JPH07187701A - Production of optical fiber and spinning furnace for producing optical fiber - Google Patents

Production of optical fiber and spinning furnace for producing optical fiber

Info

Publication number
JPH07187701A
JPH07187701A JP33381093A JP33381093A JPH07187701A JP H07187701 A JPH07187701 A JP H07187701A JP 33381093 A JP33381093 A JP 33381093A JP 33381093 A JP33381093 A JP 33381093A JP H07187701 A JPH07187701 A JP H07187701A
Authority
JP
Japan
Prior art keywords
optical fiber
spinning
temperature
furnace
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33381093A
Other languages
Japanese (ja)
Other versions
JP2968678B2 (en
Inventor
Koji Tsurusaki
幸司 鶴崎
Munehisa Fujimaki
宗久 藤巻
Koichi Takahashi
浩一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP33381093A priority Critical patent/JP2968678B2/en
Publication of JPH07187701A publication Critical patent/JPH07187701A/en
Application granted granted Critical
Publication of JP2968678B2 publication Critical patent/JP2968678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/42Drawing at high speed, i.e. > 10 m/s
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/45Monotoring or regulating the preform neck-down region with respect to position or shape
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/63Ohmic resistance heaters, e.g. carbon or graphite resistance heaters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/72Controlling or measuring the draw furnace temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prevent the neck down shape of a preform of a optical fiber from becoming longer even by raising the spinning linear velocity of the preform of the optical fiber by specifying difference in temperature at a molten part of the tip of the preform of the optical fiber and temperature at a position lower than the part. CONSTITUTION:First, a preform 13 of an optical fiber is inserted into a core tube 3 of a furnace, heated in an inert gas atmosphere such as argon to a high temperature, melted and the preform 13 of the optical fiber is spun in the longer direction of the optical fiber at 100-1,500m/minute to give an optical fiber 15. In obtaining the optical fiber 15 by subjecting the preform 13 of the optical fiber to melt spinning, the temperature at a position E1 of a spinning furnace 1 is 25-50 deg.CX deg.C (X>=0) lower than that at a central part E0. Therefore, the temperature (T1) of the optical fiber 15 positioned located at the position E1 of the spinning furnace 1 is also 25-50 deg.CX deg.C lower than the temperature (T0) at a molten part 13a of the tip of the preform 13 of the optical fiber. By making the temperature, different the neck down shape of the preform 13 of the optical fiber does not become longer than that of a conventional method even if the spinning linear velocity is increased to a high speed of >=300m/minute and the spinning furnace is made compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ファイバの製造方法お
よびその製造装置に係わり、特に光ファイバ母材の紡糸
線速を高速にしても光ファイバの側圧特性が低下するこ
とが少ない光ファイバの製造方法及び光ファイバ製造用
紡糸炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical fiber and a manufacturing apparatus therefor, and more particularly to a method for manufacturing an optical fiber in which the lateral pressure characteristic of the optical fiber is less likely to deteriorate even when the spinning linear velocity of the optical fiber base material is increased. The present invention relates to a manufacturing method and a spinning furnace for manufacturing an optical fiber.

【0002】[0002]

【従来の技術】一般に、光ファイバの製造には図8に示
すような紡糸炉が使用されており、図中符号1は紡糸炉
である。この紡糸炉1は、炉芯管3とこれの外周を取り
囲む筒状のヒータ5とこのヒータ5に電力を供給するた
めの電極7とが中空円柱状の外枠9内に収納されてなる
もので、外枠9内の残りの空隙には炭素繊維やセラミッ
クスなどの断熱材11が充填されている。また、上記ヒ
ータ5は、その下部に設けられた固定部5aが電極7に
固定され、さらにこの電極7が外枠9に固定されること
によって、外枠9に取り付けられている。このような構
成の紡糸炉1を用いて、光ファイバを製造するには、光
ファイバ母材13を炉芯管3内に挿入したのち、アルゴ
ンなどの不活性ガス雰囲気中で高温加熱して溶融し、光
ファイバの長手方向に100〜600m/分で紡糸する
ことによって光ファイバ15を得ていた。そして、この
光ファイバ15は、側圧や摩擦に対して強いものとする
ために、さらに紡糸炉1の下方に設けられた樹脂コータ
(図示略)に通されることによって外周表面に樹脂被覆
が形成され、光ファイバ素線とされていた。
2. Description of the Related Art Generally, a spinning furnace as shown in FIG. 8 is used for manufacturing an optical fiber, and reference numeral 1 in the drawing is a spinning furnace. The spinning furnace 1 comprises a core tube 3, a cylindrical heater 5 surrounding the outer circumference of the core tube 3, and an electrode 7 for supplying electric power to the heater 5, which are housed in a hollow columnar outer frame 9. The remaining voids in the outer frame 9 are filled with a heat insulating material 11 such as carbon fiber or ceramics. Further, the heater 5 is attached to the outer frame 9 by fixing the fixing portion 5a provided in the lower portion to the electrode 7 and further fixing the electrode 7 to the outer frame 9. In order to manufacture an optical fiber using the spinning furnace 1 having such a configuration, the optical fiber preform 13 is inserted into the furnace core tube 3 and then heated at a high temperature in an inert gas atmosphere such as argon and melted. Then, the optical fiber 15 was obtained by spinning at 100 to 600 m / min in the longitudinal direction of the optical fiber. The optical fiber 15 is further passed through a resin coater (not shown) provided below the spinning furnace 1 in order to make it strong against lateral pressure and friction, so that a resin coating is formed on the outer peripheral surface. It was used as an optical fiber strand.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
光ファイバの製造方法においては、製造効率等を高める
目的から高速で溶融紡糸することが望ましいが、紡糸線
速が高速になるにつれて、光ファイバ母材13の溶融部
分であるネックダウン形状も長くなってしまうことが知
られている。図9(A)は紡糸線速が低速のときの光フ
ァイバ母材のネックダウン形状を示し、(B)は紡糸線
速が高速のときの光ファイバ母材のネックダウン形状を
示し、図中符号L1、L2はそれぞれ紡糸線速が低速、高
速のときのネックダウン形状の長さを示す。ところが、
上述のようにネックダウン形状が長くなると、外径が1
25μmと一定の光ファイバを製造するために紡糸線速
の変動量が大きくなってしまい、樹脂コータに通される
ときの光ファイバ15表面の温度変動が大きくなり、こ
れによって光ファイバ15に形成される樹脂被覆の厚さ
のばらつきが大きくなり、光ファイバの側圧特性が低下
してしまうという欠点があった。
By the way, in such a method for producing an optical fiber, it is desirable to melt-spin at a high speed for the purpose of increasing the production efficiency. It is known that the neck-down shape, which is the molten portion of the base material 13, also becomes long. FIG. 9A shows the neck-down shape of the optical fiber preform when the spinning linear velocity is low, and FIG. 9B shows the neck-down shape of the optical fiber preform when the spinning linear velocity is high. Reference symbols L 1 and L 2 respectively indicate the length of the neck-down shape when the spinning linear velocity is low and high. However,
If the neck-down shape becomes longer as described above, the outer diameter becomes 1
Since the optical fiber having a constant thickness of 25 μm is manufactured, the variation in the spinning linear velocity becomes large, and the temperature variation on the surface of the optical fiber 15 when passing through the resin coater becomes large. There is a drawback in that the thickness variation of the resin coating becomes large and the lateral pressure characteristic of the optical fiber deteriorates.

【0004】本発明は、上記事情に鑑みてなされたもの
で、光ファイバ母材の紡糸線速を高速にしても光ファイ
バ母材のネックダウン形状が長くなるのを防止し、光フ
ァイバの側圧特性の向上が可能な光ファイバの製造方法
及び光ファイバ製造用紡糸炉を提供することにある。
The present invention has been made in view of the above circumstances, and prevents the neck-down shape of the optical fiber preform from becoming long even if the spinning linear velocity of the optical fiber preform is increased, and the lateral pressure of the optical fiber is reduced. An object of the present invention is to provide an optical fiber manufacturing method capable of improving characteristics and a spinning furnace for manufacturing the optical fiber.

【0005】[0005]

【課題を解決するための手段】請求項1記載の光ファイ
バの製造方法は、光ファイバ母材を溶融紡糸して光ファ
イバとする際、前記光ファイバ母材の先端の溶融部分の
温度(T0)とこれよりXcm(ただしX≧0)下方の
位置の温度(T1)との差(ΔT)を25X℃以上50
X℃以下とすることを特徴とする。また、請求項2記載
の光ファイバ製造用紡糸炉(以下、紡糸炉と略す。)
は、下部の断熱材が欠れていることを特徴とする。ま
た、請求項3記載の紡糸炉は、請求項2記載の紡糸炉に
おいて下部の断熱材が欠れていることに代えて炉芯管の
下部の外周に冷水が供給されている冷却管が巻き付けら
れていることを特徴とする。また、請求項4記載の紡糸
炉は、請求項2記載の紡糸炉において下部の断熱材が欠
れていることに代えて下部の断熱材が上部の断熱材より
断熱効果の低い金属、セラミックスおよび耐熱プラスチ
ックのうちから選択される一種以上であること特徴とす
る。
According to a first aspect of the present invention, there is provided a method for manufacturing an optical fiber, wherein when the optical fiber preform is melt-spun to form an optical fiber, the temperature (T 0 ) and the temperature (T 1 ) at a position lower by X cm (where X ≧ 0) than this, the difference (ΔT) is 25 × ° C. or more 50
It is characterized in that the temperature is X ° C. or less. A spinning furnace for producing an optical fiber according to claim 2 (hereinafter abbreviated as a spinning furnace).
Is characterized by a lack of lower insulation. Further, in the spinning furnace according to claim 3, in the spinning furnace according to claim 2, a cooling pipe, to which cold water is supplied, is wound around the outer periphery of the lower part of the furnace core tube in place of the lack of the lower heat insulating material. It is characterized by being. Further, the spinning furnace according to claim 4 is the spinning furnace according to claim 2, in which the lower heat insulating material is replaced by a metal, ceramics, or the like having a lower heat insulating effect than the upper heat insulating material. It is characterized by being one or more selected from heat resistant plastics.

【0006】本発明者らは、光ファイバ母材のネックダ
ウン形状が長くなるのを防止すべく、紡糸炉内の温度の
温度に着目し、種々の検討及び実験を重ねた結果、ヒー
タの中心部より下方の温度を下げると光ファイバ母材の
ネックダウン形状が長くなるのを防止するのに効果的で
あることを究明し、本発明を完成したのである。
The present inventors have paid attention to the temperature of the temperature inside the spinning furnace in order to prevent the neck-down shape of the optical fiber preform from becoming long, and as a result of various studies and experiments, the center of the heater It has been clarified that lowering the temperature below the portion is effective in preventing the neck-down shape of the optical fiber preform from becoming long, and has completed the present invention.

【0007】上記光ファイバ母材の先端の溶融部分の温
度(T0)とこれよりXcm(ただしX≧0)下方の位
置の温度(T1)との差(ΔT)が25X℃以上50X
℃以下である製造条件の範囲は図1に示したグラフの直
線イと直線ロとによって囲まれる領域Bの範囲である。
図1において、横軸(X)は光ファイバ母材の先端の位
置(ここでの位置を0cmとする)とこれより下方の任
意位置との距離(cm)であり、縦軸(ΔT)はファイ
バ母材の先端の溶融部分の温度(T0)とこれよりXc
m(ただしX≧0)下方の位置の温度(T1)との差
(ΔT)である。また、直線イを表す式はΔT=50X
であり、直線ロを表す式はΔT=25Xである。
The difference (ΔT) between the temperature (T 0 ) of the molten portion at the tip of the optical fiber preform and the temperature (T 1 ) at a position X cm (where X ≧ 0) below it is 25X ° C. or more and 50X or more.
The range of manufacturing conditions that is equal to or lower than ° C is the range of the region B surrounded by the straight line a and the straight line b in the graph shown in FIG.
In FIG. 1, the horizontal axis (X) is the distance (cm) between the position of the tip of the optical fiber preform (where the position is 0 cm) and an arbitrary position below this, and the vertical axis (ΔT) is The temperature (T 0 ) of the molten portion at the tip of the fiber preform and Xc from this
It is the difference (ΔT) from the temperature (T 1 ) at a position below m (where X ≧ 0). Also, the equation expressing the straight line a is ΔT = 50X
And the equation expressing the straight line B is ΔT = 25X.

【0008】光ファイバ母材を溶融紡糸して光ファイバ
を製造する際の製造条件の範囲が、上記直線イと縦軸
(ΔT)とによって囲まれる領域A、すなわち光ファイ
バ母材の先端の溶融部分の温度(T0)とこれよりXc
m下方の位置の温度(T1)との差(ΔT)が50X℃
を超えると、急激な温度変化によりファイバ径が不安定
になって径変動が大きくなり、また、光ファイバの製造
に用いる製造装置の耐久性が低下する。一方、製造条件
の範囲が上記直線ロと横軸(X)とによって囲まれる領
域C、すなわち光ファイバ母材の先端の溶融部分の温度
(T0)とこれよりXcm下方の位置の温度(T1)との
差(ΔT)が25X℃未満であると、光ファイバ母材が
溶融し易く、ネックダウン形状を短くする効果が不十分
となるからである。
The range of manufacturing conditions for manufacturing the optical fiber by melt spinning the optical fiber preform is a region A surrounded by the straight line a and the vertical axis (ΔT), that is, the melting of the tip of the optical fiber preform. Part temperature (T 0 ) and Xc from this
The difference (ΔT) from the temperature (T 1 ) at the position m below is 50X ° C.
If it exceeds, the diameter of the fiber becomes unstable due to a rapid temperature change, and the diameter variation becomes large, and the durability of the manufacturing apparatus used for manufacturing the optical fiber deteriorates. On the other hand, the range of the manufacturing conditions is a region C surrounded by the straight line B and the horizontal axis (X), that is, the temperature (T 0 ) of the molten portion at the tip of the optical fiber preform and the temperature (T This is because if the difference (ΔT) from 1 ) is less than 25 × ° C., the optical fiber preform easily melts, and the effect of shortening the neck-down shape becomes insufficient.

【0009】[0009]

【実施例】以下、本発明の光ファイバ製造用紡糸炉およ
び光ファイバの製造方法の実施例を詳細に説明する。図
2は、実施例の紡糸炉の一例を示したものであり、この
紡糸炉1が、図8に示した紡糸炉1と異なるところは、
ヒータ5の固定部5aより下方に位置する断熱材11を
除去し、外枠9内の下部に間隙17を形成することによ
り、紡糸炉1の中央部E0の温度とこれよりXcm下方
の位置E1の温度との差が25X℃以上50X℃以下と
なるようにした点である。図3に紡糸炉内の位置と温度
との関係を示す。図3中、曲線は図2に示した紡糸炉
1内の位置と温度との関係であり、曲線はヒータ5の
固定部5aより下方に位置する断熱材11が除去されて
いない図8に示した紡糸炉1内の炉内位置と温度との関
係である。図3から判るように、図2に示した紡糸炉1
は、断熱材11が除去されていない図8の紡糸炉1と比
べて中央部E0より下方の温度が低い。
EXAMPLES Examples of the spinning furnace for producing an optical fiber and the method for producing an optical fiber according to the present invention will be described in detail below. FIG. 2 shows an example of the spinning furnace of the embodiment. The spinning furnace 1 is different from the spinning furnace 1 shown in FIG.
By removing the heat insulating material 11 located below the fixed portion 5a of the heater 5 and forming the gap 17 in the lower portion of the outer frame 9, the temperature of the central portion E 0 of the spinning furnace 1 and the position X cm below the temperature. The difference from the temperature of E 1 is 25X ° C or more and 50X ° C or less. FIG. 3 shows the relationship between the position in the spinning furnace and the temperature. In FIG. 3, a curve is the relationship between the position and temperature in the spinning furnace 1 shown in FIG. 2, and the curve is shown in FIG. 8 in which the heat insulating material 11 located below the fixing portion 5a of the heater 5 is not removed. 3 shows the relationship between the position inside the spinning furnace 1 and the temperature. As can be seen from FIG. 3, the spinning furnace 1 shown in FIG.
Has a lower temperature below the central portion E 0 as compared with the spinning furnace 1 of FIG. 8 in which the heat insulating material 11 is not removed.

【0010】図2のような紡糸炉1を用いて、光ファイ
バを製造するには、以下の工程による。まず、光ファイ
バ母材13を炉芯管3内に挿入したのち、アルゴンなど
の不活性ガス雰囲気中で高温加熱して溶融したのち、上
記光ファイバ母材13を光ファイバの長手方向に100
〜1500m/分で紡糸することによって光ファイバ1
5を得る。ここで、光ファイバ母材13を溶融紡糸して
光ファイバ15を得る際、紡糸炉1の位置E1の温度が
中央部E0の温度より25X℃以上50X℃以下低くな
っているので、紡糸炉1の位置E1に位置する光ファイ
バ15の温度(T1)も紡糸炉1の中央部E0に位置する
光ファイバ母材13の先端の溶融部分13aの温度(T
0)より25X℃以上50X℃以下低くなっている。こ
のようにすると、紡糸線速が300m/分程度以上の高
速になっても光ファイバ母材13のネックダウン形状
は、従来と比べて長くならず、非常にコンパクトなもの
となる。
To manufacture an optical fiber using the spinning furnace 1 as shown in FIG. 2, the following steps are performed. First, the optical fiber preform 13 is inserted into the furnace core tube 3 and then heated at a high temperature in an atmosphere of an inert gas such as argon to be melted. Then, the optical fiber preform 13 is heated to 100 in the longitudinal direction of the optical fiber.
Optical fiber 1 by spinning at ~ 1500 m / min
Get 5. Here, when the optical fiber preform 13 is melt-spun to obtain the optical fiber 15, the temperature of the position E 1 of the spinning furnace 1 is lower than the temperature of the central portion E 0 by 25X ° C or more and 50X ° C or less, and thus spinning is performed. The temperature (T 1 ) of the optical fiber 15 located at the position E 1 of the furnace 1 is also the temperature (T 1 ) of the molten portion 13a at the tip of the optical fiber preform 13 located at the central portion E 0 of the spinning furnace 1.
0 ) and 25X ° C or more and 50X ° C or less. By doing so, the neck-down shape of the optical fiber preform 13 does not become longer than the conventional one, and becomes very compact even if the spinning linear velocity becomes high at about 300 m / min or more.

【0011】紡糸炉1の位置E1に位置する光ファイバ
15の温度(T1)が紡糸炉1の中央部E0に位置する光
ファイバ母材13の先端の溶融部分13aの温度
(T0)より25X℃未満低いだけであると、光ファイ
バ母材13が溶融し易く、ネックダウン形状を短くする
効果が不十分であり、一方50X℃を超えて低いと紡糸
炉1内の温度が低くなりすぎて急激な温度変化によりフ
ァイバ径が不安定になって径変動が大きくなり、また、
紡糸炉を構成する断熱材やヒータやマッフル等のカーボ
ン部品等の耐久性が低下するという問題が生じる恐れが
あるからである。
The temperature (T 1 ) of the optical fiber 15 located at the position E 1 of the spinning furnace 1 is the temperature (T 0) of the molten portion 13a at the tip of the optical fiber preform 13 located at the central portion E 0 of the spinning furnace 1. ) Is less than 25X ° C, the optical fiber preform 13 is easily melted, and the effect of shortening the neck-down shape is insufficient. On the other hand, when it is more than 50X ° C, the temperature in the spinning furnace 1 is low. Too much, the fiber diameter becomes unstable due to a sudden temperature change, and the diameter fluctuation becomes large.
This is because there is a risk that the durability of the heat insulating material constituting the spinning furnace and the carbon parts such as the heater and the muffle may deteriorate.

【0012】そして、このようにして得られた光ファイ
バ15を、側圧や摩擦に対して強いものとするために、
さらに紡糸炉1の下方に設けられた樹脂コータ(図示
略)に通すことによって光ファイバ15の外周表面に樹
脂被覆を形成し、光ファイバ素線とする。ここで光ファ
イバ15を上記樹脂コータに通す際、光ファイバ母材1
3のネックダウン形状がコンパクトなものとなっている
ため、紡糸線速の変動量が小さくてすみ、これによって
上記樹脂コータに通されるときの光ファイバ15表面の
温度変動も小さくなるので、光ファイバ15に形成され
る樹脂被覆の厚さのばらつきも小さくなる。このような
光ファイバの製造方法によれば、光ファイバ母材の紡糸
線速を高速にしても光ファイバ母材のネックダウン形状
が長くなるのを防止できるので、ネックダウン形状が長
くなることに起因する樹脂被覆の厚さのばらつきが大き
くなるのを防止でき、従って側圧特性の優れた光ファイ
バを得ることが可能である。
Then, in order to make the optical fiber 15 thus obtained strong against lateral pressure and friction,
Further, the resin coating is formed on the outer peripheral surface of the optical fiber 15 by passing through a resin coater (not shown) provided below the spinning furnace 1 to form an optical fiber strand. Here, when the optical fiber 15 is passed through the resin coater, the optical fiber preform 1
Since the neck-down shape of No. 3 is compact, the fluctuation amount of the spinning linear velocity is small, and thus the temperature fluctuation of the surface of the optical fiber 15 when passing through the resin coater is also small. Variations in the thickness of the resin coating formed on the fiber 15 are also reduced. According to such an optical fiber manufacturing method, it is possible to prevent the neck-down shape of the optical fiber preform from becoming long even if the spinning linear velocity of the optical fiber preform is increased, so that the neck-down shape becomes long. It is possible to prevent the resulting variation in the thickness of the resin coating from increasing, and thus it is possible to obtain an optical fiber having excellent lateral pressure characteristics.

【0013】また、実施例においては、ヒータ5の固定
部5aより下方に位置する断熱材11を除去することに
よって、光ファイバ母材13の先端の溶融部分13aの
温度(T0)とこれよりXcm下方の位置の温度(T1
との差を25X℃以上50X℃以下とする例について説
明したが、冷水が供給されている冷却管をヒータ5の固
定部5aより下方の炉芯管3の外周に巻き付けること
や、間隙部17に断熱効果の低い金属、セラミックス、
耐熱プラスチックなどの断熱材を充填することによって
も同様になし得る。
Further, in the embodiment, by removing the heat insulating material 11 located below the fixing portion 5a of the heater 5, the temperature (T 0 ) of the molten portion 13a at the tip of the optical fiber preform 13 and the temperature Temperature at the position below Xcm (T 1 )
Although the difference between the temperature and the temperature is set to 25X ° C or more and 50X ° C or less, the cooling pipe to which the cold water is supplied is wound around the outer periphery of the furnace core pipe 3 below the fixing portion 5a of the heater 5, and the gap 17 Has a low heat insulation effect on metals, ceramics,
The same can be done by filling a heat insulating material such as heat resistant plastic.

【0014】以下、具体例を示す。 (実施例)まず、図2と同様の紡糸炉1を用意した。こ
の紡糸炉1は、ヒータ5の固定部5aより下方に位置す
る断熱材11が除去されて外枠9内の下部に間隙17が
形成されており、中央部E0より12cm下方の位置E1
の温度は中央部E0の温度より450℃低かった。そし
て、外径50mm、長さ60cmの光ファイバ母材13
を紡糸炉1の炉芯管3内に挿入したのち、アルゴンガス
雰囲気中で高温加熱して溶融したのち、上記光ファイバ
母材13を光ファイバの長手方向に紡糸線速100m/
分、500m/分、1000m/分、1500m/分の
各条件で1000kmずつ紡糸することによって外径1
25μmのシングルモード光ファイバ15を得た。ここ
で、光ファイバ母材13を溶融紡糸して光ファイバ15
を得る際、紡糸炉1の位置E1に位置する光ファイバ1
5の温度(T1)も紡糸炉1の中央部E0に位置する光フ
ァイバ母材13の先端の溶融部分13aの温度(T0
より400℃低くなっていた。さらに、得られた光ファ
イバ15を紡糸炉1の下方に設けられたウレタンアクリ
レート系UV樹脂が満たされた樹脂コータに挿通して光
ファイバ15の外周表面に樹脂被覆を形成し、外径25
0μmの光ファイバ素線を得た。
A specific example will be shown below. (Example) First, a spinning furnace 1 similar to that shown in FIG. 2 was prepared. In this spinning furnace 1, the heat insulating material 11 located below the fixing portion 5a of the heater 5 is removed to form a gap 17 in the lower portion of the outer frame 9, and a position E 1 12 cm below the central portion E 0.
Was 450 ° C. lower than the temperature of the central portion E 0 . The optical fiber preform 13 having an outer diameter of 50 mm and a length of 60 cm
After being inserted into the core tube 3 of the spinning furnace 1 and heated at a high temperature in an argon gas atmosphere to melt, the optical fiber preform 13 is spun at a linear velocity of 100 m / m in the longitudinal direction of the optical fiber.
Min., 500 m / min, 1000 m / min, 1500 m / min.
A 25 μm single mode optical fiber 15 was obtained. Here, the optical fiber preform 13 is melt-spun to produce the optical fiber 15
To obtain the optical fiber 1 located at the position E 1 of the spinning furnace 1.
The temperature 5 (T 1 ) is also the temperature (T 0 ) of the melted portion 13a at the tip of the optical fiber preform 13 located in the central portion E 0 of the spinning furnace 1.
It was 400 ° C lower than that. Further, the obtained optical fiber 15 is inserted into a resin coater filled with a urethane acrylate UV resin provided below the spinning furnace 1 to form a resin coating on the outer peripheral surface of the optical fiber 15, and an outer diameter of 25
An optical fiber strand of 0 μm was obtained.

【0015】(比較例)ヒータ5の固定部5aより下方
に位置する断熱材11が除去されていない紡糸炉1を用
いた以外は上記実施例と同様にして光ファイバ素線を得
た。
(Comparative Example) An optical fiber strand was obtained in the same manner as in the above Example except that the spinning furnace 1 located below the fixing portion 5a of the heater 5 and in which the heat insulating material 11 was not removed was used.

【0016】(試験例1)上記実施例と比較例において
紡糸線速が100m/分と1500m/分である場合の
光ファイバ母材のネックダウン形状について調べた。こ
こでのネックダウン形状はレーザ外径測定器を用いて測
定した。その結果を図4に示す。図4(A)は、紡糸線
速が100m/分のときの光ファイバ母材径と紡糸炉内
の光ファイバ母材の位置との関係を示したグラフであ
り、曲線は実施例の光ファイバ母材径と紡糸炉内の光
ファイバ母材の位置との関係であり、曲線は比較例の
光ファイバ母材径と紡糸炉内の光ファイバ母材の位置と
の関係である。また、図4(B)は紡糸線速が1500
m/分のときの光ファイバ母材径と紡糸炉内の光ァイバ
母材の位置との関係を示したグラフであり、曲線は実
施例の光ファイバ母材径と紡糸炉内の光ファイバ母材の
位置との関係であり、曲線は比較例の光ファイバ母材
径と紡糸炉内の光ファイバ母材の位置との関係である。
(Test Example 1) The neck-down shape of the optical fiber preform was examined in the above Examples and Comparative Examples when the spinning linear speeds were 100 m / min and 1500 m / min. The neck-down shape here was measured using a laser outer diameter measuring device. The result is shown in FIG. FIG. 4A is a graph showing the relationship between the diameter of the optical fiber preform and the position of the optical fiber preform in the spinning furnace when the spinning linear velocity is 100 m / min, and the curve is the optical fiber of the example. It is the relationship between the preform diameter and the position of the optical fiber preform in the spinning furnace, and the curve is the relationship between the optical fiber preform diameter of the comparative example and the position of the optical fiber preform in the spinning furnace. Further, in FIG. 4B, the spinning linear velocity is 1500.
It is a graph showing the relationship between the optical fiber preform diameter at m / min and the position of the optical fiber preform in the spinning furnace, and the curves are the optical fiber preform diameter of the example and the optical fiber preform in the spinning furnace. The curve is the relationship between the diameter of the optical fiber preform of the comparative example and the position of the optical fiber preform in the spinning furnace.

【0017】図4から明かなように紡糸線速が100m
/分と低速のときは、実施例および比較例の光ファイバ
母材の先端の溶融部分は紡糸炉内の下部まであまり伸び
ておらず、ネックダウン形状が短い。紡糸線速が150
0m/分と高速のときは、比較例の光ファイバ母材の先
端の溶融部分は下部までかなり伸びてネックダウン形状
が長いのに対して、比較例の光ファイバ母材の先端の溶
融部分の紡糸線速100m/分の場合とほとんど変わら
ず、ネックダウン形状が短いことが分る。
As is apparent from FIG. 4, the spinning linear velocity is 100 m.
At a low speed of / min, the melted portion at the tip of the optical fiber preforms of Examples and Comparative Examples did not extend much to the lower part in the spinning furnace, and the neck-down shape was short. Spinning speed is 150
At a high speed of 0 m / min, the melted portion at the tip of the optical fiber preform of the comparative example extends considerably to the lower portion and has a long neck-down shape. It can be seen that the neck-down shape is short, which is almost the same as the spinning linear speed of 100 m / min.

【0018】(試験例2)上記実施例および比較例にお
いて各紡糸線速で得られた光ファイバ素線をそれぞれ1
00箇所ずつ切断したときの切断面のa/bを図5に示
すように顕微鏡観察によって算出した。図5中符号19
は光ファイバ素線であり、aは肉厚の最も薄い箇所の厚
み(μm)であり、bは肉厚の最も厚い箇所の厚み(μ
m)である。そして、紡糸線速(m/分)とa/bとの
関係を調べたその結果を図6に示す。図6中、○は実施
例の各紡糸線速における光ファイバ素線のa/bの平均
値であり、●は比較例の各紡糸線速における光ファイバ
素線のa/bの平均値である。
(Test Example 2) In each of the above Examples and Comparative Examples, one optical fiber was obtained at each spinning linear velocity.
The a / b of the cut surface at the time of cutting at 00 points was calculated by microscopic observation as shown in FIG. Reference numeral 19 in FIG.
Is the optical fiber strand, a is the thickness of the thinnest part (μm), and b is the thickness of the thickest part (μm).
m). Then, the result of examining the relationship between the spinning linear velocity (m / min) and a / b is shown in FIG. In FIG. 6, ◯ is the average value of a / b of the optical fiber strand at each spinning linear velocity of the example, and ● is the average value of a / b of the optical fiber strand at each spinning linear velocity of the comparative example. is there.

【0019】図6に示した結果から明かなように紡糸線
速が100m/分と低速のときは、実施例と比較例の光
ファイバ素線とのa/b値はあまり差がなく、またそれ
ぞれのa/b値も小さいため樹脂被覆の厚さのばらつき
が少ない。紡糸線速が500m/分、1000m/分、
1500m/分と高速になるに従って比較例の光ファイ
バ素線とのa/b値が大きくなっており、樹脂被覆の厚
さのばらつきが大きい、これに比べて実施例の光ファイ
バ素線のa/b値があまり大きくなっておらず、樹脂被
覆の厚さのばらつきが小さいことが分る。
As is clear from the results shown in FIG. 6, when the spinning linear velocity is as low as 100 m / min, there is not much difference in a / b value between the optical fiber strands of the example and the comparative example, and Since the respective a / b values are also small, there is little variation in the thickness of the resin coating. Spinning line speed is 500m / min, 1000m / min,
The a / b value with the optical fiber strand of the comparative example increases as the speed increases to 1500 m / min, and the variation in the thickness of the resin coating is large. Compared with this, a of the optical fiber strand of the example It can be seen that the / b value is not so large and the variation in the thickness of the resin coating is small.

【0020】(試験例3)実施例および比較例において
各紡糸線速で得られた光ファイバ素線からそれぞれ、1
km、100本の光ファイバ素線をサンプル取りを行
い、巻張力350gの張力巻試験を行い、張力巻前後で
の伝送損失変化を調べた。その結果を図7に示す。図7
は各紡糸線速と損失増分との関係を示したグラフであ
り、図中○は実施例で得られた光ファイバ素線の損失増
分の平均値であり、●は比較例で得られた光ファイバ素
線の損失増分の平均値である。
Test Example 3 From the optical fiber strands obtained at each spinning linear velocity in Examples and Comparative Examples, 1
A sample of 100 optical fiber strands of km was sampled and a tension winding test with a winding tension of 350 g was performed to examine the change in transmission loss before and after the tension winding. The result is shown in FIG. 7. Figure 7
Is a graph showing the relationship between each spinning linear velocity and loss increment, in the figure ○ is the average value of the loss increment of the optical fiber strand obtained in the example, ● ● is the light obtained in the comparative example It is the average value of the loss increment of the fiber strand.

【0021】図7に示した結果から明らかなように比較
例で得られた光ファイバは紡糸線速が高速になるに従っ
て損失増分がかなり大きくなっており、1500m/分
で得られた光ファイバ素線は500m/分で得られたも
のと比べて損失増分が約4倍となっており、側圧特性が
不良であることが分る。これに比べて、実施例で得られ
た光ファイバは紡糸線速が高速になってもあまり大きく
なっておらず、1500m/分での損失増分は比較例の
ものの約1/3であり、側圧特性が優れていることが分
る。
As is clear from the results shown in FIG. 7, in the optical fiber obtained in the comparative example, the loss increment becomes considerably large as the spinning linear velocity becomes high, and the optical fiber element obtained at 1500 m / min. The line has a loss increment of about 4 times that obtained at 500 m / min, indicating that the lateral pressure characteristic is poor. On the other hand, the optical fibers obtained in the examples did not increase so much even when the spinning linear velocity became high, and the loss increment at 1500 m / min was about 1/3 of that in the comparative example, and the lateral pressure It turns out that the characteristics are excellent.

【0022】[0022]

【発明の効果】以上説明したように請求項1記載の光フ
ァイバの製造方法は、光ファイバ母材の先端の溶融部分
の温度(T0)とこれよりXcm下方の位置の温度
(T1)との差(ΔT)を25X℃以上50X℃以下と
することにより、光ファイバ母材の紡糸線速を高速にし
ても光ファイバ母材のネックダウン形状が長くなるのを
防止できるので、紡糸線速の変動量が小さくてすみ、こ
れによって光ファイバが樹脂コータに通されるときの光
ファイバ表面の温度変動も小さくなるので、光ファイバ
に形成される樹脂被覆の厚さのばらつきが大きくなるの
を防止でき、従って側圧特性の優れた光ファイバを得る
ことができる。また、請求項2記載の紡糸炉は、下部の
断熱材が欠れたことより、この紡糸炉を用いて光ファイ
バを製造する際、光ファイバ母材の先端の溶融部分の温
度T0とこれよりXcm下方の位置の温度T1との差を2
5X℃以上50X℃以下とすることが可能となり、側圧
特性の優れた光ファイバの製造が可能である。また、請
求項3記載の紡糸炉は、請求項2記載の紡糸炉におい
て、下部の断熱材が欠れたことに代えて炉芯管の下部の
外周に冷水が供給されている冷却管が巻き付けられたこ
とにより、請求項2記載の紡糸炉と同様の作用効果を奏
する。また、請求項4記載の紡糸炉は、請求項2記載の
紡糸炉において、下部の断熱材が欠れたことに代えて下
部の断熱材として上部の断熱材より断熱効果の低い金
属、セラミックスおよび耐熱プラスチックのうちから選
択される一種以上を用いたことにより、請求項2記載の
紡糸炉と同様の作用効果を奏する。
As described above, in the method of manufacturing an optical fiber according to the first aspect of the invention, the temperature (T 0 ) of the fused portion at the tip of the optical fiber preform and the temperature (T 1 ) at a position X cm below it. By setting the difference (ΔT) from 25 × ° C. to 50 × ° C. inclusive, it is possible to prevent the neck-down shape of the optical fiber preform from becoming long even if the spinning linear velocity of the optical fiber preform is high. The speed fluctuation amount is small, so that the temperature fluctuation of the optical fiber surface when the optical fiber is passed through the resin coater is also small, so that the variation in the thickness of the resin coating formed on the optical fiber becomes large. Therefore, an optical fiber having excellent lateral pressure characteristics can be obtained. Further, since the spinning furnace according to claim 2 lacks the lower heat insulating material, when the optical fiber is manufactured using this spinning furnace, the temperature T 0 of the molten portion at the tip of the optical fiber preform and The difference from the temperature T 1 at a position Xcm below is 2
It is possible to set the temperature to 5X ° C or more and 50X ° C or less, and it is possible to manufacture an optical fiber having excellent lateral pressure characteristics. Further, the spinning furnace according to claim 3 is the spinning furnace according to claim 2, wherein a cooling pipe to which cold water is supplied is wound around the outer periphery of the lower part of the furnace core tube in place of the lack of the heat insulating material in the lower part. As a result, the same operational effect as that of the spinning furnace according to the second aspect is achieved. The spinning furnace according to claim 4 is the spinning furnace according to claim 2, wherein the lower heat insulating material is replaced by a metal, ceramics, or the like having a lower heat insulating effect than the upper heat insulating material as the lower heat insulating material. By using at least one selected from heat-resistant plastics, the same operational effect as the spinning furnace according to claim 2 is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 X(cm)とΔT(℃)との関係を示したグ
ラフである。
FIG. 1 is a graph showing the relationship between X (cm) and ΔT (° C.).

【図2】 実施例の紡糸炉の概略構成図である。FIG. 2 is a schematic configuration diagram of a spinning furnace of an example.

【図3】 紡糸炉内の位置と温度との関係を示したグラ
フである。
FIG. 3 is a graph showing the relationship between the position in the spinning furnace and the temperature.

【図4】 (A)は紡糸線速が100m/分のときの実
施例および比較例の光ファイバ母材径と紡糸炉内の光ァ
イバ母材の位置との関係を示したグラフであり、(B)
は紡糸線速が1500m/分のときの実施例および比較
例の光ファイバ母材径と紡糸炉内の光ァイバ母材の位置
との関係を示したグラフである。
FIG. 4A is a graph showing the relationship between the optical fiber preform diameter and the position of the optical fiber preform in the spinning furnace in Examples and Comparative Examples when the spinning linear velocity is 100 m / min. (B)
6 is a graph showing the relationship between the diameter of the optical fiber preform and the position of the optical fiber preform in the spinning furnace in Examples and Comparative Examples when the spinning linear velocity is 1500 m / min.

【図5】 a/bの算出の方法を説明するための図であ
る。
FIG. 5 is a diagram for explaining a method of calculating a / b.

【図6】 紡糸線速(m/分)とa/bとの関係を示し
たグラフである。
FIG. 6 is a graph showing the relationship between the spinning linear velocity (m / min) and a / b.

【図7】 紡糸線速と損失増分との関係を示したグラフ
である。
FIG. 7 is a graph showing the relationship between the spinning linear velocity and the loss increment.

【図8】 従来の紡糸炉の例を示した概略構成図であ
る。
FIG. 8 is a schematic configuration diagram showing an example of a conventional spinning furnace.

【図9】 (A)紡糸線速が低速のときの光ファイバ母
材のネックダウン形状、(B)紡糸線速が高速のときの
光ファイバ母材のネックダウン形状を示す。
9A shows a neck-down shape of the optical fiber preform when the spinning linear velocity is low, and FIG. 9B shows a neck-down shape of the optical fiber preform when the spinning linear velocity is high.

【符号の説明】[Explanation of symbols]

1・・・紡糸炉、3・・・炉芯管、5・・・ヒータ、9・・・外枠、
11・・・断熱材、13・・・光ファイバ母材、13a・・・先
端の溶融部分、15・・・光ファイバ、17・・・間隙、E0
・・中央部、E1・・・位置、T0・・・温度、T1・・・温度、ΔT
・・・差。
1 ... Spinning furnace, 3 ... Furnace core tube, 5 ... Heater, 9 ... Outer frame,
11 ... Insulation material, 13 ... Optical fiber base material, 13a ... Molten portion at the tip, 15 ... Optical fiber, 17 ... Gap, E 0.
... central, E 1 · · · position, T 0 · · · temperature, T 1 · · · Temperature, [Delta] T
···difference.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバ母材を溶融紡糸して光ファイ
バとする際、前記光ファイバ母材の先端の溶融部分の温
度(T0)とこれよりXcm(ただしX≧0)下方の位
置の温度(T1)との差(ΔT)を25X℃以上50X
℃以下とすることを特徴とする光ファイバの製造方法。
1. When the optical fiber preform is melt-spun to form an optical fiber, the temperature (T 0 ) of the melted portion at the tip of the optical fiber preform and a position lower than Xcm (where X ≧ 0) Difference (ΔT) from temperature (T 1 ) is 25X ° C or more and 50X
A method of manufacturing an optical fiber, characterized in that the temperature is below ℃.
【請求項2】 炉芯管と、該炉芯管の外周を取り囲む加
熱手段と、これら炉心管および加熱手段を取り囲む断熱
材を具備し、光ファイバ母材を溶融紡糸する光ファイバ
製造用紡糸炉において、下部の断熱材が欠れていること
を特徴とする光ファイバ製造用紡糸炉。
2. A spinning furnace for producing an optical fiber, comprising a furnace core tube, a heating means surrounding the outer circumference of the furnace core tube, and a heat insulating material surrounding the furnace core tube and the heating means, and melt-spinning an optical fiber preform. In the spinning furnace for manufacturing an optical fiber, the heat insulating material at the bottom is lacking.
【請求項3】 請求項2記載の光ファイバ製造用紡糸炉
において、下部の断熱材が欠れていることに代えて炉芯
管の下部の外周に冷水が供給されている冷却管が巻き付
けられていることを特徴とする光ファイバ製造用紡糸
炉。
3. The spinning furnace for producing an optical fiber according to claim 2, wherein a cooling pipe, to which cold water is supplied, is wound around the outer periphery of the lower part of the furnace core tube instead of lacking the lower heat insulating material. A spinning furnace for producing an optical fiber.
【請求項4】 請求項2記載の光ファイバ製造用紡糸炉
において、下部の断熱材が欠れていることに代えて下部
の断熱材が上部の断熱材より断熱効果の低い金属、セラ
ミックスおよび耐熱プラスチックのうちから選択される
一種以上であること特徴とする光ファイバ製造用紡糸
炉。
4. The spinning furnace for producing an optical fiber according to claim 2, wherein the lower heat insulating material has a lower heat insulating effect than that of the upper heat insulating material instead of lacking the lower heat insulating material. A spinning furnace for producing an optical fiber, which is one or more kinds selected from plastics.
JP33381093A 1993-12-27 1993-12-27 Method for producing optical fiber and spinning furnace for producing optical fiber Expired - Fee Related JP2968678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33381093A JP2968678B2 (en) 1993-12-27 1993-12-27 Method for producing optical fiber and spinning furnace for producing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33381093A JP2968678B2 (en) 1993-12-27 1993-12-27 Method for producing optical fiber and spinning furnace for producing optical fiber

Publications (2)

Publication Number Publication Date
JPH07187701A true JPH07187701A (en) 1995-07-25
JP2968678B2 JP2968678B2 (en) 1999-10-25

Family

ID=18270208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33381093A Expired - Fee Related JP2968678B2 (en) 1993-12-27 1993-12-27 Method for producing optical fiber and spinning furnace for producing optical fiber

Country Status (1)

Country Link
JP (1) JP2968678B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003337232A (en) * 2002-05-17 2003-11-28 Fuji Photo Film Co Ltd Optical transmitter and method and device for manufacturing the same
JP2009234857A (en) * 2008-03-27 2009-10-15 Furukawa Electric Co Ltd:The Optical fiber drawing method and optical fiber drawing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003337232A (en) * 2002-05-17 2003-11-28 Fuji Photo Film Co Ltd Optical transmitter and method and device for manufacturing the same
JP2009234857A (en) * 2008-03-27 2009-10-15 Furukawa Electric Co Ltd:The Optical fiber drawing method and optical fiber drawing apparatus

Also Published As

Publication number Publication date
JP2968678B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
FI77217B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN POLARISATIONSBEVARANDE OPTISK FIBER.
US4145200A (en) Production of optical glass fibers
EP0141534A2 (en) Optical fibre fabrication
EP0004183B1 (en) Method and apparatus for drawing optical fibres by means of a double crucible
US6779363B1 (en) Method for pregobbing an optical fiber preform and system producing optical fiber therefrom
WO1998009184A2 (en) Multi-cylinder apparatus for making optical fibers, process and product
JP2968678B2 (en) Method for producing optical fiber and spinning furnace for producing optical fiber
GB1559769A (en) Drawing of light conducting fibres
JPH1184145A (en) Heating furnace in drawing device of plastic optical fiber
JP5207571B2 (en) Rod-shaped preform for manufacturing optical fiber and method for manufacturing fiber
JP3519750B2 (en) Method and apparatus for drawing optical fiber
US20200308043A1 (en) Optical fiber drawing furnace heating element, optical fiber drawing furnace, and method for manufacturing optical fiber
JP4442493B2 (en) An optical fiber manufacturing method.
JP4700893B2 (en) Method and apparatus for changing shape of optical fiber preform drawing end
JP3819614B2 (en) Method for producing quartz glass preform for optical fiber
JP4215943B2 (en) Manufacturing method of optical fiber
JP3715159B2 (en) Spinning furnace for optical fiber production
JP2585286B2 (en) Manufacturing method of optical fiber and preform for optical fiber
JP2004352549A (en) Method for manufacturing optical fiber
JPH0337129A (en) Production of optical glass fiber
JPH0143382Y2 (en)
JP2003212588A (en) Production method of optical fiber
JPH07234322A (en) Method for drawing plastic optical fiber
JP4496012B2 (en) Manufacturing method of glass preform for optical fiber
JPH01222206A (en) Production of functional optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees