冷却した光ファイバ裸線3に、ウレタンアクリレート系紫外線硬化型樹脂を塗布、硬化して一次被覆層を、次に同様にして二次被覆層を形成し、一次被覆層のコート径190μm、二次被覆層のコート径250μmの光ファイバ素線9を製造した。
【0024】
上記光ファイバ素線9の製造工程において、紡糸線速を800m/分とし、徐冷装置14の温度を変化させることによって、光ファイバの変形時間を変化させて光ファイバ裸線3の紡糸を行った。
このようにして得られた光ファイバ素線9を、長さを10kmとして、10本サンプル取りし、束取り状態もしくはフリーコイル状態で、波長1.55μmにおける伝送損失を測定した。結果を図3に示す。
また、この時の光ファイバ裸線3の紡糸ライン中における紡糸線速変動を記録した。結果を図4に示す。
【0025】
図3、図4の結果から、上記光ファイバ素線9の製造工程において、紡糸線速を800m/分とした場合は、光ファイバの変形時間が200〜400秒では、波長1.55μmにおける伝送損失および線速変動量が小さいことが分かった。したがって、変形時間がこの範囲になるように、徐冷装置14の温度を調整することが好ましいことが分かった。
以上のことから、この光ファイバの変形時間は、紡糸線速によって最適時間が異なるが、波長1.55μmにおける伝送損失と、紡糸線速変動量の許容範囲により、決定することができることが判明した。
【0026】
【発明の効果】
以上説明したように、本発明の光ファイバ素線の製造方法は、光ファイバ母材から溶融紡糸された光ファイバ裸線を冷却装置にて冷却し、ついでこの光ファイバ裸線上に樹脂を塗布し、硬化して順次一次被覆層、二次被覆層を形成する光ファイバ素線の製造方法において、光ファイバ紡糸炉と冷却装置との間で、光ファイバ裸線を徐冷し、光ファイバ母材のあるガラス部分が、紡糸炉内の最高温度位置に達してから外径125μmの光ファイバ裸線になるまでの時間を90〜500秒とするものであるから、光ファイバ裸線のNBOHCを含む欠陥が再結合しやすくなり、光ファイバ素線の波長1.55μmにおける伝送損失を低減することが可能となり、幅広い紡糸線速においても、光ファイバ素線の線速変動量を低減することができる。
【0027】
また、本発明の光ファイバ素線の製造装置は、光ファイバ母材から溶融紡糸された光ファイバ裸線を冷却装置にて冷却する手段と、この光ファイバ裸線上に樹脂を塗布し、硬化して順次一次被覆層、二次被覆層を形成する手段と、光ファイバ紡糸炉と冷却装置の間に、光ファイバ裸線の徐冷装置が設けられているものであるから、波長1.55μmにおける伝送損失および線速変動量の小さい光ファイバ素線を得ることができる。
【0028】
そして、本発明の光ファイバ素線は、本発明の光ファイバ素線の製造方法により製造されたものであるから、被覆層に偏肉がなく、側圧特性に優れているものである。
【図面の簡単な説明】
【図1】 本発明の光ファイバ素線の製造工程の一例を示した概略構成図である。
【図2】 光ファイバ裸線の線引き時における光ファイバの変形過程を示す概略図である。
【図3】 光ファイバの変形時間と波長1.55μmにおける伝送損失との関係を示すグラフである。
【図4】 光ファイバの変形時間と紡糸線速度変動量との関係を示すグラフである。
【図5】 従来の光ファイバ素線の製造工程の一例を示した概略構成図である。
【符号の説明】
1…光ファイバ母材、2…紡糸炉、3…光ファイバ裸線、4…冷却装置、5,7…樹脂塗布装置、6,8…硬化装置、9…光ファイバ素線、10…ターンプーリー、11…引き取り機、12…ダンサー、13…巻取り装置、14…徐冷装置、A…光ファイバ母材1の温度の最高点、B…光ファイバ母材1の外径125μm到達点
[0001]
BACKGROUND OF THE INVENTION
In the present invention, an optical fiber bare wire melt-spun from an optical fiber preform is cooled by a cooling device, and then a resin is applied onto the bare optical fiber and cured to form a primary coating layer and a secondary coating layer. The present invention relates to a method of manufacturing optical fiber strands to be sequentially formed and a manufacturing apparatus used for the manufacturing method, and a transmission loss at a wavelength of 1.55 μm of the optical fiber strand by improving the cooling method of the bare optical fiber after melt spinning. Is reduced.
[0002]
[Prior art]
FIG. 4 is a schematic configuration diagram illustrating an example of a method for manufacturing an optical fiber.
The optical fiber preform 1 is heated at a high temperature in an inert gas atmosphere such as argon gas in a spinning furnace 2 and melt-spun, and the outer diameter of the bare optical fiber 3 is pulled down to 125 μm to obtain an bare optical fiber 3. The bare optical fiber 3 is cooled by a cooling device 4, then a resin is applied onto the bare optical fiber 3 by a resin coating device 5, and then the resin is cured by a curing device 6 to be primary coated. Form a layer. Further, a resin is applied on the primary coating layer by the resin coating device 7 and the resin is cured by the curing device 8 to form a secondary coating layer. The optical fiber 9 manufactured in this manner has its pass line changed by the turn pulley 10, passes through the take-up machine 11 and the dancer 12 in this order, and is taken up by the take-up device 13.
[0003]
By the way, in recent years, in the optical fiber melt spinning, the optical fiber bare wire 3 is drawn at a high speed for the purpose of increasing production efficiency.
When the lower end of the optical fiber preform 1 is heated by the spinning furnace 2, softened, and drawn, the lower end is gradually reduced in diameter to form a conical neck-down portion. By drawing the bare optical fiber 3 at high speed, the conical shape of the neck-down portion of the optical fiber preform 1 becomes long, and before the outer diameter of the bare optical fiber 3 becomes 125 μm, the bare optical fiber 3 The wire 3 comes out of the spinning furnace 2, and the bare optical fiber 3 is rapidly cooled by the cooling gas in the subsequent cooling device 4.
[0004]
When the bare optical fiber 3 is rapidly cooled at the time of drawing, defects including a non-bridging oxygen hole center (Non Bonding Oxygen Hole Center, hereinafter abbreviated as NBOHC) in the bare optical fiber 3 are difficult to recombine. There is a problem that the transmission loss of the fiber strand 9 at a wavelength of 0.63 μm increases.
It is known that defects including NBOHC are generated when the optical fiber preform 1 is melted at a high temperature, and recombination easily occurs when the optical fiber preform 1 is gradually cooled during the melt spinning process of the optical fiber bare wire 3.
Further, it has been found that when the transmission loss of the optical fiber 9 at a wavelength of 0.63 μm increases, the transmission loss at a wavelength of 1.55 μm, which is a wavelength range for actual transmission, is also affected.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for manufacturing an optical fiber having a small transmission loss at a wavelength of 1.55 μm by improving a method for cooling the bare optical fiber after melt spinning in the manufacturing process of the optical fiber. And providing an apparatus thereof.
[0006]
[Means for Solving the Problems]
In order to solve such problems, the present invention cools an optical fiber bare wire melt-spun from an optical fiber preform with a cooling device, and then coats the resin on the optical fiber bare wire, cures it, and sequentially coats the primary coating. In the manufacturing method of the optical fiber for forming the layer and the secondary coating layer,
When the optical fiber bare wire is gradually cooled between the optical fiber spinning furnace and the cooling device, and the optical fiber preform is heated by the heating device in the spinning furnace and reaches the maximum temperature in the spinning furnace A From 90 to 500 seconds, the melted portion of the optical fiber preform is drawn, and the melted portion is gradually cooled in the slow cooling device, and the time required until the point B when the optical fiber becomes a bare optical fiber having an outer diameter of 125 μm is obtained. An optical fiber manufacturing method is provided.
[0007]
In the optical fiber manufacturing method of the present invention , it is preferable that a slow cooling device is provided so as to extend the lower part of the optical fiber spinning furnace, and the bare optical fiber is slowly cooled by the slow cooling device.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the method for manufacturing an optical fiber according to the present invention, when a molten optical fiber preform is drawn by heating the optical fiber preform in an optical fiber spinning furnace, the glass portion with the optical fiber preform is spun. By introducing a slow cooling device for gradually cooling the bare optical fiber in the process from reaching the maximum temperature position in the furnace to the bare optical fiber having an outer diameter of 125 μm, light at a wavelength of 1.55 μm is introduced. The transmission loss of the fiber strand is reduced.
FIG. 1 is a schematic configuration diagram illustrating an example of an optical fiber manufacturing process using the optical fiber manufacturing method and manufacturing apparatus of the present invention. In the figure, the same reference numerals are assigned to the same devices as those shown in FIG.
[0011]
The bare optical fiber 3 melt-spun from the optical fiber preform 1 in the spinning furnace 2 is sent to the slow cooling device 14 and further sent to the cooling device 4 where it is cooled and sent to the resin coating device 5. Here, a resin is applied to the bare optical fiber 3, and then the resin is cured by the curing device 6 to form a primary coating layer. Further, a resin is applied onto the primary coating layer by the resin coating device 7, and the resin is cured by the curing device 8 to form a secondary coating layer. The optical fiber 9 manufactured in this manner has its pass line changed by the turn pulley 10, passes through the take-up machine 11 and the dancer 12 in this order, and is taken up by the take-up device 13.
[0012]
The slow cooling device 14 may be provided anywhere between the spinning furnace 2 and the cooling device 4, but in order to further increase the slow cooling effect, the lower part of the spinning furnace 2 may be extended. preferable.
[0013]
Although the external shape of the slow cooling apparatus 14 has a cylindrical shape, a polygonal shape, etc., it is not specifically limited. Moreover, although the internal shape through which the optical fiber bare wire 3 of the slow cooling apparatus 14 passes has a cylindrical shape, a polygon, a corrugated shape, etc., it does not specifically limit.
For example, when the outer shape of the slow cooling device 14 is cylindrical, the outer diameter is about 20 to 150 mm. When the outer diameter is less than 20 mm, the mechanical strength is insufficient. When the outer diameter exceeds 150 mm, workability at the time of drawing the optical fiber is lowered. Moreover, you may cover the outer periphery of the slow cooling apparatus 14 with a heat insulating material etc. suitably.
When the internal shape is also cylindrical, the inner diameter can be appropriately selected within a range of 10 to 125 mm. At the time of drawing the bare optical fiber 3, it is preferable that the inner diameter is narrow in terms of slow cooling. However, considering the contact of the optical fiber due to line blurring and the alignment of the optical fiber, a certain size is required.
[0014]
Further, the length of the slow cooling device 14 is required to be 100 mm or more in order to gently cool the bare optical fiber 3 melted in the spinning furnace 2, and the preferable length is appropriately determined according to the spinning wire speed. It is determined. If it is less than 100 mm, defects including NBOHC in the bare optical fiber 3 are recombined and cannot be sufficiently cooled slowly.
Moreover, the slow cooling device 14 has a detachable structure, and by removing this, the optical fiber strand manufacturing apparatus of the present invention can be used as a conventional optical fiber strand manufacturing apparatus. is there.
[0015]
In the slow cooling device 14, in order to further enhance the slow cooling effect, the slow cooling device 14 can be temperature controlled to about 50 to 1200 ° C. with a heater or the like, and the surroundings are a heat insulating material or the like. Covered with.
Further, the temperature of the slow cooling device 14 may be lowered stepwise in order from the one closer to the spinning furnace 2. In this case, from the side close to the spinning furnace 2, the slow cooling device 14 is divided into several parts so that the temperature can be controlled, and the temperature is lowered toward the outlet of the bare optical fiber 3. Through such a process, the bare optical fiber 3 can be cooled more slowly.
[0016]
When the drawing of the bare optical fiber 3 is performed at high speed, the conical shape of the neck-down portion of the optical fiber preform 1 becomes long, and the glass portion with the optical fiber preform 1 melted in the spinning furnace 2 is The distance from reaching the maximum temperature position in the spinning furnace to the bare optical fiber 3 having an outer diameter of 125 μm is also increased. Therefore, by providing the slow cooling device 14 as described above and forming the bare optical fiber 3 having an outer diameter of 125 μm while gradually cooling the conical shape of the neck-down portion in the slow cooling device 14, the optical fiber Defects including NBOHC in the bare wire 3 are more likely to recombine.
[0017]
As shown in FIG. 2, from the point A when the optical fiber preform 1 is heated by the heating device in the spinning furnace 2 and reaches the maximum temperature in the spinning furnace, the melted portion of the optical fiber preform 1 is drawn. The time required until the point B when the optical fiber bare wire 3 with an outer diameter of 125 μm is obtained while the molten portion is gradually cooled in the slow cooling device 14 as described above is defined as the deformation time of the optical fiber.
[0018]
The deformation time of this optical fiber is preferably 90 to 500 seconds, although it varies depending on the drawing speed of the bare optical fiber 3. Particularly preferred is 120 to 400 seconds.
If the deformation time is less than 90 seconds, the transmission loss of the optical fiber strand at a wavelength of 1.55 μm increases, and if it exceeds 500 seconds, the amount of fluctuation in the optical fiber strand speed increases.
[0019]
The bare optical fiber 3 formed to have an outer diameter of 125 μm by the slow cooling device 14 is cooled by the cooling device 4 to a temperature at which the resin as the primary coating layer can be applied. Next, a resin is applied onto the bare optical fiber 3 by a resin coating device 5, and then the resin is cured by a curing device 6 to form a primary coating layer. Further, a resin coating device is formed on the primary coating layer. A resin is applied at 7 and the resin is cured by a curing device 8 to form a secondary coating layer, whereby an optical fiber 9 is obtained.
As the resin used for the coating layer, an ultraviolet curable resin is suitable.
[0020]
The method and apparatus for manufacturing an optical fiber of the present invention can be applied to any type of optical fiber such as a single mode optical fiber, dispersion shift, cut-off shift, and dispersion compensating optical fiber, but transmission at a wavelength of 0.63 μm. It is suitable for an optical fiber having a large loss, that is, absorption by NBOHC.
For optical fiber preforms produced by any method such as vapor phase method (VAD method), external method (OVD method), internal method (CVD method, MCVD method, PCVD method) or rod-in-tube method However, it can be applied regardless of its size and shape, but is suitable for a type in which it is difficult to reduce the amount of defects including NBOHC.
[0021]
As described above, by providing the slow cooling device 14 and controlling the temperature of this device, the lower end of the optical fiber preform 1 melted in the spinning furnace 2 is drawn, and this melted portion is a light having an outer diameter of 125 μm. The process up to the bare fiber 3 can be adjusted.
As a result, the method and apparatus for manufacturing an optical fiber according to the present invention are effective for recombining defects including NBOHC in a bare optical fiber at a wide range of spinning speeds. Specifically, it is suitable at a spinning linear speed of 30 to 1500 m / min.
[0022]
By the way, in the process until the lower end of the optical fiber preform 1 melted in the spinning furnace 2 is drawn and the melted portion becomes the bare optical fiber 3 having an outer diameter of 125 μm, the neck-down portion of the optical fiber preform 1 If the conical shape is too long, it becomes difficult to control the linear velocity when the bare optical fiber 3 is drawn. In addition, if the linear velocity fluctuation is large, the fluctuations in the coating diameters of the primary and secondary coating layers of the optical fiber 9 become large, making it difficult to apply a stable coating. As a result, uneven thickness occurs in the coating layer of the optical fiber 9 or a lateral pressure characteristic defect occurs.
Therefore, the temperature of the slow cooling device 14 is controlled, and the deformation time of the optical fiber is determined according to the drawing speed of the bare optical fiber 3. Thereby, an increase in transmission loss of the optical fiber 9, uneven thickness of the coating layer, poor side pressure characteristics, and the like can be reduced.
[0023]
Specific examples are shown below.
The optical fiber strand was manufactured with the manufacturing method of the optical fiber strand 9 of this invention. First, the optical fiber preform 1 is melt-spun from the spinning furnace 2, and the optical fiber bare wire 3 is gradually cooled by the slow cooling device 14 attached to the drawing port of the bare optical fiber 3 of the spinning furnace 2, and the outer diameter is 125 μm. The bare optical fiber 3 was melt-spun.
The optical fiber preform 1 used here is an optical fiber preform for wavelength multiplexing transmission.
As the slow cooling device 14, a cylinder having an inner diameter of 30 mm, an outer diameter of 80 mm, and a length of 500 mm was used.
Subsequently, a urethane acrylate ultraviolet curable resin is applied to the cooled bare optical fiber 3 and cured to form a primary coating layer, and then a secondary coating layer is formed in the same manner, and the coating diameter of the primary coating layer is 190 μm, An optical fiber 9 having a secondary coating layer with a coat diameter of 250 μm was produced.
[0024]
In the manufacturing process of the optical fiber 9, the spinning speed is set to 800 m / min, and the temperature of the slow cooling device 14 is changed to change the deformation time of the optical fiber, thereby spinning the bare optical fiber 3. It was.
Ten optical fiber strands 9 thus obtained were taken with a length of 10 km, and transmission loss at a wavelength of 1.55 μm was measured in a bundled state or a free coil state. The results are shown in FIG.
Further, the fluctuation of the spinning speed in the spinning line of the bare optical fiber 3 at this time was recorded. The results are shown in FIG.
[0025]
From the results of FIGS. 3 and 4, in the manufacturing process of the optical fiber 9, when the spinning wire speed is 800 m / min, transmission at a wavelength of 1.55 μm is performed when the deformation time of the optical fiber is 200 to 400 seconds. It was found that the loss and the linear velocity fluctuation amount were small. Therefore, it was found that it is preferable to adjust the temperature of the slow cooling device 14 so that the deformation time falls within this range.
From the above, it was found that the deformation time of this optical fiber can be determined by the transmission loss at a wavelength of 1.55 μm and the allowable range of the amount of fluctuation in the spinning line speed, although the optimum time varies depending on the spinning line speed. .
[0026]
【The invention's effect】
As described above, in the method for manufacturing an optical fiber according to the present invention, an optical fiber bare wire melt-spun from an optical fiber preform is cooled by a cooling device, and then a resin is applied onto the optical fiber bare wire. In the method of manufacturing an optical fiber, in which a primary coating layer and a secondary coating layer are sequentially formed by curing, a bare optical fiber is gradually cooled between an optical fiber spinning furnace and a cooling device, and an optical fiber preform It takes 90 to 500 seconds from the time when a certain glass part reaches the highest temperature position in the spinning furnace until it becomes an optical fiber bare wire with an outer diameter of 125 μm, and therefore includes NBOHC of the bare optical fiber. Defects are easily recombined, transmission loss of the optical fiber at a wavelength of 1.55 μm can be reduced, and the amount of fluctuation of the optical fiber can be reduced even at a wide range of spinning speeds. .
[0027]
Further, the optical fiber manufacturing apparatus of the present invention includes a means for cooling an optical fiber bare wire melt-spun from an optical fiber preform by a cooling device, and applying and curing a resin on the optical fiber bare wire. In order to form a primary coating layer and a secondary coating layer in sequence, and a slow cooling device for the bare optical fiber between the optical fiber spinning furnace and the cooling device, the wavelength is 1.55 μm. It is possible to obtain an optical fiber having a small transmission loss and a small amount of fluctuation in the linear velocity.
[0028]
And since the optical fiber strand of this invention is manufactured by the manufacturing method of the optical fiber strand of this invention, there is no uneven thickness in a coating layer and it is excellent in the side pressure characteristic.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a manufacturing process of an optical fiber according to the present invention.
FIG. 2 is a schematic view showing a deformation process of the optical fiber when the bare optical fiber is drawn.
FIG. 3 is a graph showing the relationship between the deformation time of an optical fiber and the transmission loss at a wavelength of 1.55 μm.
FIG. 4 is a graph showing the relationship between the deformation time of the optical fiber and the amount of fluctuation in the spinning linear velocity.
FIG. 5 is a schematic configuration diagram showing an example of a manufacturing process of a conventional optical fiber.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Optical fiber preform, 2 ... Spinning furnace, 3 ... Bare optical fiber, 4 ... Cooling device, 5, 7 ... Resin coating device, 6, 8 ... Curing device, 9 ... Optical fiber strand, 10 ... Turn pulley DESCRIPTION OF SYMBOLS 11 ... Take-out machine, 12 ... Dancer, 13 ... Winding device, 14 ... Slow cooling device, A ... Maximum temperature of optical fiber preform 1 B: Reach point of optical fiber preform 1 having outer diameter of 125 [mu] m

Claims (2)

光ファイバ母材から溶融紡糸された光ファイバ裸線を冷却装置にて冷却し、ついでこの光ファイバ裸線上に樹脂を塗布し、硬化して順次一次被覆層、二次被覆層を形成する光ファイバの製造方法において、
光ファイバ紡糸炉と冷却装置との間で、光ファイバ裸線を徐冷すること、および紡糸炉内の加熱装置により光ファイバ母材が加熱されて、紡糸炉内の最高温度に達した時点Aから、当該光ファイバ母材の溶融部分が線引きされ、徐冷装置内でこの溶融部分を徐冷しながら、外径125μmの光ファイバ裸線になる時点Bまでに要する時間を90〜500秒とすることを特徴とする光ファイバ素線の製造方法。
An optical fiber in which a bare optical fiber melt-spun from an optical fiber preform is cooled by a cooling device, and then a resin is applied onto the bare optical fiber and cured to sequentially form a primary coating layer and a secondary coating layer. In the manufacturing method of
When the optical fiber bare wire is gradually cooled between the optical fiber spinning furnace and the cooling device, and the optical fiber preform is heated by the heating device in the spinning furnace and reaches the maximum temperature in the spinning furnace A From 90 to 500 seconds, the melted portion of the optical fiber preform is drawn, and the melted portion is gradually cooled in the slow cooling device, and the time required until the point B when the optical fiber becomes a bare optical fiber having an outer diameter of 125 μm is obtained. A method of manufacturing an optical fiber.
前記光ファイバ紡糸炉の下部を延長するようにして徐冷装置を設け、該徐冷装置にて光ファイバ裸線を徐冷することを特徴とする請求項1に記載の光ファイバ素線の製造方法。  The optical fiber strand according to claim 1, wherein a slow cooling device is provided so as to extend a lower portion of the optical fiber spinning furnace, and the bare optical fiber is gradually cooled by the slow cooling device. Method.
JP2000359771A 2000-11-27 2000-11-27 Manufacturing method of optical fiber Expired - Fee Related JP4215943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000359771A JP4215943B2 (en) 2000-11-27 2000-11-27 Manufacturing method of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000359771A JP4215943B2 (en) 2000-11-27 2000-11-27 Manufacturing method of optical fiber

Publications (2)

Publication Number Publication Date
JP2002160946A JP2002160946A (en) 2002-06-04
JP4215943B2 true JP4215943B2 (en) 2009-01-28

Family

ID=18831487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000359771A Expired - Fee Related JP4215943B2 (en) 2000-11-27 2000-11-27 Manufacturing method of optical fiber

Country Status (1)

Country Link
JP (1) JP4215943B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4409504B2 (en) * 2005-11-17 2010-02-03 株式会社フジクラ Optical fiber manufacturing method

Also Published As

Publication number Publication date
JP2002160946A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
EP1740510B1 (en) Method for fabricating an optical fiber and preform for fabricating an optical fiber
US20060191293A1 (en) Furnace and process for drawing radiation resistant optical fiber
JP2007197273A (en) Optical fiber strand and production method therefor
JP4663277B2 (en) Optical fiber and manufacturing method thereof
CA2752812C (en) Method for producing and processing a preform, preform and optical fiber
WO2013024839A1 (en) Method and device for manufacturing fiber-optic strands
JPH07115878B2 (en) Method for producing optical fiber with high mechanical resistance by drawing with large tensile force
WO2005049516A1 (en) Method of drawing bare optical fiber, process for producing optical fiber strand and optical fiber strand
JP5417531B2 (en) Manufacturing method and manufacturing apparatus for optical fiber
JP4302367B2 (en) Optical fiber drawing method and drawing apparatus
JP4459720B2 (en) Manufacturing method of optical fiber
JP4215943B2 (en) Manufacturing method of optical fiber
JPH05213636A (en) Method for coating optical fiber
JP3511811B2 (en) Optical fiber manufacturing method
JP2003212588A (en) Production method of optical fiber
US20050144987A1 (en) Method for making a preform
JP2001163632A (en) Method for manufacturing optical fiber and apparatus for manufacturing optical fiber
JP2003176149A (en) Method and apparatus for manufacturing optical fiber
KR20070075034A (en) Method for fabricating optical fiber preform and method for fabricating low water peak fiber using the same
JP2004035367A (en) Method and apparatus for manufacturing glass wire material
JP2004352549A (en) Method for manufacturing optical fiber
JPH07234322A (en) Method for drawing plastic optical fiber
JP2004256367A (en) Manufacturing method of optical fiber strand
JPS63117934A (en) Production of optical fiber
JP2005320191A (en) Method and apparatus for manufacturing optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080625

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081105

R151 Written notification of patent or utility model registration

Ref document number: 4215943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees