JP2007195315A - Method and apparatus for controlling operation of wind turbine generator system - Google Patents

Method and apparatus for controlling operation of wind turbine generator system Download PDF

Info

Publication number
JP2007195315A
JP2007195315A JP2006010415A JP2006010415A JP2007195315A JP 2007195315 A JP2007195315 A JP 2007195315A JP 2006010415 A JP2006010415 A JP 2006010415A JP 2006010415 A JP2006010415 A JP 2006010415A JP 2007195315 A JP2007195315 A JP 2007195315A
Authority
JP
Japan
Prior art keywords
wind speed
generator
control mode
speed control
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006010415A
Other languages
Japanese (ja)
Other versions
JP4898230B2 (en
Inventor
Kazuhiro Oyama
和宏 大山
Shinji Arinaga
真司 有永
Yukio Yamashita
幸生 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Fukuoka Institute of Technology
Original Assignee
Mitsubishi Heavy Industries Ltd
Fukuoka Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Fukuoka Institute of Technology filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006010415A priority Critical patent/JP4898230B2/en
Publication of JP2007195315A publication Critical patent/JP2007195315A/en
Application granted granted Critical
Publication of JP4898230B2 publication Critical patent/JP4898230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for controlling the operation of a wind turbine generator system wherein a variable speed operation range can be expanded over an entire wind speed range from a low wind speed range in which the induced voltage of a generator is lower than a voltage required on the power consuming system side to a high wind speed range in which the wind speed is equal to or higher than a rated wind speed through a simplified control circuit with a minimized number of switching elements. <P>SOLUTION: The operation controlling means is for wind turbine generator systems. According to the numbers of revolutions of a wind turbine and a generator, it divides the operation mode of the wind turbine and the generator into three speed control modes: low wind speed control mode in which the induced voltage of the generator is lower than the voltage required on the power consuming system side; high wind speed control mode in which the wind speed of the wind turbine is equal to or higher than the rated wind speed; and intermediate wind speed control mode in which the wind speed is between the wind speed in low wind speed control mode and the wind speed in high wind speed control mode. In low wind speed control mode, a step-up chopper circuit for increasing the voltage of the generator is activated. In operation mode in which a certain value is exceeded, the operation of the step-up chopper circuit is stopped. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、風車及び該風車に直結駆動される発電機をそなえた風力発電システムの運転制御方法及びその装置に関し、特に発電機電圧を上昇させる昇圧チョッパ回路をそなえた風力発電システムの運転制御方法及びその装置に関する。   TECHNICAL FIELD The present invention relates to an operation control method and apparatus for a wind power generation system including a windmill and a generator that is directly connected to the windmill, and more particularly to an operation control method for a wind power generation system including a step-up chopper circuit that increases a generator voltage. And an apparatus for the same.

現在、コンバータとしてPWMコンバータを用いたPWMコンバータ方式の可変速風力発電システム(PWM コンバータ方式)の導入が進んでいる。前記PWM コンバータは、スイッチング素子を多数使用し、その制御も複雑なことからコスト高となるが、ベクトル制御の実装が可能であり、高速で高精度な発電機トルク制御が行えることから、風車速度制御を必須とする大容量の可変速風力発電システムに用いられている。
また、発電機として永久磁石同期発電機を使用する場合は、誘導発電機のように励磁エネルギーをコンバータから供給する必要がないため、バッテリーの充電などを目的とした小容量の風力発電システムは、コンバータとしてダイオードブリッジ整流器を使用し、誘起電圧が十分得られる主として定格風速において運転する。
Currently, introduction of a PWM converter type variable speed wind power generation system (PWM converter type) using a PWM converter as a converter is in progress. The PWM converter uses many switching elements, and its control is complicated and expensive.However, vector control can be implemented, and high-speed and high-accuracy generator torque control is possible. It is used in large-capacity variable-speed wind power generation systems that require control.
In addition, when using a permanent magnet synchronous generator as a generator, it is not necessary to supply excitation energy from a converter like an induction generator, so a small-capacity wind power generation system for battery charging etc. A diode bridge rectifier is used as a converter, and it is operated mainly at a rated wind speed at which an induced voltage can be sufficiently obtained.

かかるダイオードブリッジ整流器をコンバータとして用いた風力発電システム(ダイオード整流方式)の利点は、低コストでコンバータを構成できることにある。
しかしながら、前記のようなダイオード整流方式の風力発電システムにおいては、コンバータ単独では発電機のトルク制御を行うことができないため、風車速度制御が困難となり、また系統連係を視野に入れた場合、低風速では、系統連係するために必要な誘起電圧が得られないという問題もある。
An advantage of a wind power generation system (diode rectification method) using such a diode bridge rectifier as a converter is that a converter can be configured at low cost.
However, in the diode rectification type wind power generation system as described above, since the torque control of the generator cannot be performed by the converter alone, it is difficult to control the wind turbine speed, and when considering the system linkage, the low wind speed Then, there also exists a problem that the induced voltage required in order to link | link a system | strain cannot be obtained.

前記のような、低風速において系統連係するために必要な誘起電圧を得るようにした風力発電システムの1つとして、特許文献1(特開2003−88190号公報)の技術が提供されている。
かかる技術においては、発電機の電力使用系統側に昇圧チョッパ回路を設け、発電機の誘起電圧が電力使用系統側の必要電圧よりも低くなる低風速時に該昇圧チョッパ回路により発電機の発電電圧を一定電圧まで昇圧して、電力使用系統側の周波数変換器に供給するように構成されている。
As one of the wind power generation systems that obtain an induced voltage necessary for system linkage at a low wind speed as described above, a technique of Patent Document 1 (Japanese Patent Laid-Open No. 2003-88190) is provided.
In such a technique, a boost chopper circuit is provided on the power use system side of the generator, and the generated voltage of the generator is generated by the boost chopper circuit at a low wind speed when the induced voltage of the generator is lower than the required voltage on the power use system side. The voltage is boosted to a certain voltage and supplied to the frequency converter on the power usage system side.

特開2003−88190号公報JP 2003-88190 A

発電機として永久磁石同期発電機(以下発電機という)を使用する風力発電システムにおいては、スイッチング素子数を最少限にして簡略化された制御回路で以って、発電機の誘起電圧が電力使用系統側の必要電圧よりも低くなる低風速域から風速が定格風速以上となる高風速域までの全風速域に亘って可変速運転範囲を拡大できることが要求される。
しかしながら、前記特許文献1(特開2003−88190号公報)の技術にあっては、電圧が電力使用系統側の必要電圧よりも低くなる低風速時に該昇圧チョッパ回路により発電機の発電電圧を一定電圧まで昇圧する手段が示されているにとどまり、かかる課題を解決するには至らない。
In a wind power generation system that uses a permanent magnet synchronous generator (hereinafter referred to as a generator) as a generator, the induced voltage of the generator uses power with a simplified control circuit with a minimum number of switching elements. It is required that the variable speed operation range can be expanded over a whole wind speed range from a low wind speed range lower than the required voltage on the system side to a high wind speed range where the wind speed is equal to or higher than the rated wind speed.
However, in the technique of Patent Document 1 (Japanese Patent Laid-Open No. 2003-88190), the voltage generated by the generator is kept constant by the boost chopper circuit at a low wind speed when the voltage is lower than the required voltage on the power usage system side. Only means for boosting the voltage is shown, and this problem cannot be solved.

本発明はかかる従来技術の課題に鑑み、スイッチング素子数を最少限にして簡略化された制御回路で以って、発電機の誘起電圧が電力使用系統側の必要電圧よりも低くなる低風速域から風速が定格風速以上となる高風速域までの全風速域に亘って可変速運転範囲を拡大できる風力発電システムの運転制御方法及びその運転制御装置を提供することを目的とする。   In view of the problems of the conventional technology, the present invention provides a low wind speed region in which the induced voltage of the generator is lower than the required voltage on the power usage system side with a control circuit simplified by minimizing the number of switching elements. It is an object of the present invention to provide an operation control method for a wind power generation system and an operation control device thereof that can expand a variable speed operation range over the entire wind speed range from the wind speed to a high wind speed range where the wind speed is equal to or higher than the rated wind speed.

本発明はかかる目的を達成するもので、風車及び該風車に直結駆動される発電機をそなえた風力発電システムの運転制御方法であって、風車及び発電機の運転における運転モードを、前記風車の風速及び発電機の回転数によって、前記発電機の誘起電圧が電力使用系統側の必要電圧よりも低くなる低風速制御モードと、前記風車の風速が定格風速以上となる高風速制御モードと、前記風速が前記低風速制御モードにおける風速と前記定格風速との間の風速となる中風速制御モードとの3つの速度制御モードに分け、前記3つの速度制御モードのうち、前記低風速制御モードにおいて発電機電圧を上昇させる昇圧チョッパ回路を作動させ、前記中風速制御モード及び高風速制御モードにおいては前記昇圧チョッパ回路の作動を停止することを特徴とする(請求項1)。   The present invention achieves such an object, and is an operation control method of a wind power generation system including a windmill and a generator that is directly connected to the windmill, and an operation mode in the operation of the windmill and the generator is set to the operation mode of the windmill. The low wind speed control mode in which the induced voltage of the generator is lower than the necessary voltage on the power usage system side, the high wind speed control mode in which the wind speed of the wind turbine is equal to or higher than the rated wind speed, depending on the wind speed and the number of revolutions of the generator, The wind speed is divided into three speed control modes: a medium wind speed control mode in which the wind speed is between the wind speed in the low wind speed control mode and the rated wind speed. Of the three speed control modes, power generation is performed in the low wind speed control mode. A step-up chopper circuit that raises the machine voltage is activated, and the operation of the step-up chopper circuit is stopped in the medium wind speed control mode and the high wind speed control mode. To (claim 1).

また、前記のような風力発電システムの運転制御方法を実施する装置の発明は、
風車及び該風車に直結駆動される発電機をそなえた風力発電システムの運転制御装置であって、前記風車の風速の検出値及び発電機の誘起電圧の検出値が入力され、前記発電機の誘起電圧検出値が電力使用系統側の必要電圧よりも低くなったとき低風速制御モードに、前記風車の風速の検出値が定格風速以上となったとき高風速制御モードに、前記風速の検出値が前記低風速制御モードにおける風速と前記定格風速との間の中風速域にあるとき中風速制御モードに、それぞれ切り換える制御モード切換手段をそなえ、該制御モード切換手段は、前記低風速制御モードの切換時に前記発電機電圧を上昇させる昇圧チョッパ回路を作動させるように構成されたことを特徴とする(請求項4)。
In addition, the invention of the apparatus for carrying out the operation control method of the wind power generation system as described above,
An operation control device for a wind power generation system comprising a windmill and a generator directly connected to the windmill, wherein a detected value of a wind speed of the windmill and a detected value of an induced voltage of the generator are input, and the induction of the generator When the detected voltage value is lower than the required voltage on the power usage system side, the detected value of the wind speed is set to the low wind speed control mode, and when the detected value of the wind speed of the wind turbine is equal to or higher than the rated wind speed, the detected value of the wind speed is set to the high wind speed control mode. Control mode switching means for switching to the medium wind speed control mode when the wind speed is in the middle wind speed region between the wind speed and the rated wind speed in the low wind speed control mode is provided, and the control mode switching means switches the low wind speed control mode. The boost chopper circuit for raising the generator voltage is sometimes operated (claim 4).

かかる発明によれば、制御モード切換手段を設けて、該制御モード切換手段によって、風速制御モードを低風速制御モード、中風速制御モード及び高風速制御モードの3つの風速制御モードに分けたうえで、風速の検出値及び発電機の誘起電圧の検出値に基づき、前記発電機の誘起電圧検出値が電力使用系統側の必要電圧よりも低くなったときには、低風速制御モードに切り換え昇圧チョッパ回路を作動させて発電機電圧を上昇せしめる。
これにより、発電機電圧の上昇が必要な低風速制御モード時のみに昇圧チョッパ回路を作動させて所要の電力使用系統側電圧を保持し、中風速制御モード及び高風速制御モードと併せて3つの速度制御モードに分けて必要電圧での安定運転が可能となるとともに、少ないスイッチング素子数でかつ簡略化された制御回路で以って可変速範囲を拡大することができ、低コスト化され高い信頼性をそなえた風力発電システムが得られる。
According to this invention, the control mode switching means is provided, and the wind speed control mode is divided into the three wind speed control modes of the low wind speed control mode, the medium wind speed control mode, and the high wind speed control mode by the control mode switching means. Based on the detected value of the wind speed and the detected value of the induced voltage of the generator, the boost chopper circuit is switched to the low wind speed control mode when the induced voltage detected value of the generator is lower than the required voltage on the power usage system side. Activate to increase generator voltage.
As a result, the step-up chopper circuit is operated only in the low wind speed control mode where the generator voltage needs to be increased to maintain the required power usage system side voltage, and the three wind speed control modes are combined with the medium wind speed control mode and the high wind speed control mode. Stable operation at the required voltage is possible by dividing it into speed control modes, and the variable speed range can be expanded with a small number of switching elements and a simplified control circuit. A wind power generation system with the characteristics can be obtained.

かかる発明において、具体的には次のように構成するのが好ましい。
即ち、前記制御モード切換手段によって、前記中風速制御モードでは風車のピッチ角一定でインバータ駆動回路を用いた発電機速度制御を行わしめ、前記高風速制御モードではピッチ角制御手段を用いたピッチ角制御を行わしめる(請求項2、請求項5)。
さらに具体的には、前記中風速制御モードを、前記低風速制御モードを経て発電機回転数が上限回転数に達するまでの風速範囲における第1の中風速制御モードと該発電機回転数が前記上限回転数で前記風車の風速が定格風速以下の風速範囲における第2の中風速制御モードとにより行う(請求項3)。
In this invention, specifically, the following configuration is preferable.
That is, the control mode switching means performs generator speed control using an inverter drive circuit with a constant wind turbine pitch angle in the medium wind speed control mode, and the pitch angle using pitch angle control means in the high wind speed control mode. Control is performed (claims 2 and 5).
More specifically, the medium wind speed control mode includes the first medium wind speed control mode and the generator speed in the wind speed range until the generator speed reaches the upper limit speed through the low wind speed control mode. This is performed in the second medium wind speed control mode in the wind speed range where the wind speed of the wind turbine is equal to or lower than the rated wind speed at the upper limit rotation speed.

このように構成すれば、
低風速速度制御モードでは、昇圧チョッパ回路により発電機の電機子電流を調整することで発電機トルクを制御して風車の速度制御を行い、
中風速速度制御モードでは、系統連係インバータによりDCリンク部電圧を調整することで発電機トルクを制御して風車速度制御を行い、
定格風速以上の高風速速度制御モードでは、ピッチ角制御システムによりピッチ角を
調整することで風車のトルクを制御し風車の速度制御を行うので、
3つの速度制御モードをハイブリッドさせることにより可変速範囲を拡大できて、全ての制御モードにおいて系統連系が可能となる。
If configured in this way,
In the low wind speed control mode, the speed of the wind turbine is controlled by controlling the generator torque by adjusting the armature current of the generator with the boost chopper circuit,
In the medium wind speed control mode, the wind turbine speed control is performed by controlling the generator torque by adjusting the DC link voltage with the grid-linked inverter,
In the high wind speed control mode above the rated wind speed, the wind turbine torque is controlled by adjusting the pitch angle by the pitch angle control system.
By hybridizing the three speed control modes, the variable speed range can be expanded, and system interconnection is possible in all control modes.

本発明によれば、発電機電圧の上昇が必要な低風速制御モード時のみに、昇圧チョッパ回路を作動させることによって、電力使用系統側の系統連係するために必要な誘起電圧を得ることにより低風速域での安定運転が可能となるとともに、少ないスイッチング素子数でかつ簡略化された制御回路で以って可変速範囲を拡大することができ、低コスト化され高い信頼性をそなえた風力発電システムが得られる。
また、低風速制御モードでは昇圧チョッパ回路により電力使用系統側の系統連係するために必要な誘起電圧を得て発電機トルクを制御し風車の速度制御を行い、中風速制御モードでは系統連係インバータによりDCリンク部電圧を調整することで発電機トルクを制御して風車速度制御を行い、定格風速以上の高風速制御モードではピッチ角制御システムによりピッチ角を調整することで風車のトルクを制御し風車の速度制御を行うので、3つの速度制御モードをハイブリッドさせることにより可変速範囲を拡大できて、全ての制御モードにおいて系統連系が可能となる。
また、本発明によれば、低風速制御モード以外のモード時の運転では、昇圧用スイッチング素子が働かないので、常時昇圧チョッパ回路を働かせる制御方式のものよりも、スイッチング損失を低減できる。
According to the present invention, the boost chopper circuit is operated only in the low wind speed control mode in which the generator voltage needs to be increased, thereby obtaining an induced voltage required for system linkage on the power usage system side. Wind power generation that enables stable operation in the wind speed range, expands the variable speed range with a simple control circuit with a small number of switching elements, reduces costs, and provides high reliability A system is obtained.
In the low wind speed control mode, the boost chopper circuit obtains the induced voltage required for system linkage on the power usage system side to control the generator torque to control the wind turbine speed. In the medium wind speed control mode, the system linkage inverter The wind turbine speed is controlled by controlling the generator torque by adjusting the DC link voltage, and the wind turbine torque is controlled by adjusting the pitch angle by the pitch angle control system in the high wind speed control mode above the rated wind speed. Therefore, the variable speed range can be expanded by hybridizing the three speed control modes, and system interconnection is possible in all control modes.
Further, according to the present invention, since the boosting switching element does not work in the operation in the mode other than the low wind speed control mode, the switching loss can be reduced as compared with the control system that always works the boosting chopper circuit.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

図1は、本発明の実施例に係る風力発電システムの運転制御装置制御ブロック図である。
図1において、100は風車、101は該風車100の翼、102はロータヘッド、104は主軸である。105は前記風車により回転駆動される発電機で、この実施例では、永久磁石式多極同期発電機(以下発電機という)で構成されている。107は前記発電機105の発電電力を直流に変換するコンバータ、106はリアクトル、109はダイオード、108は前記コンバータ107を経た発電機からの発電電圧を昇圧するための昇圧用スイッチング素子、110はコンデンサ、111は抵抗、112は交流に逆変換するインバータ、113はグリッドである。
103は前記翼101のピッチ角を変化せしめるピッチ駆動装置、5は該ピッチ駆動装置103を介して前記翼101のピッチ角を制御するピッチ角制御手段である。
FIG. 1 is an operation control device control block diagram of a wind power generation system according to an embodiment of the present invention.
In FIG. 1, 100 is a windmill, 101 is a blade of the windmill 100, 102 is a rotor head, and 104 is a main shaft. Reference numeral 105 denotes a generator that is rotationally driven by the windmill. In this embodiment, the generator is a permanent magnet type multi-pole synchronous generator (hereinafter referred to as a generator). 107 is a converter that converts the generated power of the generator 105 into direct current, 106 is a reactor, 109 is a diode, 108 is a boosting switching element for boosting the generated voltage from the generator that has passed through the converter 107, and 110 is a capacitor , 111 is a resistor, 112 is an inverter that performs reverse conversion to alternating current, and 113 is a grid.
Reference numeral 103 denotes a pitch driving device that changes the pitch angle of the blade 101, and reference numeral 5 denotes pitch angle control means for controlling the pitch angle of the blade 101 via the pitch driving device 103.

8は前記昇圧用スイッチング素子108を駆動する昇圧チョッパ駆動回路、10は前記昇圧チョッパ駆動回路8の時比率制御を行う昇圧チョッパ時比率制御手段である。
前記昇圧チョッパ駆動回路8、昇圧用スイッチング素子108、昇圧チョッパ時比率制御手段10等により昇圧チョッパ回路を構成する。
9は前記インバータ112を駆動するインバータ駆動回路、11は後述する制御ロジックによって前記インバータ駆動回路9を制御するインバータ制御手段である。
4は前記発電機105の回転数(発電機回転数)を検出する速度センサ、3は風車100への風速を検出する風速センサ、6は後述する昇圧チョッパ回路による昇圧後の電圧(昇圧電圧)を検出するDC電圧センサ、7は前記インバータ112後の交流電流及び電圧を検出する電流、電圧センサである。
8 is a step-up chopper drive circuit for driving the step-up switching element 108, and 10 is a step-up chopper time ratio control means for controlling the time ratio of the step-up chopper drive circuit 8.
The step-up chopper drive circuit 8, the step-up switching element 108, the step-up chopper time ratio control means 10 and the like constitute a step-up chopper circuit.
9 is an inverter drive circuit for driving the inverter 112, and 11 is an inverter control means for controlling the inverter drive circuit 9 by a control logic to be described later.
4 is a speed sensor for detecting the rotational speed of the generator 105 (generator rotational speed), 3 is a wind speed sensor for detecting the wind speed to the wind turbine 100, and 6 is a voltage (boosted voltage) after being boosted by a boost chopper circuit described later. A DC voltage sensor 7 detects the AC current and voltage after the inverter 112, and a current / voltage sensor.

1は本発明の要旨である制御モード切換手段で、前記風速センサ3からの風速の検出値、前記速度センサ4からの発電機回転数の検出値、前記DC電圧センサ6からの発電機のDCリンク部電圧(昇圧チョッパで昇圧後の発電機の誘起電圧)の検出値が入力され、かかる検出信号に基づき後述するような制御モード切換えを行う。
2は発電機回転速度目標値生成手段で、前記風速センサ3からの風速の検出値Uwが入力され、該風速の検出値に基づき後述する手段によって発電機105の目標回転数(発電機目標回転数)を算出する。
Reference numeral 1 denotes a control mode switching means which is the gist of the present invention. The detected value of the wind speed from the wind speed sensor 3, the detected value of the generator speed from the speed sensor 4, and the DC of the generator from the DC voltage sensor 6. A detection value of the link unit voltage (the induced voltage of the generator boosted by the boost chopper) is input, and control mode switching as described later is performed based on the detection signal.
Reference numeral 2 denotes a generator rotational speed target value generating means, which receives a wind speed detection value Uw from the wind speed sensor 3, and based on the wind speed detection value, a means for generating the target rotational speed (generator target rotation) of the generator 105 by means described later. Number).

次に、図2〜図8に基づき、図1に示す風力発電システムの運転制御装置各制御手段の動作を説明する。
図2は本発明の実施例における前記制御モード切換手段1の制御ブロック図である。
該制御モード切換手段1は、前記風速センサ3から入力される風速Uwの検出値、前記速度センサ4から入力される発電機回転数ωgの検出値、前記DC電圧センサ6から入力される発電機のDCリンク部電圧Vdcの検出値に基づきモードを決定し、モード信号Modを出力する。
Next, based on FIGS. 2-8, operation | movement of each control means of the operation control apparatus of the wind power generation system shown in FIG. 1 is demonstrated.
FIG. 2 is a control block diagram of the control mode switching means 1 in the embodiment of the present invention.
The control mode switching means 1 includes a detected value of the wind speed Uw input from the wind speed sensor 3, a detected value of the generator rotational speed ωg input from the speed sensor 4, and a generator input from the DC voltage sensor 6. The mode is determined based on the detected value of the DC link unit voltage Vdc, and the mode signal Mod is output.

即ち制御モード切換手段1による制御モードの切換え条件は、
Uin≦Uwであって、Vdc≦Vdc0のとき→モード1即ち低風速制御モード
Vdc>Vdc0であって、ωg<ωmax→モード2即ち中風速制御モード(1)
ωg≧ωmaxであって、Uw≦Urat→モード3即ち中風速制御モード(2)
Uw>Urat→モード4即ち高風速制御モード
ここで、Uin=カットイン風速
Vdc0=系統連系に必要な発電機誘起電圧(電力使用系統側の必要電圧)
ωmax=発電機回転数上限値
Urat=定格風速
That is, the control mode switching condition by the control mode switching means 1 is:
When Uin ≦ Uw and Vdc ≦ Vdc0 → Mode 1 or low wind speed control mode Vdc> Vdc0 and ωg <ωmax → Mode 2 or medium wind speed control mode (1)
ωg ≧ ωmax, Uw ≦ Urat → mode 3, that is, medium wind speed control mode (2)
Uw> Urat → mode 4, that is, high wind speed control mode where Uin = cut-in wind speed
Vdc0 = Generator induced voltage required for grid connection (required voltage on the power usage system side)
ωmax = generator rotation speed upper limit
Urat = Rated wind speed

図3は、前記実施例における風速に対する風車出力と発電機回転数との特性線図である。
図3において、Aは運転開始点(カットイン風速Uinの点)、Bは系統連系に必要な発電機誘起電圧(電力使用系統側の必要電圧)Vdc0がDCリンク部電圧(発電機誘起電圧)Vdcよりも高くなる点(Vdc≦Vdc0)、Cは発電機回転数ωが発電機回転数目標値ωf(発電機回転数上限値ωmaxよりも小さい)に達する点、Dは風速Uが定格風速Uratに達する点であり、図において、
前記制御モードの切換え条件は、
A〜B: モード1即ち低風速制御モード
B〜C: モード2即ち中風速制御モード(1)
C〜D: モード3即ち中風速制御モード(2)
D〜 : モード4即ち高風速制御モード
FIG. 3 is a characteristic diagram of the wind turbine output and the generator rotational speed with respect to the wind speed in the embodiment.
In FIG. 3, A is the operation start point (cut-in wind speed Uin point), B is the generator induced voltage (necessary voltage on the power usage system side) Vdc0 required for grid interconnection, and DC link unit voltage (generator induced voltage). ) A point higher than Vdc (Vdc ≦ Vdc0), C is a point where the generator rotational speed ω reaches the generator rotational speed target value ωf (smaller than the generator rotational speed upper limit value ωmax), D is the wind speed U rated Is the point where the wind speed Urat is reached.
The control mode switching condition is:
A to B: Mode 1 or low wind speed control mode B to C: Mode 2 or medium wind speed control mode (1)
C to D: Mode 3, that is, medium wind speed control mode (2)
D˜: Mode 4 or high wind speed control mode

次に、前記発電機回転数の目標値ωfは次の手順により算出する。
図4は発電機回転数の目標値算出ブロック図、図5は出力係数の算出線図である。
図4において、前記風速センサ3から前記発電機回転速度目標値生成手段2に入力される風速Uwの検出値は、該発電機回転速度目標値生成手段2において係数器31に設定された比例定数Kを乗じて発電機回転数の現在値ω1を算出してローセレクタ32に入力される。
該ローセレクタ32には、予め設定された発電機回転数上限値ωmax(図3参照)が入力されており、該ローセレクタ32において、前記発電機回転数の現在値ω1と発電機回転数上限値ωmaxとを比較して、小さい方の回転数を発電機回転数目標値ωfとする。
即ち、前記発電機回転数目標値ωfは発電機回転数上限値ωmax超えては運転しないように制限を掛ける。
ここで、前記比例定数Kは、風速Uwが変化しても翼出力係数Cpが最大となる周速比となるように定める。
即ち、図5のように翼出力係数Cpは翼の周速比λの関数であり、前記比例定数Kの算出には該周速比λの最大値λmaxに対応する翼出力係数Cpを用いる。
Next, the target value ωf of the generator rotational speed is calculated by the following procedure.
FIG. 4 is a block diagram for calculating the target value of the generator speed, and FIG. 5 is a calculation diagram for the output coefficient.
In FIG. 4, the detected value of the wind speed Uw input from the wind speed sensor 3 to the generator rotational speed target value generating means 2 is a proportional constant set in the coefficient unit 31 in the generator rotational speed target value generating means 2. The current value ω1 of the generator speed is calculated by multiplying by K and input to the low selector 32.
A preset generator rotational speed upper limit value ωmax (see FIG. 3) is input to the low selector 32. In the low selector 32, the current value ω1 of the generator rotational speed and the generator rotational speed upper limit value are set. The value ωmax is compared with the smaller rotational speed as the generator rotational speed target value ωf.
That is, the generator rotational speed target value ωf is limited so as not to operate when the generator rotational speed upper limit ωmax is exceeded.
Here, the proportionality constant K is determined such that the blade output coefficient Cp becomes the maximum peripheral speed ratio even when the wind speed Uw changes.
That is, as shown in FIG. 5, the blade output coefficient Cp is a function of the peripheral speed ratio λ of the blade, and for calculating the proportionality constant K, the blade output coefficient Cp corresponding to the maximum value λmax of the peripheral speed ratio λ is used.

次に、前記モード1〜4における運転制御方法について説明する。
・モード1(低風速制御モード)
このモードにおいては、図1における昇圧チョッパ駆動回路8、昇圧用スイッチング素子108、昇圧チョッパ時比率制御手段10等により構成される昇圧チョッパ回路を作動させて、前記発電機電圧を上昇させる。
即ち、図6は前記昇圧チョッパ回路の制御ブロック図で、図において、図4のブロック図に基づき算出した前記発電機回転数の目標値ωfと前記速度センサ4からの発電機回転数の検出値ωgは、昇圧チョッパ時比率制御手段10の減算器35に入力される。該減算器35で算出された前記回転数の偏差にPI制御器36でPI制御演算を行なってDCリンク部電圧(発電機誘起電圧)Vdcを算出し、スイッチ部37に入力する。
該スイッチ部37においては、前記DCリンク部電圧(発電機誘起電圧)Vdcが系統連系に必要な発電機誘起電圧(電力使用系統側の必要電圧)Vdc0以下のときは(Vdc≦Vdc0)、前記モード1に切換えてパルスジェネレータ38を駆動し、該パルスジェネレータ38によって昇圧チョッパ駆動回路8を作動させる。尚、前記Vdc>Vdc0のときはモード2〜4となり、前記PI制御出力を0としてパルスジェネレータ38へ送られ昇圧チョッパ回路は作動しない。
Next, the operation control method in the modes 1 to 4 will be described.
・ Mode 1 (Low wind speed control mode)
In this mode, the booster chopper circuit constituted by the booster chopper drive circuit 8, the booster switching element 108, the booster chopper time ratio control means 10 and the like in FIG. 1 is operated to raise the generator voltage.
That is, FIG. 6 is a control block diagram of the step-up chopper circuit. In the figure, the generator rotational speed target value ωf calculated based on the block diagram of FIG. 4 and the generator rotational speed detection value from the speed sensor 4 are shown. ωg is input to the subtracter 35 of the boost chopper duty ratio control means 10. The PI controller 36 performs a PI control operation on the deviation of the rotational speed calculated by the subtractor 35 to calculate a DC link unit voltage (generator induced voltage) Vdc and inputs it to the switch unit 37.
In the switch unit 37, when the DC link unit voltage (generator induced voltage) Vdc is less than or equal to the generator induced voltage (necessary voltage on the power use system side) Vdc0 required for grid connection (Vdc ≦ Vdc0), The pulse generator 38 is driven by switching to the mode 1, and the step-up chopper drive circuit 8 is operated by the pulse generator 38. When Vdc> Vdc0, the modes 2 to 4 are selected, the PI control output is set to 0, and the boost chopper circuit is not operated.

該昇圧チョッパ駆動回路8からの昇圧チョッパ駆動信号は前記昇圧用スイッチング素子108に入力される。かかる昇圧チョッパ回路の作動により、前記コンバータ107を経た発電機105の発電電圧が上昇せしめられる。
これにより、発電機電圧の上昇が必要な低風速制御モード時(モード1)のみに昇圧チョッパ回路を作動させることにより、系統連系に必要な発電機誘起電圧(電力使用系統側の必要電圧)を保持できる。
The step-up chopper drive signal from the step-up chopper drive circuit 8 is input to the step-up switching element 108. By the operation of the step-up chopper circuit, the power generation voltage of the power generator 105 that has passed through the converter 107 is increased.
Thus, by operating the boost chopper circuit only in the low wind speed control mode (mode 1) in which the generator voltage needs to be increased, the generator induced voltage required for grid interconnection (the required voltage on the power usage system side) Can be held.

・モード2(中風速制御モード(1))及びモード3(中風速制御モード(2))
モード2は、図3において、系統連系に必要な発電機誘起電圧(電力使用系統側の必要電圧)Vdc0がDCリンク部電圧(発電機誘起電圧)Vdcよりも高くなる点(Vdc≦Vdc0)であるB点から前記発電機回転数ωgが発電機回転数目標値ωf(発電機回転数上限値ωmaxよりも小さい)に達する点であるC点までの制御モードであり、モード3は発電機回転数目標値ωfであるC点から定格風速Uratに達する点であるD点までの制御モードである。
かかるモード2及びモード3では、図1のように、インバータ112、インバータ駆動回路9及びインバータ制御手段11によりDCリンク部電圧Vdcを調整することで発電機105の発電機トルクを制御して風車速度制御を行う。
Mode 2 (medium wind speed control mode (1)) and mode 3 (medium wind speed control mode (2))
In mode 2, the generator induced voltage (required voltage on the power use system side) Vdc0 required for grid interconnection in FIG. 3 is higher than the DC link unit voltage (generator induced voltage) Vdc (Vdc ≦ Vdc0). Is a control mode from point B to point C where the generator rotational speed ωg reaches the generator rotational speed target value ωf (smaller than the generator rotational speed upper limit value ωmax). This is a control mode from point C, which is the rotational speed target value ωf, to point D, which is a point that reaches the rated wind speed Urat.
In such mode 2 and mode 3, as shown in FIG. 1, the generator torque of the generator 105 is controlled by adjusting the DC link voltage Vdc by the inverter 112, the inverter drive circuit 9 and the inverter control means 11, and the wind turbine speed is adjusted. Take control.

即ち図7は、かかるモード2及びモード3にて行なうインバータ制御のブロック図である。
図7において、かかるインバータ制御システムでは、DCリンク部電圧Vdcを連系可能なDCリンク部電圧Vdsに一定制御を行う。さらにモード2及びモード3では、発電機105の速度制御を行う。またモード4では、翼101のピッチ角を制御するピッチ角制御手段5による発電機出力制御を行い、連系可能な電圧Vdsに修正を加える。
That is, FIG. 7 is a block diagram of inverter control performed in the mode 2 and the mode 3.
In FIG. 7, in such an inverter control system, the DC link voltage Vdc is controlled to a DC link voltage Vds that can be linked. Furthermore, in mode 2 and mode 3, speed control of the generator 105 is performed. In mode 4, the generator output control is performed by the pitch angle control means 5 that controls the pitch angle of the blade 101, and the voltage Vds that can be linked is corrected.

図7に示すインバータ制御手段11によるインバータ制御において、DCリンク部電圧制御部におけるPI制御器91からはd軸電流目標値isdfが出力され、計測されたd軸電流isdとの偏差からPI制御器92にてPI制御演算を行い、同じくq軸電流目標値(力率1に維持する場合には0)isqfと計測されたq軸電流isqとの偏差からPI制御器93にてPI制御演算を行い、両者を用いた非干渉制御手段94での非干渉制御動作により、インバータ駆動回路9へのd軸電圧指令値Vsdf及びq軸電圧指令値Vsqfが出力される。
尚、図7において、Pgは発電機105の発電機出力、Pgrtは発電機定格出力である。またisu,isv,iswは三相電流である。
In the inverter control by the inverter control means 11 shown in FIG. 7, the d-axis current target value isdf is output from the PI controller 91 in the DC link voltage control unit, and the PI controller is calculated from the deviation from the measured d-axis current isd. The PI control calculation is performed at 92, and the PI control calculation is performed by the PI controller 93 from the deviation between the q-axis current target value (0 when maintaining the power factor of 1) isqf and the measured q-axis current isq. The d-axis voltage command value Vsdf and the q-axis voltage command value Vsqf are output to the inverter drive circuit 9 by the non-interference control operation of the non-interference control means 94 using both.
In FIG. 7, Pg is a generator output of the generator 105, and Pgrt is a generator rated output. Isu, isv, and isw are three-phase currents.

・モード4(高風速制御モード)
モード4は、図3において、風速Uが定格風速Uratに達するD点以上の制御モードである。
かかるモード4では、図8のように、翼101のピッチ角を制御するピッチ角制御手段5による発電機出力制御を行なう。
即ち図8において、前記制御モード切換手段1による制御モードがモード4に切換えられるまでは、固定ピッチ角としておき、制御モードがモード4に切換えられると、ピッチ角制御手段5による発電機出力制御を行なう。図において、発電機回転数検出値ωgと発電機回転数目標値ωfとの偏差を計算する。そしてPI制御器52での前記偏差のPI演算により算出したピッチ角目標値θfを、ピッチ角指令値θrefとして切換えスイッチ51を介してピッチ角駆動装置103に出力することにより、ピッチ角制御を行なう。尚、モード4以外では前記切換えスイッチ51によりピッチ角固定値θcotがピッチ角指令値θrefとして出力される。
・ Mode 4 (High wind speed control mode)
Mode 4 is a control mode of point D or higher at which the wind speed U reaches the rated wind speed Urat in FIG.
In the mode 4, as shown in FIG. 8, generator output control is performed by the pitch angle control means 5 that controls the pitch angle of the blade 101.
In other words, in FIG. 8, the fixed pitch angle is kept until the control mode by the control mode switching means 1 is switched to mode 4, and when the control mode is switched to mode 4, the generator output control by the pitch angle control means 5 is controlled. Do. In the figure, the deviation between the generator rotational speed detection value ωg and the generator rotational speed target value ωf is calculated. Then, pitch angle control is performed by outputting the pitch angle target value θf calculated by the PI calculation of the deviation in the PI controller 52 to the pitch angle driving device 103 via the changeover switch 51 as the pitch angle command value θref. . In modes other than mode 4, the change-over switch 51 outputs the pitch angle fixed value θcot as the pitch angle command value θref.

以上のようにかかる実施例によれば、制御モード切換手段1を設けて、該制御モード切換手段1によって、風速制御モードを低風速制御モード(モード1)、中風速制御モード(モード2,3)及び高風速制御モード(モード4)の4つの風速制御モードに分けたうえで、風速Uwの検出値及び発電機の誘起電圧の検出値Vdcに基づき、前記発電機の誘起電圧検出値Vdcが電力使用系統側の必要電圧Vfよりも低くなったときには、低風速制御モードに切り換え、昇圧チョッパ駆動回路8、昇圧用スイッチング素子108、昇圧チョッパ時比率制御手段10等により構成される昇圧チョッパ回路を作動させて発電機電圧を上昇せしめる。   As described above, according to the embodiment, the control mode switching means 1 is provided, and the wind speed control mode is changed to the low wind speed control mode (mode 1) and the medium wind speed control mode (modes 2 and 3) by the control mode switching means 1. ) And high wind speed control mode (mode 4), and the induced voltage detection value Vdc of the generator is determined based on the detected value of wind speed Uw and the detected value Vdc of the induced voltage of the generator. When the voltage is lower than the required voltage Vf on the power usage system side, the mode is switched to the low wind speed control mode, and the boost chopper circuit configured by the boost chopper drive circuit 8, the boost switching element 108, the boost chopper time ratio control means 10, etc. Activate to increase generator voltage.

これにより、発電機電圧の上昇が必要な低風速制御モード時(モード1)のみに前記昇圧チョッパ回路を作動させて系統連系に必要な発電機誘起電圧(電力使用系統側の必要電圧)を保持し、中風速制御モード(モード2,3)及び高風速制御モード(モード4)と併せて3つの速度制御モードのそれぞれにおいて、必要電圧での安定運転が可能となるとともに、少ないスイッチング素子数でかつ簡略化された制御回路で以って可変速範囲を拡大することができる。   As a result, the boost chopper circuit is operated only in the low wind speed control mode (mode 1) in which the generator voltage needs to be raised, and the generator induced voltage (necessary voltage on the power use system side) required for grid interconnection is obtained. In addition, in each of the three speed control modes in combination with the medium wind speed control mode (modes 2 and 3) and the high wind speed control mode (mode 4), stable operation at a required voltage is possible, and the number of switching elements is small. In addition, the variable speed range can be expanded with a simplified control circuit.

また、前記制御モード切換手段1によって、前記中風速制御モード(モード2,3)では風車のピッチ角一定でインバータ駆動回路9を用いた発電機速度制御を行わしめ、高風速制御モード(モード4)ではピッチ角制御手段5を用いたピッチ角制御を行わしめるようにしたので、前記低風速速度制御モード(モード1)では、前記昇圧チョッパ回路により発電機(発電機)105の電機子電流を調整することで発電機トルクを制御して風車の速度制御を行い、中風速速度制御モード(モード2,3)では、系統連係インバータ112によりDCリンク部電圧を調整することで発電機トルクを制御して風車速度制御を行い、定格風速以上の高風速速度制御モード(モード4)では、ピッチ角制御手段5によりピッチ角を調整することで、風車のトルクを制御し風車の速度制御を行うので、3つの速度制御モードをハイブリッドさせることにより可変速範囲を拡大できて、全ての制御モードにおいて系統連系が可能となる。   Further, in the medium wind speed control mode (modes 2 and 3), the control mode switching means 1 performs the generator speed control using the inverter drive circuit 9 at a constant pitch angle of the windmill, and the high wind speed control mode (mode 4). ), The pitch angle control using the pitch angle control means 5 is performed. Therefore, in the low wind speed control mode (mode 1), the armature current of the generator (generator) 105 is generated by the boost chopper circuit. The wind turbine speed is controlled by adjusting the generator torque by adjusting, and in the middle wind speed control mode (modes 2 and 3), the generator torque is controlled by adjusting the DC link voltage by the grid-linked inverter 112. The wind turbine speed is controlled, and in the high wind speed control mode (mode 4) higher than the rated wind speed, the pitch angle is adjusted by the pitch angle control means 5 to Since controlling the speed of the wind turbine to control the torque, and can enlarge the variable speed range by hybrid three speed control mode, system interconnection becomes possible in all control modes.

本発明によれば、スイッチング素子数を最少限にして簡略化された制御回路で以って、発電機の誘起電圧が電力使用系統側の必要電圧よりも低くなる低風速域から風速が定格風速以上となる高風速域までの全風速域に亘って可変速運転範囲を拡大できる風力発電システムの運転制御方法及びその運転制御装置を提供できる。   According to the present invention, the wind speed is reduced from the low wind speed range where the induced voltage of the generator is lower than the required voltage on the power usage system side with the simplified control circuit with the minimum number of switching elements. It is possible to provide an operation control method for a wind power generation system and an operation control device thereof that can expand the variable speed operation range over the entire wind speed range up to the high wind speed range.

本発明の実施例に係る風力発電システムの運転制御装置制御ブロック図である。It is an operation control apparatus control block diagram of the wind power generation system which concerns on the Example of this invention. 前記実施例における前記制御モード切換手段の制御ブロック図である。It is a control block diagram of the control mode switching means in the embodiment. 前記実施例における風速に対する風車出力と発電機回転数との特性線図である。It is a characteristic diagram of the windmill output with respect to the wind speed in the said Example, and a generator rotation speed. 前記実施例における発電機回転数の目標値算出ブロック図である。It is a target value calculation block diagram of the generator rotation speed in the said Example. 前記実施例における出力係数の算出線図である。It is a calculation diagram of the output coefficient in the embodiment. 前記実施例における前記昇圧チョッパ回路の制御ブロック図である。It is a control block diagram of the step-up chopper circuit in the embodiment. 前記実施例におけるインバータ制御の制御ブロック図である。It is a control block diagram of inverter control in the embodiment. 前記実施例におけるピッチ角制御手段による制御ブロック図である。It is a control block diagram by the pitch angle control means in the embodiment.

符号の説明Explanation of symbols

1 制御モード切換手段
2 発電機回転速度目標値生成手段
3 風速センサ
4 速度センサ
5 ピッチ角制御手段
6 DC電圧センサ
7 電流、電圧センサ
8 昇圧チョッパ駆動回路
9 インバータ駆動回路
10 昇圧チョッパ時比率制御手段
11 インバータ制御手段
100 風車
101 翼
102 ロータヘッド
103 ピッチ駆動装置
105 発電機
107 コンバータ
108 昇圧用スイッチング素子
112 インバータ
DESCRIPTION OF SYMBOLS 1 Control mode switching means 2 Generator rotation speed target value production | generation means 3 Wind speed sensor 4 Speed sensor 5 Pitch angle control means 6 DC voltage sensor 7 Current and voltage sensor 8 Boost chopper drive circuit 9 Inverter drive circuit 10 Boost chopper time ratio control means DESCRIPTION OF SYMBOLS 11 Inverter control means 100 Windmill 101 Blade 102 Rotor head 103 Pitch drive device 105 Generator 107 Converter 108 Boosting switching element 112 Inverter

Claims (5)

風車及び該風車に直結駆動される発電機をそなえた風力発電システムの運転制御方法であって、風車及び発電機の運転における運転モードを、前記風車の風速及び発電機の回転数によって、前記発電機の誘起電圧が電力使用系統側の必要電圧よりも低くなる低風速制御モードと、前記風車の風速が定格風速以上となる高風速制御モードと、前記風速が前記低風速制御モードにおける風速と前記定格風速との間の風速となる中風速制御モードとの3つの速度制御モードに分け、前記3つの速度制御モードのうち、前記低風速制御モードにおいて発電機電圧を上昇させる昇圧チョッパ回路を作動させ、前記中風速制御モード及び高風速制御モードにおいては前記昇圧チョッパ回路の作動を停止することを特徴とする風力発電システムの運転制御方法。   An operation control method for a wind power generation system including a windmill and a generator that is directly connected to the windmill, wherein an operation mode in the operation of the windmill and the generator is determined by the wind speed of the windmill and the rotation speed of the generator. A low wind speed control mode in which the induced voltage of the machine is lower than a required voltage on the power usage system side, a high wind speed control mode in which the wind speed of the wind turbine is equal to or higher than a rated wind speed, and the wind speed in the low wind speed control mode It is divided into three speed control modes, ie, a medium wind speed control mode that is a wind speed between the rated wind speed, and a boost chopper circuit that raises the generator voltage in the low wind speed control mode is activated among the three speed control modes. In the medium wind speed control mode and the high wind speed control mode, the operation of the boost chopper circuit is stopped. . 前記中風速制御モードでは風車のピッチ角一定でインバータ駆動回路を用いた発電機速度制御を行い、前記高風速制御モードではピッチ角制御手段を用いたピッチ角制御を行うことを特徴とする請求項1記載の風力発電システムの運転制御方法。   The generator speed control using an inverter drive circuit is performed at a constant pitch angle of the wind turbine in the medium wind speed control mode, and the pitch angle control using pitch angle control means is performed in the high wind speed control mode. The operation control method of the wind power generation system of 1. 前記中風速制御モードを、前記低風速制御モードを経て発電機回転数が上限回転数に達するまでの風速範囲における第1の中風速制御モードと該発電機回転数が前記上限回転数で前記風車の風速が定格風速以下の風速範囲における第2の中風速制御モードとにより行うことを特徴とする請求項1記載の風力発電システムの運転制御方法。   In the medium wind speed control mode, the first intermediate wind speed control mode in the wind speed range until the generator rotational speed reaches the upper limit rotational speed through the low wind speed control mode and the generator rotational speed is the upper limit rotational speed. 2. The operation control method for a wind power generation system according to claim 1, wherein the operation is performed in a second medium wind speed control mode in a wind speed range in which the wind speed is equal to or lower than the rated wind speed. 風車及び該風車に直結駆動される発電機をそなえた風力発電システムの運転制御装置であって、前記風車の風速の検出値及び発電機の誘起電圧の検出値が入力され、前記発電機の誘起電圧検出値が電力使用系統側の必要電圧よりも低くなったとき低風速制御モードに、前記風速の検出値が定格風速以上となったとき高風速制御モードに、前記風速の検出値が前記低風速制御モードにおける風速と前記定格風速との間の中風速域にあるとき中風速制御モードに、それぞれ切り換える制御モード切換手段をそなえ、該制御モード切換手段は、前記低風速制御モードの切換時に前記発電機電圧を上昇させる昇圧チョッパ回路を作動させるように構成されたことを特徴とする風力発電システムの運転制御装置。   An operation control device for a wind power generation system comprising a windmill and a generator directly connected to the windmill, wherein a detected value of a wind speed of the windmill and a detected value of an induced voltage of the generator are input, and the induction of the generator When the detected voltage value is lower than the required voltage on the power usage system side, the low wind speed control mode is set.When the detected wind speed value exceeds the rated wind speed, the detected wind speed value is set to the high wind speed control mode. Control mode switching means for switching to the medium wind speed control mode when the wind speed is in the middle wind speed region between the wind speed in the wind speed control mode and the rated wind speed, respectively, is provided when the low wind speed control mode is switched. An operation control device for a wind power generation system configured to operate a step-up chopper circuit for increasing a generator voltage. 前記制御モード切換手段は、前記中風速制御モード切換時に風車のピッチ角一定でインバータ駆動回路を作動させて発電機速度制御を行わしめ、前記高風速制御モード切換時にピッチ角制御手段を用いたピッチ角制御を行わしめるように構成されたことを特徴とする請求項4記載の風力発電システムの運転制御装置。
The control mode switching means operates a generator speed control by operating an inverter drive circuit at a constant wind turbine pitch angle when the medium wind speed control mode is switched, and a pitch using the pitch angle control means when the high wind speed control mode is switched. The operation control device for a wind power generation system according to claim 4, wherein the operation control device is configured to perform angle control.
JP2006010415A 2006-01-18 2006-01-18 Wind power generation system operation control method and apparatus Active JP4898230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006010415A JP4898230B2 (en) 2006-01-18 2006-01-18 Wind power generation system operation control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006010415A JP4898230B2 (en) 2006-01-18 2006-01-18 Wind power generation system operation control method and apparatus

Publications (2)

Publication Number Publication Date
JP2007195315A true JP2007195315A (en) 2007-08-02
JP4898230B2 JP4898230B2 (en) 2012-03-14

Family

ID=38450546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010415A Active JP4898230B2 (en) 2006-01-18 2006-01-18 Wind power generation system operation control method and apparatus

Country Status (1)

Country Link
JP (1) JP4898230B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131086A (en) * 2007-11-26 2009-06-11 Nikko Co Wind power generation apparatus
JP4848478B1 (en) * 2011-04-14 2011-12-28 三菱重工業株式会社 Output leveling method for wind power generation equipment and output leveling apparatus for wind power generation equipment
JP2012503136A (en) * 2008-09-18 2012-02-02 サムスン ヘヴィ インダストリーズ カンパニー リミテッド Pitch control device and system for wind power generator
KR101314913B1 (en) * 2011-12-29 2013-10-04 주식회사 효성 A wind power generating system based on controlling power converter system and control method therefore
JP2014529031A (en) * 2011-08-12 2014-10-30 オープンハイドロ アイピー リミテッド Method and system for controlling a hydroelectric turbine
CN104620460A (en) * 2012-09-14 2015-05-13 维斯塔斯风力系统集团公司 Power plant control during a low voltage or a high voltage event
JP2016158335A (en) * 2015-02-23 2016-09-01 株式会社東芝 Variable speed operation control device and hydraulic power generation system
CN106907295A (en) * 2015-12-22 2017-06-30 通用电气公司 Wind generator system and its control method
KR20180011408A (en) * 2016-07-22 2018-02-01 (주)설텍 Control system of Wind turbin
WO2018186263A1 (en) * 2017-04-03 2018-10-11 Ntn株式会社 Output control device for wind power generation device
CN108661860A (en) * 2018-06-19 2018-10-16 汕头大学 A kind of wind-driven generator rotating speed TT&C system for wind tunnel test
JP2019030039A (en) * 2017-07-25 2019-02-21 東洋電機製造株式会社 Wind power generation device
US10352298B2 (en) 2016-12-21 2019-07-16 General Electric Company Wind generation system and controlling method thereof
WO2019212563A1 (en) * 2018-05-04 2019-11-07 General Electric Company Control method for protecting switching devices in power converters in doubly fed induction generator power systems
KR20200053561A (en) * 2017-09-18 2020-05-18 보벤 프로퍼티즈 게엠베하 Wind turbine and how it works
CN111386654A (en) * 2018-10-29 2020-07-07 东芝三菱电机产业系统株式会社 Wind power generation system and power conversion device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408372B1 (en) 2012-03-12 2014-06-18 하이테콤시스템(주) Power converter apparatus for applying to senserless type mppt control of wind power system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150999A (en) * 1980-04-24 1981-11-21 Toshiba Corp Wind-power generating set
JP2000102294A (en) * 1998-09-24 2000-04-07 Meidensha Corp Medium and small-sized wind power station
JP2002315396A (en) * 2001-04-13 2002-10-25 Matsushita Seiko Co Ltd Wind turbine generator
JP2004147423A (en) * 2002-10-24 2004-05-20 Mitsubishi Heavy Ind Ltd Power converter and controlling method thereof
JP2006054946A (en) * 2004-08-10 2006-02-23 Michio Murakami Low-speed rotation outer rotor power generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150999A (en) * 1980-04-24 1981-11-21 Toshiba Corp Wind-power generating set
JP2000102294A (en) * 1998-09-24 2000-04-07 Meidensha Corp Medium and small-sized wind power station
JP2002315396A (en) * 2001-04-13 2002-10-25 Matsushita Seiko Co Ltd Wind turbine generator
JP2004147423A (en) * 2002-10-24 2004-05-20 Mitsubishi Heavy Ind Ltd Power converter and controlling method thereof
JP2006054946A (en) * 2004-08-10 2006-02-23 Michio Murakami Low-speed rotation outer rotor power generator

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131086A (en) * 2007-11-26 2009-06-11 Nikko Co Wind power generation apparatus
JP2012503136A (en) * 2008-09-18 2012-02-02 サムスン ヘヴィ インダストリーズ カンパニー リミテッド Pitch control device and system for wind power generator
JP4848478B1 (en) * 2011-04-14 2011-12-28 三菱重工業株式会社 Output leveling method for wind power generation equipment and output leveling apparatus for wind power generation equipment
WO2012140757A1 (en) * 2011-04-14 2012-10-18 三菱重工業株式会社 Output equalization method for wind power generation facility, and output equalization apparatus for wind power generation facility
CN102859186A (en) * 2011-04-14 2013-01-02 三菱重工业株式会社 Output equalization method for wind power generation facility, and output equalization apparatus for wind power generation facility
US9670897B2 (en) 2011-08-12 2017-06-06 Openhydro Ip Limited Method and system for controlling hydroelectric turbines
JP2014529031A (en) * 2011-08-12 2014-10-30 オープンハイドロ アイピー リミテッド Method and system for controlling a hydroelectric turbine
US9541053B2 (en) 2011-08-12 2017-01-10 Openhydro Ip Limited Method and system for controlling hydroelectric turbines
US9638160B2 (en) 2011-08-12 2017-05-02 Openhydro Ip Limited Method and system for controlling hydroelectric turbines
KR101314913B1 (en) * 2011-12-29 2013-10-04 주식회사 효성 A wind power generating system based on controlling power converter system and control method therefore
CN104620460A (en) * 2012-09-14 2015-05-13 维斯塔斯风力系统集团公司 Power plant control during a low voltage or a high voltage event
JP2016158335A (en) * 2015-02-23 2016-09-01 株式会社東芝 Variable speed operation control device and hydraulic power generation system
US10425027B2 (en) 2015-02-23 2019-09-24 Kabushiki Kaisha Toshiba Variable-speed operation control apparatus and hydroelectric power generation system
CN106907295A (en) * 2015-12-22 2017-06-30 通用电气公司 Wind generator system and its control method
EP3187727A3 (en) * 2015-12-22 2017-11-15 General Electric Company Wind generation system and controlling method thereof
KR20180011408A (en) * 2016-07-22 2018-02-01 (주)설텍 Control system of Wind turbin
KR101894975B1 (en) 2016-07-22 2018-09-06 (주)설텍 Control system of Wind turbin
US10352298B2 (en) 2016-12-21 2019-07-16 General Electric Company Wind generation system and controlling method thereof
WO2018186263A1 (en) * 2017-04-03 2018-10-11 Ntn株式会社 Output control device for wind power generation device
JP6997530B2 (en) 2017-04-03 2022-01-17 Ntn株式会社 Output control device for wind power generator
JP2018182775A (en) * 2017-04-03 2018-11-15 Ntn株式会社 Output controller of wind power generator
JP2019030039A (en) * 2017-07-25 2019-02-21 東洋電機製造株式会社 Wind power generation device
JP7130033B2 (en) 2017-09-18 2022-09-02 ヴォッベン プロパティーズ ゲーエムベーハー Wind power generator and method of operating wind power generator
KR20200053561A (en) * 2017-09-18 2020-05-18 보벤 프로퍼티즈 게엠베하 Wind turbine and how it works
JP2020535343A (en) * 2017-09-18 2020-12-03 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Wind power generation equipment and operation method of wind power generation equipment
KR102455702B1 (en) * 2017-09-18 2022-10-18 보벤 프로퍼티즈 게엠베하 Wind turbines and how they work
US11525432B2 (en) 2017-09-18 2022-12-13 Wobben Properties Gmbh Wind turbine and method for detecting and responding to loads acting thereon
WO2019212563A1 (en) * 2018-05-04 2019-11-07 General Electric Company Control method for protecting switching devices in power converters in doubly fed induction generator power systems
CN108661860A (en) * 2018-06-19 2018-10-16 汕头大学 A kind of wind-driven generator rotating speed TT&C system for wind tunnel test
CN111386654A (en) * 2018-10-29 2020-07-07 东芝三菱电机产业系统株式会社 Wind power generation system and power conversion device
EP3672061A4 (en) * 2018-10-29 2021-04-07 Toshiba Mitsubishi-Electric Industrial Systems Corporation Wind power generation system and power converter
US11764585B2 (en) 2018-10-29 2023-09-19 Toshiba Mitsubishi-Electric Industrial Systems Corporation Wind power generation system and power conversion apparatus

Also Published As

Publication number Publication date
JP4898230B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4898230B2 (en) Wind power generation system operation control method and apparatus
CN101304234B (en) Power converters
Jovanovic et al. Encoderless direct torque controller for limited speed range applications of brushless doubly fed reluctance motors
US8513911B2 (en) Power converters
JP2006050835A (en) Wind power generating system
JP2007089248A (en) Driver of electric motor
JP2011176956A (en) Wind power generation system and control method of the same
US20130026763A1 (en) Wind power excitation synchronous generation system and control method thereof
KR102409164B1 (en) thyristor starter
US9649953B2 (en) Method and device for operating an electric machine of a motor vehicle drive train
JP5148117B2 (en) Power generator
JP2007143235A (en) Drive controller of ac motor
US20090021020A1 (en) Variable speed drive system
JP2009095099A (en) Pulse amplitude modulation controller for permanent-magnet synchronous motors
JP3884260B2 (en) Wind power generator
JP4398440B2 (en) Wind power generator
JP2010130844A (en) Driving device for compressor motor and method of controlling inverter
JP2008196392A (en) Motor control drive device
KR102539553B1 (en) thyristor starting device
JP2007089399A (en) Wind power apparatus
CN113114081A (en) Frequency conversion and power frequency seamless switching control method, controller, system and storage medium
Kumar et al. Sensorless speed control of brushless doubly-fed reluctance machine for pump storage and wind power application
KR102554511B1 (en) thyristor starting device
JP4629562B2 (en) Power generator
JP2006020399A (en) Controller of brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4898230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250