JP2002160946A - Method for manufacturing optical fiber wire and apparatus therefor - Google Patents

Method for manufacturing optical fiber wire and apparatus therefor

Info

Publication number
JP2002160946A
JP2002160946A JP2000359771A JP2000359771A JP2002160946A JP 2002160946 A JP2002160946 A JP 2002160946A JP 2000359771 A JP2000359771 A JP 2000359771A JP 2000359771 A JP2000359771 A JP 2000359771A JP 2002160946 A JP2002160946 A JP 2002160946A
Authority
JP
Japan
Prior art keywords
optical fiber
bare
cooling device
coating layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000359771A
Other languages
Japanese (ja)
Other versions
JP4215943B2 (en
Inventor
Kenji Okada
健志 岡田
Koji Tsurusaki
幸司 鶴崎
Koichi Harada
光一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2000359771A priority Critical patent/JP4215943B2/en
Publication of JP2002160946A publication Critical patent/JP2002160946A/en
Application granted granted Critical
Publication of JP4215943B2 publication Critical patent/JP4215943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/56Annealing or re-heating the drawn fibre prior to coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing optical fiber wires having low transmission loss at 1.55 μm of wave length by improving a method for cooling optical fiber bare wires after melt spinning. SOLUTION: A device 14 for gradually cooling optical fiber bare wires is located between a spinning furnace 2 and a cooling device 4. It takes 90-500 seconds to make optical fiber bare wires with 125 μm of outer diameter after the temperature of glass parts of an optical fiber preform 1 rises in the maximum temperature in the spinning furnace 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ母材か
ら溶融紡糸された光ファイバ裸線を、冷却装置にて冷却
し、ついでこの光ファイバ裸線上に樹脂を塗布し、硬化
して一次被覆層、二次被覆層を順次形成する光ファイバ
素線の製造方法およびこの製造方法に用いられる製造装
置に関し、溶融紡糸後の光ファイバ裸線の冷却方法を改
善することにより、光ファイバ素線の波長1.55μm
における伝送損失を低減するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling a bare optical fiber melt-spun from an optical fiber preform by a cooling device, and then applying a resin on the bare optical fiber and curing the resin to form a primary coating. Layer, a method of manufacturing an optical fiber in which a secondary coating layer is sequentially formed, and a manufacturing apparatus used in this manufacturing method, by improving the method of cooling the bare optical fiber after melt spinning, the optical fiber 1.55μm wavelength
Is to reduce transmission loss.

【0002】[0002]

【従来の技術】図4は、光ファイバ素線の製造方法の一
例を示す概略構成図である。光ファイバ母材1を紡糸炉
2において、アルゴンガスなどの不活性ガス雰囲気中で
高温加熱して溶融紡糸し、光ファイバ裸線3の外径を1
25μmまで引き落として、光ファイバ裸線3とし、こ
の光ファイバ裸線3を冷却装置4にて冷却し、ついでこ
の光ファイバ裸線3上に、樹脂塗布装置5にて樹脂を塗
布し、ついで硬化装置6にて前記樹脂を硬化して一次被
覆層を形成する。さらにこの一次被覆層上に樹脂塗布装
置7にて樹脂を塗布し、硬化装置8にてこの樹脂を硬化
して二次被覆層を形成する。このように製造された光フ
ァイバ素線9は、ターンプーリー10によりパスライン
を変えられ、引き取り機11、ダンサー12の順に通過
し、巻取り装置13により巻取られる。
2. Description of the Related Art FIG. 4 is a schematic diagram showing an example of a method for manufacturing an optical fiber. The optical fiber preform 1 is heated and melt-spun in an atmosphere of an inert gas such as argon gas in a spinning furnace 2 so that the outer diameter of the bare optical fiber 3 is 1 mm.
The optical fiber bare wire 3 is cooled down by a cooling device 4, a resin is applied on the bare optical fiber 3 by a resin coating device 5, and then cured. In the device 6, the resin is cured to form a primary coating layer. Further, a resin is applied on the primary coating layer by a resin application device 7 and the resin is cured by a curing device 8 to form a secondary coating layer. The optical fiber 9 thus manufactured has its pass line changed by a turn pulley 10, passes through a take-up machine 11 and a dancer 12 in this order, and is taken up by a take-up device 13.

【0003】ところで近年、光ファイバの溶融紡糸にお
いて、生産効率を高める目的から、光ファイバ裸線3の
線引を高速で行うようになっている。光ファイバ母材1
の下端を紡糸炉2によって加熱し、軟化させて線引する
と、下端が徐々に縮径されて円錐状のネックダウン部が
形成される。光ファイバ裸線3の線引を高速で行うこと
により、この光ファイバ母材1のネックダウン部の円錐
形状が長くなり、光ファイバ裸線3の外径が125μm
になる前に、光ファイバ裸線3が紡糸炉2の外に出てし
まい、その後の冷却装置4において冷却ガスにより光フ
ァイバ裸線3が急冷される。
In recent years, in the melt spinning of an optical fiber, the optical fiber bare wire 3 has been drawn at a high speed for the purpose of increasing production efficiency. Optical fiber preform 1
When the lower end is heated by the spinning furnace 2, softened and drawn, the lower end is gradually reduced in diameter to form a conical neck-down portion. By drawing the bare optical fiber 3 at a high speed, the conical shape of the neck-down portion of the optical fiber preform 1 becomes longer, and the outer diameter of the bare optical fiber 3 becomes 125 μm.
Before this, the bare optical fiber 3 goes out of the spinning furnace 2, and the cooling fiber 4 cools the bare optical fiber 3 in the subsequent cooling device 4.

【0004】光ファイバ裸線3が線引時に急冷される
と、光ファイバ裸線3における非架橋酸素ホールセンタ
ー(Non Bonding Oxygen Hole
Center、以下NBOHCと略記する。)を含む
欠陥が再結合しにくくなり、光ファイバ素線9の波長
0.63μmにおける伝送損失が増加するという問題が
ある。NBOHCを含む欠陥は、光ファイバ母材1を高
温で溶融すると発生し、光ファイバ裸線3の溶融紡糸過
程で徐冷すると、再結合しやすくなることが知られてい
る。また、光ファイバ素線9の波長0.63μmにおけ
る伝送損失が増加すると、実際に伝送される波長域であ
る波長1.55μmにける伝送損失も影響を受けること
が分かっている。
When the bare optical fiber 3 is quenched during drawing, the non-crosslinked oxygen hole center in the bare optical fiber 3 (Non Bonding Oxygen Hole).
Center, hereinafter abbreviated as NBOHC. ) Becomes difficult to recombine, and the transmission loss at the wavelength of 0.63 μm of the optical fiber 9 increases. It is known that defects including NBOHC occur when the optical fiber preform 1 is melted at a high temperature, and when the optical fiber preform 1 is gradually cooled during the melt-spinning process of the bare optical fiber 3, recombination is likely to occur. It is also known that when the transmission loss at the wavelength of 0.63 μm of the optical fiber 9 increases, the transmission loss at the wavelength of 1.55 μm, which is the wavelength band actually transmitted, is also affected.

【0005】[0005]

【発明が解決しようとする課題】よって、本発明におけ
る課題は、光ファイバ素線の製造過程において、溶融紡
糸後の光ファイバ裸線の冷却方法を改善することによ
り、波長1.55μmにおける伝送損失が小さい光ファ
イバ素線の製造方法およびその装置を提供することにあ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to improve the method of cooling a bare optical fiber after melt-spinning in the process of manufacturing an optical fiber to thereby reduce transmission loss at a wavelength of 1.55 μm. Is to provide a method and an apparatus for producing an optical fiber having a small diameter.

【0006】[0006]

【課題を解決するための手段】かかる課題を解決するた
め、本発明の請求項1記載の光ファイバ素線の製造方法
は、光ファイバ母材から溶融紡糸された光ファイバ裸線
を冷却装置にて冷却し、ついでこの光ファイバ裸線上に
樹脂を塗布し、硬化して順次一次被覆層、二次被覆層を
形成する光ファイバ素線の製造方法において、光ファイ
バ紡糸炉と冷却装置との間で、光ファイバ裸線を徐冷す
るものである。
According to a first aspect of the present invention, there is provided a method for manufacturing an optical fiber, comprising the steps of: supplying a bare optical fiber melt-spun from an optical fiber preform to a cooling device; Then, a resin is applied onto the bare optical fiber, and then cured to form a primary coating layer and a secondary coating layer sequentially. Then, the bare optical fiber is gradually cooled.

【0007】また、本発明の請求項2記載の光ファイバ
素線の製造方法は、請求項1記載の光ファイバ素線の製
造方法において、光ファイバ母材のあるガラス部分が、
紡糸炉内の最高温度位置に達してから外径125μmの
光ファイバ裸線になるまでの時間を90〜500秒とす
るものである。
According to a second aspect of the present invention, there is provided a method for manufacturing an optical fiber, wherein the glass portion having the optical fiber preform comprises:
The time from reaching the maximum temperature position in the spinning furnace to becoming a bare optical fiber having an outer diameter of 125 μm is set to 90 to 500 seconds.

【0008】また、本発明の請求項3記載の光ファイバ
素線の製造装置は、光ファイバ母材から溶融紡糸された
光ファイバ裸線を冷却装置にて冷却する手段と、この光
ファイバ裸線上に樹脂を塗布し、硬化して順次一次被覆
層、二次被覆層を形成する手段を備えてなり、前記光フ
ァイバ紡糸炉と冷却装置の間に、光ファイバ裸線の徐冷
装置が設けられているものである。
According to a third aspect of the present invention, there is provided an apparatus for manufacturing a bare optical fiber, comprising: means for cooling a bare optical fiber melt-spun from an optical fiber preform by a cooling device; A means for applying a resin to the resin, curing and sequentially forming a primary coating layer and a secondary coating layer, and a device for gradually cooling the bare optical fiber is provided between the optical fiber spinning furnace and the cooling device. Is what it is.

【0009】そして、本発明の請求項4記載の光ファイ
バ素線は、請求項1または2記載の光ファイバ素線の製
造方法により製造されたものである。
An optical fiber according to a fourth aspect of the present invention is manufactured by the method for manufacturing an optical fiber according to the first or second aspect.

【0010】[0010]

【発明の実施の形態】以下、本発明について、詳しく説
明する。本発明の光ファイバ素線の製造方法は、光ファ
イバ母材を光ファイバ紡糸炉で加熱することにより、溶
融した光ファイバ母材を線引きする際に、光ファイバ母
材のあるガラス部分が、紡糸炉内の最高温度位置に達し
てから外径125μmの光ファイバ裸線になるまでの過
程に、光ファイバ裸線を徐冷するための徐冷装置を導入
することにより、波長1.55μmにおける光ファイバ
素線の伝送損失を低減するものである。図1は、本発明
の光ファイバ素線の製造方法および製造装置を用いた光
ファイバ素線の製造工程の一例を示す概略構成図であ
る。図中、図4に示す従来のものと同じ装置を示すもの
には同一の符号を付けた。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The method for producing an optical fiber strand according to the present invention comprises the steps of: heating an optical fiber preform in an optical fiber spinning furnace; thereby drawing a molten optical fiber preform; In the process from reaching the highest temperature position in the furnace to becoming a bare optical fiber having an outer diameter of 125 μm, light at a wavelength of 1.55 μm is introduced by introducing a slow cooling device for gradually cooling the bare optical fiber. This is to reduce the transmission loss of the optical fiber. FIG. 1 is a schematic configuration diagram showing an example of a process for manufacturing an optical fiber using the method and apparatus for manufacturing an optical fiber of the present invention. In the drawing, the same reference numerals are given to the same devices as those of the conventional device shown in FIG.

【0011】紡糸炉2において光ファイバ母材1から溶
融紡糸された光ファイバ裸線3は、徐冷装置14に送り
込まれ、さらに冷却装置4に送りこまれ、ここで冷却さ
れて樹脂塗布装置5に送られる。ここで、光ファイバ裸
線3に樹脂が塗布され、ついで硬化装置6にて前記樹脂
が硬化されて一次被覆層が形成される。さらに、この一
次被覆層上に樹脂塗布装置7にて樹脂が塗布され、硬化
装置8にてこの樹脂が硬化されて二次被覆層が形成され
る。このように製造された光ファイバ素線9は、ターン
プーリー10によりパスラインを変えられ、引き取り機
11、ダンサー12の順に通過し、巻取り装置13によ
り巻取られる。
The bare optical fiber 3 melt-spun from the optical fiber preform 1 in the spinning furnace 2 is sent to a slow cooling device 14 and further sent to a cooling device 4 where it is cooled and sent to a resin coating device 5. Sent. Here, a resin is applied to the bare optical fiber 3, and then the resin is cured by a curing device 6 to form a primary coating layer. Further, a resin is applied on the primary coating layer by a resin application device 7 and the resin is cured by a curing device 8 to form a secondary coating layer. The optical fiber 9 thus manufactured has its pass line changed by a turn pulley 10, passes through a take-up machine 11 and a dancer 12 in this order, and is taken up by a take-up device 13.

【0012】上記徐冷装置14を設ける位置は、紡糸炉
2と冷却装置4の間であればどこでもよいが、より徐冷
効果を高めるためには、紡糸炉2の下部を延長するよう
にして設けることが好ましい。
The position of the cooling device 14 may be anywhere between the spinning furnace 2 and the cooling device 4, but in order to further enhance the cooling effect, the lower portion of the spinning furnace 2 is extended. Preferably, it is provided.

【0013】徐冷装置14の外形形状は、円筒形、多角
形などがあるが、特に限定するものではない。また、徐
冷装置14の光ファイバ裸線3が通過する内部形状は、
円筒形、多角形、コルゲート形などがあるが、特に限定
するものではない。例えば、徐冷装置14の外形形状が
円筒形の場合、外径は20〜150mm程度となってい
る。外径が20mm未満では、機械的強度が不足する。
外径が150mmを超えると、光ファイバ線引き時の作
業性が低下する。また、徐冷装置14の外周を、適宜、
断熱材などで覆ってもよい。また、内部形状も円筒形の
場合、内径は10〜125mmの範囲で適宜選択でき
る。光ファイバ裸線3の線引き時に、徐冷の点で、内径
は細い方が好ましいが、線ぶれによる光ファイバの接触
や、光ファイバの軸出しを考慮すると、ある程度の大き
さが必要となる。
The external shape of the slow cooling device 14 includes a cylindrical shape and a polygonal shape, but is not particularly limited. The internal shape of the slow cooling device 14 through which the bare optical fiber 3 passes is as follows:
There are a cylindrical shape, a polygonal shape, a corrugated shape and the like, but there is no particular limitation. For example, when the external shape of the annealing device 14 is cylindrical, the outer diameter is about 20 to 150 mm. When the outer diameter is less than 20 mm, mechanical strength is insufficient.
When the outer diameter exceeds 150 mm, workability at the time of drawing an optical fiber is reduced. Also, the outer periphery of the slow cooling device 14
It may be covered with a heat insulating material or the like. When the internal shape is cylindrical, the inner diameter can be appropriately selected within a range of 10 to 125 mm. At the time of drawing the bare optical fiber 3, it is preferable that the inner diameter is small from the viewpoint of slow cooling, but a certain size is required in consideration of the contact of the optical fiber due to the deviation and the alignment of the optical fiber.

【0014】また、徐冷装置14の長さは、紡糸炉2で
溶融された光ファイバ裸線3を緩やかに冷却するため
に、100mm以上必要であり、好ましい長さは、紡糸
線速に応じて、適宜決定される。100mm未満では、
光ファイバ裸線3のNBOHCを含む欠陥が再結合する
ために十分に徐冷することができない。また、徐冷装置
14は、取り外し可能な構造となっており、これを取り
外すことにより、本発明の光ファイバ素線の製造装置
は、従来の光ファイバ素線の製造装置としての使用も可
能である。
The length of the slow cooling device 14 is required to be 100 mm or more in order to slowly cool the bare optical fiber 3 melted in the spinning furnace 2, and the preferable length depends on the spinning speed. Is determined as appropriate. If it is less than 100 mm,
Defects including NBOHC of the bare optical fiber 3 cannot be sufficiently cooled to recombine. Further, the slow cooling device 14 has a removable structure, and by removing this, the apparatus for manufacturing an optical fiber of the present invention can be used as a conventional apparatus for manufacturing an optical fiber. is there.

【0015】徐冷装置14内は、より徐冷効果を高める
ために、徐冷装置14は、ヒーターなどで50〜120
0℃程度まで温度制御することができるようになってお
り、またその周りが断熱材などで覆われている。さら
に、徐冷装置14の温度を、紡糸炉2に近い方から順
に、段階的に下げるようにしてもよい。この場合、紡糸
炉2に近い方から、徐冷装置14をいくつかに分割して
温度制御可能とし、光ファイバ裸線3の引き出し口に向
かって温度を下げるようにする。このような工程を経る
ことにより、光ファイバ裸線3をより緩やかに冷却する
ことができる。
The inside of the slow cooling device 14 is provided with a heater or the like to increase the slow cooling effect.
The temperature can be controlled to about 0 ° C., and the surrounding area is covered with a heat insulating material or the like. Further, the temperature of the slow cooling device 14 may be lowered step by step from the side closer to the spinning furnace 2. In this case, from the side closer to the spinning furnace 2, the annealing device 14 is divided into several parts so that the temperature can be controlled, and the temperature is reduced toward the outlet of the bare optical fiber 3. Through such steps, the bare optical fiber 3 can be cooled more slowly.

【0016】光ファイバ裸線3の線引きを高速で行う
と、光ファイバ母材1のネックダウン部の円錐形状は長
くなり、それに伴って紡糸炉2で溶融された光ファイバ
母材1のあるガラス部分が、紡糸炉内の最高温度位置に
達してから外径125μmの光ファイバ裸線3になるま
での距離も長くなる。そこで、上記のような徐冷装置1
4を設けて、この徐冷装置14内でこのネックダウン部
の円錐形状を徐冷しながら、外径125μmの光ファイ
バ裸線3を形成すれば、光ファイバ裸線3のNBOHC
を含む欠陥がより再結合しやすくなる。
When the bare optical fiber 3 is drawn at a high speed, the conical shape of the neck-down portion of the optical fiber preform 1 becomes longer, and accordingly the glass with the optical fiber preform 1 melted in the spinning furnace 2. The distance from when the portion reaches the highest temperature position in the spinning furnace to when it becomes the bare optical fiber 3 having an outer diameter of 125 μm also becomes longer. Therefore, the slow cooling device 1 as described above
4 and the bare optical fiber 3 having an outer diameter of 125 μm is formed in the slow cooling device 14 while gradually cooling the conical shape of the neck-down portion, the NBOHC of the bare optical fiber 3 is obtained.
Defects more easily recombine.

【0017】図2に示すように、紡糸炉2内の加熱装置
により光ファイバ母材1が加熱されて、紡糸炉内の最高
温度に達した時点Aから、当該光ファイバ母材1の溶融
部分が線引きされ、上記のように徐冷装置14内でこの
溶融部分を徐冷しながら、外径125μmの光ファイバ
裸線3になる時点Bまでに要する時間を、光ファイバの
変形時間とする。
As shown in FIG. 2, when the optical fiber preform 1 is heated by the heating device in the spinning furnace 2 and reaches the maximum temperature in the spinning furnace, a molten portion of the optical fiber preform 1 is started. While the molten portion is gradually cooled in the slow cooling device 14 as described above, the time required until the point B at which the bare optical fiber 3 having an outer diameter of 125 μm is obtained is defined as the deformation time of the optical fiber.

【0018】この光ファイバの変形時間は、光ファイバ
裸線3の線速により異なるが、90〜500秒が好まし
い。特に好ましくは、120〜400秒である。変形時
間が90秒未満では、波長1.55μmにおける光ファ
イバ素線の伝送損失が増加し、500秒を超えると、光
ファイバ素線の線速変動量が大きくなる。
The deformation time of the optical fiber varies depending on the linear speed of the bare optical fiber 3, but is preferably 90 to 500 seconds. Particularly preferably, it is 120 to 400 seconds. If the deformation time is less than 90 seconds, the transmission loss of the optical fiber at a wavelength of 1.55 μm increases, and if it exceeds 500 seconds, the variation in the linear velocity of the optical fiber increases.

【0019】徐冷装置14で外径125μmに形成され
た光ファイバ裸線3は、冷却装置4において、一次被覆
層となる樹脂が塗布可能な温度に冷却される。ついで、
光ファイバ裸線3上に、樹脂塗布装置5にて樹脂を塗布
し、ついで硬化装置6にて前記樹脂を硬化して一次被覆
層を形成し、さらにこの一次被覆層上に樹脂塗布装置7
にて樹脂を塗布し、硬化装置8にてこの樹脂を硬化して
二次被覆層を形成し、光ファイバ素線9を得る。上記被
覆層に用いられる樹脂としては、紫外線硬化型樹脂が好
適である。
The bare optical fiber 3 formed to have an outer diameter of 125 μm by the slow cooling device 14 is cooled in the cooling device 4 to a temperature at which a resin to be a primary coating layer can be applied. Then
A resin is applied to the bare optical fiber 3 by a resin coating device 5, and then the resin is cured by a curing device 6 to form a primary coating layer. Further, a resin coating device 7 is formed on the primary coating layer.
Is applied, and the resin is cured by the curing device 8 to form a secondary coating layer, and the optical fiber 9 is obtained. As the resin used for the coating layer, an ultraviolet curable resin is preferable.

【0020】本発明の光ファイバ素線の製造方法および
その装置は、シングルモード光ファイバ、分散シフト、
カットオフシフト、分散補償光ファイバなど、いかなる
種類の光ファイバにも適用できるが、波長0.63μm
における伝送損失、すなわちNBOHCによる吸収が大
きい光ファイバに対して好適である。気相軸付法(VA
D法)、外付け法(OVD法)、内付け法(CVD法、
MCVD法、PCVD法)またはロッドインチューブ法
など、いかなる製法で作製された光ファイバ母材に対し
ても、その大きさや形状に拘わらず適用できるが、NB
OHCを含む欠陥の発生量の低減が困難な種類のものに
対して好適である。
The method and apparatus for manufacturing an optical fiber according to the present invention include a single mode optical fiber, a dispersion shift,
It can be applied to any kind of optical fiber such as cut-off shift, dispersion compensating optical fiber, etc.
This is suitable for an optical fiber having a large transmission loss at the point, i.e., large absorption by NBOHC. Vapor phase attachment method (VA
D method), external method (OVD method), internal method (CVD method,
The method can be applied to an optical fiber preform manufactured by any method such as an MCVD method or a PCVD method or a rod-in-tube method regardless of the size or shape.
It is suitable for those types in which it is difficult to reduce the amount of defects including OHC.

【0021】上記のように、徐冷装置14を設け、この
装置の温度を制御することにより、紡糸炉2で溶融され
た光ファイバ母材1の下端が線引され、この溶融部分が
外径125μmの光ファイバ裸線3になるまでの過程を
調整することができる。これにより、本発明の光ファイ
バ素線の製造方法およびその装置は、幅広い紡糸線速に
おいて、光ファイバ裸線のNBOHCを含む欠陥を再結
合するために有効である。具体的には、紡糸線速30〜
1500m/分において好適である。
As described above, by providing the slow cooling device 14 and controlling the temperature of this device, the lower end of the optical fiber preform 1 melted in the spinning furnace 2 is drawn, and the melted portion has an outer diameter. The process until the optical fiber bare wire 3 of 125 μm can be adjusted. Accordingly, the method and apparatus for manufacturing an optical fiber according to the present invention are effective for recombining defects including NBOHC in a bare optical fiber at a wide range of spinning speeds. Specifically, the spinning line speed is 30 to
Suitable at 1500 m / min.

【0022】ところで、紡糸炉2で溶融された光ファイ
バ母材1の下端が線引され、この溶融部分が外径125
μmの光ファイバ裸線3になるまでの過程において、光
ファイバ母材1のネックダウン部の円錐形状が長すぎる
と、光ファイバ裸線3の線引き時において、線速制御が
困難となる。また、線速変動が大きいと、光ファイバ素
線9の一次、二次被覆層のコート径の変動が大きくな
り、安定した被覆を施すのが困難となる。その結果、光
ファイバ素線9の被覆層に偏肉が生じたり、側圧特性不
良が生じたりする。そこで、徐冷装置14の温度を制御
し、光ファイバ裸線3の線速に応じて、光ファイバの変
形時間を決定する。これにより、光ファイバ素線9の伝
送損失の増加、被覆層の偏肉、側圧特性不良などを低減
することができる。
By the way, the lower end of the optical fiber preform 1 melted in the spinning furnace 2 is drawn, and the melted portion has an outer diameter of 125 mm.
If the conical shape of the neck-down portion of the optical fiber preform 1 is too long in the process of forming the bare optical fiber 3 of μm, it becomes difficult to control the linear velocity when drawing the bare optical fiber 3. Also, if the linear velocity fluctuation is large, the fluctuation of the coating diameter of the primary and secondary coating layers of the optical fiber 9 becomes large, and it becomes difficult to apply a stable coating. As a result, the coating layer of the optical fiber 9 may be uneven in thickness, or may have poor lateral pressure characteristics. Therefore, the temperature of the slow cooling device 14 is controlled, and the deformation time of the optical fiber is determined according to the linear speed of the bare optical fiber 3. As a result, it is possible to reduce an increase in transmission loss of the optical fiber 9, uneven thickness of the coating layer, poor lateral pressure characteristics, and the like.

【0023】以下、具体例を示す。本発明の光ファイバ
素線9の製造方法によって、光ファイバ素線を製造し
た。まず、光ファイバ母材1を紡糸炉2より溶融紡糸
し、紡糸炉2の光ファイバ裸線3の引き出し口に取付け
た徐冷装置14で光ファイバ裸線3を徐冷し、外径12
5μmの光ファイバ裸線3を溶融紡糸した。ここで用い
た光ファイバ母材1は、波長多重伝送用光ファイバ母材
である。この徐冷装置14としては、筒の内径30m
m、外径80mm、長さが500mmであるものを用い
た。ついで、冷却した光ファイバ裸線3に、ウレタンア
クリレート系紫外線硬化型樹脂を塗布、硬化して一次被
覆層を、次に同様にして二次被覆層を形成し、一次被覆
層のコート径190μm、二次被覆層のコート径250
μmの光ファイバ素線9を製造した。
Hereinafter, specific examples will be described. The optical fiber was manufactured by the method for manufacturing the optical fiber 9 of the present invention. First, the optical fiber preform 1 is melt-spun from the spinning furnace 2, and the bare optical fiber 3 is gradually cooled by the slow cooling device 14 attached to the outlet of the bare optical fiber 3 of the spinning furnace 2.
A 5 μm bare optical fiber 3 was melt spun. The optical fiber preform 1 used here is an optical fiber preform for wavelength multiplex transmission. As the slow cooling device 14, the inner diameter of the cylinder is 30m.
m, an outer diameter of 80 mm, and a length of 500 mm were used. Next, a urethane acrylate-based ultraviolet curable resin is applied to the cooled bare optical fiber 3 and cured to form a primary coating layer, and then a secondary coating layer in the same manner as above, and a coating diameter of the primary coating layer of 190 μm. Coating diameter of secondary coating layer 250
An optical fiber 9 of μm was manufactured.

【0024】上記光ファイバ素線9の製造工程におい
て、紡糸線速を800m/分とし、徐冷装置14の温度
を変化させることによって、光ファイバの変形時間を変
化させて光ファイバ裸線3の紡糸を行った。このように
して得られた光ファイバ素線9を、長さを10kmとし
て、10本サンプル取りし、束取り状態もしくはフリー
コイル状態で、波長1.55μmにおける伝送損失を測
定した。結果を図3に示す。また、この時の光ファイバ
裸線3の紡糸ライン中における紡糸線速変動を記録し
た。結果を図4に示す。
In the manufacturing process of the optical fiber 9, the spinning speed is set to 800 m / min, and the temperature of the slow cooling device 14 is changed to change the deformation time of the optical fiber, thereby forming the bare optical fiber 3. Spinning was performed. The optical fiber 9 thus obtained was set to have a length of 10 km, and 10 samples were taken. The transmission loss at a wavelength of 1.55 μm was measured in a bundled state or a free coil state. The results are shown in FIG. At this time, the fluctuation of the spinning line speed in the spinning line of the bare optical fiber 3 was recorded. FIG. 4 shows the results.

【0025】図3、図4の結果から、上記光ファイバ素
線9の製造工程において、紡糸線速を800m/分とし
た場合は、光ファイバの変形時間が200〜400秒で
は、波長1.55μmにおける伝送損失および線速変動
量が小さいことが分かった。したがって、変形時間がこ
の範囲になるように、徐冷装置14の温度を調整するこ
とが好ましいことが分かった。以上のことから、この光
ファイバの変形時間は、紡糸線速によって最適時間が異
なるが、波長1.55μmにおける伝送損失と、紡糸線
速変動量の許容範囲により、決定することができること
が判明した。
From the results shown in FIGS. 3 and 4, when the spinning speed is set to 800 m / min in the manufacturing process of the optical fiber 9, the wavelength 1. It was found that the transmission loss and the linear velocity fluctuation at 55 μm were small. Therefore, it was found that it is preferable to adjust the temperature of the slow cooling device 14 so that the deformation time falls within this range. From the above, it has been found that the deformation time of the optical fiber varies depending on the spinning line speed, but can be determined by the transmission loss at the wavelength of 1.55 μm and the allowable range of the spinning line speed variation. .

【0026】[0026]

【発明の効果】以上説明したように、本発明の光ファイ
バ素線の製造方法は、光ファイバ母材から溶融紡糸され
た光ファイバ裸線を冷却装置にて冷却し、ついでこの光
ファイバ裸線上に樹脂を塗布し、硬化して順次一次被覆
層、二次被覆層を形成する光ファイバ素線の製造方法に
おいて、光ファイバ紡糸炉と冷却装置との間で、光ファ
イバ裸線を徐冷し、光ファイバ母材のあるガラス部分
が、紡糸炉内の最高温度位置に達してから外径125μ
mの光ファイバ裸線になるまでの時間を90〜500秒
とするものであるから、光ファイバ裸線のNBOHCを
含む欠陥が再結合しやすくなり、光ファイバ素線の波長
1.55μmにおける伝送損失を低減することが可能と
なり、幅広い紡糸線速においても、光ファイバ素線の線
速変動量を低減することができる。
As described above, in the method for producing an optical fiber according to the present invention, the bare optical fiber melt-spun from the optical fiber preform is cooled by a cooling device, and then the bare optical fiber is placed on the bare optical fiber. In a method for manufacturing an optical fiber in which a resin is applied and cured to form a primary coating layer and a secondary coating layer sequentially, the optical fiber bare wire is gradually cooled between an optical fiber spinning furnace and a cooling device. After the glass part with the optical fiber preform reaches the highest temperature position in the spinning furnace, the outer diameter is 125 μm.
Since the time required for the optical fiber bare wire to be 90 to 500 seconds is set to 90 to 500 seconds, defects including NBOHC of the optical fiber bare wire are easily recombined, and the transmission of the optical fiber bare wire at a wavelength of 1.55 μm is performed. The loss can be reduced, and the variation in the linear speed of the optical fiber can be reduced even at a wide range of spinning speeds.

【0027】また、本発明の光ファイバ素線の製造装置
は、光ファイバ母材から溶融紡糸された光ファイバ裸線
を冷却装置にて冷却する手段と、この光ファイバ裸線上
に樹脂を塗布し、硬化して順次一次被覆層、二次被覆層
を形成する手段と、光ファイバ紡糸炉と冷却装置の間
に、光ファイバ裸線の徐冷装置が設けられているもので
あるから、波長1.55μmにおける伝送損失および線
速変動量の小さい光ファイバ素線を得ることができる。
Further, the apparatus for producing an optical fiber according to the present invention comprises means for cooling the bare optical fiber melt-spun from the optical fiber preform by a cooling device, and applying a resin to the bare optical fiber. A means for curing and sequentially forming a primary coating layer and a secondary coating layer, and a device for gradually cooling an optical fiber bare wire between an optical fiber spinning furnace and a cooling device. An optical fiber having a small transmission loss at 0.55 μm and a small fluctuation in the linear velocity can be obtained.

【0028】そして、本発明の光ファイバ素線は、本発
明の光ファイバ素線の製造方法により製造されたもので
あるから、被覆層に偏肉がなく、側圧特性に優れている
ものである。
Since the optical fiber of the present invention is manufactured by the method of manufacturing an optical fiber of the present invention, the coating layer has no uneven thickness and has excellent lateral pressure characteristics. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の光ファイバ素線の製造工程の一例を
示した概略構成図である。
FIG. 1 is a schematic configuration diagram showing one example of a manufacturing process of an optical fiber of the present invention.

【図2】 光ファイバ裸線の線引き時における光ファイ
バの変形過程を示す概略図である。
FIG. 2 is a schematic diagram showing a deformation process of an optical fiber when drawing an optical fiber bare wire.

【図3】 光ファイバの変形時間と波長1.55μmに
おける伝送損失との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the deformation time of an optical fiber and the transmission loss at a wavelength of 1.55 μm.

【図4】 光ファイバの変形時間と紡糸線速度変動量と
の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the deformation time of the optical fiber and the fluctuation amount of the spinning line speed.

【図5】 従来の光ファイバ素線の製造工程の一例を示
した概略構成図である。
FIG. 5 is a schematic configuration diagram showing an example of a conventional optical fiber manufacturing process.

【符号の説明】[Explanation of symbols]

1…光ファイバ母材、2…紡糸炉、3…光ファイバ裸
線、4…冷却装置、5,7…樹脂塗布装置、6,8…硬
化装置、9…光ファイバ素線、10…ターンプーリー、
11…引き取り機、12…ダンサー、13…巻取り装
置、14…徐冷装置、A…光ファイバ母材1の温度の最
高点、B…光ファイバ母材1の外径125μm到達点
DESCRIPTION OF SYMBOLS 1 ... Optical fiber preform, 2 ... Spinning furnace, 3 ... bare optical fiber, 4 ... Cooling device, 5, 7 ... Resin coating device, 6, 8 ... Curing device, 9 ... Optical fiber wire, 10 ... Turn pulley ,
11: take-up machine, 12: dancer, 13: winding device, 14: slow cooling device, A: highest point of temperature of optical fiber preform 1, B: point at which outer diameter of optical fiber preform 1 reaches 125 μm

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 光一 千葉県佐倉市六崎1440番地 株式会社フジ クラ佐倉事業所内 Fターム(参考) 4G060 AA01 AA03 AC15 AD02 AD22 AD43 AD53 AD58 CB09  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Koichi Harada 1440 Mutsuzaki, Sakura-shi, Chiba F-term in Fujikura Sakura Works (reference) 4G060 AA01 AA03 AC15 AD02 AD22 AD43 AD53 AD58 CB09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバ母材から溶融紡糸された光フ
ァイバ裸線を冷却装置にて冷却し、ついでこの光ファイ
バ裸線上に樹脂を塗布し、硬化して順次一次被覆層、二
次被覆層を形成する光ファイバ素線の製造方法におい
て、 光ファイバ紡糸炉と冷却装置との間で、光ファイバ裸線
を徐冷することを特徴とする光ファイバ素線の製造方
法。
A bare optical fiber melt-spun from an optical fiber preform is cooled by a cooling device, and then a resin is applied onto the bare optical fiber and cured to sequentially form a primary coating layer and a secondary coating layer. A method for producing an optical fiber, wherein the bare optical fiber is gradually cooled between an optical fiber spinning furnace and a cooling device.
【請求項2】 請求項1記載の光ファイバ素線の製造方
法において、 光ファイバ母材のあるガラス部分が、紡糸炉内の最高温
度位置に達してから外径125μmの光ファイバ裸線に
なるまでの時間を90〜500秒とすることを特徴とす
る光ファイバ素線の製造方法。
2. The method for producing an optical fiber according to claim 1, wherein the glass portion having the optical fiber preform becomes a bare optical fiber having an outer diameter of 125 μm after reaching a maximum temperature position in the spinning furnace. A method for producing an optical fiber, wherein the time until the production is 90 to 500 seconds.
【請求項3】 光ファイバ母材から溶融紡糸された光フ
ァイバ裸線を冷却装置にて冷却する手段と、この光ファ
イバ裸線上に樹脂を塗布し、硬化して順次一次被覆層、
二次被覆層を形成する手段を備えてなり、 前記光ファイバ紡糸炉と冷却装置の間に、光ファイバ裸
線の徐冷装置が設けられていることを特徴とする光ファ
イバ素線の製造装置。
3. A means for cooling a bare optical fiber melt-spun from an optical fiber preform by a cooling device, applying a resin on the bare optical fiber, curing the resin, and sequentially forming a primary coating layer;
An apparatus for producing an optical fiber, comprising means for forming a secondary coating layer, wherein a slow cooling device for bare optical fiber is provided between the optical fiber spinning furnace and a cooling device. .
【請求項4】 請求項1または2記載の光ファイバ素線
の製造方法により製造されたことを特徴とする光ファイ
バ素線。
4. An optical fiber strand produced by the method for producing an optical fiber strand according to claim 1.
JP2000359771A 2000-11-27 2000-11-27 Manufacturing method of optical fiber Expired - Fee Related JP4215943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000359771A JP4215943B2 (en) 2000-11-27 2000-11-27 Manufacturing method of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000359771A JP4215943B2 (en) 2000-11-27 2000-11-27 Manufacturing method of optical fiber

Publications (2)

Publication Number Publication Date
JP2002160946A true JP2002160946A (en) 2002-06-04
JP4215943B2 JP4215943B2 (en) 2009-01-28

Family

ID=18831487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000359771A Expired - Fee Related JP4215943B2 (en) 2000-11-27 2000-11-27 Manufacturing method of optical fiber

Country Status (1)

Country Link
JP (1) JP4215943B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137706A (en) * 2005-11-17 2007-06-07 Fujikura Ltd Manufacturing method for optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137706A (en) * 2005-11-17 2007-06-07 Fujikura Ltd Manufacturing method for optical fiber

Also Published As

Publication number Publication date
JP4215943B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
EP1740510B1 (en) Method for fabricating an optical fiber and preform for fabricating an optical fiber
US20060191293A1 (en) Furnace and process for drawing radiation resistant optical fiber
JP2007197273A (en) Optical fiber strand and production method therefor
JP2014062021A (en) Optical fiber manufacturing method
JP4663277B2 (en) Optical fiber and manufacturing method thereof
AU2010215384B2 (en) Method for producing and processing a preform, preform and optical fiber
RU2128630C1 (en) Method of drawing optical fiber and device for its embodiment
JPWO2005049516A1 (en) Optical fiber bare wire drawing method, optical fiber strand manufacturing method, optical fiber strand
US20050188728A1 (en) Apparatus and method for manufacturing optical fiber including rotating optical fiber preforms during draw
JP4459720B2 (en) Manufacturing method of optical fiber
JP4302367B2 (en) Optical fiber drawing method and drawing apparatus
JP4215943B2 (en) Manufacturing method of optical fiber
JPH11302042A (en) Production of optical fiber and apparatus for production
US20050144987A1 (en) Method for making a preform
JP2003212588A (en) Production method of optical fiber
JP2001163632A (en) Method for manufacturing optical fiber and apparatus for manufacturing optical fiber
JP2003176149A (en) Method and apparatus for manufacturing optical fiber
KR20070075034A (en) Method for fabricating optical fiber preform and method for fabricating low water peak fiber using the same
JPH07234322A (en) Method for drawing plastic optical fiber
JP2004035367A (en) Method and apparatus for manufacturing glass wire material
JP2004352549A (en) Method for manufacturing optical fiber
JP2006124191A (en) Method for manufacturing optical fiber wire and apparatus therefor
JP2006111461A (en) Method for manufacturing optical fiber
JPH07187701A (en) Production of optical fiber and spinning furnace for producing optical fiber
JP2005247608A (en) Method for manufacturing optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080625

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081105

R151 Written notification of patent or utility model registration

Ref document number: 4215943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees